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ON THE KORTEWEG-DE VRIES EQUATION:
FREQUENCIES AND INITIAL VALUE PROBLEM

D. BATTIG, T. KAPPELER AND B. MITYAGIN

The Korteweg-de Vries equation (KdV)
op(x,t) + Bv(z,t) — 30,v(x,t)* =0 (z € S'teR)

is a completely integrable system with phase space L?(S!).
Although the Hamiltonian H(q) := [, (%(&ﬁq(z))Q +q(x)3) dx
is defined only on ther dense subspace H!(S!), we prove that
the frequencies w; = g% can be defined on the whole space

L?(S'), where (J;);>1 denote the action variables which are
globally defined on L?(S'). These frequencies are real ana-
lytic functionals and can be used to analyze Bourgain’s weak
solutions of KdV with initial data in L?(S'). The same method
can be used for any equation in the KdV —hierarchy.

1. Introduction and summary of the results.

It is well known that the Korteweg-de Vries equation (KdV') on the circle
(1.1) O (z,t) = —02v(z,t) + 6v(x, )00 (z, 1)

can be viewed as a completely integrable Hamiltonian system of infinite
dimension. We choose as its phase space L?(S*) = L?(S*;R) where S* is the
circle of length 1. The Poisson structure is the one proposed by Gardner,

OF d 0G

(1.2) {£G} = s1 0q(z) dx dg(x) )

where F, G are C'- functionals on L?*(S'), and %@) denotes the L*-gradient
of the functional F'. The Hamiltonian H corresponding to KdV is then given
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Note that the Poisson structure (1.2) is degenerate and admits the average

as a Casimir function
= [ alw)d.

Moreover, the Poisson structure is regular and induces a trivial foliation
whose leaves are given by

LX(S") ={q € L*(5"); [q] = ¢}

Consider the leaf LZ(S') and denote by wg the symplectic structure on
L2(S") induced by the Poisson structure (1.2).

In previous work [Ka], [BBGK] the phase space (L3(S'),ws) was an-
alyzed and it was proved that KdV admits globally defined (generalized)
action-angle variables. Recall that for a finite dimensional, completely in-
tegrable Hamiltonian system action-angle variables linearize the flow and,
therefore, solutions can be found by quadrature. When trying to apply this
procedure to find L?-solutions of KdV one notices that the Hamiltonian H
is only defined on the dense subspace H'(S') and so are the frequencies
wj = g—z, given by the partial derivatives of H with respect to the action
variables J;. In Section 3, using auxilary results proved in Section 2, we
show the following main result of this paper:

Theorem 1. Let gy € L3(S"). Then there exists a neighborhood U,, of qo in
L3(SY; C) so that the frequencies are defined and analytic on U,,. Moreover,
they satisfy, uniformly on Uy,

(1.4) w; = (2m5)% + o(1).

Our starting point of the proof of Theorem 1 is the Its-Matveev formula
which, at least for finite gap potentials, provides a formula for the frequencies
w; (j > 1) in terms of periods of Abelian differentials of the second kind on
the hyperelliptic Riemann surface X, associated to the periodic spectrum
of the Schrédinger operator —dd—; + g where q is the initial data of (1.1) (cf.
e.g. [DKN], [FFM], [MT1, 2]). Using Riemann bilinear relations (cf e.g.
[EM]) one sees that the frequencies w; (j > 1) can be expressed in terms of
the zeroes of a conveniently normalized basis of holomorphic differentials on
¥4. Our strategy for the proof of Theorem 1 is to show that for elements ¢
merely in L?(S'), such a basis of holomorphic differentials still exists with
the property that their zeroes are real analytic functions of ¢ and that these
zeroes can be rather precisely located (cf. Section 2 and Appendix).

As an application of Theorem 1 we investigate the initial value problem for

KdV on the circle. Denote by 2 : L5(S') — 7 ,(R?) the symplectomorphism
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constructed in [BBGK] and by (J;, a;);>1 the symplectic polar coordinates
in 3 ,,(R?),

(15)  Q0) = (@) = (@) = (2] cosay, 2T sinay)

For ¢ in L?(S"), introduce p = ¢ — [g] € L3(S") and define

(16)  (2(t),y(1) = (/2; cos (wi(@)t + ), /2 sin (wy(@)t + ))

j>1

where
(1.7) w;(q) = w;(p) + 12[q]mj.

Introduce the solution operator S of KdV, SW:L?(S') — C(R; L*(SY))
where

(1.8) SV (@) t) = [g] + Q7' (=(t), y(1))-

Recently, Bourgain [Bo1] has found weak solutions of KAV, which can be
analyzed further by using Theorem 1:

Theorem 2. Letc € R. Then
(i) SW(q) coincides with the weak solution Sp(q) constructed by Bourgain
for any initial data q in L?(S').
(i) Given qi,q» in L2(S"), there exists M > 0 so that for any t € R

(19) [[($D(@)) (.5 = (V@) (1)

(iii) For any 0 < T < oo SW : L2(SY) — C([-T,T]; L*(S")) is real
analytic.

L2(S1) < M(l + |t‘) H(h - qQHLQ(Sl)_

Remark 1. The estimate (1.9) strengthens a result of Bourgain [Bol],
Theorem 5. Instead of M (1 + [t|), Bourgain obtains e/l where C' > 0 is
some constant depending on ¢; and gs.

Remark 2. Recently, we have learnt that property (iii) has also been
obtained by Zhang [Zh] using methods very different from ours.

Remark 3. McKean-Trubowitz [MT1] have constructed classical solutions
of (1.1), using theta functions. However, with their approach, one has to fix
an isospectral set of potentials in advance and therefore, properties of well
posedness cannot be proved.

Remark 4. Note that S® is not real analytic on all of L?(S!): for generic
initial data ¢ with Im[g] # 0 one sees from (1.6) and (1.7) that KdV is ill
posed.
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Similar results as the ones presented for KdV hold for any of the equations
in the KdV hierarchy. As an example we consider KdVs, i.e., the fifth order
equation in the hierarchy.

1 5 15
(1.10) O = Z@i’.v - 51}8;211 — 50,v0%v + ?UQGIU.

In Section 4 we analyze the frequencies corresponding to the Hamiltonian
of KdV, and use the results to construct weak solutions S®(q) of (1.10) for
initial data in H} . (S'):={q € H'(S") | [q] = c3; 2 [ q(x)*dx = ¢, }, with
c1,c3 € R,

S®:H ., (8") = OR, H,, ,(8Y)
and prove that S has properties similar to those of S™.

We point out that, according to [Bo2], Bourgain’s method cannot be used
to obtain weak solutions of (1.10) for initial data in H!(S"). Results similar
to the ones presented in this paper hold most likely also for the defocusing
nonlinear Schrédinger equation 19,1 = 021 — |¢|*1h. However we have not
verified the details.

This paper is related to [BKM] where we present further applications of
the existence of action-angle variables for KdV. Among other things, we
prove that in a neighborhood in H!'(S') of the elliptic fix point ¢ = 0, the
Hamiltonian H admits a convergent Birkhoff normal form.

The notation in this paper is standard and coincides with the one used in

[Ka] and [BBGK].
Acknowledgement. It is a pleasure to thank J. Bourgain, G. Forest,
J.C. Guillot, A. Kostyuchenko, D. McLaughlin and J. Moser for helpful
discussions. T. Kappeler would like to thank IHES and Université Paris-
Nord and B. Mityagin the Center for Research in Mathematics, Guanajuato,
Mexico for the kind hospitality.

2. Auxilary results.

In this section we prove auxilary results needed in the following section to
show that the frequencies w; can be defined on the whole space L3(S').

Given a potential ¢ in L§(S"; C), denote by (A; = A;(q)),, the union of
the periodic and antiperiodic spectrum of —% + ¢ (with multiplicities).
The eigenvalues are ordered so that Re Ay < ReA; < ReA; < ... and, if
Re A, =ReA, 1, then Im )\, <Im A\, ;.

Introduce 7; = (Ao + A2j—1)/2, 75 = (Aa; — A2j—1) and the gap interval
I = {thy; + (1 —t)A2j_1;0 <t <1} C C. Note that 7;, but not v; are real
analytic functions on L2(S'). Denote by A(X) = A(]), ¢) the discriminant

AK) =1L N + (1,0
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where y; (2, A) and y,(z, A) denote the fundamental solutions for —-25 + q.
Introduce /A(u)? — 4 with the sign determined so that, in the case Where

q is real valued, \/A(u)? —4 > 0 for u € (—o0, \g).

Theorem 2.1. Let gy be in L%(S*). Then there exists a (sufficiently small)
neighborhood U,, of qo in L3(S*; C) with the following properties:

For any j > 1 and q € Uy, there exists a unique sequence

(ug))keN\{j} satisfying uniformly for j > 1,k € N\{j}
and q in U,

1
(2.1) W =l < 0 (5 ).

so that, for all k in N\{j},
ko (A
A2k—1 \/)‘7

where p;(\) is the entire function

(2.2) -0

1 p? — A

j2m2 or k272

(2.3) oi(N) =

Moreover, the ng) ’s are analytic functions on U, . In case where q is real

(4)

valued, the p;’ are real valued and satisfy

A1 < Mk) < Aok (Vj 5&5)

Rephrasing the above results, Theorem 2.1 states that there exist 1-forms
QN = \7% in the Hilbert space of quadratically integrable holomor-
phic 1-forms on the (open) Riemann surface y = \/A(X)? — 4 which satisfy
(2.2) and that the zeroes of these 1-forms €;(\) depend analytically on g.
Actually, the (s are a basis in the space of these 1-forms. If ¢ € U, is
real valued, the existence of such a basis of 1-forms ;(\) with a product
representation (2.3) has been proved by [MT2] (cf also [FKT]). A proof of
Theorem 2.1 is provided in the Appendix.

The rest of this section is devoted to a refinement of the asymptotics (2.1).
First note that, in the case where v, = 0, u; U) — 7. In case v # 0, we make
a change of coordinates in (2.2), A(t) = 7, + 2t, which leads to

(2.4) / eiAW)dt

2

VAN®) -4
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It is convenient to introduce

(2.5) Aut) = (o = A1) (ot = AB) (@ > 1)

Bo(t) = (M) = Xo)
Notice that

Aa(t) = (Ta + %’l - A(t)) <Ta - %“ — At )> _

Therefore, with 7, — A(t) = 7, — 7, — %2,
—Ag(t) = (Ao — A1) (A(t) — A1) =

and

AG®) =4 =4 = Ap) [ L2 20

(3) -

(A2a—1 — A(t))

a>1

(05271'2)2

= 420(t) (7;) <1k4—:> I (j;,ff;

a#k

im0 (3) T A

Ta = A(1))

aeN\{j,k}

Further we introduce

@) &)= ) .
This leads to
(2.8)
To — A(t) + €Y
spj j 7T2 };[j 22

aeN\{j,k}

(5)°
1 — 27
n (-

H (T — /\(t))2

<a27r2)2

)

(1) _ e (4)
1 t o — At J
. gk 2 T ( ) 1 604 .
j2m2 k2q2 II 2 Ta — A(t)

2
ocT
aeN\{j,k}

Combining (2.6) and (2.8) we obtain
(2. 9)

VA ()\(t))2 4 2%\/A0 \/ ) VIt ¢

& )
_|_
NQJ ¥} < To — A(t)
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Cer \ "
: 1— : 5 :
aengj,k} ( (Ta - )‘(t)) )

The Equation (2.4) then takes the form
(2.10)

o [ dt
e VA (VT =P

é_((l]) > ( (%)2 )-1/2
. 1+ —— l-——=—
aElel{:j,k} ( To = A(t) (Ta - )‘(t))

% ! tdt
1 /Ao(t)1/ A (1)1 — 12

& ) ( (3 )”2
. 1+ 1-— 5 .
aeNQj,k} ( Ta = A(t) (Ta - )\(t))

Now introduce
Ap(t) = Apt,g) = ] (1 + 553))
€N\ (5.4} Ta = A(t)
and
Bji(t) = By(t,q) - ) (22
jk(t) = Bj(t, q) == QEI\HM} ( _ @_W) .

