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COMPACTNESS OF ISOSPECTRAL COMPACT
MANIFOLDS WITH BOUNDED CURVATURES

Gengqiang Zhou

Suppose that In(C) is the class of all Riemannian metrics
on a given n-dimensional closed manifold such that their asso-
ciated Laplacians (on functions) have the same spectrum by
counting multiplicities and their sectional curvatures are uni-
formly bounded |K| ≤ C by a constant C > 0. We show that
the isospectral class In(C) is compact in the C∞-topology.
This generalizes our previous C∞-compactness result, which
holds for dimensions up to seven.

1. Introduction.

Let M be a closed C∞-manifold which will be fixed throughout this paper
as a fixed underlying manifold. A sequence of Riemannian metrics {gi} on
M converges in the Ck-topology if and only if there are diffeomorphisms
fi : M → M , such that the metrics {f∗i gi}, as matrices in a smooth atlas
of M, converge in the Ck-topology on functions on domains in Rn. Then,
the C∞-topology will mean the topology on the space of metrics on a fixed
manifold M , which may be defined via convergence of sequences in the Ck-
topology for all k. Riemannian metrics g1 and g2 on M are called isospectral
if they have the same Laplacian spectrum by counting multiplicities. It was
shown [15] that an isospectral set of closed Riemannian two manifolds is
compact in the C∞-topology. In dimension three C∞-compactness results
were proved for isospectral sets of metrics in a given conformal class of
metrics [2], [5]. Most recently, R. Brooks, P. Perry and P. Petersen V.
[3] proved that if {Mi} is a family of isospectral manifolds of dimension n
with negative sectional curvatures or sectional curvatures uniformly bounded
from below, then {Mi} contains only finitely many homeomorphism types.
If n 6= 4, then {Mi} contains only finitely many diffeomorphism types. In
particular, when n = 3, they proved that if Mi all have negative sectional
curvatures or have Ricci curvatures uniformly bounded from below, then
{Mi} is precompact in the C∞-topology. See also [1] for similar results.
For C∞-compactness in higher dimensions, the author [17] has shown that
In(C) is C∞-compact for n ≤ 7. The author has learned that the same
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result was obtained by Professor R. Brooks and P. Chow. In this paper, we
will generalize this result to arbitary dimension.

Theorem 1.1. Let In(C) be the class of all Riemannian metrics on a
given n-dimensional closed manifold such that they have the same Laplacian
spectrum by counting multiplicities and uniformly bounded sectional curva-
tures |K| ≤ C, C > 0. Then, the isospectral class In(C) is compact in the
C∞-topology, for all n.

A direct consequnce of Theorem 1.1 is that the set, denoted by In, of
closed n-dimensional isospectral Riemannian manifolds is compact with re-
spect to the Lipschitz topology. This is due to the fact that In contains only
finite diffeomorphism types by Cheeger’s finiteness theorem.

In the proof of Theorem 1.1, we fisrt obtain priori estimates on ∇kR by
using interpolation inequalities (see Proposition 3.1 below) and heat invari-
ants. This in general gives better estimates than those given by combining
the Sobolev embedding theorem and heat invariants. And then we obtain
Theorem 1.1 by applying the Ck-version of the Cheeger-Gromov compact-
ness theorem.

2. Preliminaries.

Let Ht(x, y) be the fundamental solution to the heat equation

∂

∂t
+ ∆x = 0,

on R+ ×M . If we denote by {λk}k≥0 the eigenvalues of the Laplacian ∆g.
Then, the trace of Ht(x, y) has the following asymptotic expansion:

Z(t) = tr(Ht) =
∫
M

Ht(x, x)dvg(x) =
∞∑
i=0

exp−λit

∼ 1
(4πt)n2

(
a0 + a1t+ a2t

2 + · · ·) ,
as t→ 0+. The heat invariants ak as defined by the expansion are determined
by the spectrum of (M, g). Moreover, ak can be represented as integrals of
expressions in the curvature tensor over M . In order to formulate these
expressions, we introduce some notations. For a Riemannian metric g =∑
gijdx

idxj, let R denote the curvature tensor, ρ = ρij the Ricci tensor
and τ the scalar curvature. Let {ei} be an orthonormal frame and “;”
denote covariant differentiation. If (n1, n2, · · · , ns) is a multiple index then
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we define:

