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THE HOLOMORPHY AND NONVANISHING OF
NORMALIZED

LOCAL INTERTWINING OPERATORS

Yuanli Zhang

Let G be a connected reductive quasi-split algebraic group
defined over a p-adic field F of characteristic zero. For π irre-
ducible admissible generic tempered representation of a stan-
dard Levi subgroup M of G, we prove that the normalized
intertwining operators are holomorphic and nonvanishing on
a set larger than the closure of the positive chamber of M, un-
der some assumptions. As an application, we prove that if G is
a split special orthogonal group (if G is even orthogonal, F can
be archimedean) and π is an irreducible unitary representa-
tion of the Siegel Levi subgroup M of G, then the normalized
intertwining operators are holomorphic and nonvanishing on
a set larger than the closure of the positive chamber of M.

Introduction.

Let F be a local field of characteristic zero and G be a connected reductive
quasi-split algebraic group defined over F. We let A0 be a maximal split
torus of G and let Φ be the set of roots of G with respect to A0. We fix
a Borel subgroup of G which contains A0, so we define an order on Φ. We
denote by Φ+ the set of positive roots, by Φ− the set of negative roots, and
by ∆ the set of simple roots. We let W = W (G,A0) denote the Weyl group
of G with respect to A0.

Let θ be a subset of ∆, we denote by
∑
θ the subset of Φ whose elements

are Z− linear span of θ,
∑+
θ (
∑−
θ ) the intersection of

∑
θ and Φ+ ( Φ−,

respectively). Let Aθ be the connected component, where the identity lies,
of ∩α∈θ kerα. Then put Mθ = CG(Aθ) and Nθ = ΠNα, where Nα is the
unipotent subgroup of G such that its Lie algebra is gα, where α runs over
the set Φ+ − ∑+

θ . Set Pθ = MθNθ. Then Pθ is the standard parabolic
subgroup of G corresponding to θ, and Mθ and Nθ are its Levi and unipotent
radical of Pθ, respectively. Let aθ be the real Lie algebra of Aθ, and denote
by aθ,C its complexification. Let a∗θ and a∗θ,C be the duals of aθ and aθ,C,
respectively. More precisely,

aθ = HomZ(X(Mθ)F ,R), a∗θ = X(Mθ)F ⊗Z R,
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where the X(Mθ)F is the Z− module of the F-rational characters of Mθ.
Since the one parameter subgroups of Aθ can be identified with a subset of aθ
which generates aθ, we fix the duality 〈·, ·〉 on the a∗θ,C and aθ,C corresponding
the duality between X(Aθ)F and the one parameter subgroups of Aθ.

Now let Hθ be the Harish-Chandra map from Mθ to aθ defined by

q〈Hθ(m),χ〉 = |χ(m)|F , for m ∈Mθ, χ ∈ X(Mθ)F ,

where q is the cardinality of the residue field of F, when F is nonarchimedean,
and is exp, when F is archimedean and | · |F is the absolute value of F.

We shall use the same notation G for the group of the F-rational points
of G, if there is no confusion.

Given an irreducible admissible representation π of Mθ, and ν ∈ a∗θ,C, we
use the notation I(ν, π, θ) to denote the parabolically induced representation
of G, i.e.,

I(ν, π, θ) = IndGMθNθ
π ⊗ q〈ν,Hθ(·)〉 ⊗ 1Nθ ,

which is normalized so that every irreducible unitary representation of Mθ

is induced to a unitary one of G for imaginary ν.
For the given data in the above, one defines the standard intertwining op-

erator A(w, π, θ, ν) which intertwines the induced representations I(ν, π, θ)
and I(wν,wπ,wθ) when ν is not a pole of A(w, π, θ, ν). For global reasons, it
is important to normalize these operators by root numbers and L-functions
as conjectured by Langlands [4]. When F is archimedean or π is generic,
this is done in [1] and [7], respectively. For definitions and some descriptions
of standard intertwining operators and normalized intertwining operators,
respectively, see Section 1.

