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APPROXIMATING RATIONAL SPACES WITH ELLIPTIC
COMPLEXES AND A CONJECTURE OF ANICK

Barry Jessup and Aniceto Murillo-Mas1

An elliptic space is one whose rational homotopy and ra-
tional cohomology are both finite dimensional. David Anick
conjectured that any simply connected finite CW-complex S
can be realized as the k-skeleton of some elliptic complex as
long as k > dimS. A functorial version of this conjecture due
to McGibbon is that for any n there exists an elliptic complex
En and an n-equivalence S → En. In fact, this is equivalent
to its Eckmann-Hilton dual, which we prove in the rational
category for a small class of simply connected spaces. More-
over, we construct the n-equivalence in such a way that the
homotopy fibre is, rationally, a product of a finite number of
odd spheres.

1. Introduction.

A topological space is elliptic if its rational homotopy and rational cohomol-
ogy are both finite dimensional. This class includes many interesting and
well-known spaces which enjoy important structural properties: For exam-
ple, their Euler characteristic is non negative, their homotopy Euler char-
acteristic is non-positive, and their rational cohomology satisfies Poincaré
duality [H]. Indeed, Halperin and Friedlander have shown how to charac-
terize them in terms of the degrees of a basis for their rational homotopy
[FH]. Moreover, a result of McGibbon and Wilkerson [MW] asserts that an
elliptic space has an exponent for almost every prime number. The latter is
a partial answer to the conjecture of Moore that a simply connected space
is elliptic if and only if has an exponent for every prime number [S].

Elliptic spaces seem very special, and rightly so, as the generic space is not
elliptic. Thus one might not expect to them to exhibit a sufficient variety
of behaviour to be useful in approximating general spaces. However, Anick
has conjectured the following:

Conjecture (Anick). Any simply connected finite CW-complex S is the
k-skeleton of an elliptic complex as long as k ≥ dimS.
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Of course, skeleta are not homotopy invariants, and McGibbon has sug-
gested that this conjecture can be most profitably viewed in the following
terms [M].

Definition. A space S can be approximated arbitrarily closely on the right
(resp. left) by a class of spaces A if for each natural number n there is a
space An ∈ A and an n-equivalence S → An (resp. An → S).

Naturally, the definition depends on the notion of “n-equivalence”, and
we will henceforth always work in a subcategory of the category CW1 of
1-connected spaces with the homotopy type of a CW complex.

Now let A and T be any two classes of spaces and consider the follow-
ing (Eckmann-Hilton dual) conjectures (a “Postnikov piece” is a space with
finitely generated homotopy):

Conjecture RA(T ). Any finite complex S ∈ T may be approximated
arbitrarily closely on the right by the class A.

Conjecture LA(T ). Any Postnikov piece S ∈ T may be approximated
arbitrarily closely on the left by the class A.

In fact, in CW1 (or in any subcategory where equivalence = homology
equivalence = homotopy equivalence), RA(T ) and LA(T ) are equivalent for
any choice of A and for any T which is closed (up to homotopy) under the
operations of taking k-skeletons and k-Postnikov stages (e.g. T = CW1,
all 1-connected CW complexes). We present a proof of this in Theorem
2.1. Moreover, an interesting example of these conjectures is presented in
Theorem 2.3, where it is shown that in CW1, any finite complex can be ap-
proximated arbitrarily closely on the left and hence on the right (see Remark
2.2 below) by the class V of simply connected, smooth, closed manifolds, so
that both RV(CW1) and LV(CW1) hold. These results were communicated
to the authors by Charles McGibbon and we thank him for his interest and
guidance.

A functorial version of Anick’s conjecture is then RE(CW1), where E de-
notes the class of simply connected elliptic spaces. In this case, these conjec-
tures are most naturally viewed in the full subcategoryQ of simply connected
rational spaces with finite type (rational) homology, and in this setting LE
and RE are known to be true in many examples. In particular, if

T = {S | π∗(S) = πodd(S)},

dimπ∗(S) <∞ guarantees that S is already elliptic and so LE(T ) is trivially
true. Dually, if

T ′ = {S | H∗(S) = Hodd(S)},
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and S is a finite complex then S is a finite wedge of odd spheres and so any
(rational) n-Postnikov stage is elliptic, i.e., RE(T ′) holds. It is also implicit
in the proof of Proposition 2 in [H2] that if we restrict ourselves to those
S where H∗(S) is Noetherian, LE is true, and moreover, the approximation
En → S can be chosen so its homotopy fibre is, rationally, a product of
Krull-dimH∗(S) odd spheres.