|∇sτ |2 = Rijij;n1···nsRklkl;n1···ns ,

|∇sρ|2 = Rikjk;n1···nsRiljl;n1···ns ,

|∇sR|2 = Rijkl;n1···nsRijkl;n1···ns ,

where we use the Einstein summation convention. Then, when k = 0, 1, 2, 3,
the heat invariants are known as follows (cf. [9, p. 327]),

a0 =
∫
M

1 = Vol(M), a1 =
1
6

∫
M

τ,

a2 =
1

360

∫
M

5τ 2 − 2|ρ|2 + 2|R|2,

a3 =
1

45360

∫
M

(−142|∇τ |2 − 26|∇ρ|2 − 7|∇R|2 + 35τ 3 − 42τρ2 + 42τR2

−36ρijρjkρki − 20ρijρklRikjl − 8ρijRiklnRjkln − 24RijklRijnpRklnp) .

In general, we have the following theorem which is due to Gilkey [8]. To
state the theorem, we define that the weight of Rijkl;I , I = (n1, · · ·ns) is
|I| + 2 = s + 2 and the weight of a monomial in such factors is the sum of
the weights, where, in Rijkl;I .

Theorem 2.1. For k ≥ 3,

ak = (−1)k
∫
M

Ak|∇k−2R|2 +Bk|∇k−2τ |2 +
∫
M

Ek,(2.1)

where Ak, Bk > 0 and Ek is a polynomial of weight 2k in contractions of
Rijkl;I , with |I| ≤ k − 3.

Remark on Theorem 2.1. In his paper [8], Gilkey proves that

ak = (−1)k
∫
M

Ak|∇k−2ρ|2 +Bk|∇k−2τ |2 +
∫
M

Ek.(2.2)

Also he has observed that∫
M

|∇sR|2 = c1

∫
M

|∇sρ|2 + c2

∫
M

|∇sτ |2 + · · · ,(2.3)

where c1 and c2 are universal constants and “· · · ” denotes lower order terms,
so that (2.1) follows from (2.2) and (2.3). For the sake of completeness, we
include a proof of (2.3) in Appendix, which is provided by Gilkey.

Now suppose C > 0, V > 0, d > 0 are given constants. LetM(n, d, C, V )
denote the class of all closed n-dimensional Riemannian manifolds M with
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diameter diam(M) ≤ d, volume vol(M) ≥ V and sectional curvature |KM | ≤
C. Then, {(M, g) | g ∈ In(C)} is a subclass of M(n, d, C, V ) because
the vol(M, g) is an isospectral invariant and the diameter of (M, g) satisfies
(cf. [6])

λi(M) ≤ (n− 1)2

4
C +

cni
2

(diam(M))2
,(2.4)

which implies that diam(M) ≤ c(λi, n, C, i) when i is large enough. Also,
we recall the Ck-version of the Cheeger-Gromov compactness theorem ([10],
[11], [16] and [14]).

Theorem 2.2. The space of n-dimensional Riemannian manifolds satisfy-
ing the following bounds:

|∇jR| ≤ C, j ≤ k, vol(M) ≥ V, diam(M) ≤ d,(2.5)

where covariant derivatives ∇j, volume and diameter are defined by individ-
ual Riemannain metric, consists of finitely many diffeomorphism types and
any sequence in the space has a subsequence which converges with respect to
the Lipschitz topology to an n-dimensional smooth limit manifold carrying a
limit metric of Hölder class Ck+1,α, for any 0 < α < 1.

3. Compactness in C∞-topology.

Let T = {Ti1···ik} be a tensor field on (M, g). Denote

|T |2(x) = 〈T (x), T (x)〉 = Ti1···ikTj1···jkg
i1j1 · · · gikjk ,

where 〈·, ·〉 is the inner product on tensors with respect to the Riemannian
metric. Then, we define

‖T‖
Ĉl(M,g)

= sup
x∈M, r≤l

|∇rT | (x),

‖T‖p
Ŵ l,p(M)

=
∑
r≤l

∫
M

|∇rT |p (x)dvg(x).

Since we will use Sobolev’s embedding theorem in the following proofs,
we wish to point out that Sobolev constants depend only on the zero-order
information of metric ( for detailed discussions, cf. [4], [12]). Let CI(M) be
the isoperimetric constant of M , i.e.