If π is tempered and Re ν is in the open positive chamber of a∗θ, then
N(w, π, θ, ν) is expected to be holomorphic and nonvanishing (cf. Conjecture
A below). Suppose π is tempered. In this paper we prove the holomorphy
and nonvanishing of N(w, π, θ, ν) for ν with Re ν in a subset of a∗θ which
is larger than the closure of the open positive chamber of a∗θ, under both
Conjecture A (Conjecture 7.1 of [7]) and Assumption A, when F is p-adic.
This is our Theorem 3. One expects this assumption to be true, as it is
evident from the recent work of Casselman and Shahidi [3]. (See the remark
before Theorem 2.) For F archimedean and G=SO(2n), what we need is
proved in [3]. For the result of [3], see Theorem 2 in Section 2 of this
paper. We then apply Theorem 3 to the split special orthogonal groups
G=SO(2n) and SO(2n+1), their standard Siegel Levi subgroup Mθ, and π
an irreducible unitary generic representation of Mθ. This is our Theorem 4.
The classification result on the unitary dual of GL(n) due to Vogan [12] and
Tadic [10] is used in the proof of Theorem 4. Our result is quite similar
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to that for GL(n) in [5]. We hope that this result will also have a similar
application in the study of the holomorphy of the exterior square L-function
of an irreducible automorphic cuspidal representation of GL(n) as in [5].

I would like to thank Professor F. Shahidi for suggesting the problem of
this paper to me, for many conversations from which I have learned about
representation theory and Automorphic L-functions, and for his careful read-
ing and correcting the manuscript of this paper. Also I would like to thank
Professor D. Goldberg for helpful conversations.

1. Normalized Intertwining Operators.

Given an irreducible admissible representation π ofMθ, ν ∈ a∗θ,C, and w ∈W ,
such that w(θ) ⊂ ∆. Fix a representative of w in G which we also denote
by w. One can define the standard intertwining operator by

A(ν, π, θ, w)f(g) =
∫
U∩wN−

θ
w−1

f(w−1ng)dn,

here f is in the space of I(ν, π, θ), U is the unipotent radical of the fixed
Borel subgroup B, N−θ is the unipotent radical subgroup opposite to Nθ,
the measure in the integral is a fixed Haar measure of Nθ. It is known that
the integral absolutely converges when the real part of ν is big enough, and
this operator has an analytic continuation to a meromorphic function on
a∗θ,C. When ν is not a pole, A(ν, π, θ, w) is really an intertwining operator
from I(ν, π, θ) to I(wν,wπ,wθ) in the usual sense. These operators play a
very important role in the study of representations as well as automorphic
L-functions. For example, the location of poles of this operator determines
both the reducibility of the induced representation I(ν, π, θ) and the poles of
certain local L-functions, c.f. [3]. We can define global standard intertwining
operators similarly. These global intertwining operators are necessary for
the decomposition of the spectrum of automorphic forms and the analytic
properties of automorphic L-functions. The GL(n) situation is well known,
see [5] for example.

Langlands [4] suggested that one could define the normalizing factors es-
sentially by the quotients of the L-functions. For the archimedean case, the
L-functions are defined by Artin L-functions, see [11]. In this case, Arthur [1]
proved that the normalizing factors defined following Langlands’ suggestion
satisfy all the expected properties. When F is nonarchimedean, Shahidi [7]
defined the L-functions for irreducible admissible generic representations of
Mθ and proved the decomposition property of the normalized intertwining
operators, see Theorem 1 later.