The main result of this paper is that we prove conjecture LE(M) in the
category Q for the following class M of spaces:

Definition. A space S belongs toM if there is a fibration G→ S
p−→ B in

which
(i) π∗(p) is onto,

(ii) πeven(B) = 0 , and
(iii) the Hurewicz map h π∗(G)→ H∗(G) is injective in even degrees.

Observe that a space S for which dim
∑
k π2k(S) ≤ 1 is in M. Moreover,

if S ∈ M and S
f−→ T is a fibration in which π∗(f) is surjective, then T is

in M as well. In the next section, we’ll see that one can describe M quite
simply in terms of Sullivan minimal models.

We make no assumptions on H∗(S) when we prove:

Theorem 1. LE(M) holds in Q. Moreover, En → S can be chosen so that
its homotopy fibre is a product of a finite number of odd (rational) spheres.

As we shall see, a consequence of the proof of Theorem 1 is:

Corollary. If G → S
p−→ B is a fibration that guarantees S ∈ M, and

π>N(S) = 0, then the number of odd spheres in the fibre of En → S is
bounded above by

dimπeven(G).[n/2(N/2− 1)]dimπ(B).

Our result is reminiscent of the theorem of Halperin and Levin [HL],
Thm. C, by which a simply connected space B with finite dimensional
rational homotopy is the base of a fibration F → E

p−→ B where both F and
E have finite dimensional rational cohomology and πeven(E) ⊗Q = 0. This
last property of E shows that p cannot, in general, induce an isomorphism
in rational homotopy groups up to any degree fixed in advance.

This paper is organized as follows. In the next section we shall first
present a proof of the equivalence RA(T ) ⇐⇒ LA(T ) mentioned above
and establish these conjectures in CW1 when A is the class of smooth, closed
manifolds.
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In Section 3, we move into the rational category, recalling some basic
facts in rational homotopy, and prove Theorem 1 in the algebraic context
of Sullivan’s minimal models in Proposition 3.1. Some examples and open
questions are given in the final section.

2. Duality and approximation by manifolds.

We remind the reader that in this section, we are working in the category of
spaces with the homotopy types of 1-connected CW complexes.

In what follows, we denote the inclusion of the k-skeleton of a CW complex
Y by Yk

ik−→ Y . The k-th stage of the (CW-) Postnikov decomposition of Y

will be written Y
fk−→ Y k, so that fk is a k-equivalence and π>k(Y k) = 0.

Note that ik+1 is a k-equivalence which induces a homotopy equivalence
(Yk+1)k ' Y k and that we may choose (Y k)j = Yj for 0 ≤ j ≤ k + 1.

Theorem 2.1 [M]. If A and T are any classes of spaces in CW1 such
that, up to homotopy, T contains its k-skeletons and k-Postnikov stages (for
k sufficiently large), then RA(T ) ⇐⇒ LA(T ).

Proof. We first show that RA(T )⇒ LA(T ). Suppose S ∈ T satisfies π≥NS =
0, and let n ∈ N be given. If m = max{n,N}, S ' Sm, so that remarks just
above show that there exists a homotopy equivalence (Sm+1)m ' S. Since
we may suppose that Sm+1 ∈ T , RA(T ) implies that there is A ∈ A and
an m-equivalence Sm+1 → A. The latter induces a homotopy equivalence
(Sm+1)m ' Am, so that the composition A

fm−→ Am ' (Sm+1)m ' S is an
m-equivalence establishing LA(T ).

