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FOURIER COEFFICIENTS OF EISENSTEIN SERIES OF THE
EXCEPTIONAL GROUP OF TYPE G2

Dihua Jiang and Stephen Rallis

Let F be a number fields and K be a commutative alge-
bra over F of degree n. A basic question in number theory is
whether the ratio ζK(s)

ζF (s) of the two Dedekind zeta functions is
an entire function in the complex variable s. From the point
of view of the trace formula, the above basic question is ex-
pected to be equivalent to a basic question in automorphic
L-functions, which asks whether or not the ratio LS(Π⊗Π∨,s)

ζS
F

(s)
is

entire for all irreducible cuspidal automorphic representation
of GL(n,AF ) with trivial central character, where LS(Π⊗Π∨, s)
is the standard tensor product L-function of Π with its contra-
gredient Π∨, see for example the work of Jacquet and Zagier
[JaZa]. The main idea in this paper is to develop two intrin-
sically related methods to attack the above two questions.
The work of Siegel [Sie], and of Shimura [Shi] (and of Gelbart
and Jacquet [GeJa]) provided an evidence for this approach
for the case of n = 2. Combined with the work of Ginzburg
[Gin], the main result of this paper shows that our approach
works for the case of n = 3. It is hoped that such an approach
extends to at least the case of n = 5.

1. Introduction.

We let K and F be number fields so that K/F is a finite extension. We let
ζK(s) and ζF (s) be the associated Dedekind zeta functions. A basic question
is whether the ratio ζK(s)

ζF (s)
is an entire function in the complex variable s.

The first approach to analyzing such a question is connected to the use of
Artin L-functions. For this we let Ω be a finite Galois extension of F so that
Ω ⊇ K ⊇ F . If G = Gal(Ω/F ) and H = Gal(Ω/K) are the associated Galois
groups of Ω/F and Ω/K, then we let σ = indGH(1) be the induced module
of H to G coming from the identity character on H. Then we consider the
various irreducible G modules σi (with multiplicity mi) that occur in σ, and
we have that

ζK(s) =
∏

L(s, σi)mi ,

where L(s, σi) is the associated Artin L-function determined by σi. We note
that if σ1 is the identity representation of G, then m1 = 1, and the question
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whether ζK(s)

ζF (s)
is entire reduces to whether

∏
i>1

L(s, σi)mi is entire. We note

that if K/F is Galois, then by use of Brauer’s basic theory ζK(s)

ζF (s)
is entire

[Bra]. In fact, by use of the Artin conjecture (where L(s, σi) is assumed to
be entire for i > 1) we would have that ζK(s)

ζF (s)
is also entire.

It may, however, be possible to prove that ζK(s)

ζF (s)
is entire without proving

the Artin conjecture. Further discussion on the classical approach to this
basic problem and its connection with the Artin conjecture can be found in
J. Martinet’s paper and R. van der Waall’s paper in [Fro].

At the formal level, another approach to this question comes from simple
considerations based on trace formula techniques. We consider the group
GL(n, F ) and the associated adelized group GL(n,AF ). Let Φ be a C∞-
function on GL(n,AF ) which is left and right invariant under the standardly
chosen maximal compact subgroup of GL(n,AF ), transforms by the triv-
ial character under the center ZF (A), and has a compact support modulo
ZF (A). To such a function Φ, we form the associated convolution kernel

KΦ(x, y) =
∑

γ∈GL(n,F )/ZF (F )

Φ(x−1γy).

Then, formally, we compute the automorphic trace of KΦ as follows:∫
ZF (AF )GL(n,F )\GL(n,AF )

KΦ(x, x)dx.

A basic method of computing such a family of integrals is through the use
of truncation. Another method is to regularize the above family with an
Eisenstein series E0(g, s) coming from the mirabolic subgroup (see [JaZa]
for precise definitions, etc.). That is, we construct∫

ZF (AF )GL(n,F )\GL(n,AF )

KΦ(x, x)E0(x, s)dx.

We note that when we formally unwind this integral (via the usual Rankin-
Selberg method) we get two expansions, the spectral and the geometric.
The spectral terms involve (at least for the cuspidal contribution) data of
the form

LS(Π⊗Π∨, s)aS(s),

where Π is an irreducible cuspidal automorphic representation of GL(n,AF )
with trivial central character, LS(Π⊗Π∨, s) is the standard tensor product
L-function of Π with its contragredient Π∨, aS(s) is a finite Euler product
of Whittaker type integrals (see [JaSh]) and S a finite set of primes (where
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S is chosen appropriately). The geometric data involves (at least for those
conjugacy classes on GL(n, F ) which are regular elliptic) terms of the form

ζS
K̃

(s)bS(s),

where K̃ is some extension of F of degree n (not necessarily Galois) and
bS(s) represents again a finite Euler product of Tate-like local integrals. The
basic point here (at the formal level) is that there must be some relation
between the data

{LS(Π⊗Π∨, s) | Π cuspidal with trivial central character}

and the data{
ζS
K̃

(s) | K̃ all commutative semisimple algebras of degree n
}
.