After multiplying left and right hand side of (2.10) with the ¢-independent
nonvanishing quantity

A;(0)B;x(0)
the Equation (2.10) reads
tdt Ao(0) [A;(0) Ajk(t) Bjk(t)
(2.11) o wdh = 8000V 3,(0) 2,4(0) By (0)
. k —_— T .
2 [B80(0) /A;(0) Ajr(t) Bjk(t)
f 1 \/1 t2 AZ(t ]7(26) A (0) BJ:(

It will turn out that for £ > N, with N sufficiently large, the denominator
in (2.11) is different from 0. Thus the quotient in (2.11) is well defined at
least for k sufficiently large. To simplify (2.11), we write

/ 0/ k(t) Bjr(t)
C(t)E ]ktq t 0 0
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and obtain
(2.12) () _ Efol 45 (Ci(t) — Cji(—1))
L2y A5 (Con(t) + Conl-)

To obtain asymptotics for 5,9 ) we estimate

dBjk(:l:t)
Ao(£0) 7 AR©0) M TBL(0)

- 1.

A;(0) Ao(0) | Au(Et)
Aj(£t) -

Recall that for ¢ € LZ(S"), > [7]? < oc.

Lemma 2.2. Let qo € L3(S'). Then there exist a neighborhood Uy, of qo
in L3(SY; C) and C > 0, independent of j and k, so that, for ¢ € U,, and
J#k,

(2.13)

0<t<1

A () ’ ] 2, 1
1)< 3 =
A;1.(0) <O ™+

k
|a—k|§§

Proof. Notice that

Aj(£t) 1’ < sup 2 Aji(t)
o<t<1| A;1(0) <1 | Aje(0)
Recall that A, (t) = I (1 + %) and A(t) = 7, + %t and there-
aEN\{j,k} «
fore,

1 0 Ajr(t) 1 (—=1)eWD Vi
77Ajk(t) = (Z @ . 2(_7) .
A;1(0) ot A;i(0) ajk (1 Tffx(,g)) (Ta = A)) 2

This leads to,
L9 po] <€ €9
2.14 —— A <C —
(2.14) A,.(0) ot ik(t)] < Clyl (|azk|:>g 17a — (12
- €9
C — .
+ Clnl (a_;gg 70 — A(8)]2

Notice that, for any a with |a — k| > £,

i —1>\(t)\2 S (@ —Ck;z)? =0 (/-614> '
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Therefore,
€9 C , 1
(215) Y et e X =0 (5).
lamkl>% 7@ o

For a with o — k| < £ we use the estimate £{) = 720(3) to conclude
that

€3] c 2
2.16 —— < — ol
(2.16) 2 T NmESw 2 hel
\a7k|§§ ‘a*k\gf
Combining (2.14) - (2.16) yields (2.13). u

Lemma 2.3. Let qo € L3(S'). Then there exist a neighborhood Uy, of qo
in L3(S*;C) and C > 0, independent of j and k, so that for ¢ € U,, and

J#k,
Bii(£1) ’ Clxl s 1
-1 < — 1.
Bjk(o) - k3 Z ‘%‘| + k3

k
la—k|<35

(2.17)

0<t<1

Proof. Notice that

9
Biju(£1) 1’ < su i Bk (t)
o<i<1| Bji(0) <1| Bjx(0)
—1/2
Recall that Bjx(t) = [T,z (1 - ((W"‘u))z> to conclude that
’ Ta—A(t)
9 —1/2 2(%)? -
O Bu)=Bu){ ¥ T E)
aef\ G (1 g2 ) (Ta=A()
(TW—A(t))

This leads to

1 0 |Bjk(t)] ,
W‘atBj’““)‘f|Bjk<o>|{ 2 e = <>|3”“|}

aeN\{j,k}
al* al?
<C _ el _ el
: "“‘( 2 AP 2, T = AT
lo—k|>3 la—k[<3
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C 1
< Clwl (1{:64‘]& Z ”Ya‘Q)-

k
la—k|<35

Lemma 2.4. Let qo € L3(S'). Then there exist a neighborhood U, in
L3(SY; C) and C > 0, independent of k, such that for any q in U,,

(2.18) sup (7—’“_/\0> i _ (1 _ %1t> < C")’kP
' i<t [ \A() = Ao dn—X /|7 K
and
Tk — Ao 1z |V
.1 — -1 < C==.
(2.19) osglilg)l (A(it) — >\0> =C k2

Proof. Notice that

d( Tk — Ao )1/2_ ( T — Ao )1/2 (=1/2) w
dt B

A(t) — Ao A(t) — Ao AE)— o 27
(2.20)
@ (M)”Q_ ( 7 = Ao )”2 3/4 (%)2
dt2 \\(t) — X A(t) — o (A(t) =) \ 2/
Tk*)\o 1/2 d < Tk*)\o )1/2 1
_ -1 < o S—— <(C— .
ooty ()\(it) - >\0> =0t \XN) — X < Ozl
This proves (2.19). Taylor’s formula and (2.20) lead to (2.18). u
The difference AAJ ”'((fz) — 1 needs to be treated with more care as
A,(0) Chl (1)
su -1 < = ol-).
\tlépl Aj(xt) = e — 7l e k

Lemma 2.5. Let qo € L3(S"). Then there exist a neighborhood U, of qo
in L3(S*;C) and C > 0, independent of j and k, such that for any q in Uy,
and j # k,

(2.21)

A;(0) L y(my — k) -1 7 391y — )%\ L2
A](t)‘(l 2 A;(0) +<8Aj<o> SNI()E )t)
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3
(7 — 75)°

Proof. Recall that

A1) = (20~ (2) = - () 2 mge ()

and therefore

1/2
Aj(0)N 1
A1)\ 1 4 memmer (e

A;(0)
3/2
B k(e =)0+ (CFF) 212 2 ,
14 2225 2 A;(0) L
5/2 9
- ( ! ) (D) (w(m—n>+2<z’v>2t>
(=) (OF)? 2 .
14 T 2,00) 2 2 A;(0)

3/2
1 1\ 2(%)? t? :
+ (=) t+(F)2t? (_) &) ‘ 5 T — 30(1)
1 4 Lelre— it 2) 800 ] 2 (=7

A;(0)
which leads to (2.21). Ul

Lemma 2.6. Let qo € L3(S"). Then there exist a neighborhood Uy, of qo
in L3(S*;C) and C > 0, independent of j and k, such that for any q in Uy,
and j # k,

1 tdt A;(0) A;(0)
%fo m( A;(t) - \/Ajj(ft)) L (=)

1 2,(0) A0\ 87— T
2 o \/71dit2( NOR \/Aj](ft)) 87—

C
DG — PV 12 .
= (e — Tj)?’h’“’ (13”4 sl

(2.22)

Proof. Using Lemma 2.5, we obtain
(2.23)
/1 tdt A;(0) [ A(0)
o VI—12 [} As(t) Aj(=t)
oyl =) Bt ol

A;(0)  Jo V11 " (1 — 75)3

0(1)
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%(ZJ(—O)Z@) >/01 \/%

Notice that

Therefore

(2.25)

1 ¢dt A;(0) A;(0)
Vi fo Vi- tz’( Ajj(t) - \/A (— t))

2 o o (3T + 20

ol (TJ—T )
— k k (1 + (m - )3 1))
= ~y 3 Y2(1;—7k)? +3
? <1 B (16‘A IEO) ~ 16 A0 ) + (Tk_’;j)gO(l))
_ T % on)

C 8 40 ()
Recall that A;(0) = (7; — 7)* — (%)% Therefore

2

T, — Tk 1 1 1 (v5/2)?
226 J = — = J O 1
( ) Aj (0) (Tj — Tk) 1— ((’Yj/Q))Z T; — Tk + (Tj — Tk)g ( )
Tj—Tk

Combining (2.25) and (2.26) we obtain

1 tdt Aj(0) A;(0)
Tk fo W <\/Aj(t) Aj(— t)) 7k 1 4 ~2 (Vk +’YJ2')
- k

2ot (VG ryaty)  Snon Ten)

Theorem 2.7. Let gy € L3(S'). Then there exists a neighborhood Uy, of
qo i LE(SY;C),ky > 1 and C > 0 such that ¥q € U,,, Vj and k > ko with
k# J,

(2.27)

]ij)_(_l(%ﬂ) 71 )‘

27— T, 16 7, — Ao
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Clye)? 1
< (mumu > m|2+0(,€)>.

E
la—k|<3

Proof. Recall that

3% /01 & (Cjk(t)+0jk(—t))>

Write

Notice that, by Lemma 2.5
\/Aj(o) <\/Ao(0) B 1)
A () \V Ao(t)
(R Csae s aw ) ro (%)
(o))

Tk 1 1’Yk(7'j—7'k) ( ’7k> 1 2 (\’MZ)
= t+ = — t“+ 0 .
4Tk—)\o +2 AJ(O) 4 Tk—>\0 + k4

Therefore

e U tdt A;0) ( [Ao(0)
(2.28) 5 /0 m{(\/Aj(t) (\/Ao(t) - 1)

_\/ A,;(0) (\/ Ao (0) _1>>}
A=)\ Ao(—1)
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1 2 3
Vi t2dt ( M 1 ) (h’k| )
_ Y% o (2 0+0
2 o V1 —1¢2 4 Tk—)\o +0+ k4

2 3

Y T Yk

= 7 O
167k—)\0+ <k‘4>

and
(2.29)
o dt ¢Aj<o> \/Aom)_l +¢Aj<o> wj(m .
0o V1—t2 Aj(t) Ag(t) Aj(—t) Aj(—t)
Ye(me—7) 1 bottdt Vel
Ty A;(0) (16 — o) Jo Vioe ( )

By Lemma 2.2, we conclude

L tdt Ao (0) Ajk t)
(2:30) m{v vAo (32 1)
—V AJW Tl
AJ( ) AO(
) ( >
and
1 ;(0) [A(0) [ Ajk
(231) m {\/ o\ 2 (A

A;(0) (0 t)
+\/Ax >\/Ao< 5 (% ‘1)}’
h/k ( Z ’ ’2_'_0 )
B2, r)
Finally, using Lemma 2.3, we obtain
L dt { \/70 A(0 jk(t) Bjk(t)_1>
V1—t? Ao(t) A; Bjk(o)
[0 Ayul(—1) < t> )
AJ( >\/Ao< f) A <o>< B,1.(0) 1)}’

(2.32)
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gl
<ol ( > W“PW(@))
la—k|<k

and

(2.33)

f ool
\/@ () | Ao(t)

WAAJJ( M At A (3 <§)‘1>H
<cbxl (la%;k! a|2+0<k3)>.