CI(M) = inf
S

{area(S)}n
{min(vol(M1), vol(M2))}n−1

,
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where S ranges over all compact (n − 1)-dimensional submanifolds of M ,
dividing M into two open submanifolds M1,M2 satisfying ∂M1 = ∂M2 = S.
Also, let CI(Ω) denote the isoperimetric constant of a domain Ω ⊂M given
by

CI(Ω) = inf
S

{area(S)}n
{vol(V )}n−1

,

where S ranges over all compact (n − 1)-dimensional submanifolds of M ,
contained in Ω and dividing Ω into a component V which does not meet
∂Ω, and other components. Note that if vol(Ω) ≤ 1

2
vol(M), then CI(M) ≤

CI(Ω). Then, for all f ∈ C∞0 (Ω){∫
Ω

| grad f |dv
}n
≥ CI(Ω)

{∫
Ω

|f | n
n−1dv

}n−1

,

and an argument similar to the proof of theorem 7.10 (Sobolev inequalities)
of [12] shows

‖f‖
L

np
n−p (Ω)

≤ c1 ‖grad f‖Lp(Ω) , 1 ≤ p < n

and

sup
Ω
|f | ≤ c2 ‖grad f‖Lp(Ω) , p > n,

where c1, c2 have upper bounds which depends only on p, lower bound of
CI(Ω) and vol(M). By choosing Ω so that vol(Ω) ≤ 1

2
vol(M), we know that

c1, c2 have upper bounds which depends only on p, a lower bound of CI(M)
and vol(M). We notice that, by a theorem of C. Croke [7], CI(M) is bounded
below by diameter, volume and Ricci curvature of M. So, CI(M, g), g ∈
In(C) are uniformly bounded from below. It follows by Theorem 2.2 that
we may cover M by geodesic balls with uniformly controled radii and number
of balls and each geodesic ball has volume less than 1

2
vol(M). Thus, by an

argument of partition of unity, we obtain,

‖f‖
L

np
n−p (M)

≤ c′1
(
‖f‖Lp(M) + ‖grad f‖Lp(M)

)
, 1 ≤ p < n

and
sup
M
|f | ≤ c′2

(
‖f‖Lp(M) + ‖grad f‖Lp(M)

)
, p > n,

and Sobolev constants c′1, c
′
2 are bounded uniformly with respect to metrics

in In(C). By iterating the results above, we obtain inequalities for general
cases. e.g.

sup |f | ≤ c3 ‖f‖W 2,p , p >
n

2
.
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For tensor T on (M, g), let u(x) = |T (x)| = 〈T (x), T (x)〉1/2. Then, the weak
gradient of u(x) is given by

∇u(x) =

{
|T (x)|−1〈∇T (x), T (x)〉, |T (x)| 6= 0,
0, T (x) = 0.

Thus, by Schwarz inequality,

|∇u(x)| ≤ |∇T (x)|.
Hence, applying the above arguments to u(x), we obtain that, for tensors,
the Sobolev constants are also bounded uniformly with respect to metrics in
In(C).

In order to show that the space In(C) is compact in the C∞-topology,
we would like to show first that, for all g ∈ In(C) , Ŵ k,2(M, g)-norm of
sectional curvature R(g) is uniformly bounded for each k ∈ Z+. This implies
that Ĉ l(M, g)-norms of R(g) for each l ∈ Z+ and g ∈ In(C) are uniformly
bounded since Sobolev constants are bounded. Then, we will show that
In(C) is compact in the C∞-topology by using the Ck-version of the Cheeger-
Gromov compactness theorem.

Let us begin with introducing some notations. We know that in the ex-
pression of heat invariant ak, Ek is a polynomial of R∗,I , (|I| ≤ k− 3), under
contractions, where “∗” denotes component subindices of R. Then, a mono-
mial m in Ek will be said of type (k1, · · · , ki) if it has the form CR∗;l1 · · ·R∗;li ,
where |l1| = k1, · · · , |li| = ki and C is a constant which may be different from
term to term. Also, we will use the following propositions.

Proposition 3.1. ([13]). If p ≥ 1, we have{∫
M

|∇T |2p dv
}1/p

≤ (2p− 2 + n) max
M
|T |
{∫

M

∣∣∇2T
∣∣p dv}1/p

,∫
M

∣∣∇iT ∣∣2k/i dv ≤ C(k, n) max
M
|T |2( ki−1)

∫
M

∣∣∇kT ∣∣2 dv,(3.1)

for any tensor T on M, where n = dimM and 1 ≤ i ≤ k, i ∈ Z+.