The results of [JaZa] suggest that there is a qualitative connection between
the following two assertions:
(*) The L function LS(Π ⊗ Π∨, s) is divisible by ζSF (s) for all cuspidal Π

(with trivial central character).
(**) The Dedekind zeta function ζS

K̃
(s) is divisible by ζSF (s) for all K̃, ex-

tensions of degree n of F .
We note that in [JaZa] the precise form of the divisibility of the various

terms appearing in the geometric expansion of (**) by ζQ(s) (in the GL2

case) is proved. Also in [Fli], similar more general issues were considered.
We note that LS(Π ⊗ Π∨, s) = ζSF (s) · LS(Π,Ad, s) where LS(·,Ad, s) is

the adjoint L function. Thus (*) reduces to the condition that LS(Π,Ad, s)
be entire for all cuspidal Π.

In the present work, we present another approach to the relation between
(*) and (**).

In the abstract, the method is the following. Suppose that G is a re-
ductive group with a maximal parabolic P so that the adelically induced
module indG(A)

P (A)(δ
1
2 +s

P ) produces a family of Eisenstein series E(fs, ·) with the
following basic properties. There exists parabolic subgroups P1 and P2 in the
same standard position as P with VP1 and VP2 the corresponding unipotent
radicals of P1 and P2, satisfying the following conditions:
(i) A certain subset of unitary characters on VP1(AF )/VP1(F ) is indexed

by the set of isomorphism classes of commutative semisimple algebras
of degree n. (Recent work [WrYu] shows that (i) is possible in certain
cases.)

(ii) There exists a unipotent subgroup V2 of VP2 and a character ψΛ on
V2(AF )/V2(F ) so that StabMP2

(ψΛ) is a subgroup of MP2 contains
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SL(n, F ). (Here MP2 is the Levi component of P2 leaving V2 stable by
adjoint action.)

Then the desired properties of the family E(fs, ·) are given by:
(a) If K̃ is a representative of an equivalence class of a n-th degree exten-

sion of F (with ψ
K̃/F

the associated character on V1(AF )), then, up to
a finite Euler factor, the Fourier coefficient∫

VP1 (F )\VP1 (AF )

E∗(fs, µ1)ψ
K̃/F

(µ1)du

equals
ζS
K̃

(s)

ζSF (s)
.

(b) If fΠ ∈ Π, a cuspidal representation of GL(n,AF ) with trivial central
character, then, up to a finite Euler factor, the integral∫

(V2(F )\V2(AF ))×(SL(n,F )\SL(n,AF ))

E∗(fs, µ2 · x)ψΛ(µ2)fΠ(x)dµ2dx

equals
LS(Π, Ad, s).

In cases (a) and (b), E∗(fs, ·) is the “normalized” Eisenstein series (so
that E∗(fs, ·) has a finite number of poles in s).

Also, we note in (b) that we may have to replace ψΛ by a θ function
(Fourier Jacobi example).

These two conditions thus should possibly relate again (*) and (**).
We note here that the existence of cases (a) and (b) above should allow us

to prove directly the validity of (*) and (**) separately. This would follow
just from the analytic properties of the family of the normalized Eisenstein
series E∗(fs, ·) and analytic properties of the local integrals in (a) and (b).
We emphasize this point as the difference between this method and the
second above. The latter case just asserts the equivalence of (*) and (**).

The point of this paper is to show that this phenomenon works in the
case where n = 3. We note that the n = 2 case basically is contained in the
work of Siegel and Shimura. In that case, the group G = GSp2, the rank 2
group of symplectic similitudes, and P is the Siegel parabolic subgroup of
G with P = P1 and P2, the other maximal parabolic subgroup of GSp2. We
note the Fourier coefficients in (a) were first computed by Siegel in [Sie] and
the corresponding Rankin-Selberg integral in (b) (which is a Fourier Jacobi
case) was given classically by Shimura in [Shi] (generalized by Gelbart and
Jacquet in [GeJa]).
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It is hoped that such a method extends to at least the case n = 5.
In this paper we are providing evidence for this third approach to relate

(*) and (**). We expect this approach to yield some interesting arithmetic
information.