We combine the above estimates to conclude

(2.34)
")/k ! tdt

5 \/_—( ir(t) — Cir(=1))
’yk L tdt \/ \/ A;(0)
2 )0 VI—#2 Aj(—t)

T i 2
67— +|7k k (Z Yal?> + O ))

la—k|<k

and

(2.35)
Logt

\/7( k() + Cir(=1))
a5 3 o3
o) 5, o)
= (1 = (116 Aj(’% 3 136 7’“2(0;’“)2» + ZEO(l) +0 (Z’E)

+0 (kg) (m%k/z al? +0 (;)) .

15
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Therefore, there exists ky > 1 and a neighborhood U,, of g, in L2(S*; C) such
that for ¢ in U,,, for any k > ko and j > 1, fol \/%(Cjk(t) + Cjr(=t)) #0
and its inverse satisfies the estimate

(2.36)

</01 \/1i7tz (Cyr(t) + Cr(—t

(1)
([ s (5 23)
| (1+O (%'2) 40 <k3) la%;w al® + 0 (D)) '

Combining (2.34) and (2.36)

—1

(2.37)
SR fd% (Cjr(t) — Oy (1))
fo s (Ci(t) + Cji(—1))
3 3 o ( iJE?i o) -3k o () (2 e haP+o(3)

Er RN

_ I L % |’Yk’ 2

o) ( s mw2+o<;>)}{l+o<w

k
k<3

1 2 1 2 2
il T +0("Z“J){m+mrz+ > mr?}

81, — 7 167 — A
b B ja—hl<}

4
Vi i 2
+m—fj0<k2> O<k4>

3. Frequencies of KdV.

The aim of this section is to prove Theorem 1, as stated in the introduction

and to apply it to the initial value problem of KdV. In the case where

qo € H;(S'), the frequencies w; = g?f are well defined and can be obtained,
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using Riemann bilinear relations, from the expansion at infinity of the L,—

integrable holomorphic differentials Q; = —2sAA_ copstructed in Theorem
VAMN2-4

2.1. More explicitly, w; is given by (cf. e.g. [EM], [BKM)])

o s [ [ —ilmdp - o () Ao
(3.1) ;=38 (Fj /7A(M)2_4> (J ke%\;{j}(ﬂk ) + 2)

where I'; is a counterclockwise oriented circle with center 7; and sufficiently
small radius p; > |v;|/2 so that all eigenvalues (Ag)rem (2j2;-1} lie outside
r;.

Due to Theorem 2.1, the right hand side of formula (3.1) is well defined
even if gy € L2(S') and can be extended to an analytic function in a suffi-
ciently small complex neighborhood U,, of g, in L%(S*;C). For ¢ in U,, we
therefore define the frequency w; by formula (3.1). In view of Theorem 2.1
we obtain the following

Theorem 3.1. Let gy € L3(S'). Then there exists a neighborhood Uy, of
qo in L3(SY;C) so that, for any j > 1, the frequency w;, given by (3.1), is
well defined and analytic.

It remains to prove the asymptotics for w; as j — 0o as stated in Theorem

1. We start by analyzing fr % Note that in the case where v; = 0
we have by the residue theorem, taking into account the determination of

the root,

o(p)dp @i()
(32) /Fj W = QWW

T |y,

In the case where v; # 0, introduce pu(t) = 7; + 3t (-1 <t < 1) and
; (1(t))
A(u(t))2—4
(Azj*#(t)) (M(t)*Mj—l)
Then, with (Ag; — u(®)) (u(t) = Dayor) = F(L— )%t +1) = (21— )

g
! —dt

3.4 7—2/

(3.4) VA(R)? -4 vilt) LT—¢

(3.3) P;(t) =

=2 [ ) i) Nt
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Summarizing, we obtain

(3.5) _s(wdp {277%‘(0) for 7; =0
: nVAWZE =4 |2y () + (—t) s for ; #0.

The function #;(t) has a product representation
(3.6)

J —1/2
( ! = M(t)) %(M(t) — ) 2] <()‘2k — pu(t)) Ao—1 — M(ﬂ)) ‘
k#j

k272 oy (k2m2)?

Notice that

ok — 1) Par1 — () = (73 — p(t))” — (%>

2

_ 2 (%/2)2 )

= \Tr — t 1-— D ———
( H )) ( (Tk - M(t))

and, with f,(cj) = ,ug) — Tk,

)
) — u(t) = (mo — plt)) (1 + §k> :

Tk—M(t)
Therefore,
(3.7) /
) 2\
2, (1) = (u(t) — Ao)” (1 k) (1_W2)2> '
9 = () =) ] {1+ 2= (1= s

Similarly, as in Section 2, it is convenient to introduce

Ao(t) := u(t) — Ao;

by T — (1)
(14/2)" >/
B;(t) == l-—— .
" kl;[J ( (Te — n(t))

This allows us to write 1;(t) as follows

(3.8) 205(t) = Do(t) 7124, () By ().
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Further, for some 0. (t) with —t < 0_(t) < 0, (t) < t,

(3.9)  2(w(t) + v;(—t)) = 41;(0) (1 LY (9+(t)2)wjf(8/;j (0-(®)) t; ) _

Lemma 3.2. There exists C > 0 such that, for ¢ in Uy, and j > 1,

(3.10)

Proof. Notice that p(0) = 7; and therefore

(3.11)
(24;(0))
9\ (1/2)? \"
— (15— A2 _
(7, = o) ,g(lﬂm—m) g(l (Tk_Tj)Q)
Further
(3.12)

H(H 34 )’1:1_2 SHN S
( )

Pary Tk — Tj) 2 TR T T T T T The T
k1 <ka
Z ( l(j))Q 1
+ +0 <)
k) (7 — 75)? 7°

where for the estimate of the error term we used that, for |k — j| > j/2

1 1
-0 (3)
|75 — 74 52

and for |k —j| <1

| 2

G _ e o1 :O<|7k’2) and 1 :O(l)

19
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to conclude that

(J)
(3.13) Sl <yl o( >
k Tj ]
Similarly
(1%/2)° >”2
3.14 (1 - —
(344 ==

:1_12 (v/2)° _EZ (y/2)*

2 o (i —1;)* 8 Py (1 —15)4

1 (V./2)%(1h,/2)? 1
+ Z Z ( )2 + 0 <>

oy (T = 7)) (Thy — T J°
k1<ka
1 (%/2)2 ( >
- ly > o
27 (1= Tj) k>j/2
1 9 o 1
+0 -2 Z Vi, Yoy + O K
J k1<ka J
ko,k1>37/2

Combining (3.11)-(3.14) we obtain

(3.15) (2;(0)) "
1/2 5(]) (’Yk/2)2

— (1 — AV _INT )

(75 = Xo) { B Pt D Dy e

— T
KAt Tk J

2
) G \?2
+ = + R;
(;Tk—q 2; T — T; J

where, with <Zk7§] P TJ) (Zk¢] (Tzk/fj) ) (%) (Zk>]/2|’7k|) "’O(%)

we have

(3.16) R;j:==0 (;) k;ﬂ’y;‘ +0 (] ) > w0 ( )

k1 >3/

k2>]/2
Finally use that 3(7; — A9)"/* = & + O(5;) to obtain (3.10). O
Lemma 3.3.
(3.17) sup =01 _ oo’

o<iii<t ¥;(0) T gt
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Proof. In a straightforward fashion one computes

d % —1/2 1 (-1g”
ar¥r 1 =5l {Ty =X+ 5t " ; 1+ - (t) (7 — () -
by <f1><f2>m/32>2 C
A L (m u(t))2 (7 — p(t))

(4)
Yj _1/2 1 &x
2%“{n%+w+§i+¢)
(

T —p(t)
1 (Vk/2)?
+Z /2 :

perg (ont)” (i — (1))

(3.18) ) ,
0= (500) + (1) wo

1/2 ~1 ( Y )2
a2 T o\ 2 2
CESSTEAPY (1) N )

Tre— (%)
+ v z
gj 1+ LZ (Tk - N(ﬂ)s
(re—n()
-1 2)2
+Z (-1) 2( (7:/2) 3)(1>
k3 (1 B W2)22> (Tk - :U’(t))
(Tk*li(t))
1 (=3)(m/2)°
k#] (T _ (t)) k
We begin by estimating | dfpwgt) l,

&
Tk — ,U(t)

L1, (t)
¥;(1)

1
< Clyjl {jQJFZ

k#j

1 Vel
e TP D —u(t)P}

21
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)
J
Therefore,
i (¢ 2 12
o<1 %( )95 (t) j
All the other terms are treated similarly. [l

Theorem 3.4. Let qo € L3(S"). Then there exists a neighborhood U,, of
qo in L2(SY;C) and C > 0 so that for any q in U, and j > 1,

-1
p;(1)dp I%I2
3.20 ——— — (2my;(0 < C——
(320) |< AW_4> Criy(0) | <4
and
-1 1/2 1 )\o 1/2 f(J)
(3.21) (2050) =7 -5 G577 X
i k<j/2 Tk
C 1
< - Z |’Yk’2+ -
I \kzi2 J
Proof. Notice that, according to (3.5), (3.9) and as fo T t2 =z

< i ()dp )
v VAR)? -4

Thus, by Lemma 3.3

oiwdp \ (O] C Wy (t)
( \/iA(u)2—4> (e O) | < o S ¢J<>|
<C]‘%‘2 <Ch/]‘2
] ]

This proves (3.20). To prove the estimates (3.21) use (3.10) and notice that

(z w) “o(1)

(r; _)\0)1/2 Z %(%/2)2

(3.22)
k<j/2 (7 = 75)°
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and, in view of (3.13),

&y

Tk — Tj

) |=s (=) -0 (3)

(3.23) (1, — Xo)'/? (Z

ki

According to Theorem 2.7

(4) 1 9 2
(3.24) (1, — /\0)1/2 Z ( 9 i 5(/ )2>
k>js2 \Tk = Tj (11 — 7))
] [l Vi |?
<Cj +Cj
k>Zj/2 7k = 73] [T = Ao k>z/2 73| — 75l
-5 S mo(5).
‘7 k>j/2
Finally
(3.25)

o\ V2 1A 1
1/2 0 1/2 0
(7]'—)\0)1/2— 7j (1—j> — 7j <1 27j +O(]4>>

1A 1
_pa 1 o1y
T ()

Combining these estimates we obtain

(2%‘(0))_1:(7}/2—;7;32+0<1>> (l_k;m @ )
+0(5 )(gﬂw )

1 A 5(]) 1
1/2 0 1/2
=T Tz T > +O<-3>

j k<jj2 Tk T J

+0(5;) (k;pw )

which proves (3.21). O

Combining Theorem 3.4 and Theorem 2.7 we obtain the following result
which completes the proof of Theorem 1:
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Theorem 3.5. Let gy € L3(S"). Then there exists a neighborhood Uy, of
qo in L3(SY;C) and C > 0 so that for any q in U,, and j > 1,

(3.26) lw; — (27j)*| < C ( Sl + (v — m)itat + 0 ( ))
k>7/2
Proof. According to (3.1) and using (3.20)
I G 0 T N G n 2o
=F (F.m/W) (7 keg\:{j}(“" )+2)
= 8 ((2m05(0)) ) { - )+ 2} +0 (Z w)

k<j/2
1
co(d).
J

By (3.21)
(3.27)
8 [ 12 1 Ao 1/2 fk G) 4
b= (et s N
T ( ’ 2 TJ’l/Q k<jj2 Tk T T k<j/2

(kz; ”Yk‘2 )

—g T;&/? 7)\ 1/2 3/2 Z fk _le/z Z 5](c T )\71/2
k<j/2 Tk k<j/2
Z|’Yk\2
k>j

Notice that

(3.28) _ 3/2 Z 51: _le/z Z 5,9)
k<jj2 Tk T T K<j/2
_ 1/2 (4) Tj _1
Z { (7' — Tk >
k<j/2 J
< Clj (4)
= |J|Z|§k | —

k<j/2
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1 : 1
<> ¥ wiell=o(3)
I 1<iy2 J

where we used that, by Theorem 2.7, X k<ise k’2|f/(cj)| <C.
Finally, write \/7; = jm + ;}4, to obtain (with 7-] € 1*(5))

73/2 — )2 7/'\1 i i 7/_\]
(3.29) ; ((] ) +2(j7r) +0 <j4>> <] + (ﬂ)?)