Proposition 3.2. (Hölder inequality). If ui ∈ Lpi , i = 1, · · · , l, satisfy

1
p1

+ · · ·+ 1
pl

= 1,

then ∫
u1 · · ·ul dµ ≤ ‖u1‖p1 · · · ‖ul‖pl .(3.2)
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By Theorem 2.1, we have,

Lemma 3.1. For any metric g ∈ In(C), the following holds.∫
M

|∇kR|2 ≤ ck+2

(
|ak+2|+

∫
M

Ek+2

)
,(3.3)

where k ≥ 1, k ∈ Z+ and Ek+2 is a polynomial of weight 2(k+ 2) in contrac-
tions of Rijkl;I , with |I| ≤ k − 1.

Lemma 3.2. For each k, let

Nk =
{
‖R(g)‖

Ŵk,2(M,g)

∣∣∣ g ∈ In(C)
}
.

Then, Nk < +∞.

Proof. Lemma 3.2 will be proved by obtaining uniform Ŵ k,2(M, g) estimates
on R(g) which will be proceeded by induction on k.

Because R(g) is uniformly bounded and volume of (M, g) is a spectral
invariant, it is obviously that Ŵ 0,2(M, g)-norm of R(g) is uniformly bounded.

When k = 1, the explicit formula of the heat invariant a3 in Section 1
implies ∫

M

|∇R(g)|2dv(g) ≤ C
(
a3 +

∫
M

|R(g)|3dv(g)
)
.

So the Ŵ 1,2(M, g)-norm of R(g) is bounded by the assumption that curva-
tures are uniformly bounded. Thus, N1 is bounded.

Now we assume that we have shown Ŵ l,2(M, g)-norms of R(g), l < k, are
uniformly bounded. We would like to show that R(g) is uniformly bounded
in Ŵ k,2(M, g)-norm.

Again, ak+2 is a spectral invariant. By Lemma 3.1, we need only obtain
an upper estimate on

∫
M Ek+2. It is known that Ek+2 has weight 2k+4. Let

m be a monomial of Ek+2. Then, m must be of type:

(k − α1, k − α2, β1, · · · , βj),

with k − α1 ≥ k − α2 ≥ β1 ≥ · · · ≥ βj ≥ 0.
We first assume that βj > 0. By interpolation inequality (3.1), we known

that if R(g) is bounded in Ŵ l,2(M, g), then Ŵ i,2l/i(M, g) norm of R(g) is
uniformly bounded, for i ≤ l, i ∈ Z+. Now, we set l = k − 1 and

p1 =
2(k − 1)
k − α1

, p2 =
2(k − 1)
k − α2

, p3 =
2(k − 1)
β1

, · · · , pj+2 =
2(k − 1)
βj

.
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In order to apply Hölder inequality (3.2) to m we need only to prove

1
p1

+ · · ·+ 1
pj+2

≤ 1.(3.4)

It is easy to get

1
p1

+ · · ·+ 1
pj+2

=
2k − α1 − α2 +

∑j
i=1 βi

2(k − 1)
.

Then, (3.4) is equivalent to

j∑
i=1

βi ≤ α1 + α2 − 2.(3.5)

Recall that Ek+2 is of weight 2k + 4. Then, by the very definition of
weight, m is of weight 2k − α1 − α2 + 4 + 2j +

∑j
i=1 βi. Thus,

j∑
i=1

βi = α1 + α2 − 2j.

This implies (3.5) since j ≥ 1. Then (3.5) is true. Therefore, m has bounded
integral in this case by Hölder inequality.

If βi = 0, 1 ≤ i ≤ j, then it is sufficient to consider monomial m which is
of type (k − 1, k − 1, 0). Obviously, m has bounded integral by assumption.

Therefore m has bounded integral. So is
∫
M Ek+2dv. Thus, Ŵ k,2(M, g)

norm of R(g) is uniformly bounded. Hence, by induction, Ŵ k,2(M, g) norm
of R(g) is uniformly bounded for each k.

