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ON ORTHOGONALLY EXPONENTIAL FUNCTIONALS

Janusz Brzdȩk

Let (X,⊥) be an orthogonality space and g : X → C, g(X) 6=
{0}, be an orthogonally exponential functional, hemicontinu-
ous at the origin. We show that then one of the follwing two
conditions is valid:

(i) There are unique linear functionals a1, a2 : X → R with

g(x) = exp(a1(x) + ia2(x)) for x ∈ X;

(ii) there are a ⊥-equivalent inner product 〈·, ·〉 in X, c ∈ C,
and unique linear functionals a1, a2 : X → R such that

g(x) = exp(a1(x) + ia2(x) + c‖x‖2) for x ∈ X,
where ‖x‖ = 〈x, x〉 for x ∈ X.

We also prove some auxiliary results concerning functions
f mapping a real linear (orthogonality) space X into a com-
mutative group (G,+) and satisfying one of the following two
conditions:

f(x+ y) + f(x− y)− 2f(x)− 2f(y) ∈ K for x, y ∈ X,
f(x+ y)− f(x)− f(y) ∈ K whenever x ⊥ y,

where K is a subgroup of G.

1. Introduction.

We study the orthogonally exponential functionals on a linear space X, i.e.
solutions of the conditional equation

f(x+ y) = f(x)f(y) whenever x ⊥ y,(1)

where ⊥⊂ X2 is a relation fulfilling some additional conditions. We obtain
their description under some regularity conditions.

The results which we prove correspond to the outcomes in numerous pa-
pers concerning the orthogonally additive mapping (see e.g. [1, pp. 185-194],
[8], [9], [10], [12], [13], [14]), i.e. solutions of the equation

f(x+ y) = f(x) + f(y) whenever x ⊥ y,(2)
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and to some results in [2], [3] and [5].
Let N,Z,Q,R and C denote, as usual, the sets of all positive integers,

integers, rationals, reals and complex numbers, respectively. Following [9]
and [13] (cf. also [10]), we introduce the subsequent definition.

Definition 1.1. A pair (X,⊥) is an orthogonality space provided X is a
real linear space with dimX ≥ 2 and ⊥⊂ X2 is a relation such that
(01) x ⊥ 0 and 0 ⊥ x for every x ∈ X;
(02) if x, y ∈ X\{0} and x ⊥ y, then x and y are linearly independent;
(03) if x, y ∈ X and x ⊥ y, then ax ⊥ by for every a, b ∈ R;
(04′) if P is a 2-dimensional subspace of X, x ∈ P and a ∈ R, a > 0, then

there is y ∈ P with x ⊥ y and x+ y ⊥ ax− y.
Actually our condition (04′) is stronger than conditions (04) and (05) in
[9]; however, this does not exclude any of the examples given in [9] (cf.
[13, p. 36]). In the examples each of the following three relations makes a
real linear space X into an orthogonality space (see [9] and [13]).

Example A. The trivial orthogonality; i.e. defined by (01) and by the
formula: For every x, y ∈ X \ {0}, x ⊥ y if and only if x and y are linearly
independent.

Example B. The ordinary orthogonality on a real inner product space
(X, 〈·, ·〉); i.e. x ⊥ y if and only if 〈x, y〉 = 0 (in the sequel we also call
such a space a real inner product space).

Example C. The Birkhoff-James orthogonality on a normed linear space;
i.e. x ⊥ y if and only if ‖x+ by‖ ≥ ‖x‖ for every b ∈ R.

In the case where X is a real inner product space the orthogonally expo-
nential functionals f : X → C have been investigated in [2], [3] and [5].

2. Auxiliary results.

The results contained in this part are only auxiliary. However, to some
extend, they correspond to or generalize certain outcomes in [2]-[7] and,
therefore, they are in a more general settings than it is necessary for the
proofs of our main theorems.

We begin with a definition and two lemmas.

Definition 2.1. (Cf. [11, p. 596].) Let X be a real linear space and
D ⊂ X. We say that a point x ∈ X is algebraically interior to D provided,
for every y ∈ X, there is c ∈ R, c > 0, such that x + (−c, c)y := {x + dy :
d ∈ (−c, c)} ⊂ D. We say that D is algebraically open if every point of D is
algebraically interior to D.
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Lemma 2.2. Let X be a real linear space and D ⊂ X be a set such that
the origin is algebraically interior to D. Then the following two conditions
are valid.
(i) Every additive functional a : X → R bounded above or below on D is

linear.
(ii) Every symmetric biadditive functional L :X2→R such that |L(x, x)| <

e for x ∈ D, with some e > 0, satisfies

L(cz, dz) = cdL(z, z) for c, d ∈ R, z ∈ X.(3)

If, moreover, D is algebraically open, then L is bilinear.

Proof. (i) Fix x ∈ X\{0} and define a function ax : R→ R by: ax(d) = a(dx)
for d ∈ R. Further, put Dx = {d ∈ R : dx ∈ D}. Then ax is additive and
bounded on Dx, and 0 ∈ intDx. Thus (cf. [1], Corollary 2.1.5) there is
dx ∈ R with ax(d) = dxd for d ∈ R. This yields the assertion (i).

(ii) Take z ∈ X \ {0} and, for every d ∈ R, define a function hd : R→ R
by

hd(c) = L(cz, dz) for c ∈ R.