) 1
= (jm)® +37,+ O (f)

Combining (3.27)-(3.29) leads to the claimed estimate. u
The above results can be applied to the initial value problem for KdV,

(3.30) O = —v+30,(v*)  (t>0;z€85")
(3.31) v(z,0) = q(z).

Recently, using a fixed point argument, Bourgain [Bol] has constructed
weak solutions vg(z,t) = Sg(q)(z,t) of (3.30)-(3.31) for initial data in L?(S*)
globally in time and proved that these solutions are unique within a certain
space of functions f : R x [-T,T] — R (and 7' > 0) and that they can
be approximated within this space by smooth solutions corresponding to a
smooth approximation of the initial data.

We obtain Bourgain’s weak solutions Sp(q) of (3.30)-(3.31) by using act-
ion-angle coordinates as follows: Given ¢ in L?*(S"), define p := q — [q] €
LE(S') where [q] = [4 g(x)dz and introduce (j > 1), with w;(p) given by
Theorem 1,

(3.32) w;(q) = w;(p) + 12[g]m;

In view of Theorem 3.1, the w,’s are real analytic functions on L*(S'). De-
note by Q: L2(S') — El/z(R2) the symplectomorphism Q(p) = (z(p), y(p)) =
(23 (p), y; (p )) , constructed in [BBGK] and denote by J;, a; the symplectic
polar coordmates corresponding to x;,y;, i.e.

(3.33) (x,9;) (\/gcosa],\/gsma])
Define (z(t),y(t)) = (z(t,q),y(t,q)) by setting

(3:34)  (a(1),y(1) = (/27 cos (w; (@)t + ay), /2, sim (w; (@)t + )

Jj=1
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and introduce the solution operator S

SW . L(SY) — O(R; L*(SY))
defined by
(3.35) S (g)(t) = [q] + Q7 ((t), y(1)).

To prove that (3.35) defines a weak solution of KdV, we approximate the
initial data ¢ by finite gap potentials (¢n)y>1 with

(3.36) av =97 (T (2p)) ) + [g
where IIy denotes the projection
(3.37) Iy : 03,,(R?) — 3 5(R?), (25, 9;) 1 = ((25,95)1<j<n,0).

Note that ¢ = limy_o gy in L*(S') and that for any j > 1,w;(q) =
limy o w;j(gn) uniformly in j. Therefore

(x('7Q)ay('7Q)) = lim (x("QN)vy('qu))

N—o0

in C([~T,TJ,£; 5(R?)) (for any T > 0), which in turn implies that
(3.38) SW(q) = Jim SW(gn)(in C([~T,T); L*(SH))).

Notice that for arbitrary N > 1, S®(gx)(t) is an N-gap potential for any
t and therefore a classical solution of KdV with initial data qx. For ¢ € R, we
have introduced the symplectic leaf L?(S') = {¢q € L*(S"); [¢: q(z)dz = c}.

Theorem 3.6. Let c € R. Then
(i) SW(q) = Sz(q) for q in L*(SY).
(i) Given qi,qo in L2(S") there exists M > 0 so that for any t € R,

(339) [(8Va) () = (8Va:) (1), . < MA+ [t = @ollsasn.

L2(S1)
(iii) For any T >0, S : L2(S') — C([-T,T); L%(S")) is real analytic.

For remarks concerning results related to Theorem 3.6 we refer the reader
to the introduction.

Proof of Theorem 3.6. Let ¢ be in L?(S') and ¢y (N > 1) be defined as in
(3.36). As classical solutions of KdV are unique we conclude that S (gn) =
Sp(qy) for any N > 1. Moreover Bourgain proved that limy_.. Sg(qn) =
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Sp(q) in C([-T,T7]; L*(S")). Together with (3.38) we conclude that S (q) =
SB(q).

Statements (ii) and (iii) rely both on Theorem 3.5 which, combined with
(3.32) leads to the following result: Let ¢ € R and gy € L?(S*). Then there
exists a neighborhood U,, of gy in L?(S*; C) so that

(3.40) w;(g) can be analytically extended to U,,
and
(3.41) w;i(q) = (2m5)* + 12¢mj + 0o(1) (as j — 00)

uniformly for ¢ in Uy,.

Fix 0 < T < oo arbitrarily. By choosing U,, smaller, if necessary, we can
assume that Q can be analytically extended to {SM(q)(t)—c;q € U; |t| < T}
and that its inverse is analytic as well. Further note that £3 , (C([-T,T]; C?))
can be embedded into C([~T,T]; ¢} ,,(C?)), the complexification of the Ba-

~(1)
nach space C([~T,T]; {7 ,,(R?)). Tt therefore suffices to prove that S
Uy — £3,,(C([~T,T];C?)) is analytic where U, = Q(U,, — ¢) and where,
with &; = w;(Q ' (z,y)) + 12cmj (cf. (3.32)),

~)

= (\/Tjjcos (@-t + ozj) , \/2>stin (5]'75 + Oéj))jzl .

Due to the assumption that ¢ is real and due to (3.41) we conclude that
~(D) B
S is locally bounded on U;. Moreover each component (1/2J; cos(w;t +
a;); /27T, sin(@;t 4 a;)) is analytic on U;. By a version of [PT], Appendix
~(1)
A, Theorem 3, we conclude that S is analytic on U; and (iii) is proved.

To prove (ii) first note that, in particular, © is locally Lipschitz continu-
ous. Taking into account that Iso(q;) = {q € LQ(Sl);spec(—%2 +q) =
spec(—cg‘lf; + ¢;)} are compact in L?(S')(j = 1,2) one concludes that there
exists M; > 0, depending on ¢; and ¢», such that for any aj € Iso(g;)

(3.42) HQ (51 B c) - (52 B c) 2 @) < My Hal B 52‘ L2(s1)

where ¢ = [q1] = [go]. Using Q7' instead of Q, one concludes that there
exists My > 0 such that

(3.42') Hal N 52‘ L2(S1) < Mp HQ (51 N C) - (52 B C) e,®)’
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Therefore it suffices to show that, for any ¢,

|28V (@) (1) = ¢) = ASD(@)(,1) — ¢

(3.43) < Mllgr — gallz=(1 + [t]).

2
21/2

To simplify notation, write for k£ = 1,2

(@® ),y ™ (1) = SV (@) (1) = ¢); Wi = wi(an).

Recall that for k =1,2 and j > 1

d xg-k)(t) R
dt \y"(t) !

= wj(-k) — (2mj)® — 12[c]7j,

A
=
VR
5 &
L~ E
= =
~— N
—~
~ ~—
N2
\—/

Therefore, with (;;J)

(3.44)
d x§-1)(t)—:c§-2)(t) () yj(-l)(t) e yj(_z)(t)
a\y (1) —4P) 7 \aPw) T\

(1) —y®
+ ((27)° +12[c]m) (-f%ééfi§>-—§%g>é33> |

. V(1) =P (1)
Scalar multiply (3.44) by ("¢, {2 to conclude that
(t) —Y; (t)

Yj
(3.45)
L 1) 220
ty" (1) — u2(1)
o (@) _so (6P |00 - 2P0
= U-)j (1) (.L)j 2 1) (2)
—a; (1) =z (1)) ||y () — vy (1)

Notice that (uN)j (y;(t), —x; (t)))j>1 is analytic on U with values in £; ,(C?)
due to the fact that w; = 0(1) uniformly on U (cf. Theorem 1). Therefore

~o (V) ~@ g0
) \=Pe)) L,

where M > 0 is uniform for ¢ € R. (Use compactness of the isospectral sets.)

< Mg — g2z

£,,()

.40 |
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Combining (3.45) and (3.46) we conclude that

d

%H(x(l)(t)vy(l)(t)) - (w(z)(t)vy@)(t))HZf/z = M”(h - Q2||L2'

This proves estimate (3.43). u

Using again properties of the map {2 one obtains in a straight forward way
a result due to McKean-Trubowitz [MT1], and in its more general version,
due to Bourgain [Bol], concerning the almost periodicity of weak solutions
of KdV. Recall (cf. [MT1], [Bol]) that a function v € C(R;L*(S")) is
called almost periodic if for any € > 0 there exists 0 < T' = T'(¢) < oo so
that, given any interval I of length at least T', there exists 79 € I with the
property

llu(-,t) —u(-,t+70)||z2 <€ vt € R.

Proposition 3.7. Let g € L*(S'). The weak solution SV (q)(-,t) of KdV
1s almost periodic.

Proof. For ease of exposition we assume that [¢] = 0 and write v(-,t) =
SW(q)(-,t). Note that v(-,t) € Iso(q) and Iso(q) is compact. Therefore
Q(Iso(g)) is compact as well and Q7! is uniformly continuous on Q(Iso(q)).
In particular, given € > 0, there exists § = J(¢) > 0 such that for z(V) =
(zW yM), 2@ = (2@ y@) in Q(Iso(q)) with ||z — z(z)H@/2 < § one has
1271 (z) = Q71 (2®)]|2 < e Tt therefore suffices to prove that, given any
0 > 0, there exists 0 < Ts < oo so that given any interval I of length at least
Ts, there exists 7y € I with the property that, for any ¢t € R,

(3.47) (1), y(8)) = (2(t +70),y(t + 70), ) [z, < .

To prove (3.47) we first note that there exists N > 1 such that, for any
teR,
> () +y(1)?) < (6/4)°

j=N+1

where (x;(t),y;(t)) is given by (3.34). Note that (:Uj(t),yj(t))1<j<N is a
quasi-periodic function of t. Therefore, given § > 0, there exists 0 < T5 < oo
so that in any interval I of length at least T5 one can find 75 € I with the

property that, for any ¢ € R,
o 2 2 5\?
>3 { @) = ot + ) + () syt + m)°} < (5)
j=1

and therefore (3.47) follows. Ul
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4. Frequencies of KdVs.

In this section we investigate the frequencies of the second Hamiltonian in
the KdV hierarchy and apply the results to the initial value problem of KdV5,
(cf. e.g. [MM])

(4.1) v — i@iv _ gvafgv — 50,00% + ?ﬁamv
(42) o(2:0) = g(a).

We want to construct weak solutions of (4.1)-(4.2) in C'(R; H*(S')) for initial
data q in H'(S'). The construction of the solution map S is very similar

as in the case of KdV. Recall that the Hamiltonian H(® corresponding to
KdV, is given by (cf. e.g. [MM])

(4.3) HP (q) = /S (;(3§q)2 + ZQ(@;Q)Q + gq“) da.