Proof of Theorem 1.1. By the previous discussions and Sobolev’s embedding
theorem, we conclude that Ĉ l(M, g)-norms of R(g) are uniformly bounded.
Taking i in (2.4) sufficiently large, we see that the diameter of (M, g) is
uniformly bounded by spectral data. Besides, volume is a spectral invari-
ant. So conditions in (2.5) are satisfied. Thus, by Theorem 2.2, In(C) is
precompact in the C∞-topology. i.e., For any sequence {gk} ⊆ In(C), there
is a subsequence gkj and diffeomorphisms fkj on M such that f∗kj (gkj ) con-
verges to a smooth Riemannian metric g∞ on M . To show the smooth limit
manifold (M, g∞) has the same spectrum, we show that the heat kernel H∞t
of (M, g∞) has the same trace of heat kernel H i

t , for each i, if gi → g∞ in
the C∞-topology. Since M is compact, then H i

t → H∞t , t > 0. Therefore,
the trace of H∞t is the same as that of H i

t , for each i. So the values of λi
′s

are determined. The multiplicity of each λi is also determined because the
C∞-convergence provide a uniform bound on the Ck-norms (with respect to
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a fixed metric g0) on the solutions of ∆gf
i
g = −λif ig, for each λi, (cf. [17]).

Then (M, g∞) ∈ In(C).

Acknowledgement. The author wishes to thank Professor R. Strichartz
for discussions in the writing of this paper. He would also like to thank Dr.
Cao for his comments.

Appendix.

In a previous version of this paper, we proved Lemma 3.1 (in the case of
k ≥ 2) by proving the following Theorem A.1 before we saw a proof of (2.3).
The proof of (A.1) is easy to follow and also (A.1) provides an estimate on∫ |∇kR|2 by

∫ |∇kρ|2 (only, without
∫ |∇kτ |2) and lower order terms. So we

include the proof of (A.1) in this appendix in addition to the proof of (2.3).

Theorem A.1. For any metric gij on M , the curvature tensor Rijkl satis-
fies, for k > 1, k ∈ Z+,

(A.1)
∫
M

|∇kR|2 ≤ 32
∫
M

|∇kρ|2 +
∫
M

F,

where F is a polynomial in contractions of Rijkl;I , |I| < k, with weight 2k+4.

Proof. In the following proof, we will use F1, F2, · · · , to denote polynomials
in contractions of Rijkl;I , |I| < k. By using Bianchi identities, we may derive
the following formula (see [13], for details). In a local orthonormal frame,

∆Rijkl = ∇i∇kρjl −∇i∇lρjk −∇j∇kρil +∇j∇lρik +Rpjklρpi +Ripklρpj

+ 2 (RpiqjRpkql −RpiqjRplqk −RpiqlRpjqk +RpiqkRpjql) .

Let I be a multi-index with |I| = k − 2. Then, by exchanging order of
differentiation,

∆Rijkl;I = ∇i∇kρjl;I −∇i∇lρjk;I −∇j∇kρil;I +∇j∇lρik;I +G,

where G is of order at most k − 2. Then, by Schwarz inequality,∫
M

∆Rijkl;I∆Rijkl;I

≤ 2
∫
M

|∇i∇kρjl;I −∇i∇lρjk;I −∇j∇kρil;I +∇j∇lρik;I |2 +G2

≤ 32
∫
M

|∇kρ|2 + 2
∫
M

G2.
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Also, we have∫
M

∆Rijkl;I∆Rijkl;I =
∫
M

Rijkl;IααRijkl;Iββ

= −
∫
M

Rijkl;IαRijkl;Iββα

= −
∫
M

Rijkl;IαRijkl;Iβαβ + F1

= −
∫
M

Rijkl;IαRijkl;Iαββ + F2

= −
∫
M

Rijkl;IαβRijkl;Iαβ + F2

=
∫
M

|∇kR|2 + F2.

Therefore, ∫
M

|∇kR|2 ≤ 32
∫
M

|∇kρ|2 +
∫
M

F.

So Theorem A.1 is proved.

Gilkey’s formula (2.3) obviously displays a more accurate relations be-
tween R, ρ and τ . The formula should be of other interests. What follows
is a proof of (2.3) provided by Gilkey (up to minor changes). We thank
Professor Gilkey for allowing the author to include his proof in this paper.

Lemma A.1. Let ω := Tiei be a 1-form valued invariant. Then∫
M

Ti;i|d vol | = 0,

where we sum over indices in pairs.

Proof. This is Stokes Theorem. It uses the fact that the volume form is
parallel; Ti;i is minus the divergence of ω. More precisely, if f is a scalar
function and ω a 1-form, then

df = f;iei and δω = −ωi;i.

Lemma A.2.
∫
Rijln;kRijkl;n = −∫Rijln;knRijkl =

∫
Rijln;nRijkl;k + · · ·

Proof. Let ω = Rijln;kRijklen. Thus ωn = Rijln;kRijkl. By Lemma A.1,

0 =
∫

(Rijln;kRijkl);n =
∫

(Rijln;knRijkl +Rijln;kRijkl;n).
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Consequently ∫
Rijln;kRijkl;n = −

∫
Rijln;knRijkl.