Let us describe the normalizing factor r(ν, π, θ, w) for π generic. We first
assume that θ is maximal in ∆, say θ = ∆ − {α}, and w = wlwl,θ. In this
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paper for θ ⊂ ∆, we denote wl,θ the longest element of the subgroup Wθ of
W which is generated by the reflections corresponding to the elements in θ,
and wl = wl,∆. Let rθ be the adjoint representation of the L-group of Mθ on
the Lie algebra of the L-group of Nθ. Then

rθ = r
(1)
θ ⊕ · · · ⊕ r(m)

θ ,

where each r
(i)
θ is an irreducible representation of the L-group of Mθ and

indexed as in [8]. We call l(rθ) = m the length of rθ. Then define

r(ν, π, θ, w) =
m∏
i=1

L(i〈ν, α∨〉, π̃, r(i)
θ )

L(1 + i〈ν, α∨〉, π̃, r(i)
θ ) ε(i〈ν, α∨〉, π, r(i)

θ , ψF )
,

where the L-functions and ε- factors were defined by Shahidi in [7], α∨ is the
standard coroot corresponding to root α, and the ψF is a fixed non-trivial
additive character of F.

Before we define the normalizing factors for non-maximal θ, let us recall
the procedure by which one can decompose a standard intertwining operator
into a product of rank one operators.

Proposition 1 (Langlands [6, p. 14], Shahidi [9]). Let θ ⊂ ∆, w ∈ W
such that wθ ⊂ ∆. Then there is a finite sequence α1, α2, · · · , αn in ∆, such
that if we put Ωi = θi ∪ {αi}, θi+1 = wiθi, wi = wl,Ωiwl,θi, w̄i = wi−1 · · ·w1,
for 1 < i ≤ n− 1 and θ1 = θ, then
(1) w = wnwn−1 · · ·w1, θn = wθ, and n is the length of w,
(2) A(ν, π, θ, w) = A(νn−1, πn−1, θn−1, wn−1) · · ·A(ν1, π1, θ1, w1)

where νi = wi−1(νi−1), πi = wi−1(πi−1), for i = 2, · · · , n − 1, and
ν1 = ν, π1 = π.

Remark. Let Φ(Aθ, G) be the set of roots of G with respect to Aθ. Then
Φ(Aθ, G) can be identified with the set Φ −∑θ mod the restriction of the
elements of Φ to Aθ. Let Φ+(Aθ, G) (Φ−(Aθ, G), respectively) be the subset
of Φ(Aθ, G) which are restrictions of the elements in Φ+ (Φ−, respectively).
Let Φr(Aθ, G) be the set of reduced roots of Φ(Aθ, G). If we let

Φ+
r (θ, w) = {α ∈ Φ+

r (Aθ, G); wα ∈ Φ−},

then

Φ+
r (θ, w) = {β1, β2, . . . , βn}

where βi = w̄−1
i αi for 1 ≤ i ≤ n. For this see which we already used in the

statement of Proposition 1.
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Now we put

r(ν, π, θ, w) =
n−1∏
i=1

r(νi, πi, θi, wi),

N(ν, π, θ, w) = r(ν, π, θ, w)−1A(ν, π, θ, w).

We call N(ν, π, θ, w) the normalized intertwining operator.
Remark. By the remark following Proposition 1, we can see that the
definition of r(w, π, θ, ν) does not depend on the choice of the decomposition
of w described in Proposition 1. Indeed, suppose we have two decompositions
according to

α1, α2, . . . , αn, w = wn · · ·w1

α′1, α
′
2, . . . , α

′
n, w = w′n · · ·w′1,

respectively, as in Proposition 1. By the remark, we can assume w̄−1
i αi =

w̄′
−1

k α′k = β for some β ∈ Φ+
r (θ, w). Then if we let w̄ = w̄iw̄′

−1

k , then
αi = w̄α′k, νi = w̄ν ′k, πi = w̄π′k, θi = w̄θ′k. So we must have

r(νi, πi, θi, wi) = r(ν ′k, π
′
k, θ
′
k, w

′
k).

From this we see the claim.

The normalized intertwining operators also have analytic continuation
to meromorphic functions on a∗θ,C, as the standard intertwining operators
do. But they satisfy more properties than standard intertwining operators.
One of the most important properties which is not satisfied by standard
intertwining operators is the analogue of (2) of Proposition 1 for an arbitrary
decomposition of w. We record this in the following theorem.