To see that LA(T ) ⇒ RA(T ), assume S ∈ T satisfies H≥NS = 0, let
n ∈ N be given and set m = max{n,N}. In this case, we may suppose that
S = Sm. Using LA(T ) and the fact that T contains its m-Postnikov stages,
choose an m-equivalence A h−→ Sm where A ∈ A, so that Am hm−→ (Sm)m =
Sm is a homotopy equivalence. This means that we may choose cellular
decompositions of A and S in which Am+1 = (Am)m+1 = (Sm)m+1 = Sm+1.
The composition S = Sm+1 = Am+1 → A is then an m-equivalence which
proves RA(T ).

Remark 2.2. Let A and S be simply-connected CW complexes and let
R(S) (resp. L(S)) be the statement “there exists an m-equivalence S → A”
(resp. “there exists an m-equivalence A → S”). Observe that the proof
of theorem above lies in the equivalence L(Sm) ⇐⇒ R(Sm+1). On the
other hand if X → Sm+1 (resp. Sm → X) is an m-equivalence so is X →
Sm+1

im+1−−−→ S
fm−→ Sm (resp. Sm+1

im+1−−−→ S
fm−→ Sm → X). Hence we have
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the following chain of implications

L(Sm+1)⇒ L(Sm) ⇐⇒ R(Sm+1)⇐ R(Sm).

In particular, if X is a finite, simply-connected CW complex and m > dimX,
then L(X)⇒ R(X). Dually, if X is an m-Postnikov piece, R(X)⇒ L(X).

As before, let V denote the class of closed, compact, simply-connected
manifolds.

Theorem 2.3 [Br], [Sp]. In CW1, RV(CW1) (and hence LV(CW1)) holds.

Proof. We prove that every finite complex X can be approximated arbitrarily
closely on the left by V. Remark 2.2 will then imply that RV(CW1) holds.
Let n = dimX and note that X has the homotopy type of a simplicial
complex and can therefore be embedded in Rn+k, for k ≥ n + 1. If m is a
given integer, choose k > m+ 2. Let N be a regular neighborhood of K and
∂N ↪→ N the inclusion of its boundary. From a general position argument
it follows that the morphism induced by the inclusion πi(N −X) → πi(N)
is an isomorphism for i < k − 1 and it is onto for i = k − 1. Now, since
N is a regular neighborhood, ∂N ↪→ N − X is a homotopy equivalence
and therefore πi(∂N) → πi(N) is an isomorphism for i < k − 1. Finally,
choose an equivalence N

'−→ X and observe that ∂N ↪→ N
'−→ X is an

m-equivalence.

The above proof appears in [Br, Thm. I.4.4], although W. Browder refers
to [Sp] where this is done in a slightly different way. Spivak shows that the
homotopy fibre of the inclusion ∂N ↪→ N is k − 1-connected. Note that
this shows that the approximation can be done on the left even when the
complex is not simply-connected.

3. Towards Anick’s conjecture in the Rational category.

We work with Q as ground field and we alert the reader that henceforth, all
our spaces are simply connected rational spaces with the homotopy type of
CW complexes with rational cohomology of finite type. We refer the reader
to [BG], [H1] and [Su] for the basic material on Sullivan models.

A commutative graded differential algebra (hereafter cgda) (A, dA) is c-
connected if H0(A, dA) ∼= Q. A morphism φ : (A, dA) '−→ (B, dB) is a quasi-
isomorphism if H∗φ is an isomorphism. If (A, dA) φ−→ (B, dB) is a morphism
of c-connected cgdas, a Sullivan Model of φ is a factoring of φ = ψ i in
(A, dA) i−→ (A ⊗ ΛX, d) ψ−→ (B, dB) where ψ is a quasi-isomorphism, i(a) =
a⊗1 for a ∈ A and ΛX denotes the free commutative graded algebra on the
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graded vector space X =
∑
n≥0X

n which has a well ordered, homogeneous
basis {xα | α ∈ I} such that

(1) dxα ∈ A⊗ ΛX<α and
(2) α < β =⇒ degα ≤ deg β.
Here, X<α denotes span{xβ | β < α}. If X = X≥2, (1) and (2) are

equivalent to dxα ∈ Λ≥2(X<α). Such a basis is called a KS-basis. The
factoring is determined up to isomorphism by φ and we say that i represents
φ.