We switch indices and introduce a curvature term.∫
Rijln;knRijkl =

∫
Rijln;nkRijkl + · · ·.

We apply the same argument using Lemma A.1 to see∫
Rijln;nkRijkl = −

∫
Rijln;nRijkl;k.

The desired result now follows.

Theorem A.2. Let P be an integral invariant of order 2n + 4 in the jets
of the metric for n ≥ 1. Then there exist universal constants a and b so∫

M

P (g)dx = a

∫
M

|∇nτ |2 + b

∫
M

|∇nρ|2 + E

where E involves cubic terms with fewer than n covariant derivatives of the
curvature tensor.

Proof. Here is a quick sketch. I am going to take n = 4 for simplicity of
notation; this is totally irrelevant to the proof. Working modulo lower order
terms, we use H. Weyl’s theorem ([10, p. 132]) to write P as a sum of terms
of the form

R····;····R····;····,

where exactly three covariant derivatives appear in each term and where we
sum over indices in pairs. Since we are integrating over a manifold with-
out boundary, we can integrate by parts to exchange covariant derivatives;
since we are working modulo lower order terms, we can commute covariant
derivatives. We use these observations without further comment in what
follows.

We wish to simplify things. Suppose first we are dealing with

Rijkl;····Rabcd;····

where the indices {i, j, k, l} are distinct and that {a, b, c, d} is a permutation
of {i, j, k, l}; i.e. all the indices appearing in the covariant derivatives are
contracted in pairs and the indices {i, j, k, l, a, b, c, d} are contracted in pairs.
Then we are dealing with

Rijkl;····Rijkl;···· or Rijkl;····Rikjl;····;
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we use the first Bianchi identity to express the second in terms of the first
and deal with

Rijkl;x···Rijkl;x···.

We apply the second Bianchi identity and integrate by parts to express this
in terms of

Rijxk;l···Rijkl;x··· and Rijlx;k···Rijkl;x···.

Suppose next the indices {i, j, k, l} are distinct. By the previous para-
graph, we may assume i appears as a covariant derivative. By integrating
by parts, we may assume we are dealing with

Rijkl;i···R····;····.

We apply the second Bianchi identity to deal with

Rijli;k···R···;··· andRijli;k···R····;···.

Thus we may assume that we are actually dealing with

Rijik;···Rabcd;····

where possibly j = k. If the indices {a, b, c, d} are all distinct, at most two
can belong to {j, k} and consequently at least one of them appears as a
covariant derivative. Thus the same argument gives us a term like

Rijik;····Rabcd;a···.

Again, use of the second Bianchi identity permits us to reduce the study to

Rijik;····Rabad;····.

Suppose j 6= k. We note that Rijik;k = 1/2Rikik;j so

Rijik;k··· =
1
2
Rikik;j···.

If k appears as a covariant derivative, we are dealing with

Rikik;····Rabad;····.

If b 6= d, both b and d appear as covariant derivatives and we are dealing
with

Rikik;····Rabab;····
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and after integration by parts this is seen to be |∇nτ |2. The only remain-
ing case is that we are dealing with Rijik;···Rajak;··· and after integration by
parts this is seen to be |∇nρ|2 modulo lower order terms. Theorem A.2 is
proved.

Here is the method for computing the universal constants.∫
|∇νR|2 =

∫
Rijkl;n...Rijkl;n...

=
∫
{−Rijln;k...Rijkl;n −Rijnk;l...Rijkl;n...}

=
∫
−2Rijln;k...Rijkl;n...

=
∫
−2Rijln;n...Rijkl;k... + · · ·

=
∫
{2Rjnln;i...Rijkl;k... + 2Rniln;j...Rijkl;k... + · · ·}

=
∫

4Rjnln;i...Rijkl;k... + · · ·

=
∫
−4ρjl;i...Rijkl;k...+···

=
∫
{4ρjl;i...Rjkkl;i... + 4ρjl;i...Rkikl;j + · · ·}

=
∫
{4|∇νρ|2 − 4ρjl;i...ρil;j... + · · ·}

=
∫
{4|∇νρ|2 − 4ρjl;j...ρil;i... + · · ·}

=
∫
{4|∇νρ|2 − |∇ντ |2 + · · ·}.
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