Theorem 1 (Arthur [1], Shahidi [7]). Let π be an irreducible admissible
generic representation of Mθ, w1θ, w2w1θ ⊂ ∆, ν ∈ a∗θ,C. Then by suitably
choosing a Haar measure for the standard intertwining operators, we have

N(ν, π, θ, w2w1) = N(w1ν, w1π,w1θ, w2)N(ν, π, θ, w1).

2. The Holomorphy and Nonvanishing of the Normalized
Intertwining Operators.

In this section, we prove our main theorem, i.e., Theorem 3.
We first state a conjecture due to Shahidi [7] and an assumption for our

theorem.
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Conjecture A (Shahidi [7]). Let F be a nonarchimedean field of charac-
teristic zero and θ = ∆−{α}. If π is an irreducible tempered generic repre-
sentation of Mθ, then L(〈ν, α∨〉, π, rθ) is holomorphic for ν ∈ a∗θ,C satisfying
〈Re ν, α∨〉 > 0.

Remark. This conjecture was proved in many cases by Shahidi in [7]. For
example, if l(rθ) = m = 1 or π is supercuspidal, the conjecture is true. The
case of classical groups is proved in [3]. If F is archimedean, the conclusion
of the conjecture is true, even if we remove the generic condition on π, see
[1].

Assumption A. Let F be a p-adic field, θ = ∆ − {α}, and m = l(rθ). If
π is an irreducible tempered generic representation of Mθ, then I(ν, π, θ) is
irreducible for every ν ∈ a∗θ,C satisfying − 1

m
< 〈Re ν, α∨〉 < 0.

Remark. If π is a supercuspidal representation of Mθ, then the conclusion
in Assumption A is true. This was proved by Shahidi in [9]. Moreover,
it is proved in [3] that if standard modules of generic representations are
irreducible (Vogan’s theorem in the real case), then the points of reducibility
in the negative Weyl chamber will have their real parts not larger than−1/m,
confirming our Assumption A.

Now we record a recent result due to Casselman and Shahidi.

Theorem 2 (Casselman and Shahidi, [3]). If F is archimedean, G =
SO(2n) and Mθ is the Siegel-Levi subgroup of G, then

1
L(〈ν, α∨〉, π̃, rθ) A(ν, π, θ, w0)

is entire on ν ∈ a∗θ,C for every irreducible admissible generic representation
π of Mθ.

Lemma 1. Let θ and π be as in Assumption A, and w = wlwl,θ. Assume
Conjecture A and Assumption A. Then N(ν, π, θ, w) is holomorphic for
ν ∈ a∗θ,C satisfying − 1

m
< 〈Re ν, α∨〉 < 0.

Proof. Since Re ν is in the negative chamber of a∗θ, Re wν is in the positive
chamber of a∗wθ. So

N(wν, wπ, wθ, w−1)

is holomorphic, since both the L-functions and the standard intertwining
operator are holomorphic under Conjecture A. Conjecture A also implies
thatN(wν, wπ, wθ, w−1) and A(wν, wπ, wθ, w−1) have the same image and
the same kernel. So N(wν, wπ, wθ, w−1) is an isomorphism of the vector
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spaces of I(ν, π, θ) and I(wν,wπ,wθ) if and only if I(ν, π, θ) is irreducible.
When N(wν,wπ,wθ,w−1) is isomorphic, its inverse is N(ν, π, θ, w), hence
N(ν, π, θ, w) must be holomorphic.

Lemma 2. Let θ and π be as in Assumption A, and w = wlwl,θ. Then
N(ν, π, θ, w) is holomorphic for all ν ∈ a∗θ,C satisfying 〈Re v, α∨〉 = 0.