The projection (A ⊗ ΛX, d) ρ−→ A ⊗ ΛX/I ∼= ΛX (in which I denotes
the differential ideal generated by the augmentation ideal of A) induces a
differential d̃ in ΛX and the sequence (A, dA) i−→ (A⊗ ΛX, d) ρ−→ (ΛX, d̃) or
sometimes just (A, dA) i−→ (A⊗ ΛX, d) is called a minimal KS-extension.

Sullivan defined a contravariant functorA which associates to each space S
a cgda A(S) over Q which computes the rational homotopy of S. A Sullivan
minimal model of (Q, 0) → A(S) is of the form (Q, 0) → (ΛX, d) → A(S)
and (ΛX, d) is the Sullivan minimal model of S. If S → T is a continuous
map then a standard lifting lemma applied to A(f) gives a unique homotopy
class of morphisms between their minimal models, any of which is called a
Sullivan representative of f .

The minimal model of S carries the rational homotopy type of S, that is,
the homotopy type of its localization at the rationals SQ : In particular, as
graded vector spaces, Xn is the dual of πn(S)⊗Q and this isomorphism can
be described as follows. Let An = (Λu/u2, 0) be generated in degree n. Since
there is a quasi-isomorphism A(Sn)→ An, this is a cgda with the homotopy
type of an n-sphere. Given f : Sn → S, we have A(f) : (ΛX, d) → An (by
composition on the right and the left). Thus to any x ∈ X one associates
the homomorphism φx : πn(S)→ Q defined by φx([f ]) = the coefficient of u
in A(f)(x).

The rational dual of the Hurewicz map h : π∗(S) → H∗(S) is induced by
ΛX → ΛX/Λ≥2X ∼= X. Hence, whenever h : π∗(S)→ H∗(S) is injective, h∗

is surjective. In particular, any minimal model (ΛX, d) of the fibre F in the
assumptions of Theorem 1 will satisfy dXeven = 0.

Given a Serre fibration : F i−→ E
p−→ B, there is a commutative diagram

of augmented cgda’s

A(B)
A(p)−−→ A(E)

A(i)−−→ A(F )

' ↑ φB ' ↑ ↑ α

(ΛX, d) −→ (ΛX ⊗ ΛY, d) −→ (ΛY, d̃)
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in which (ΛX, d) is a Sullivan model for B and the bottom row is the minimal
model of A(p) ◦ φB . If α : (ΛY, d̃) → A(F ) is a quasi-isomorphism, ξ is
called a rational fibration. In particular, if B is simply connected, ξ is a
rational fibration [G]. We call the bottom row of this diagram a minimal
KS-extension associated to the fibration. Note that in general, the middle
CGDA need not be a minimal model of E. It will be, precisely when the
image of the connecting homomorphism ∂ : πk(B) → πk−1(F ) is strictly
torsion. In this case one can choose the linear part of dy to be zero for all
y ∈ Y (see [H1]).

Observe that a space S ∈ M if and only if has a minimal model of the
form (ΛY ⊗ ΛX, d) in which dim(Y ⊕ X) < ∞, Y = Y odd, (ΛY, d) is a
subcomplex and dXeven ⊂ Λ+Y ⊗ ΛX.

Thus LE(objQ) has the following equivalent formulation in terms of Sul-
livan models (we include the non-simply connected case here):

Conjecture LE(obj Q). Let (ΛV, d) be a connected (V 0 = 0) minimal
model in which V is finite dimensional. Then, for any n ∈ N there exists
an elliptic minimal model (Λ(V ⊕W ), d) ∼= (ΛV ⊗ ΛW,d) which is a KS-
extension of (ΛV, d) with W = W>n.

We require (Λ(V ⊕W ), d) to be a minimal model, not just a minimal KS-
extension, so that none of the rational homotopy (V ) of ΛV is lost. Otherwise
one can proceed as in [HL, Thm. 3.1] to get a minimal KS-extension (but
not a minimal model) ΛV → ΛV ⊗ ΛY in which the minimal model of this
complex is generated by an oddly graded vector space. However, one ‘loses’
all of V even in this way. Also note that in this method, the degrees of the
new generators cannot be chosen to be bounded below by some integer fixed
in advance.