Then hd is additive for every d ∈ R. Further, according to the hypothesis on
D, there is dz > 0 with (−2dz, 2dz)z ⊂ D. Thus, for every c, d ∈ (−dz, dz),
we have cz + dz, cz − dz ∈ D and consequently

|hd(c)| = 1
4
|L(cz + dz, cz + dz)− L(cz − dz, cz − dz)| < e,

which, in view of (i), means that for every d ∈ (−dz, dz) there is cd ∈ R with

hd(c) = cdc for c ∈ R.

Since

hnd(c) = L(cz, ndz) = nL(cz, dz) = nhd(c) for every c, d ∈ R, n ∈ Z,

this implies that hd has this form for every d ∈ R. Whence, by the symmetry
of L, the biadditive function Lz : R2 → R, given by

Lz(c, b) = L(cz, bz) for c, b ∈ R,

is bilinear. This yields (3).
To complete the proof suppose that D is algebraically open. Take x, y ∈

X. There is m ∈ N with 2−my ∈ D, which means that 2−my is algebraically
interior to D. Thus there exists a nontrivial real interval I such that, for
every c ∈ I, c2−mx+ 2−my ∈ D and consequently

L(cx+ y, cx+ y) = 22mL(2−m(cx+ y), 2−m(cx+ y)) < 22me.
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Now, using Propositions 11.1.1 and 11.1.4 in [1] we obtain the bilinearity of
L. This ends the proof.

Lemma 2.3. Let X be a real linear space, (G,+) be a group (not necessarily
commutative) without elements of order 2 (i.e. 2x := x + x 6= 0 for every
x ∈ G \ {0}), and W be a subset of X with W ⊂ 2W := {2x : x ∈W} and

X =
⋃
{2nW : n ∈ N}.(4)

Suppose that a function f : W → G satisfies

f(x+ y) + f(x− y) = 2f(x) + 2f(y)(5)

for every x, y ∈W with x+y, x−y ∈W. Then there is exactly one quadratic
function q : X → G, i.e. satisfying the equation

q(x+ y) + q(x− y) = 2q(x) + 2q(y) for x, y ∈ X,(Q)

such that f(x) = q(x) for x ∈W.
Proof. According to (4), 0 ∈W. Setting in (5) first x = y = 0 and next x = y
we obtain f(0) = 0 and then

f(2x) = 4f(x) for x ∈W with 2x ∈W .

Thus by induction, we get

f(2nx) = 22nf(x) for n ∈ N, x ∈W with 2nx ∈W .

Hence for every m,n ∈ N ∪ {0}, m > n, and x ∈ X with 2−nx ∈W,
22mf(2−mx) = 22n22(m−n)f(2−mx) = 22nf(2−nx).

This means that we can define a function q : X → G by the formula:

q(x) = 22nf(2−nx) for x ∈ X,
with some n ∈ N such that 2−nx ∈W. It is easily seen that q is an extension
of f.

Now, we prove that q is a solution of (Q). For this fix z, w ∈ X. Since
W ⊂ 2W, by (4) there is n ∈ N such that

2−nz, 2−nw, −2−nw, 2−n(z + w), 2−n(z − w), 2−n(w − z) ∈W.
Further, putting in (5) x = 0, we have

f(−y) = f(y) for y ∈W with −y ∈W .
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Thus

f(2−n(z + w)) + f(2−n(z − w)) = 2f(2−nz) + 2f(2−nw)

= 2f(2−nz) + 2f(−2−nw) = f(2−n(z − w)) + f(2−n(z + w))

and

2f(2−nz) + 2f(2−nw) = f(2−n(z + w)) + f(2−n(z − w))

= f(2−n(w + z)) + f(2−n(w − z)) = 2f(2−nw) + 2f(2−nz).

Whence and by virtue of (5)

q(z + w) + q(z − w) = 22nf(2−n(z + w)) + 22nf(2−n(z − w))

= 22n(f(2−n(z + w)) + f(2−n(z − w))) = 22n(2f(2−nz) + 2f(2−nw))

= 2q(z) + 2q(w).

It remains to show that q is unique. So suppose that r : X → G is also a
solution of (5) and r(x) = f(x) for x ∈W. Take x ∈ X. There is n ∈ N with
2−nx ∈W. Thus

r(x) = 22nr(2−nx) = 22nf(2−nx) = q(x).

This completes the proof.

In what follows, given a non-empty subset U of a group (G,+), we put
U (1) = U and U (n+1) = U (n) + U := {x+ y : x ∈ U (n), y ∈ U} for n ∈ N.

The next proposition and two theorems correspond to the results con-
tained in [4], [6] and [7].