Proof. Recall that

N(ν, π, θ, w)

=
m∏
i=1

L(1 + i〈Re ν, α∨〉, π̃, r(i)
θ )

L(i〈Re ν, α∨〉, π̃, r(i)
θ )

ε(i〈Re ν, α∨〉, π̃, r(i)
θ ) A(ν, π, θ, w).

Then 〈Re ν, α∨〉 = 0 implies that

L(1 + i〈Re ν, α∨〉, π̃, r(i)
θ )

is holomorphic for 1 ≤ i ≤ m. Therefore what we need to prove is that

m∏
i=1

1

L(i〈Re ν, α∨〉, π̃, r(i)
θ )

A(ν, π, θ, w)

is holomorphic.
Suppose that π is in the discrete series. If ν with 〈Re ν, α∨〉 = 0 is a

pole of A(ν, π, θ, w), then I(ν, π, θ) is irreducible. Thus the local coefficient
Cψ(ν, π, θ, w) defined in [9] has a zero at ν of the same order. Recall that
(Theorem 3.5 of [7]), up to a non-zero constant,

Cψ(ν, π, θ, w) =
m∏
i=1

L(1− i〈Re ν, α∨〉, π, r(i)
θ )

L(i〈Re ν, α∨〉, π̃, r(i)
θ )

ε(i〈Re ν, α∨〉, π, r(i)
θ ).

Every L(1 − i〈Re ν, α∨〉, π̃, r(i)
θ ) is holomorphic at ν, since 〈Re ν, α∨〉 = 0.

Consequently

m∏
i=1

1

L(i〈Re ν, α∨〉, π̃, r(i)
θ )

has a zero of the same order. Therefore

m∏
i=1

1

L(i〈Re ν, α∨〉, π̃, r(i)
θ )

A(ν, π, θ, w)

is holomorphic at ν.
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If ν is not a pole of A(ν, π, θ, w), then ν is not a zero of Cψ(ν, π, θ, w),
hence N(ν, π, θ, w) is holomorphic at ν.

Now suppose that π is tempered. Then π is induced from an irreducible
representation in discrete series of a smaller Levi subgroup. Since the nor-
malized intertwining operators are compatible with inducing in stages, the
lemma follows.

Let n be the length of w and let

m = max{l(rθi) ; 1 ≤ i ≤ n− 1}.

Theorem 3.
(1) Assume that F is a p-adic field. Let θ ⊂ ∆, π be an irreducible generic

tempered representation of Mθ, and ν ∈ a∗θ,C, w ∈ W such that wθ ⊂
∆. Assume Conjecture A and Assumption A are true for G. Then
N(ν, π, θ, w) is holomorphic and nonvanishing at ν, if 〈Re ν, α∨〉 >
− 1
m

for every α ∈ Φ+
r (θ, w).

(2) Assume that F is an archimedean field. Let G = SO(2n) and assume
Mθ is the Siegel-Levi subgroup of G. Then the conclusion of (1) is true.

Proof. Without affecting the result we can assume that ν ∈ a∗θ. For holo-
morphy of N(ν, π, θ, w), we write

N(ν, π, θ, w) =
n−1∏
i=1

N(νi, πi, θi, wi)

as a composition of factors of rank one as before. We need to prove that
every factor is holomorphic. By Lemma 1, Lemma 2, and the result of
Casselman and Shahidi [3], what we should check is that for 1 ≤ i ≤ n − 1
the L-function

L(1 + j〈νi, α∨i 〉, πi, rθi)
is holomorphic at νi, for 1 ≤ j ≤ l(rθi), since the ε-factors are monomials
in the q〈νi,α

∨
i 〉 for 1 ≤ i ≤ n − 1. Now, since 〈νi, α∨i 〉 = 〈ν, β∨i 〉 for some

βi ∈ Φ+
r (θ, w), 〈νi, α∨i 〉 > − 1

m
. So Conjecture A implies that N(νi, πi, θi, wi)

is holomorphic at νi.
For the nonvanishing of N(ν, π, θ, w), we first assume that 〈ν, α∨〉 > 0 for

every α ∈ Φ+
r (θ, w). In this situation, the proposition is true under Con-

jecture A, since both the normalizing factor and the standard intertwining
operator are holomorphic and nonvanishing at ν.
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Then we assume that ν is in the closure of the open positive chamber of
a∗θ, i.e. ν satisfies that 〈ν, α∨〉 ≥ 0 for every α ∈ Φ+ −∑+