Theorem 1 is now clearly a consequence of the following:

Proposition 3.1. Let (ΛY, d)→ (ΛY ⊗ΛX, d) be a minimal KS extension
of minimal models such that dim(Y ⊕ X) < ∞, Y = Y odd and dXeven ⊂
Λ+Y ⊗ΛX. Then, given any integer N , there exists a minimal KS extension

(ΛY ⊗ ΛX, d)→ (ΛY ⊗ ΛX ⊗ ΛZ, d)→ (ΛZ, 0)

in which (ΛY ⊗ ΛX ⊗ ΛZ, d) is an elliptic minimal model and Z = Zodd =
Z≥N .

Recall [B-L], [T] that a Quillen model of a space S is a differential graded
Lie algebra (LI (V ), ∂), which is free as graded Lie algebra over the graded
vector space V and is such that the cdga of cochains on (LI (V ), ∂) and A(S)
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have the same homotopy type. The homology H∗(LI (V ), ∂) of such a model
is then isomorphic to the rational homotopy Lie algebra π∗(ΩS) ⊗ Q of S.
Moreover, any simply connected complex S has a Quillen model that reflects
its cellular decomposition, i.e., a model (LI (V ), ∂) in which V is the graded
vector space with the cells basis and where ∂ describes the attaching maps.
Thus the conjecture RE may restated as: For any minimal Quillen model
(LI (V ), ∂) in which dimV <∞, there is an embedding into a minimal Quillen
model (LI (V ), ∂) ↪→ (LI (V ⊕W ), ∂) in which both W and H∗(LI (V ⊕W ), ∂)
are finite dimensional.

Before beginning the proof of Proposition 3.1, we give a brief explanation
of our strategy. First recall that a minimal KS-extension of the form

(Λu, 0)→ (Λu⊗ ΛV, d)→ (ΛV, d),

with u of odd degree, induces a derivation θ on (ΛV, d), of degree 1 − |u|,
defined by:

(∗) dΦ = dΦ + u θ(Φ), Φ ∈ ΛV.

This is the holonomy derivation. Observe that, for reasons of degree, θ is
locally nilpotent, i.e., given Φ ∈ ΛV there exists an integer n (depending on
Φ) such that θn(Φ) = 0.

Let (ΛY, d)→ (ΛY ⊗ ΛX, d) be the extension in the statement of Propo-
sition 3.1. Our proof will proceed by induction on dimY as follows: Let
Y = 〈y〉 ⊕ U , and consider the K-S extension (Λy, 0) → (ΛY ⊗ ΛX, d) →
(ΛU ⊗ ΛX, d), with the associated holonomy derivation θ defined on the fi-
bre (ΛU ⊗ ΛX, d̄). The inductive hypothesis will yield an elliptic extension
(ΛU ⊗ΛX ⊗ΛZ ′, d̄). We then need to extend θ to Z ′, but to ensure that it
commutes with the differential, it will be necessary to add (possibly) more
odd generators. The derivation θ is always locally nilpotent, so that we will
only need a finite number of new generators at this point, and, with some
care, we will always be able to bound their degrees away from N . We then
use the extended θ to define, via (∗), the differential for ΛY ⊗ ΛX ⊗ ΛZ,
which will also be elliptic.

It will become evident later in the proof that the lower bound for the
degrees of the new generators is essentially due to the following:
Remark 3.2. Let θ be a derivation of the model ΛV . Observe that
θ(Λ≥nV ) ⊂ Λ≥nV . Hence, if V is p-connected (V = V ≥p) and Φ ∈ Λ≥nV is
such that θ(Φ) 6= 0 then |θ(Φ)| ≥ np. This is also true if we replace θ by θk

for any k ≥ 1.