Proposition 2.4. Let X and W be just the same as in Lemma 2.3. Suppose
that (G,+) is a commutative group without elements of order 2, K is a
subgroup of G, U 6= ∅ is a subset of G with U = −U and U (6) ∩K = {0},
and f : X → G is a function such that f(W )− f(0) ⊂ K + U and

f(x+ y) + f(x− y)− 2f(y)− 2f(x) ∈ K for x, y ∈ X.(6)

Then 2f(0) ∈ K and there is a quadratic function q : X → G such that

f(x)− q(x)− f(0) ∈ K for x ∈ X.(7)

Furthermore, q(W ) ⊂ U.
Proof. There are functions u : W → U and k : W → K such that f(x) −
f(0) = k(x)+u(x) for x ∈W. Further, for every x, y ∈W with x+y, x−y ∈
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W,

u(x+ y) + u(x− y)− 2u(y)− 2u(x)

= [f(x+ y) + f(x− y)− 2f(x)− 2f(y)]

+ 2f(0)− k(x+ y)− k(x− y) + 2k(y) + 2k(x)

and consequently

u(x+ y) + u(x− y)− 2u(y)− 2u(x) ∈ K ∩ U (6) = {0},

because, by (6), 2f(0) ∈ K. Hence, by Lemma 2.3, there is a quadratic
function q : X → G being an extension of u, which means that q(W ) ⊂ U
and

f(x)− q(x)− f(0) ∈ K for x ∈W.(8)

Setting in (6) x = y we get by induction

f(2nx)− 22nf(x) + f(0) ∈ K for n ∈ N, x ∈ X.(9)

Take x ∈ X. There is n ∈ N with 2−nx ∈W. Thus (8) and (9) imply that

f(x)− q(x)− f(0) = [f(x)− 22nf(2−nx)]

+ 22n[f(2−nx)− q(2−nx)]− f(0) ∈ K for x ∈ X

(because 2f(0) ∈ K). This completes the proof.

Now, using Proposition 2.4 we can prove the subsequent two theorems;
but to formulate them we need one more definition.
Definition 2.5. Let (G,+) be a topological group. We say that a subgroup
K of G is discrete provided there is a neighbourhood U ⊂ G of 0 with
K ∩ U = {0}.
Theorem 2.6. Let X be a real topological linear space, (G,+) be a commu-
tative topological group without elements of order 2, K be a discrete subgroup
of G, and f : X → G be a continuous at the origin function satisfying (6).
Then 2f(0) ∈ K and there is a unique quadratic function q : X → G,
continuous at the origin, such that (7) holds.

Proof. Let U, V ⊂ G be neighbourhoods of 0 such that U ∩K = {0}, V =
−V, and V (6) ⊂ U. Since f is continuous at the origin, there is a balanced
neighbourhood W ⊂ X of the origin with f(W ) ⊂ f(0) + V, which yields

f(W )− f(0) ⊂ V.
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Thus, by Proposition 2.4, 2f(0) ∈ K and there is a quadratic function
q : X → G such that (7) holds and q(W ) ⊂ V, whence

f(x)− q(x)− f(0) ∈ K ∩ (V − V ) ⊂ K ∩ U = {0} for x ∈W.
Hence q(x) = f(x) − f(0) for x ∈ W, which means that q is continuous at
the origin.

To complete suppose that r : X → G is also a quadratic and continuous at
the origin function with f(x)−r(x)−f(0) ∈ K for x ∈ X. Then q(x)−r(x) ∈
K for x ∈ X. Let U, V ⊂ G be neighbourhoods of 0 such that K ∩ U = {0}
and V − V ⊂ U. There is a neighbourhood W ⊂ X of the origin with
q(W ), r(W ) ⊂ V, which implies

q(x)− r(x) ∈ K ∩ (V − V ) ⊂ K ∩ U = {0} for x ∈W.
Further, for every x ∈ X, there is n(x) ∈ N with 2−n(x)x ∈W. Hence

q(x) = 22n(x)q(2−n(x)x) = 22n(x)r(2−n(x)x) = r(x) for x ∈ X.
This ends the proof

Theorem 2.7. Let X be a real linear space and f : X → R be a function
satisfying (6) with K = Z. Suppose that there is a set D ⊂ X such that the
origin is algebraically interior to D and

f(D)− f(0) ⊂ Z +
(
−1

5
,

1
5

)
.(10)

Then 2f(0) ∈ Z and there exists exactly one biadditive symmetric function
L : X2 → R such that

f(x)− L(x, x)− f(0) ∈ Z for x ∈ X.(11)

Moreover, (3) holds.

Proof. For every x ∈ X \ {0} there is dx ∈ R, dx > 0, with (−dx, dx)x ⊂ D.
Put

W =
1
2

[⋃
{(−dx, dx)x : x ∈ X \ {0}}

]
.

It is easily seen that W ⊂ 2W ⊂ D and (4) is valid.
It results from (6) that 2f(0) ∈ Z and

4f
(

1
2
y

)
− f(0) ∈ f(y) + Z for y ∈ X,

which implies 4f(W )− 4f(0) ⊂ f(2W )− f(0) + Z ⊂ Z + (− 1
5
, 1

5
).
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Next, by (10),

4f(D)− 4f(0) ⊂ 4Z +
(
−4

5
,

4
5

)
.

Thus

4f(W )− 4f(0) ⊂
[
Z +

(
−1

5
,

1
5

)]
∩
[
4Z +

(
−4

5
,

4
5

)]
= 4Z +

(
−1

5
,

1
5

)
.

Hence

f(W )− f(0) ⊂ Z +
(
− 1

20
,

1
20

)
and consequently, on account of Proposition 2.4, there is a quadratic function
q : X → R such that (7) holds and

q(W ) ⊂
(
− 1

20
,

1
20

)
.