We take in this paper the group G to be the exceptional group G2. We
consider the maximal parabolic subgroup P = MN associated to the short
simple root β. Then M ∼= GL(2) (attached to β) and N is a five di-
mensional unipotent subgroup of Heisenberg type with the center Z. Let
I(s) := indG2(A)

P (A) (δsP ) be the unnormalized smooth induction from the mod-
ular character δP of P . To each section fs ∈ I(s), we define an Eisenstein
series E(g, s; fs) in the usual sense. We remark that it is this Eisenstein
series used by D. Ginzburg in [Gin] to construct a Rankin-Selberg inte-
gral which represents the adjoint L-function of GL(3). In other words, this
Eisenstein series enjoys property (b) above. E(g, s; fs) has the normalizing
factor ζ(3s)ζ(6s − 2)ζ(9s − 3). We denote the normalized Eisenstein series
by E∗(g, s; fs). We shall be concerned with the Fourier coefficients of the
normalized Eisenstein series

E∗(g, s; fs) = ζ(3s)ζ(6s− 2)ζ(9s− 3)E(g, s; fs)

with respect to certain additive characters ψ of N(A)/N(F ) and prove that
the Eisenstein series possesses property (a) above. The choice of these char-
acters is based on the canonical geometrical structure on N/Z, which may
be described as follows.

Under the adjoint action of GL(2) on V := N/Z, (GL(2), V ) carries a
structure of a prehomogeneous vector space of parabolic type. The ratio-
nal structure of GL(2, F )-orbits on V (F ) was explicitly given in [Wri] and
[DaWr]. The point here is that there exists a canonical one to one cor-
respondence between the set of all GL(2, F )-orbits on V (F ) of maximal
dimension (i.e. with the stabilizers being finite) and the set of isomorphism
(over F ) classes of all three dimensional commutative algebras K over F .
This statement holds when the base field F is a global, local or finite field.
To each GL(2, F )-orbit σ on V (F ), we can canonically associate an additive
unitary character ψσ of N(A)/Z(A) (hence of N(A)).

Our main Theorem in this paper is that the Fourier coefficient of the nor-
malized Eisenstein series E∗(g, s; fs) with respect to the character ψσ gives
the ratio ζK(3s−1)

ζF (3s−1)
, where K is the three dimensional commutative algebra

over F corresponding to the GL(2, F )-orbit σ on V (F ).
We note that the proof of (*) and (**) in this case requires a careful

analysis of the global poles of the given Eisenstein series and of the local
poles of certain zeta integrals as studied by Ginzburg in [Gin] and as the
integrals given by formula (16) in Section 3 of this paper.
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We shall describe briefly the content of this paper. We first recall some
known facts about the group G2 from [Ste] and [GRS], and about the
rational structure of the prehomogeneous space (GL(2), V ) from [Wri] and
[DaWr]. Then we prove §3 the Fourier coefficient under consideration is
Eulerian. Correspondingly, the proof of local (p-adic) uniqueness property
for the relevant (local) functionals will be given in §4. The most technical
portion of the paper is §5, where we make the computation of the local
integral with unramified data for three types of orbits (0, 1, 1, 0), (0, 1, 0, a),
and (1, 0, 0, a). In the last case, we assume that the local field Fv contains
the third root of unity. In this case , the computation of the local unramified
integral is reduced to a precise evaluation of a multivariable cubic exponential
sum (Lemma 2), which will be completed in the last section.

Based on the local unramified calculation, we can prove the main theorem
(Theorem 2) in §6. The idea here is to make certain global-local relation
work. Note that an orbit σ = (1, 0, c, d) over the global field F may locally
live in an orbit which has a representative of one of the three typical types as
above. According to the canonical correspondence between the ‘orbits’ and
the ‘algebras’ stated above, we can easily find an element gv ∈ GL(2, Fv)
such that gv ◦ (1, 0, c, d) will be equal to one of (0, 1, 1, 0), (0, 1, 0, a), and
(1, 0, 0, a). The point is that for a given global orbit (1, 0, c, d), we can choose
gv ∈ GL(2,Ov) for all finite place v of F outsider a finite set S, which is
determined by the global orbit (1, 0, c, d). It is evident that the Fourier
coefficients of the local unramified section fs,v with respect to characters ψσ
are equal when σ runs over a GL(2,Ov)-orbit. It should be pointed out that
in the fourth case of the main Theorem, we assume that the global base field
F contains the third root of unity. This assumption makes our computation
easier. However, we believe that this assumption should not be essential to
the statement of our main Theorem.

The project of this paper was initiated when both of the authors partici-
pated in the special year program of automorphic forms at the Mathematical
Sciences Research Institute, Berkeley, 1994–95. We would like to thank the
MSRI for hospitality. The first author is partly supported by the NSF Math-
ematical Research Fellowship. Finally we would like to thank the referee for
kind comments and suggestions.