We point out that H® is only defined for ¢ in H?(S'). Nevertheless we will

show that one can define the frequencies 88”—;2) corresponding to H?).

First notice that, with p := ¢ — [¢],

(4.4)
HP(¢) = HP(p+ [q])
=H® (p) + g[(ﬂ HW(p) + ?M% pra EW'

Therefore it suffices to define the frequencies for ¢ € HJ(S'). Recall that
for the construction of the Lo-integrable, holomorphic 1-forms Q; on y =

VA% — 4 we have introduced the functions f;(\) := Cj\/% with

1l = ( 65 (u)dp )
4.5 (\) == O = TR
@) e= 5 ] T . A=

where I'; is the counterclock oriented circle with center 7; and sufficiently
small radius p; > 7;/2 and C; is a normalizing constant. The frequencies

w](-z) are then defined by

i iv
(4.6) w? = 3 £ (o0)

where fj(iv)(oo) denotes the fourth deriviative of f;(\) evaluated at infinity

with respect to local coordinates 72 = % near A = oco. A straightforward
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calculation shows that

(4.7)
- — 1 iv /\() 3 )\0 ?
O = ( ;) :(5)
J
Z&-(]) 4= Z’}/k ( Z gk (j)) _ZTkgl(cj)
= k15 kAL =
where 5,(3 ) = u,(f ) — 7, (as in Section 2). In view of Theorem 2.1, given

qo € H;(S'), there exists a neighborhood U,, of gy in Hy(S*;C) so that the
right hand side of (4.7) is well defined and analytic for any 5 > 1. In order to
derive an asymptotic expansion of the wj(?)’s we need a number of auxilary
results.

From Theorem 2.7 we deduce the following

Lemma 4.1. Let gy € L3(S"). Then there exist a neighborhood Uy, of qo
in L3(SY;C), jo > 1 and C > 0 such that for ¢ € Uy, j > jo, k > j/2

o) _ <_1(%/2)2 _ w2 1 )’ < ﬁ,\mlz

k QTk—Tj 4 Tk,—>\0

(4.81)

and, for j = jo, k < j/2

(4.8ii)

. 2 2
0 _ (_W1>’ < ol
4 Tk—)\o kb

Lemma 4.2. Let gy € H}(S"). Then there exists a neighborhood U,, of qo
in Hy(S';C) so that

- eiwde \ o 15, 2
(4.91) ( r A(M)2—4> = (2%@0.7(0)) + O ( e )
(4.9i1)

(25(0)) " = <n—Ao>“2{1_ > (4 522
k<jj2 kT Tj Tk — Tj

+O<J ) > |k~yky2+0< )

k>j/2
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Proof. (i) Follows from (3.20).
(ii) By Lemma 3.2,

(24;(0)) " = (15 — Ag) /2 {1 =S ; <€£” L1 Ow/2 )

27, —T;

. 2 ) 9
1 ](CJ) 1 < l(j) ) (1)
= (=) 2 () v to(=).
2 (g;] (Tk - Tj) 2 k+#j (Tk - Tj) J?

By (4.81) one has

1 o 1 (w/2)?
DL R
kzj/sz*Tj 27T, —T;
Similarly, by (4.81) and (4.8ii),

Z ’(ﬂj) :o<1)- Z 5’f :0<1>.
7 Te — Tj j4 ’ j2

k<j/2 Tk T

This leads to (4.9ii). u

Lemma 4.3. Let gy € H}(S"). Then there exists a neighborhood U,, of qo
in Hy(S*;C) and C > 0 so that for any q in Uy, and j > 1

(4.10) i =8 ((jm)° + jm57, )| < C | 3 el +
k>j/2

where \/T; = jm + (fTJ)g

Proof. Using (4.7), (4.6) and (4.5) one obtains

2 _ g w;(p)dp - 224
(ﬁ =) {7 (3-29)

+ A2 Zg(])_i_ Z%’c—i_* Z ‘gk 5(]) ZTké}(j)}.

k£ Sy k1 kAL k£

—1
Therefore with (fr W) = (27r¢j(0))_1+0(|j]7—§‘) and the asymp-
J n)<—

totics of (27rwj(0))71 we obtain by a straight forward computation

1
éw](?) 7+ 0(1) (Z;m2)+o(>

k>35/2
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With /7; = jm + G 77’)3 we obtain

~ 1
7= e+ (57) 3m+0 (1)
which leads to (4.10). u

Lemma 4.4. Let gy € H}(S"). Then there exists a neighborhood U,, of qo
in Hy(SY;C) and C > 0 so that, uniformly for q in Uy,

(4.11i) 7i(q) = j°m ifo ](2732 +0 (;)

(4.11i0) Jrilq) = jm + ;fo (ﬂ;jdx +0 (;)

Proof. Notice that (4.11ii) follows immediately from (4.11i), so let us con-
centrate on (4.11i). Recall that, for j > j, with j, sufficiently large,

d2

where P; is the Riesz projector on the subspace generated by the gener-
alized eigenfunctions corresponding to the eigenvalues \;; and Ag;_;. It is
convenient to introduce, for j > jo,

L(t) :== —jz + tq,
Py(t) = QLM (A= L(£) an,
7;(t) = tr (L(t) F;(1))

where I'; is a circle with center j°m and radius p; so that the eigenvalues
A2 (tq) and Aoj—1(tq) are inside of I'; and all other eigenvalues are outside
of I'; forany 0 <t <1, g € U,. (The integer jp has been chosen sufficiently
large and the neighborhood U,, sufficiently small.) The functions 7;(¢) admit
a Taylor expansion,

(4.12) 7 (1) = 75(0) + 7(0) + 7 (0) & + 7 (0) &

21 T Vg +&

where £; denotes the Taylor remainder term. Clearly

4.13 27;(0) = n*m*tr P;(0) = 25%x°.
J
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Further

(4.14) 27;(0) = tr (P;(0)L'(0)P;(0)) = tr (¢F;(0))

To compute the second derivative it is convenient to introduce

N 1 ! —imkx
b=y [ e awda
-1

Then
1 d\
2 " O —t P/ 0 — A A 7/
Tj ( ) r (q ]( )) qu,qu,m 27TZ Fj ()\ _ m27T2)(>\ _ kf27T2)
q 8 4 4.4
— 4 m— J j—m I n‘ —n .
ng] —m?) 7w k;ﬁzo;% n(2j —n)
Writing
L1111
n(2j—n) n2j 2j-—n2j
11 n 1 n n
n2j - (2)? (25 —n)(25)?
and using that
ANA VANIVAN AN A VANIVAN
(4.15) Z 9n9—n _ Z 4n9-—n Qqu.—Qj —0— Qqu'—2j7
nt02; nt0 2) 25
we conclude from (4.14)
(4.16)
q q ng,(—n)q
27_11 — Z nd— e Z n —n
2 _ T 2
ar o (Gn)(27 = n)(29)
n#2j

11/ 1 1 1
=sapa [ a0 (5) = g [t so ().

Similarly, we compute 7;"(0),

(4.17)
27 (0) = tr (¢P}(0))
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— % / “a2(A = L(0)) q(A — L(0))'q(A — L(0)) " dA

=23 Gl e / dA
- mokn m—nfn—kk=mo; r, (A —n2r2) (A — k272) (A — m272)
G5 nnrd
=62 j—nin—k4k—j
Z_ (j27T2 _ n27r2)(j27r2 _ kz,]TQ)
n#+j
k#+j
= Q Z ama@—ma—f
it - m(2j —m)l(2j —¢)
m,Zéo,zj
Again, writing
1 1 B 1 N m . ; 1
m(2j —m) (25 — 0O ml(25)2 " m(2j —m)l(25)2  ml(2j — ) (25)?
ml 1

+

0(2j — Oym(2) —m) (25)?

and taking into account that ¢ € U,, C H;(S*; C) we conclude that

6-2 \~ Gnle md 1
(4.18) 27 (0) = =2 3 Imlemiot ()
J 4 o mg(z])z 43

1

Using the standard resolvent estimate one concludes that the Taylor re-
mainder term &; satisfies

(4.19) £ =0 (;) :

Substitute (4.13), (4.14), (4.16), (4.18) and (4.19) into the Taylor expan-
sion (4.12) we conclude

lfl 2

. q(x)*dx
n) =i+ e s 10 () .
This proves (4.111). u

Theorem 4.5. Let gy € H}(S"). Then there exists a neighborhood Uy, of
qo in H}(SY;C) and C > 0 so that uniformly for q in U,,

J

(4.20) [wi® = 8[(j7)° — arjn]| < C
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where a; = a1(q) is given by

(4.21) a = :/Olq(x)de.

Proof. Combine the estimate (4.10) for wj(-z) with the estimate (4.11ii) for 7,

N T R 1

to obtain (4.20)-(4.21).

E 0O

Given real numbers ¢;, ¢z we now construct weak solutions of (4.1)-(4.
in C(R; H}, .,(S")) for initial data ¢ in H. . (S") := {q € H'(S");[q]

C1,C3

csiai(q) = ci}

Theorem 4.6. Let ci,c5 € R. Then there exists a solution map S®

S®:H! (8 — CR,H (")

C1,C3

with the following properties:
(i) S@(q) is a weak solution of (4.1)-(4.2);

(i) given q1,q2 in H'(S") with
(1] = [2] = ¢33 ar(qr) = ar(q2) =

there exists M > 0 so that for any t
[S@ (@) (1) = 8 (@) 1)]

(iii) For any 0 < T < oo, S® : H!
analytic.

H1(S1) = M(l + |t|)HQ1 - QQHHl(Sl),

(8%) = C([=T,T); H,

C1,€3

(S1)) is real

1,€3

Remark 1. According to [Bo2], Bourgain’s method cannot be applied to
solve the initial value problem (4.1)-(4.2) in H'(S").

Remark 2. Note that the KdV Hamiltonian H(q) = [q (5(0.9)* + ¢*)dx
is a conserved quantity for (4.1), as well as the average [¢] and [ ¢(z)?dz.
Thus, given a real valued smooth solution v(z,t) of (4.1) one obtains an
a priori bound for [ |9,v(x,t)[*dz which leads to the existence of a weak
solution of (4.1)-(4.2). This solution can be approximated by finite gap
solutions of (4.1). Of course, the main point of the statement in Theorem
4.6 is that the solution map S® is real analytic.

Proof of Theorem 4.6. The construction of the solution map S® and the
proofs of its properties are similar to the ones of S and we therefore omit

it. O
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Appendix: Proof of Theorem 2.1.

In the case where the potential ¢ € L2(S*;C) is real valued, the entire func-
tions ¢;(A,q)(j > 1) are constructed in [MT2]. Actually, instead of ¢;,
[MT?2] construct entire functions 1,(\, ¢) which coincide with ¢; (X, ¢) up to
a normalization factor. (In the sequel, we use the normalization introduced
by McKean-Trubowitz.) By a straightforward perturbation argument one
shows that for given gy € Lo(S*; R) there exist a (sufficiently small) neighbor-
hood U,, of g in L3(S*; C) so that for ¢ € U, the functions 1;(\,¢)(j > 1)
are uniquely defined and analytic with respect to ¢. The main part of the
proof of Theorem 2.1 consists in analyzing the zeroes of 1;(\,¢q) for ¢ in a
neighborhood U C U,, of g in L3(S*; C) which does not depend on j and
proving the estimates (2.1). We proceed in two steps:

In Section A.2 we show, using Rouché’s theorem that, given gy € L3(S*;R),
0 < K < K(qo) (cf. definition after (A.2)) and N € N arbitrary, there exist
a neighborhood U,, x n of qo in L3(S*;C) (depending on ¢q;, K and N) so
that, for any 7 > 1, € Uy, kv and 1 < k < N,k # j, the entire function
1,(X, q) has precisely one zero, denoted by 17 (q), inside the circle T'y(K)
(defined in Section A.1). We point out that N 1Uq07 kN might consist of {¢o}

only and therefore we need an additional argument for the proof of Theorem
2.1.