Proof of Proposition 3.1. Let n = dim Y and p = dim Xeven. It will
be convenient (although not too standard) to choose a homogeneous ba-
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sis {yn, ..., y1} of Y so that dym ∈ Λ(yn, ..., ym+1). For each m between 1 and
n, consider the KS-extensions

(Λ(yn, ..., ym+1)⊗ ΛX, d)→ (ΛY ⊗ ΛX, d)→ (Λ(ym, ..., y1)⊗ ΛX, dm)

(Λym, 0)→ (Λ(ym, ..., y1)⊗ ΛX, dm)→ (Λ(ym−1, ..., y1)⊗ ΛX, dm−1),

and write dm = dm−1 + ym ⊗ θm, as in (∗).
The inductive assumption is the following: For each m (≤ dimY ) there

exists an elliptic KS extension

(Λ(ym, ..., y1)⊗ ΛX, dm) ↪→ (Λ(ym, ..., y1)⊗ ΛX ⊗ ΛZm, dm),

which is minimal as a model, together with a well-ordered homogeneous basis
Bm of Zm such that:
(a) Zm = Zodd

m = Z≥Nm
(b) For z ∈ Bm,

dmz = α+
∑

z′<z,z′∈Bm
Φz′z

′

where Φz′ ∈ Λ+(Y ⊕X) and α ∈ Λ≥bN/2c+1(Y ⊕X). Here, bKc denotes
the greatest integer less than or equal to K.

For m = 0, consider the model (ΛX, d0). By hypothesis dXeven ⊂ Λ+Y ⊗
ΛX and therefore d0X

even = 0. If {x1, ..., xp} is a homogeneous basis
for Xeven, introduce new generators B0 = {z1, . . . , zp}, which will be the
desired basis for Z0, and define d0zj = x

bN/2c+1
j . Well order B0 in any

way. Then (ΛXeven ⊗ ΛZ0, d0) is elliptic and so (ΛX ⊗ ΛZ0, d0) is too (see
[Ha1, §6 Prop. 1]). It is clear that (a) and (b) are satisfied.

By induction, assume we have built an elliptic KS-extension (and minimal
model)

(Λ(ym−1, ..., y1)⊗ ΛX ⊗ ΛZm−1, dm−1)

and a well ordered basis Bm−1 of Zm−1 such that (a) and (b) are satisfied.
We shall build Zm and Bm so that Bm−1 ⊂ Bm as ordered sets. To do so
we will need to define dm (which we will call d from now on) on Zm−1. By
previous remarks, it is enough to define θm (we denote it simply by θ) on
Zm−1.

In order to define θ on Zm−1, we’ll need some new elements (on which
we’ll have to define θ as well), and we’ll use a secondary induction on the
well-ordering of Bm−1 to do this.

To get this secondary induction started, note that it is clear by the (pri-
mary) assumption (b) for the first element z0 ∈ Bm−1 that θi(dm−1z0) is
defined for all i. Choose the least integer r0 such that θr0+1dm−1z0 = 0.
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Now introduce new elements (whose dependence on z0 we suppress) Uz0 =
{u1, . . . , ur0} and define θi(z0) = ui, θ(ur0) = 0, and dm−1 ui = θidm−1 z0 for
i = 1, . . . , r0. Note that this implies θ(ui) = ui+1 for i = 1, . . . , r0 − 1.

Now suppose by (the secondary) induction that, by adding the appropriate
Uz′ for z′ < z as in the first step, we’ve already defined θ on (Bm−1)<z, as
well as on these new elements. Recall that condition (b) for z ∈ Bm−1 says
that dm−1 z ∈ ΛY ⊗ΛX⊗ΛZ<z, where Z<z denotes span{(Bm−1)<z} . Since
θ is already defined on Z<z, we see that θidm−1 z now makes sense for any
i. We then proceed, as in the first step, to introduce new elements Uz and
define θ and dm−1 on them. In this way, we also define θi(z) for any i, which
closes the secondary induction.

Now set Bm = Bm−1 ∪ ⋃z∈Bm−1
Uz and define a well ordering in Bm re-

specting the one in Bm−1 and such that:

z′ < urz < . . . < u1 < z,

where z′ denotes the immediate predecessor of z.
It remains to prove that Bm and Zm satisfy (a) and (b). If z ∈ Bm−1, then

d z = dm−1z + ymθz

= β +
∑

z′<z,z′∈Bm−1

Ψz′z
′ + ymu1,

with β ∈ Λ≥bN/2c+1(Y ⊕X) and Ψz′ ∈ Λ+(Y ⊕X). Thus, since u1 < z, (b)
holds for each element of Bm−1. Now, given ui ∈ Uz, we have

d ui = dm−1ui + ymθui

= θidm−1z + ymui+1

= θi(β) + θi

 ∑
z′<z,z′∈Bm−1

Ψz′z
′

+ ymui+1.