θ . Let

R0 =

{
α ∈ Φ+ −

+∑
θ

; 〈ν, α∨〉 = 0

}
,

θ′ = θ ∪ (∆ ∩R0).

Then θ ⊂ θ′, and for any α ∈ Φ+ −∑+
θ′ , we have 〈ν, α∨〉 > 0.

If θ′ = ∆, since for 1 ≤ i ≤ n
N(νi, πi, θi, 1) = N(wiνi, wiπi, wiθ, w−1

i )N(νi, πi, θi, wi)

and every normalized intertwining operator in the equality above is holomor-
morphic and the left one is the identity operator, so N(νi, πi, θi, wi) must
have zero kernel. Therefore

N(ν, π, θ, w)

must be nonvanishing.
If θ′ 6= ∆, we let w′0 = wlwl,θ′ , w̃ = w′0w

−1. Then w′0 = w̃w, hence

N(ν, π, θ, w′0) = N(wν,wπ,wθ, w̃)N(ν, π, θ, w).

Since ν is in the closure of the positive chamber of a∗θ, N(ν, π, θ, w′0) and
N(ν, π, θ, w) are holomorphic at ν. We claim that N(wν,wπ,wθ, w̃) is also
holomorphic at wν. Observe that 〈wν, α∨〉 = 〈ν, (w−1α)∨〉. For any α ∈
Φ+(wθ, w̃), it is obvious that w−1α 6∈ ∑θ and w̃α = w′0(w−1α). Note that
w′0 = wlwl,θ′ sends every element of Φ+ −∑+

θ′ to Φ− and one of Φ− −∑−θ′
to Φ+. If w−1α ∈ Φ+, then 〈ν, w−1α〉 ≥ 0. Suppose that w−1α ∈ Φ−. If
w−1α ∈ Φ− −∑−θ′ , then w̃α ∈ Φ+, which contradicts w̃α ∈ Φ−. If w−1α ∈∑−
θ′ , then 〈ν, w−1α〉 = 0. Therefore, 〈ν, w−1α〉 ≥ 0 holds for every α ∈

Φ+(wθ, w̃). Hence N(wν,wπ,wθ, w̃) is holomorphic at wν. We also claim
that N(ν, π, θ, w′0) is nonvanishing at ν. Indeed, for every α ∈ Φ+(θ, w′0), if
α ∈ ∑+

θ′ then w′0α ∈ Φ+ which is a contradiction, since w′0α ∈ Φ−. So we
must have that α ∈ Φ+−∑+

θ′ , hence 〈ν, α∨〉 > 0 by the choice of θ′. Therefore
N(ν, π, θ, w′0) is nonvanishing at ν. This together with the holomorphy of
N(wν,wπ,wθ, w̃) and N(ν, π, θ, w) implies the nonvanishing of N(ν, π, θ, w)
at ν.

Now we prove that N(ν, π, θ, w) is nonvanishing at ν, if 〈ν, α∨〉 > − 1
m

for
every α ∈ Φ+

r (θ, w). We can find a τ ∈W (G,A0) such that τθ ⊂ ∆, and τν
is in the closure of the open positive chamber of a∗τθ. For the proof of this,
see p. 16 of [6]. Then

N(τν, τπ, τθ, wτ−1) = N(ν, π, θ, w)N(τν, τπ, τθ, τ−1).
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N(τν, τπ, τθ, wτ−1) is holomorphic and nonvanishing at τν, by the last para-
graph. Both N(τν, τπ, τθ, τ−1) and N(ν, π, θ, w) are holomorphic at ν, by
the above. Therefore N(ν, π, θ, w) is nonvanishing at ν.