In Section A.3, we show that there exist a neighborhood U of gy in L3(S*; C)
and N > 1, depending on U only, so that the system of nonlinear equations
for the zeroes 1\ (q) of 1;(), q) with k > N 41,k # j, obtained from (2.2),
can be solved by a contraction argument. At the same time we obtain the
estimates for 1\’ (¢) — 7x(¢) claimed in Theorem 2.1. Finally the analyticity
of the zeroes p\”(q) of 1,(XA) follows from Cauchy’s integral formula. We
remark that by using the contraction argument of section A.3 we can obtain
a new proof for the existence of 1;(}, ¢) and their product representation for

real valued potentials q in L.

In Section A.4 we present the proof of Theorem 2.1, combining the results
of Sections A.1, A.2 and A.3.

In order to avoid introducing cumbersome notation the same letter C will
denote various constants and the same letter U will denote various neigh-
borhoods.

A.1. Normalized Riesz basis of holomorphic differentials.
Let us first recall some notions, notations and results from [MT1] (cf.
also [MT2]). Denote by I3/> the complex Hilbert space of entire functions
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¢ of order < 1/2 and type < 1 with
(A1) 1918, = [ [6(VEX2dx < oc.

The inner product in I3/, is given by

6.0 = [ GBI 2.
By the Paley-Wiener theorem

(A.2) SN < (1615, e,

Introduce, for ¢o € L§(S";R), K(qo) := £ min,>o (A2nt1(q0) — A2n(qo)) where
(Mn(0)), 5, is the anti/periodic spectrum of —j—; +qo. Then K(qo) > 0 and
for 0 < K < K(qp) there exist a bounded neighborhood V' =V, x of ¢, in
L3(S";C) so that for ¢ € V, the anti/periodic eigenvalues (M.(q)) ., satisfy

(A.3) sup |A;(q) — Aj(q0)| < K.
j=>0

Denote by T',, = A, (K, qy) the counterclockwise oriented circle in C with
center 7, = 7,(q0) = M and radius r, = % + 2K where
Yn(q0) = A2n(qo) — A2n_1(qo). Notice that, because of (A.3), for ¢ in V,
A2n(q) and Ay, _1(q) are inside T',, and all other eigenvalues A, (q) are outside
T,.

For ¢ in V and n > 1, denote by A, (q) : I3 — C the bounded linear
functional

P(A)dA

~ I VAN -4

Then A,(q) is an analytic function of ¢ € V with values in the dual I3
of I3/5. Using (A.2) and (2.6) one verifies (cf.[MT 1, 2]) that there exists
C > 1 such that £ < [|nA,(q) 1;, <CforginV.

Recall (cf. [GK, p. 310]) that (u,),>1 is said to be a Riesz basis of a
Hilbert space H if there exist an orthonormal basis (e;);>; of H and an
invertible bounded linear operator B : H — H such that Be; = u;(j >
1). In the case where the potential ¢ is real valued McKean-Trubowitz (cf.
[MT?2]) showed that (nA,(q)),., is a Riesz basis of I;,. To be able to
consider complex valued potentials as well, we need the following auxilary
result. We recall (use Marchenko’s asymptotics of the eigenvalues \;(gq)) (cf

(A.4) An(q)(9) :
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[Ma, Theorem 1.5.2]) that the map ¢ — (7x(¢) — k*7?),_, is an analytic

function on V' with values in £3(N; C).

k>1

Lemma A.1. There exist C > 1 and N > 1 such that forn > N and
q €V (V defined before (A.3))

nl|An(q) = Anl@)lz;,, < C(17a(0)* = vu(0)?)

1/2
+ % [ Ao(q) — Xo(qo)| + (Z k2| (q) — Tk(qo)IQ)

k>1

1/2
(Z i (0)? = 7i(q0)? |>

k>1

Proof. For ¢ € I35,n>1and geV
(A.5)
An(q)(¢) — An(0) ()
- (A @0)* =4) = (A(\ 9)* = 4))$(N)dA
/ VA, )2 —4/AN q0)2 — 4(VAN @2 — 4+ VAN q)2 —4)

Recall that for A € ', (cf. e.g. [Ka, p. 547])

AR -4 = #(Aﬂn((ﬁ = A (A= Aan1(9) (1 + ﬁn(A,q)bg(nnJrl)>

where (3,(), q) satisfies |3,,(), q)| < C for n > 1, ¢ € V for some C > 0.

In view of the choice of K, T, =T',(K) and V, these asymptotics can be
used to obtain an estimate of the denominator of the integrand in (A.5), for
qinV,

1 1 1
e VAN GZ -4 VANG) -4 VAN -4+ VA, q)? _4‘

< Cn®

where C' > 1 can be chosen independently of ¢ € V and n > 1.
To estimate the nominator of the integrand in (A.5) we write

(A.6) (AN q0)*—4)— (AN q)*—4) = (AN, q0)*—4) (1 _ AA(()\)\,;));—_AZ) |
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Use the product representation

AG 1= 40l - 3 [ =A@ 2
and write (Aax(q) — X) (A2k—1(q) — A) = (7(q) — )\)2 — (ka(q))Q to obtain
(A.6")
AN g* =4 _ Ao(g0) = Ao(9)
A()‘a %)2 -4 (1 * A— )\O(QO) )

(14 o)l 0l 29 (s w;wf) 5,
(7u(q0) = N)" — (%)

where

En::H<1+ (Te(q) — 7(q0)) (T1:(q )+Tk(q02)—2/\) (2 2(q))2+(7k(2qo))2>'
(Tk(QO) — )\) _ (“/k(;o))

k#n
k>1

One verifies that there exist Ny > 1 and C > 1 such that forn > Ny,q € V
and A eI,

_ 2 _ 2 (@2 _ (m(20))?

— |k2_n2|2 |k2_n2|2

k>1

Notice that

k#n k>1
E>1
and
176(q) — Ti(qo)||k? — n®
Z k2 — n2|2 = 22’7% = 7(qo)!-
lk—n|>% k21
E>1
Further
3 7% (q) — 7(qo)[|+* — n?]
’k.Q _ n2‘2
[k—n|< %

k#n
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C 1
<3 > T Flme(@) = (@)
ki<
k#n
1/2 1/2
C 1
<= s k2|Tk —n(@)*] -

Combining the above estimates we conclude that there exist N > 1 and
C > 1 such that forn > N,qe V. A e,

(A.6")
‘1 _ A(Aaq)Q —4 ‘
AN qo)? —4

< Cfrulg) ~ 7u(a0) + € ‘ (252) — (2490) 4 Cgta) — o)

1/2 1/2

(Z’ﬁﬁ — T(q0)| ) +— (Z v (0)* = i (q0)? ‘) .

In view of (A.2) and sup el™ VAl < 50 one concludes that there exists

Ae U T,
n>1

C > 1 such that for ¢ € I3 and n > 1

" C
(A.6") sup [p(A)] < =[],
Xel, n
Combining the estimates (A.6)-(A.6"") we deduce from (A.5) that there exist
N > 1 and C > 1 such that for n > N,q € V the claimed estimate for
nHAn(Q) - An(qO) I;‘/Q holds. D

Since A, (q) is continuous on V' C L§(S";C) with values in I5,, Lemma
A.1 leads to (use the asymptotics of the eigenvalues \;(g) to estimate the
right hand side of the formula in Lemma A.3).

Corollary A.2. Let qo € L3(S*;C) be real valued. Then, for any e > 0,
there exists a neighborhhood U = U, CV of qo in L3(S'; C) so that for q in

U
>0 An(a) = Al , < e

n>1

Theorem A.3. Let qo € L(S*;C) be a real valued potential. Then there
exists a neighborhood U of qq in L3(S*; C) with the following properties:

(i) For any q in U, (nAn(q))n21 is a Riesz basis of I3,;
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(ii) there exists a uniquely determined sequence (£1,(-, q))n21

of the elements %LL(', q) depending analytically on q € U, so that

in I35, each

1
(04,(@)) (14 = 8o
(iit) for any q in U, (+1.(-,q)), ., s a Riesz basis of I/.

Proof. Let U be a neighborhood as in Corollary A.2. Since (nA,(q)), ., is
a Riesz basis of I3 ,, we can define a linear bounded map T'(q) : I3, — I3 /2
by setting T'(¢)(nA.(q)) := nA,(q). By Corollary A.2, Id — T(q) is a
Hilbert-Schmidt operator and by choosing 0 < ¢ < 1 sufficiently small
we conclude from Corollary A.2 that |Id — T'(¢)|lus < 1 for any ¢ in
U. (Given a linear operator A : H — H on a Hilbert space H with

an orthonormal basis (e;);>1, ||Allms denotes the Hilbert-Schmidt norm

[Allgs = (X% (e5, Aek>\2)1/2.) In particular T'(g) is an invertible, bounded

linear operator and thus (T (q) (nAn(qo))) is a Riesz basis of I3, as well.
n>1

Using the same symbols as McKean-Trubowitz [MT2], we denote by
(:1.(X\,q0)), ., the Riesz basis of I3, uniquely determined by
nAn(QO)(%lk('qu)) = k-

Let 11,(-,q) :== (T(q)™*) " (21.(-,qo)) where (T(q)~!)" denotes the adjoint
of T(q)~". One verifies that nA, (¢)(+1x(-,¢)) = 0nk- It remains to prove that
the 1,(-,q)’s depend analytically on ¢ € U. Denote by
Lps(I3)5,13,) the Hilbert space of Hilbert-Schmidt operators on I3, with
inner product

(R,S)us =) RiS;
i,J
where R;; = (Re;, e;) are the coefficients of R with respect to an orthonor-
mal basis (e;);>1 of I3,. From the analyticity of A,(q) it follows that the
coefficients of Id — T'(q) are analytic on U. By Corollary A.2, Id — T(q) is
bounded on U in Lys(135,13/,) and therefore, Id —T'(q) is analytic (cf. e.g.