Now, using Proposition 11.1.1 in [1], we derive that there is a biadditive and
symmetric function L : X2 → R with L(x, x) = q(x) for x ∈ X. This yields
(11) and

|L(x, x)| < 1
20

for x ∈W,

which, according to Lemma 2.2(ii), implies (3).
It remains to show that L is unique. So, suppose that S : X2 → R is

also a biadditive and symmetric function with f(x)− S(x, x)− f(0) ∈ Z for
x ∈ X. Then

L(x, x)− S(x, x) ∈ Z for x ∈ X.
Next, for every x ∈ X, there is n ∈ N with

2−2n|L(x, x)− S(x, x)| < 1,

which implies that

L(2−nx, 2−nx)− S(2−nx, 2−nx) = 0

and consequently

L(x, x) = 22nL(2−nx, 2−nx) = 22nS(2−nx, 2−nx) = S(x, x).
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Whence, for every x, y ∈ X

L(x, y) = L

(
1
2

(x+ y),
1
2

(x+ y)
)
− L

(
1
2

(x− y),
1
2

(x− y)
)

= S

(
1
2

(x+ y),
1
2

(x+ y)
)
− S

(
1
2

(x− y),
1
2

(x− y)
)

= S(x, y).

This completes the proof.

Remark. The function L in Theorem 2.7 need not to be bilinear. In fact,
let S : X2 → R be a symmetric and biadditive function satisfying

S(cx, cx) = c2S(x, x) for c ∈ R, x ∈ X,

which is not bilinear (see [1], Proposition 11.1.6). Put f(x) = S(x, x) for
x ∈ X. Then f(0) = 0 and f satisfies (6) with K = {0} (cf. [1], Proposition
11.1.1). Further, for every x ∈ X \ {0} there is cx ∈ R, cx > 0, with

f((−cx, cx)x) = [0, c2
x)f(x) ⊂

(
−1

5
,

1
5

)
and consequently (10) holds with

D =
⋃
{(−cx, cx)x : x ∈ X}.

It is easily seen that the origin is algebraically interior to D.

We need also the following proposition.

Proposition 2.8. Let X be a real linear space, D be a subset of X such that
the origin is algebraically interior to D, e ∈ R, 0 < 2e < 1, and f : X → R
be a function with

f(x+ y)− f(x)− f(y) ∈ Z for x, y ∈ X(12)

and f(D) ⊂ (−e, e) + Z. Then there exists a unique linear functional a :
X → R with

f(x)− a(x) ∈ Z for x ∈ X.

Proof. For every x ∈ X \ {0} put Dx = {d ∈ R : dx ∈ D} and define a
function fx : R → R by fx(d) = f(dx) for d ∈ R. Then fx satisfies (12)
(with X = R) and fx(Dx) ⊂ (−e, e) + Z. Thus, in view of Corollary 1 in [7],
for every x ∈ X \ {0} there is cx ∈ R such that

fx(d)− cxd ∈ Z for d ∈ R.
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Suppose that c′x ∈ R also satisfies fx(d)−c′xd ∈ Z for d ∈ R. Then (cx−c′x)d ∈
Z for d ∈ R, which yields cx = c′x.

Since cx is unique, we may define a functional a : X → R by a(x) = cx
for x ∈ X \ {0} and a(0) = 0. Then

f(x)− a(x) = fx(1)− cx ∈ Z for x ∈ X \ {0}.
Further, by (12), f(0) ∈ Z. Thus it remains to show that a is linear and
unique.

To this end fix b ∈ R and x, y ∈ X. Then, for every d ∈ R,

d(cbx+y − bcx − cy) = cbx+yd− fbx+y(d)− (cxdb− fx(db))
− (cyd− fy(d)) + f(d(bx+ y))− f(dbx)− f(dy) ∈ Z.

Hence a(bx+ y) = ba(x) + a(y).
Finally, suppose that a′ : X → R is linear and f(x)−a′(x) ∈ Z for x ∈ X.

Then, for every d ∈ R, x ∈ X, d(a(x)− a′(x)) = a(dx)− a′(dx) ∈ Z, which
means that a = a′. This completes the proof.

Now, we are in a position to prove the following two theorems which
generalize, to some extent, Corollary 1 in [2] and Theorem in [5].

Theorem 2.9. Let X be an orthogonality space endowed with a linear
topology (i.e. one which makes X into a real linear topological space), (G,+)
be a commutative topological group without elements of order 2, and K be a
discrete subgroup of G. Then a continuous at the origin function f : X → G
satisfies

f(x+ y)− f(x)− f(y) ∈ K whenever x ⊥ y(13)

if and only if there exist a unique continuous additive function a : X → G
and a unique continuous at the origin quadratic and orthogonallly additive
function q : X → G with

f(x)− a(x)− q(x) ∈ K for x ∈ X.(14)

Proof. First suppose that f satisfies (13). Define functions f1, f2 : X → G
and F1, F2 : X → G/K by the formulae

f1(x) = f(x)− f(−x) for x ∈ X,
f2(x) = f(x) + f(−x) for x ∈ X,

and Fi = p ◦ fi for i = 1, 2, where p is the natural projection of G onto the
factor group G/K. Then f1 and f2 are continuous at the origin, fi(x) ∈ Fi(x)
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for x ∈ X, i = 1, 2, F1 is odd, F2 is even, and F1, F2 are orthogonally
additive. Thus, according to Theorems 5 and 6 in [13], F1 is additive and
F2 is quadratic, which means that f1 satisfies (12) (with Z replaced by
K) and f2 satisfies (6). Moreover, by (13), f(0) ∈ K and consequently
f2(0) = 2f(0) ∈ K. Hence, by Theorem 3 in [4] and our Theorem 2.6, there
are a continuous additive function a0 : X → G and a quadratic function
q0 : X → G, continuous at the origin, such that

f1(x)− a0(x), f2(x)− q0(x) ∈ K for x ∈ X.(15)