But ui+1 < ui and θp(z′) < z′ < ui, for z′ < z and p ≥ 0, while, by Remark
3.2, θi(β) = γ ∈ Λ≥bN/2c+1(Y ⊕X). Therefore d ui can be written as

d ui = γ +
∑

w<ui,w∈Bm
Ψww,

with γ ∈ Λ≥bN/2c+1(Y ⊕X) and Ψw ∈ Λ+(Y ⊕X). This establishes (b) for
the new elements of Bm.

To prove (a) note that, since dm−1ui 6= 0 then, either γ 6= 0, or some
Ψww 6= 0. Remark 3.2 shows that the degree of ui is above N in the first case
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while this is clear by an induction on the well-ordering of Bm in the second.
Note that since the degree of θ is even Bm, and hence Zm, is concentrated
in odd degrees.

To finish, observe that since (Λ(ym−1, ..., y1) ⊗ ΛX ⊗ ΛZm−1, dm−1) is el-
liptic, the minimal extension (and model) (Λ(ym, ..., y1)⊗ΛX ⊗ΛZm, dm) is
also elliptic. This closes the induction on dimY and establishes Proposition
3.1.

There is a simple inductive description of the basis Bm that is evident from
the above. Indeed, Bm is the disjoint union

⋃
z∈Bm−1

{z, θz, θ2z, . . . , θn(z)z},
so that Zm is a direct sum of dimZm−1 irreducible θ-modules. In view of this,
it is easy to see that the degrees of the new generators satisfy N ≤ |z| ≤ DN ,
where max{|x| : x ∈ Xeven} = 2D. Thus an upper bound for the number
of new generators, in terms of dimY = n, min{|y| : y ∈ Y } = r + 1,
dimXeven = p and s = b(ND −N)/rc is

dimZ ≤ psn.

This proves the corollary of the introduction.

4. Examples and open questions.

Consider the (non-elliptic) minimal model (Λ(y1, y2, y3, y4, y5, x), d) with
|yi| = 1, dyi = 0 for 1 ≤ i ≤ 5 and dx = y1y2y3 + y1y4y5. For N = 2,
the algorithm implicit in the proof of Proposition 3.1 gives us the following
elliptic extension: (Λ(Y, x)⊗ Λ(z0, z1, z2, z3), d) where

dz0 = x2 + y3z1 + y5z3

dz1 = 2xy2y3 + y5z2

dz2 = 2y1y2y3y4

dz3 = 2xy1y4.

A simple example of a case not covered by Theorem 1 is the 5-Postnikov
stage of S2∨S2 : Its model is (Λ(x1, x2, y1, y2, y3, x3, x4), d) with |x1| = |x2| =
2, dy1 = x2

1,dy2 = x2
2, dy3 = x1x2, dx3 = x1y3− x2y1, and dx4 = x2y3− x1y2.

While (S2 ∨ S2)5 does not belong to M, Steve Halperin made the following
observations. The model is quasi-isomorphic to (Λ(a, b, y, c, e)/(a2, b2), d)
with |a| = |b| = 2, dy = ab, dc = ay, and de = by, Now define, for any N ,

dz0 = cNa,

dz1 = cN+1b− (N + 1)z0yb and

dz2 = c2N+2 − 2(N + 1)cN+1z0y + 2(N + 1)z0z1a.
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Since this renders [c] nilpotent in (Λ(c, z0, z1, z2), d̄), the model

(Λ(a, b, y, c, z0, z1, z2)/(a2, b2), d̄)

is elliptic [H2, Prop. 1]. One then mimics this construction to make [e]
nilpotent as well, adding another 3 odd generators. How one might do this
systematically for higher stages of S2 ∨ S2 is still unclear to the authors.
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