[PT, Appendix A]). As |(Id — T(q)) ' |lus < 1,

T(q)™' = (Id— (Id~T(q)))" =) _(Id—~T(q))"

k>0

where the series converges in Lps(I3),,I5,). Therefore T(q)™" is analytic
which implies that 11,(- ¢) = (T(¢)™) (£1.(-,q)) is analytic on U with
values in I3/, for any n > 1. |
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Remark. For ¢ = 0, the Riesz basis (nA,(q)) ., of I3, and (51.(-,¢))

n>1
of I3/, are given by

nA,(0) = (—1)"2n°7%8 (212
and

1 sin VA
TR )

A.2 Rouché’s theorem.
Denote by I_;,, the complex Hilbert space of entire functions ¢ of order
< 1/2 and type < 1 with

> d\
9l = | B < o

The inner product in I_,, is given by

e ——dA
By the Paley-Wiener theorem

(A7) 6] < [[olr, eV,

Denote by I*, , the Hilbert space dual to I_;/,. Notice that the identity
embedding I/, — I_;/5 is continuous. As in Section A.1, denote by V" a
neighborhood of a real valued potential gy € L2 with the property (A.3). For
g in V, the functionals A4, (¢q) introduced in (A.4) extend to linear bounded
functionals on I_q,2, A,(q) : I-1/2 — C. Using (A.7) and the definition of
A,.(q) one concludes that there exists C' > 1 such that & < H%An(Q)Hlil/Q <
C for ¢ in V. By the same arguments used in the proof of Lemma A.1 one
obtains

Lemma A.1’. There exist C > 1 and N > 1 such that for n > N and
qevVv

1400 — Auaolr-
< C(|n(@) = ¥ (0)1* + [70(@) — 7n(g0)])
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C
t

k>1

1/2
+ [ D (@) — (a0)?|
k>1

Next we need to estimate the I_;,-norm of the functions n1, (X, q) for a
real valued potential q.

1/2
[Ao(q) — Ao(qo)| + (Z k?|7i(q) — Tk(qO)fz)

Lemma A.4. Let gy € L(S*;R). Then there exists C' > 0 such that

||n1n(’7QO)HI,1/2 < Cl (n Z 1)

Proof. Tt follows from the Paley-Wiener theorem that the Dirac measures
V760, (V270,242 n>1 are an orthonormal basis of I ), (Kotelnikov theorem;
cf. also Remark after Theorem A.3). Therefore

Hjlj('7q())‘|§_l/2 = ﬂ‘jlj(ov QO)’2 + 27 Z ’jlj(n27r27QO)’2-

n>1

Further recall that, as ¢ is real valued, ([MT1])

w = A
k2m2

(A 8) 1;(A q0) = C;
ki

where Ao_1(g0) < 11 < Aor(go) and & < C; < C for all j > 1 for some
constant C' > 1.
For 1 < n # j, write

p — p2y2
]1 (n 7T 7q0 H k ]C27T2
k#j
e H pt? — n2r? ; —n*r?  jin? ' pl) — n2r?
Farieng k2 j2ﬂ-2 Tj _ n27T2 n27T2 :

Notice that there exists C > 1 (cf. e.g. [PT, Appendix E, Lemma 3]) such
that for j,n > 1 with j #n

2,2

,uk —n?r?\ 7 —nin
H k2ﬂ-2 j27T2

k#n,j

<C.
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This implies that there exists C' > 1 such that for j #n,j,n > 1,

2 @) — p2p2

- 2_2
|Jl](nﬂ_7qo>|§c|j2_n2| n2ﬂ_2

Similarly, there exists C' > 1 such that for j > 1

171;(5°7%, o) < C and  |j1;(0,q0)| < C.

. . . ;2 . .
Notice that for 1 < |n—j| < j/2, 3 L <55 7 and for |n—j| > j/2,

—n2[n? = |j2—n

i L < Cn?. Therefore we conclude that there exists C > 1 such that for

j2_n2 n

any j > 1,
D 10w qo) P <2C + C Y |pl) — nPr

n>0 n#j

As Aon_1(qo) < pl) < Agn(qo) the claimed result then follows from the
asymptotics of the eigenvalues. |

In order to apply Rouché’s theorem we need to prove that ’%13‘()\7‘1) —
%1j()\,q0)| < Elj()\,qoﬂ for A € I';, and ¢ € U. Notice that the difference
YA, q) = %1j()\,q) - %1j()\,qo) is in I3/, and therefore, by Theorem A.3,
can be written as

U0 = 3 nda(0) () LA o)

n>1

For any A € C, the Dirac measure 0 is in I*,, and [65(¢)] <

[, el YA (cf. A.7). Introduce 3 := SUPjeuT, el™ VAl Then 8 < oo
and

(A.9) sup |9\ @) < Bl ()l .-

AUy

Further, by Lemma A .4, there exists C’ > 1 such that for j > 1,

3 )l
<3 InAn(an) (50| | 1aCo)|
<Oy Lindua) (. 0)

Rewrite nA,(qo)(¥;(,q)), using the definition of v;,

0 (q0) (65 0)) = nd (a0) (;1j<-,q>) 6,
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= (nda(a0) (@) (51,0:0))
= (nAn(q) — nAn(q)) <j1j(an)> + (ndn(90) — nAn(9)) (¥, )
to conclude that

3 s lndalao) (6, 0)]

n>1
1 1
<> 5lndn(e) - nAn(qo)llr-, , ||=1(+ %)
n>1 n J I_1/2
1
+> —3nAu(@) = ndul@o)lle-, 105G @)l .-

n>1

Apply Lemma A.1’ in a way similar as Lemma A.1 to Corollary A.2 to
conclude that for any 0 < € < % there exists a neighborhood U = U, C V of
qo in L3(S*;C), such that, for ¢ € U,

1
A,(a) — = Aulao)

2|l ;

n>1 —1/2

1
<e.

Together, the two estimates above lead to

1
195 s iy, <€ +5leiC ..

1
7-]-’ *5 4
j J( 0)

I_1/2

Together with Lemma A.4, this implies [|¢;(-, q)[|1_,,, < 26”%1]'(', q)llr_,,, <

26%. Taking into account (A.9) and the definition of ¢; this estimate leads
to

1 1
-1\ q) — jlj()‘a %)

(A .10) sup ;

AEUSST,

€
< ﬁ20/ﬁ’

for any ¢ € U and 5 > 1.

To be able to apply Rouché’s theorem we also need to estimate %1j()\, q)
from below for A € I',,. As qo is real valued, %1j()\, qo) has product repre-
sentation (A.8) and in view of the definition of the circles I';,(n > 1), we
conclude that for any integer 1 < N < oo there exists py > 0 such that for
any j > 1

1
flj(/\v qO)

A1l inf
(A.11) ;

> 1
Z PN 5 -
2
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Combining (A.10) and (A.11) we obtain

. ! 1 1 — B20"
‘jlﬂA’qﬂz>‘jLKA7mﬂ —‘jlﬂA,Q)—-jlﬂA,ﬁg > Bﬁ‘fﬁf“*

N
for)\ELiJFn,qEUandeL

Theorem A.5. Let qo € L3(S*;C) be real valued, 1 < N < oo an integer

and 0 < K < K(qo). Then there exists a bounded neighborhood Uy k of qo

in LZ(SY; C) with the following properties:

(i) The statements of Theorem A.3 hold and (A.3) is valid;

(ii) for any q € Uy x and j > 1, the function %1j()\,q) has precisely one
zero, denoted by 1\ (q), inside the circle Ty = T(K) for 1 < k <
N,k # j. In addition, if 1 < j < N,%lj(/\,q) has no zero inside
I;(K);

(i) the zeroes il (q) are analytic functions of q on Un k-

Proof. For ease of writing, from now on, we do not always indicate the
dependence on the choice of K. Choose € > 0 and a neighborhood U = U, v
of qo in L2(S*; C) sufficiently small such that the statements of Theorem A.3
and (A.10) are valid and such that Ce < %pN where the product GC is as
in (A.10) and py is given as in (A.11). Then

1 1
sup [=1;(\,q) — =1;(X, qo)
reudr, 1] J

1
flj()\a q0)

1
< - inf
2a 7

o culr,

for any 7 > 1 and ¢ in U. Further notice that, due to the product representa-
tion (A.8), statement (ii) holds for ¢ = go. Therefore, by Rouché’s theorem,
(ii) follows. Statement (iii) is a consequence of Cauchy’s integral formula

€] d\ 7 )

together with the analyticity of 1,(\,¢q) (cf. Theorem A.3). [l
A.3. Contraction mapping.

To localize the zeroes of the 1;(),q) outside the circles I',(1 < n < N),
we consider the following system (cf. notation of Section 2 or (A.16) below)

q) Jo 2 (Ci(t) — Cin(—1))
Jo 75 (Cn(t) + Cir(—1))

(k> N+1,k#j)

E
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where Cji(t) = Cji(t,q,69(q)) and pf(q) = 7i(q) + & (q). Let’s first
outline how we obtain a solution of (A.12) by using a fixed point argument:

Let U be a neighborhood of qq in LZ(S*; C) with the properties of Theorem
A.3. Let N > 1 and chose arbitrarily ¢ € U and j > 1. (We will choose N
later sufficiently large, but N will be independent of ¢ and j.) Let N\{j} =
AUB where A= Ay; - ={1 <k <N;k#j}and B=By; = (N\{j})\A

Elements 7 = (i), in 2(N\{j}; C) are decomposed 1 = (14,715) with
na = (Mk)rea € C(AC) and ns = (q)res € 2(B;C). Given ¢ € U,
denote by C4 and Cg the Hilbert cubes (with induced strong topology) C4 =
Cay, = {nalm| < v(q) + £ K for k € A} and Cg = Cgy, = {ns; [ni| <
217%(q)| + min (K, $|vx(q)|) for k € B}. (Cf. (A.3) for the constant K.)

Introduce the map T' =T/ : C4 x Cg — £*(BB; C) where the components
of T'(na,ns) are given by the righthand side of (A.12)

A3 Tlams) = [ 2@ Jo 7% (Cinlt) — Con( 1)
(A.13) (1.4, 78) ( 2 Jo A5 O + Cin(-1) |

with Cj,(t) = Cji(t,q,m4,m8). Using the same arguments as in Section 2
one shows that there exist a (sufficiently small) neighborhood U of ¢, in
LZ(S*;C) and N > 1 sufficiently large (independent of ¢, j > 1) so that
T(na,ns) € Cs (cf. Proposition A.6 below). Moreover, for any n4 € Cy,
T(na,-) : Cg — Cg is a contraction (cf. Proposition A.7 below). Therefore
there exists a unique element in Cg, denoted by x(n4), satisfying

(A .14) k(na) =T (na, £(na)).

In the remainder of this section we prove the statements claimed above.

Proposition A.6. There exist a (sufficiently small) neighborhood U of
qo i LE(SYC) and N > 1 so that for q in U and j > 1 the map T =
TV) : Cq x Cs — £*(B; C) satisfies the following estimate for k € B and any
(na,n8) € Ca xCp

a15)  Tamend <08 < L)) min (5 puta))

where C' > 0 is independent of g € U,j > 1 and k € B.