Since f2 is a solution of (13), (15) implies that so is q0.
Let k : X → K be the function given by

k(x) = 2f(x)− a0(x)− q0(x) for x ∈ X.
Then, for every x, y ∈ X with x ⊥ y,
k(x+ y)− k(x)− k(y) = 2[f(x+ y)− f(x)− f(y)]

− 4
[
q0

(
1
2

(x+ y)
)
− q0

(
1
2
x

)
− q0

(
1
2
y

)]
∈ 2K.

We have also

k(x) + k(−x) = 2[f2(x)− q0(x)] ∈ 2K for x ∈ X.
Thus the function k0 : X → K/2K, defined by:

k0(x) = k(x) + 2K for x ∈ X,
is odd and orthogonally additive, which, in view of Theorem 5 in [13], means
that it is additive. Hence

k0(x) = 2k0

(
1
2
x

)
= 0 for x ∈ X

and consequently k(X) ⊂ 2K.
Thus we have shown that

2
[
f(x)− a0

(
1
2
x

)
− 2q0

(
1
2
x

)]
= k(x) ∈ 2K for x ∈ X.

Put a(x) = a0( 1
2
x) and q(x) = 2q0( 1

2
x) for x ∈ X. It is easily seen that (14)

holds, a is continuous and additive, and q is continuous at the origin and
quadratic.

It remains to prove that q is orthogonally additive and q and a are unique.
Let U, V ⊂ G be neighbourhoods of 0 such that K ∩U = {0}, V = −V, and
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V (3) ⊂ U. Since q is continuous at the origin, there is a neighbourhood
W ⊂ X of the origin with q(W ) ⊂ V. Take x, y ∈ X with x ⊥ y. There
exists n ∈ N with 2−nx, 2−ny, 2−n(x+ y) ∈W. Thus, by (13) and (14),

q(2−n(x+ y))− q(2−nx)− q(2−ny) ∈ K ∩ V (3) ⊂ K ∩ U = {0},

which yields

q(x+ y)− q(x)− q(y) = 22n(q(2−n(x+ y))− q(2−nx)− q(2−ny)) = 0.

To complete the “only if” part of the proof suppose that b, r : X → G are
also additive and quadratic functions, respectively, which are continuous at
the origin and satisfy

f(x)− b(x)− r(x) ∈ K for x ∈ X.

Then

a(x)− b(x) + q(x)− r(x) ∈ K for x ∈ X(16)

and consequently, for every x ∈ X,

a(2x)− b(2x) = [a(x)− b(x) + q(x)− r(x)]

− [a(−x)− b(−x) + q(−x)− r(−x)] ∈ K.

Further, there is a neighbourhoodW ⊂ X of the origin such that a(W ), b(W ) ⊂
V. Take x ∈ X. There exists n ∈ N with 2−nx ∈W, which means that

a(2−nx)− b(2−nx) ∈ K ∩ V (2) ⊂ K ∩ U = {0},

whence a(x) = 2na(2−nx) = 2nb(2−nx) = b(x).
So we have shown that a = b. Thus, by (16),

q(x)− r(x) ∈ K for x ∈ X.

Reasoning analogously as for a and b, we get q = r, which completes the
“only if” part of the proof. Since the converse is easy to check, this ends the
proof.

We can reformulate Theorem 2.9 in the following way.

Corollary 2.10. Let X,G, and K be the same as in Theorem 2.9. Then
a function f : X → G, continuous at the origin, satisfies (13) if and only if
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there exist a unique continuous additive function a : X → G and a unique
biadditive symmetric function L : X2 → G, continuous at (0, 0), with

f(x)− a(x)− L(x, x) ∈ K for x ∈ X(17)

and

L(x, y) = 0 for x ⊥ y.(18)

Proof. Arguing as in the proof of Proposition 11.1.1 in [1] (p. 166) one can
show that q : X → G is a quadratic function if and only if there is a unique
biadditive symmetric function L : X2 → G with q(x) = L(x, x) for x ∈ X.
There is only one difference. Here we define L by:

L(x, y) = q

(
1
2

(x+ y)
)
− q

(
1
2

(x− y)
)

for x, y ∈ X.(19)

Now, it is enough to use Theorem 2.9. The uniqueness of L results from the
uniqueness of q in Theorem 2.9.

It remains to show that L is continuous at (0, 0). To this end fix neighbour-
hoods T,U ⊂ G of 0 with T − T ⊂ U. There are neighbourhoods W,V ⊂ X
of the origin such that q(V ) ⊂ T, W = −W, and W + W ⊂ 2V. Thus, by
(19),

L(W×W ) ⊂ q
(

1
2

(W +W )
)
−q

(
1
2

(W −W )
)
⊂ q(V )−q(V ) ⊂ T−T ⊂ U.

This completes the proof.

Theorem 2.11. Let X be an orthogonality space, D be a subset of X such
that the origin is algebraically interior to D, K be either Z or {0} (here
0 ∈ R), and f : X → R be a function with

f(D) ⊂
(
− 1

10
,

1
10

)
+K.