Remark. From the last paragraph of the proof of the proposition, we can
see that for π irreducible tempered and generic, if N(ν, π, θ, w) is holomor-
phic at ν, then N(ν, π, θ, w) is nonvanishing at ν only under Conjecture A
and without appealing to Assumption A.

3. Examples: SO(2n) and SO(2n+1).

In this section we apply the theorem of the last section to the case of split
special orthogonal groups SO(2n) and SO(2n+1) defined over F.

Let G=SO(2n) or SO(2n+1). We fix a maximal split torus A0 of G. If
G=SO(2n),

A0 = {diag(x1, x2, . . . , xn, x
−1
n , x−1

n−1, . . . , x
−1
1 ), ; xi ∈ F×, 1 ≤ i ≤ n},

while for G=SO(2n+1),

A0 = {diag(x1, x2, · · · , xn, 1, x−1
n , x−1

n−1, · · · , x−1
1 ), ; xi ∈ F×, 1 ≤ i ≤ n}.

Let ei ∈ X(A0)F be defined by, for x ∈ A0

ei(x) = xi, for 1 ≤ i ≤ n.
Then the set of positive roots of G with respect to A0 is

Φ+ =

{
{ei ± ej, ; 1 ≤ i < j ≤ n}, if G=SO(2n)
{ei ; 1 ≤ i ≤ n} ∪ {ei ± ej ; 1 ≤ i < j ≤ n} if G=SO(2n+1).

If we let

αi = ei − ei+1, 1 ≤ i ≤ n− 1

αn =

{
en−1 + en if G=SO(2n)
en if G=SO(2n+1),

then the set of simple roots is

∆ = {α1, α2, · · · , αn}
indexed as in the Dynkin diagrams Dn and Bn, respectively.

Now let θ = ∆−{αn}. Let α̃n = 〈ρθ, α∨n〉−1ρθ, where ρθ is the half sum of
all the elements of Φ+−∑θ and α∨n = 2αn/〈αn, αn〉. By direct computation,
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α̃n = 1/2 (e1 + e2 + · · ·+ en) which is also the nth fundamental weight of G.
When Shahidi [9] defined the L-functions at s, he identified s with sα̃n ∈ a∗θ,C.
For any θ∗ ⊂ θ, we can get a partition of {e1, e2, . . . , en} such that

e1 + · · ·+ en1 ,

en1+1 + · · ·+ en2 ,

· · ·
enr−1+1 + · · ·+ enr

where enr = en, is a basis of a∗θ∗,C. If ν ∈ a∗θ∗,C, we shall simply write

ν = (s1, s2, . . . , sr)

for some si ∈ C, 1 ≤ i ≤ r. In particular,

sα̃n = (s/2, s/2, . . . , s/2),

if we embed a∗θ,C into a∗θ∗,C in the canonical way.
It is well known that Mθ ' GL(n). Let π be an irreducible unitary

generic representation of Mθ, then the classification result on the unitary
dual of GL(n), due to Vogan [12] and Tadic [10], says that

π ' IndGL(n)
MN (δ1 ⊗ · · · ⊗ δm)⊗ q〈ν,HM (·)〉 ⊗ 1N ,

where δi is an irreducible discrete representation of GL(ni), ν = (v1, v2, · · · ,
vm), vi is a real number and |vi| < 1/2, for 1 ≤ i ≤ m, n = n1 + · · · + nm,
M ' GL(n1)× · · · ×GL(nr) and N is the unipotent radical of the standard
parabolic subgroup of G corresponding to M.

For such a π in the above, let

e(π) = 2 inf{1/2− |vi| ; 1 ≤ i ≤ m}.
Theorem 4. Let F be a local field of characteristic zero. When F is a p-
adic field, we let G = SO(2n) or S0(2n+ 1) and assume that Assumption A
holds for G. When F is an archimedean field, we let G = S0(2n). Let θ = ∆−
{αn}, and w0 = wlwl,θ. Let π be an irreducible unitary generic representation
of Mθ. Then N(sα̃n, π, θ, w0) is holomorphic and nonvanishing at s for
Re(s) > −e(π).