Proof. Recall that T'(n4,ng) is given by

T(na,ns) = ('Yk(Q) fol \/%(Cjk(t) - gjk(—t))) |

2 s (O (t) +
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As in Section 2, we write Cjx(t) = Cjr(t,q,mn4,m5) as a product of the form

Ap(0) [A;(0) Aj(t) Bjx(?)
Ao(t) | Aj(t) Ajn(0) B;r(0)

(A.16) Cnlt) =

By the same proof as for Lemma 2.3-Lemma 2.5 one shows that there
exists a neighborhood U of gy in L2(S*;C) and C' > 0 independent of j, k
and g € U so that for g € U, k # j

| A ® 7 (9)] [7a(a)]
aup |45 1‘§C’”’“<")’a§>g e <>ra§|<§ ;
@l
<c L
Bjk(t)_ Clyi(q)] 2 i
0 1B,.(0) 1‘— e <|a§k:<§”“'+k3)
SCI%;{(;J)I
and
Ag(0)\ ()]
sup (Aoa)) <O
a0 e (q)]
oy (S90)" -] < ool

We proceed as in the proof of Theorem 2.7 and write

oan- (38" (38)(£2))

A(t) i (t)
A 1/2 1/2
(&) G8) EE)
‘ 1/2 1/2
f(30) (&%) ww ()
Then for |t| <1, (na,n5) € C4 X Cp

1/2

<1+C

; (0 I%(Q)l
(1) k

>
’ Ai((t) 2 ((iﬁ)})w - 1)

k

< <1+C|7k(Q)|> o (@)l
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() (5™ (32t -)

< <1+C|'YkIEQ)|> <1+C|%l£;1)l2) C|72(3q)|

and

(55 (58 w0 (6

i

i (
L oe@ly C|’Y FDN (14 @I @l
(+ k><+ 2><+ k3> K

We conclude, similar as in the proof of Theorem 2.7 (and using that
k| < |i(q)| for k € B), that for ¢ € U,j > 1, (4, n5) € Ca X Cs

2
10 (ool < 1 OE

Notice that |vc(q)]* < Y ,51 [7a(q)]? is bounded on U. Therefore there exists
N > 1 independent of ¢ € U, j > 1 such that for k > N,q e U

2
CWZ(Q)I < LCMECC])' < I%Q(q)l e

O

Notice that it follows from Proposition A.6 that the range of Tq(j )1 Cy X
Cs — ¢*(B;C) is contained in Cg.

Proposition A.7. There exist a (sufficiently small) neighborhood U of qqo
in L(SY;C) and N > 1 so that forq € U and j > 1, T =TV : C4xCp — Cs
satisfies, for (na,ng) € Ca X Cp

1
1T (nlas mis) = T (s )22y < 7 (Imla = mall” + llms — msl1%).

In particular, T is continuous and, for any na € C4 fized, the map T'(n4, ) :
Cs — Cg is a contraction.

Proof. Notice that in the decomposition (A.16) of Cj(t) only the term ﬁj’“((é))

depends on n = (14,75). Recall that A;y,(t) = [Taem sy (1+755)- Thus,
with D]k(t) = Djk(tv q, 77_/,47 772;, na, 7713),
Ajk(ta Q777,/,4777/B) Ajk(taqv 77.,47775)

D(t) : = —
jk( ) Ajk(07Q>77:477723) Ajk(ov(Ia 77.»47773)




ON THE KORTEWEG-DE VRIES EQUATION 51

_ i H (1 + Ta 7)\(15)) H (1 + Ta 7)\(t))
o na
B=1 a<p 1+ Tan—‘ﬁc a>p 1+ Toa =Tk
B#k,j \a#k,j a#k,j
‘ (1+m O A(t))
m; 1 ’
1 + 7'/3%77@ + T3~ Tk

Using the estimates in the proof of Proposition A.6 one shows that there
exists C' > 1 independent of ¢ € U,j > 1 and (1/y,n%), (Ma,n8) € Ca X Cs
such that

Ins — ng\
m<c
g 8% =

This leads to the estimate (for some C' > 0 independent of g, j, n,n’)

1T (14, ) — T(nas18) |72 (s:0)

n n\
<oy [Haf) s Il

keB Bk, j

<oy "

keB

2
DF L.

By choosing N > 1 sufficiently large, but independent of j,q it follows
that for any ¢ in U
1

CZ ki<

keB

2
U

Corollary A.8. There exist a (sufficiently small) neighborhood U of gy and
N > 1 so that for ¢ € U and for all j > 1, T:Tq(j) :Cy x Cg — Cg has for
any N4 € Ca a unique fized point k(na) = 9 (14, q) € Cs,

T (14, k(na)) = K(n.a)-

Moreover, for any na,n'y in Ca,
/ 2 L, 2
[5(na) — H(nA)Hﬁ(B;(C) < §H77A - 77AHe2(A,C)-

In particular, the map k : C4 — Cg is continuous.

Proof. Fix an arbitrary element n4 € C4. Then, by Proposition A.7, for any
”7237 B € CB

1
T (na,n5) — T(Ma,m8) ey < <ns — n8lles.o)-
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Therefore T'(n4, -) is a contraction map on Cp and there exists a unique fixed

point £(14) € Cp, i.e., K(na) = T(14, k5(14))-
For n4,n’y € C4 one obtains, again by Proposition A.7,

I®

I5(02) — K)I* = [T (1l K(0L2)) — Tna, (0.0)
< 300 = nall + Is(nLa) = s 0)I?)

As a consequence, as claimed,

1

[6(n4) — cm)lI? < 5l — nall®

Wl

Proof of Theorem 2.1.
To prove Theorem 2.1 we need one more auxilary result. To formulate it,
introduce for a real valued potential gy € L3(S*) circles I'y(qo) in C of radius
=1

276(q0) + 2K (qo) an~d center 7;,(qo) where K(qo) := 1 min,zo (A2nt1(q0) —
A2,(qo)). Denote by Dy(qo) the closed disk with boundary I';(qo).

Lemma A.9. Let gy € L3(S*;C) be real valued. Then there exists N(qq) >
1 so that for any N > N(qo) there exists a neighborhood U of qq in LE(S*; C)
with the following properties: For any q € U, |X;j(q) — Aj(q)] < +K(qo)
(1<k<N,j=2k,2k—1), and, given arbitrary complex numbers p; (1 <
k < N) inside Ty(qo), the Dirac measures ((—1)*2n2k?3,,, ) together
with (nA,(q))

1<k<N

ns a1 JOrm a Riesz basis of I3,

Proof. The proof relies on the following three observations:

(1) For any sequence (pg)rs1 with g, in Dy(qo), the Dirac measures
(=1)*27%k?3,, form a Riesz basis of I5,. To see this we first observe that
there exists Ny > 1 such that

1
> (=1 2r%k%6,, — (1) 20k 622 ?;/2 <3

n>Np+1

for any choice of py in Bk(qo).
Recall (cf. Remark after Theorem A.3) that ((—1)"272k?0,22),_, s an

k>1
orthonormal basis of I3,. Thus ((—1)*27°k*py), . . ., spans a subspace
of I3 /2 of codimension Ny. By Bari’s theorem, adding precisely N, Dirac
measures ((—1)*2m2k*5uy)

soon as ((—1)k2m2k?*uy)

L <k<No to this set will give rise to a Riesz basis as

4> I8 w-linearly independent. To prove the linear
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Pr—A

independence, introduce ;(\) = j% [1,z; 55 These functions are ele-
ments of I3/, and satisfy d,, (1;) = 0 for k # j and §,,(¢;) # 0. This proves

that ((—=1)*27°k?0puy,), ., is w-linearly independent.

(2) Introduce for any sequence j = (fix)g>1 with gy in Di(go) the map T}, :
I3, — I3, given by T, ((—=1)*2m°k?0r2p2) = (—1)*27%k?,,, corresponding
to the change of basis from the orthonormal basis ((—1)*272k?d242), ., to
the Riesz basis (cf. (1)) ((—=1)*27°k%d,,),.,. Then T} is a bounded invertible

operator, ||T,|lzx.) < oo and ||T;1||l;(1§/2) < 00. One verifies that T),

5/ N
depends continuously on pt = (pux)k>1 € [Tp>1 Dr(q0) € €*(N; C). Due to the
fact that the Hilbert cube ][, Dy (qo) is compact in £2(N;C) we conclude

that there exists C'(¢o) > 0 such that HTMHZL(I;W“)7 HT/:1H2£(I;/2) < C(qo) for all
€ Ilis1 Dr(qo)-

(3) By standard arguments one shows that there exists N(gy) > 1 such that
(with C(qo) > 0 given as in (2))

(A.17) S N1 2R g — B <

k>N(qo)+1

We now combine (1), (2) and (3) to prove the Lemma A.9:
For N > N(qo) given, choose a neighborhood U of qq in LZ(S*; C) so that
for ¢ in U (cf. Corollary A.2)

1 1
A 18 nA,(q) — nA, 2 <=
(A.18) %:1 InAn(q) (@)lz;,, = Cla)
and, in addition, for 1 < k < N and j € {2k, 2k — 1}, |\;(q) — Xj(q0)| < £ K

|
as well as |[A\g(¢) — Ao(qo0)| < K. Combining these estimates with (A.18) and
(A.17) one concludes that, for ¢ € U,

—_

1
nA,(q) — (=1)"2n°7%6,, (w3 < = .
n§+1 H ( ) ( ) (q )”13/2 9 C(qo)

In view of observation (2) and Bari’s theorem (cf. [GK, p. 310]) one
sees that (8., )1<k<n(ey (nA”(q))n>N(e)+1 is a Riesz basis for any ¢ € U and

arbitrary p, € Di(qo), 1 < k < N(e). O

Proof of Theorem 2.1. For a given real valued potential gy € LZ(S*;C) let
K, := K(q) and choose a neighborhood U, of ¢y in LZ(S* : C) so that the
statements of Theorem A.3 hold. Next choose N > 1 and a neighborhood
U, C U; of qo in LE(S*; C) so that the statements of Propositions A.6, A.7,
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Corollary A.8 and Lemma A.9 are valid. For this NV, let K, := ~K(qo) and
choose a neighborhood Us C U, of ¢o in L2(S*; C) so that the statements of
Theorem A.5 hold. In partlcular for any ¢ in Us and j > 1, the function
1 71;(A, ¢) has precisely one zero fu; ) (¢) inside the circle 'y, (K>) for k in Anj =
{1 <k < N,k#j} Let Ua,, = (u,(f)(q))keAN'_ (g € Us,j > 1) and denote

by 153 = ns,, the unique fixed point x(n.a,,), provided by Corollary A.8.
Define the entire function 1); in I3, given by

1 (@) = A (5)k — A
d} 72 H k272 H k2m2

k:E.ANJ kGBNj

By construction,
1
@i =0=8,0 (ZL00)  (redy)
and

1
A0 (W) =0 = Aa) (160)) (ke Byy)
For 1 < j < N it follows from Theorem A.5 that 5Tj(q0)( i(,q)) #0 as
%1j(-, q) has no zeroes inside I';. By construction 0, ,)(1;) 7& 0. Therefore,
there exists C; = C;(q) # 0 such that

1
075(a0) (C395) = 0+, (q0) (ﬁj('#})) :

By Lemma A.9, ((—1)’“27r2k25ug>(q))k€ANj (—1)727%5201, (g0 (FAR(@)) 15y, 18
a Riesz basis of I;,. This implies that Cj1;(, q) = %1j()\, q)for1<j <N
and ¢ € Us. For j > N + 1, one shows, using standard asymptotic results,
that A4;(¢)(¥;(- ¢)) # 0. Recall that jA;(q)(51;(-,q)) = 1 and thus there
exists C; = Cj(q) # 0 with jA;(q)(C;;( q)) = 1.

By Lemma A.9, ((—1)k2ﬂ2k25uij>(q))lngN, (+4%()) 5 ., 18 @ Riesz basis
of I3,,. This implies that Cj1;(A, q) = %1]-()\,q) for j > N+ 1 and q € Us.
By definition of the Hilbert cube Cp (cf. Section A.3) (1Y (¢) —71(q)) =: £
(k € B) satisfy the estimates stated in Theorem 2.1 and the analyticity of
the zeroes p(¢) (k € B) follows again from Cauchy’s integral formula

= dA.
2mi Jr, 1](>\7Q)
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