Then f satisfies (13) if and only if there exist a unique linear functional
a : X → R and a unique bilinear symmetric functional L : X2 → R such
that (17) and (18) are valid.

Proof. Suppose that f satisfies (13). In the same way as in proof of Theorem
2.9 (with G = R) we define functions f1, f2 : X → R and show that f1

satisfies (12) (with Z replaced by K) and f2 satisfies (6). Further, we have
f2(0) = 2f(0) ∈ K and

f1(D), f2(D) ⊂ K +
(
−1

5
,

1
5

)
.
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Thus, according to Proposition 2.8 and Theorem 2.7, there are a linear
functional a0 : X → R and a biadditive symmetric functional L0 : X2 → R
such that (3) holds (with L = L0) and

f1(x)− a0(x), f2(x)− L0(x, x) ∈ K for x ∈ X.(20)

(Actually, in the case K = {0} we cannot simply apply the above results.
However, then f1 is additive and f2 is quadratic. Next, we use Proposition
11.1.1 in [1] and Lemma 2.2(ii).)

Again in analogous way as in the proof of Theorem 2.9, we prove that

f(x)− a0

(
1
2
x

)
− 2L0

(
1
2
x,

1
2
x

)
∈ K for x ∈ X

(notice that the function q0(x) := L0(x, x) for x ∈ X is quadratic). Putting

a(x) = a0

(
1
2
x

)
and L(x, y) = 2L0

(
1
2
x,

1
2
y

)
for x, y ∈ X

we get (17) and (3).
Take x, y ∈ X with x ⊥ y. Then sx ⊥ sy for every s ∈ Q. Thus, by (13)

and (17), 2s2L(x, y) = 2L(sx, sy) ∈ K for s ∈ Q, which yields L(x, y) = 0.
Hence (18) holds, too. This means that the function q : X → R, defined by
q(x) = L(x, x) for x ∈ X, is orthogonally additive. Further, in view of (3),
q is hemicontinuous (see [9], p. 427). Consequently Theorem 2.2 in [9] and
Proposition 11.1.1 in [1] imply that L is bilinear.

To complete the “only if” part of the proof it remains to show the unique-
ness of a and L. So suppose that b : X → R and S : X2 → R are also
functionals, additive and biadditive, respectively, such that (17) and (18)
are valid with a replaced by b and L replaced by S. Then, in the same way
as in the proof of Theorem 2.9, we show that a(x) − b(x) ∈ K for x ∈ X.
Next, analogously as in the proof of the uniqueness of L of Theorem 2.7 we
show that a = b. Repeating that for L and S we obtain also L = S.

Since the converse is easy to check, this completes the proof.

The next corollary reformulates Theorem 2.11 in a similar way as in The-
orem 2.2 in [9]. For this we need two more definitions.
Definition 2.12. (Cf. [9], p. 427.) Let X be a real linear space. We
say that a function f : X → R is hemicontinuous at the origin provided, for
every x ∈ X, the function fx : R→ R, given by

fx(a) = f(ax) for a ∈ R,

is continuous at 0.



ON ORTHOGONALLY EXPONENTIAL FUNCTIONALS 261

Definition 2.13. Let (X,⊥) be an orthogonality space and 〈·, ·〉 be an
inner product in X. We say that the inner product is ⊥-equivalent provided
for every x, y ∈ X

x ⊥ y if and only if 〈x, y〉 = 0.

Corollary 2.14. Let (X,⊥) be an orthogonality space and f : X → R
be a hemicontinuous at the origin function. Then f satisfies (13), with K
being either Z or {0} (here 0 ∈ R), if and only if one of the following two
conditions is valid:
(i) There is a linear functional a : X → R with f(x) − a(x) ∈ K for

x ∈ X;
(ii) there exist a ⊥-equivalent inner product 〈·, ·〉 in X, a linear functional

a : X → R, and c ∈ {−1, 1} such that f(x) − a(x) − c‖x‖2 ∈ K for
x ∈ X (with ‖x‖2 = 〈x, x〉 for x ∈ X).

Proof. The “if” part of the proof is trivial. So suppose that f satisfies (13)
and (i) does not hold. Since f is hemicontinuous at the origin, for every
x ∈ X \ {0} there is dx ∈ R, dx > 0, such that

f((−dx, dx)x) ⊂ f(0) +
(
− 1

10
,

1
10

)
.

Put

D =
⋃
{(−dx, dx)x : x ∈ X \ {0}}.

Then the origin is algebraically interior to D. Further, by (13), f(0) ∈ K,
which means that

f(D) ⊂ K +
(
− 1

10
,

1
10

)
.

Hence, in view of Theorem 2.11, there exist a linear functional a : X → R
and a nontrivial bilinear symmetric function L : X2 → R such that (17)
and (18) are valid. Using Theorem 2.2 in [9] for the function q : X2 → R,
given by: q(x) = L(x, x) for x ∈ X, we obtain (ii). This completes the
proof.

3. Orthogonally exponential functionals.

In this part we prove a next auxiliary proposition; this time concerning
orthogonally exponential functionals. Let us start with a lemma.
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Lemma 3.1. Let (X,⊥) be an orthogonality space and f : X → C be a
solution of (1). Then the following two statements are valid:
(i) If z, w ∈ X, f(z) 6= 0, z ⊥ w or w ⊥ z, and z + w ⊥ z − w, then

f

(
1
2
w

)
f

(
−1

2
w

)
6= 0;

(ii) if z ∈ X and f(z) = 0, then f(az) = 0 for every a ∈ R, a > 0.