We need the following lemma.

Lemma 3. Let w ∈W such that wθ ⊂ ∆.
(1) Let G = SO(2n). Suppose that θ dose not contain αn or αn−1. Then

no subset θi of ∆ in the decomposition described in Proposition 1 can
contain both αn and αn−1.
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(2) Let G = SO(2n+ 1). Suppose that αn 6∈ θ. Then no subset θi of ∆ in
the decomposition described in Proposition 1 can contain αn.

Proof. 1) Let G=SO(2n). Suppose that the lemma is false. So we can
assume that θk dose not contain both αn−1 and αn for every k < i, but θi
contains both of them. Remember that θi = wiθi−1, wi = wl,Ωi−1wl,θi−1 and
wl,θi−1θi−1 = −θi−1, wl,Ωi−1Ωi−1 = −Ωi−1. If both αn and αn−1 are not in
θi−1, then at least one of them can not be in θi. Now suppose that exactly
one of αn−1 and αn is in θi−1, say αn−1 ∈ θi−1 but αn 6∈ θi−1. Suppose that
Ωi−1 = θi−1 ∪ {α}. If α 6= αn, then θi can not contain both αn−1 and αn,
since θi ⊂ Ωi−1. So α = αn. Since

wl,θi−1θi−1 = −θi−1, and

wl,Ωi−1{αn−1, αn} = {−αn−1, −αn},

θi can not contain both αn−1 and αn which contradicts our assumption on
θi at the beginning of the proof.

2) For G=SO(2n+1), we assume that αn 6∈ θi−1 and αn ∈ θi. Then
αn ∈ Ωi−1. Since the longest element wl,∆ sends every root α to −α, we
have θi = wl,Ωi−1wl,θi−1θi−1 = θi−1. This is a contradiction.

Remark. By this Lemma and [8], we see that every l(rθi) = 1 for 1 ≤ i ≤
n − 1, where n is the length of w. Therefore Conjecture A is true for the
L-function L(νi, πi, θi, wi), 1 ≤ i ≤ n− 1. It is clear that m = 1 for the m in
the Theorem 3.

Proof of Theorem 4. Let θ∗ ⊂ θ such that

Mθ∗ ' GL(n1)× · · · ×GL(nm).

Put
δ = δ1 ⊗ · · · ⊗ δm

λ(s) = ν + sα̃n = (v1 + s/2, · · · , vm + s/2).

Since the normalized intertwining operators are compatible with the isomor-
phic maps of inducing in stages, we see that N(sα̃n, π, θ, w0) is holomorphic
and nonvanishing at s if and only if N(λ(s), δ, θ∗, w0) is holomorphic and
nonvanishing at s.

By Theorem 3 and the remark following Lemma 3, we only need to check
that

〈Re λ(s), α∨〉 > −1

for every α ∈ Φ+
r (θ∗, w0).
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If α = ej1 − ej2 , then

〈Re λ(s), α∨〉 = vj1 + Re(s/2)− (vj2 + Re(s/2)) = vj1 − vj2 ,
so 〈Re λ(s), α∨〉 > −1, since |vi| < 1/2, for 1 ≤ i ≤ m.

If α = ej1 + ej2 , then

〈Re λ(s), α∨〉 = Re(s) + vj1 + vj2

> −(1/2− |vj1 |)− (1/2− |vj2 |) + vj1 + vj2

= −1 + |vj1 |+ |vj2 |+ vj1 + vj2

≥ −1,

since Re s > −e(π).
If α = ei (this happens, only if G=SO(2n+1)), then

〈Re λ(s), α∨〉 = vi + Re(s/2) > −1,

also by Re s > −e(π).
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