Proof. (i) Take z, w ∈ X with f(z) 6= 0, z ⊥ w, and z + w ⊥ z − w. Then,
by (03),

1
2

(z + w) ⊥ 1
2

(z − w),
1
2
z ⊥ 1

2
w and

1
2
z ⊥ −1

2
w.

Thus, according to (1),

0 6= f(z) = f

(
1
2

(z + w)
)
f

(
1
2

(z − w)
)

= f

(
1
2
z

)2

f

(
1
2
w

)
f

(
−1

2
w

)
.

Since the case w ⊥ z is analogous, this completes the proof of (i).
(ii) First we show that

f(az) = 0 for a > 1 and z ∈ X with f(z) = 0.(21)

So fix a > 1 and z ∈ X with f(z) = 0. On account of (04′) there is y ∈ X
with z ⊥ y and z + y ⊥ (a− 1)z − y. Thus

f(az) = f(z + y + (a− 1)z − y) = f(z)f(y)f((a− 1)z − y) = 0,

which means that (21) holds.
Now, we prove (ii). Let z ∈ X, f(z) = 0, and b := inf{c ∈ R : c > 0 and

f(cz) = 0}. According to (21) it suffices to show that b = 0. For the proof
by contradiction suppose that b > 0. Take c > b with c < 2b and set v = cz.
Then

f

(
1
2
v

)
f

(
1
4
v

)
6= 0(22)

and, by (21), f(v) = 0. Next, let y ∈ X, v ⊥ y, and v+ y ⊥ v− y. According
to (22), (03), and (i)

f

(
1
4
y

)
f

(
−1

4
y

)
6= 0.(23)

Since, by (03), y + v ⊥ y − v, (23) and (i) imply

f

(
−1

8
v

)
6= 0.(24)
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Further,

0 = f(v) = f

(
1
2

(v + y)
)
f

(
1
2

(v − y)
)

= f

(
1
2
v

)2

f

(
1
2
y

)
f

(
−1

2
y

)
,

which, on account of (22), means that

0 = f

(
1
2
y

)
f

(
−1

2
y

)
= f

(
1
4

(v + y)
)
f

(
1
4

(y − v)
)
f

(
1
4

(v − y)
)
f

(
−1

4
(v + y)

)
= f

(
1
4
v

)2

f

(
−1

4
v

)2

f

(
1
4
y

)2

f

(
−1

4
y

)2

.

Consequently (22) and (23) yield

0 = f

(
−1

4
v

)
= f

(
−1

8
(v + y)

)
f

(
1
8

(y − v)
)

= f

(
−1

8
v

)2

f

(
−1

8
y

)
f

(
1
8
y

)
.

Since, on account of (22) and (i),

f

(
−1

8
y

)
f

(
1
8
y

)
6= 0,

this contradicts (24).

Proposition 3.2. Let (X,⊥) and f be the same as in Lemma 3.1. Then
either f(x) = 0 for x ∈ X \ {0} or f(x) 6= 0 for x ∈ X.
Proof. Suppose that there is x ∈ X with f(x) = 0. If x = 0, then for every
y ∈ X

f(y) = f(y + 0) = f(y)f(0) = 0.

So, it remains to consider the case x 6= 0.
Take z ∈ X \Rx. Let P be a subspace of X generated by x and z. There

is y ∈ P \ {0} with x ⊥ y and x+ y ⊥ x− y, which, by (03), implies

f(2y) = f(x+ y)f(y − x) = f(x)f(y)2f(−x) = 0,

f(−2y) = f(x− y)f(−y − x) = f(x)f(−y)2f(−x) = 0,

f(−2x) = f(−x− y)f(y − x) = f(−x)2f(y)f(−y).

Thus, according to Lemma 3.1(ii), f(−y) = 0 = f(y) and consequently
f(−x) = 0. Since, in view of (02), there exist a, b ∈ R with z = ax + by,
Lemma 3.1(ii) yields f(z) = f(ax)f(by) = 0. This completes the proof.
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4. Main theorems.

Now, we are in a position to prove our main results.

Theorem 4.1. Let (X,⊥) be an orthogonality space and g : X → C,
g(X) 6= {0}, be a solution of (1), hemicontinuous at the origin. Then there
exist c ∈ C, unique linear functionals a1, a2 : X → R, and a symmetric
bilinear functional L : X2 → R, unique up to a multiplicative constant, such
that (18) holds and

g(x) = exp(a1(x) + ia2(x) + cL(x, x)) for x ∈ X.(25)

If, moreover, X is a real linear topological space and g is continuous at the
origin, then a1 and a2 are continuous and L is continuous at (0, 0).

Proof. Since g is hemicontinuous at 0, g(x) 6= 0 for some x ∈ X \ {0}. Thus,
in view of Proposition 3.2, 0 /∈ g(X). Put S = {z ∈ C : |z| = 1} and define
functions f : X → R, h : X → S, and t : [−1

2
, 1

2
)→ S by the formulae

f(x) = log |g(x)| for x ∈ X,

h(x) =
g(x)
|g(x)| for x ∈ X,

t(d) = exp(2πid) for d ∈
[
− 1

2
,

1
2

)
.

Then g(x) = exp(f(x) + 2πit−1(h(x))) for x ∈ X. Further, f and h0 :=
t−1 ◦ h satisfy (13) (with K = {0} and K = Z, respectively) and they are
hemicontinuous at the origin. Arguing in the same way as in the proof
of Corollary 2.14 it easy to show that the assumptions of Theorem 2.11
are fulfilled and consequently there are linear functionals a1, a0 : X → R
and symmetric bilinear functionals L1, L0 : X2 → R such that f(x) =
a1(x) + L1(x, x) for x ∈ X, h0(x) − a0(x) − L0(x, x) ∈ Z for x ∈ X, and
L0(x, y) = L1(x, y) = 0 whenever x ⊥ y. Next, according to Theorem 2.2
in [9] (see also Corollary 3.4 in [9]) and Proposition 11.1.1 in [1], there is a
bilinear functional L : X2 → R and c1, c0 ∈ R with L1 = c1L and L0 = c0L
(we use these theorem and proposition for functions qi : X → R, i = 0, 1,
given by: qi(x) = Li(x, x) for x ∈ X). Putting a2 = 2πia0 and c = c1 +2πic0

we obtain (25). The uniqueness of a1, a2, and L results from the uniqueness
of a and L in Theorem 2.11.

In the case where X is a real linear topological space and g is continuous
at the origin the proof is analogous. It suffices only to use Corollary 2.10
instead of Theorem 2.11. This completes the proof
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Replacing, in the proof of Theorem 4.1, Theorem 2.11 by Corollary 2.14
we obtain the following.

Theorem 4.2. Let (X,⊥) and g be just the same as in Theorem 4.1. Then
one of the following two conditions is valid.
(i) There are unique linear functionals a1, a2 : X → R with

g(x) = exp(a1(x) + ia2(x)) for x ∈ X.

(ii) There are a ⊥-equivalent inner product 〈·, ·〉 in X, c ∈ C, and unique
linear functionals a1, a2 : X → R such that

g(x) = exp(a1(x) + ia2(x) + c‖x‖2) for x ∈ X,

where ‖x‖2 = 〈x, x〉 for x ∈ X.
If, moreover, X is a real topological linear space and g is continuous at

the origin, then a1 and a2 are continuous.

Taking into account Corollary 3.4 in [9], from Theorem 4.2 one can eas-
ily derive the following corollary (cf. Corollaries 1(i) and 2(i) in [3] and
Corollary in [5]).

Corollary 4.3. Let X be a real inner product space and g : X → C be a
hemicontinuous at the origin solution of (1). Then either g(x) = 0 for every
x ∈ X or there exist c ∈ C and an R-linear functional a : X → C with
g(x) = exp(a(x) + c‖x‖2) for x ∈ X. If, moreover, g is continuous at the
origin, then a is continuous.

Finally we have the following.

Theorem 4.4. Let (X,⊥) be an orthogonality space, D ⊂ X be a set such
that the origin is algebraically interior to D, and g : X → C, g(X) 6= {0},
be a solution of (1) which satisfies

|g(x)| < 4√
5 + 1

Re(g(x)) for x ∈ D,(26)

where Re(z) denotes the real part of the complex number z. Then there exist
an additive a1 : X → R, a linear a2 : X → R, a symmetric biadditive
L1 : X2 → R, and a symmetric bilinear L2 : X2 → R such that

L1(x, y) = 0 = L2(x, y) whenever x ⊥ y,(27)

g(x) = exp(a1(x) + L1(x, x) + i(a2(x) + L2(x, x))) for x ∈ X.(28)
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Moreover, all these functionals are unique.

Proof. It is easily seen that, in the case where g(x) = 0 for every x ∈ X \{0},
condition (26) cannot be satisfied with any set D ⊂ X such that the origin
is algebraically interior to D. Thus, by Proposition 3.2, 0 /∈ g(X). Define
the functions f, h, h0, and t in the same way as in the proof of Theorem 4.1.
Then f is orthogonally additive, h0 satisfies (13) with K = Z, and

√
5 + 1
4

= cos
π

5
< Re(h(x)) for x ∈ D.(29)

Thus, according to Corollary 7 in [13] and Proposition 11.1.1 in [1], there ex-
ist an additive functional a1 : X → R and a biadditive symmetric functional
L1 : X2 → R such that

f(x) = a1(x) + L1(x, x) for x ∈ X.
Note that for every x, y ∈ X with x ⊥ y we have

f(x) + f(y) = f(x+ y) = a1(x) + a1(y) + L1(x, x) + L1(y, y) + 2L1(x, y)

and consequently L1(x, y) = 0. Further, (29) implies

h0(D) ⊂ Z +
(
− 1

10
,

1
10

)
.

Hence, on account of Theorem 2.11, there exist a linear a2 : X → R and a
bilinear L2 : X2 → R such that L2(x, y) = 0 whenever x ⊥ y and

h0(x)− a2(x)− L2(x, x) ∈ Z for x ∈ X.
This yields (27) and (28).

We show the uniqueness of a1 and L1 in a similar way as in the proof
of Theorem 2.11; the uniqueness of a2 and L2 results directly from that
theorem. This completes the proof.

Remark. The Remark on page 15 in [5] shows that the regularity assump-
tions, which we have made throughout the paper, are essential.
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