2. Basic Structure of the Group G2.

We shall recall some basic facts about the structure of the group G2 from
[Ste], [Car], and [GRS], on which our results will be built. Let F be a field.
We set G2 = G2(F ).
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2.1. Root System of G2. Let Φ be the root system of the group G2. Then
one has Φ = Φ+ ∪ −Φ+ and

Φ+ := {α, β, α+ β, α+ 2β, α+ 3β, 2α+ 3β}(1)

where α is the long simple root and β is the short simple root, i.e., α and β
satisfy (

(α, α) (α, β)
(β, α) (β, β)

)
=

(
6 −3
−3 2

)
,(2)

where ( , ) is the usual inner product in the vector space generated by these
two simple roots. The Cartan matrix is(

〈α|α〉 〈α|β〉
〈β|α〉 〈β|β〉

)
=

(
2 −3
−1 2

)
,

where 〈γ|δ〉 = 2(γ,δ)

(δ,δ)
. The Weyl group W is the dihedral group of order 12,

which is generated by the reflections wα and wβ, with relations

w2
α = w2

β = (wαwβ)6 = 1.(3)

Precisely, one has

(4) W = {1, wα, wβ, wαβ, wβα,
wαβα, wβαβ, wαβαβ, wβαβα, wαβαβα, wβαβαβ, wαβαβαβ}

where wαβ := wαwβ, and so on.

2.2. Structure Constants. Let g2 be the Lie algebra of G2. Then one has
a Cartan decomposition

g2 = h⊕
∑
γ∈Φ

gγ .

For each root γ ∈ Φ, fix a nonzero element xγ ∈ gγ and let hγ := 2γ
(γ,γ)

be
the associated coroot. Then these elements satisfy the following conditions:

[xγ ,xδ] =


hγ , if δ = −γ,
0, if γ + δ 6∈ Φ,
Nγ.δxγ+δ, if γ + δ ∈ Φ.

Correspondingly, one has, to each root γ, a one-parameter unipotent sub-
group χγ(x) and a one-parameter semisimple subgroup hγ(t) in G2. Let
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wγ(1) := χγ(1)χ−γ(−1)χγ(1) be the preimage in G2 of the Weyl group el-
ement wγ . In the following, we will also denote wγ(1) by wγ if there is no
chance of confusion.

Following p. 150 in [Ste], one can choose a Chevalley basis

{hα,hβ; xγ , γ ∈ Φ}

so that
(1) the structure constants associated to the positive roots are Nα,β =

1, Nα+β,β = 2, Nβ,α+2β = Nα+β,α+2β = 3 and Nα,α+3β = 1; (Other
structure constants are uniquely determined by these, see, for example,
Chapter 4 in [Car].)

(2) wαβ satisfies that
wαβ · xγ = −xwαβ(γ)

for any root γ ∈ Φ;
(3) if wα · xγ := aα,γxwα(γ), then we have, following Proposition 6.4.3 in

[Car], that aα,α = −1, aα,β = 1, aα,α+β = −1, aα,α+2β = 1, aα,α+3β =
1, and aα,2α+3β = −1

The following commutator relations will be used in our computation in later
sections.

(χα+3β(t), χ−α−2β(u)) = χβ(tu)χ−2α−3β(−tu3)χ−α−β(−tu2)χ−α(t2u3)

(χα+3β(t), χ−2α−3β(u)) = χ−α(tu)

(χβ(t), χ−α−β(u)) = χ−α(3tu)(5)

(χα+2β(t), χ−α−β(u)) = χβ(−2tu)χ−α(3tu2)χα+3β(3t2u)

(χα+2β(t), χ−2α−3β(u)) = χ−α(t3u2)χβ(−t2u)χ−α−β(tu)χα+3β(t3u)

(χ2α+3β(t), χ−α−β(u)) = χ−α(tu3)χα+3β(t2u3)χα+2β(−tu)χβ(−tu2).

These identities can be verified in terms of the structure constants chosen as
above.

2.3. Subgroups. Let B be the standard Borel subgroup of G2 correspond-
ing to the set of positive roots Φ+. Then B = TU . The maximal torus
T is of two dimension, the elements of which are denoted by h(t1, t2) for
t1, t2 ∈ F×. Further, one has, according to the Cartan matrix,

(aα+ bβ)h(t1, t2) =
(
t1
t2

)a
(t2)b(6)

for aα + bβ ∈ Φ. To each root γ ∈ Φ, we have that {hγ(t), χγ(u), χ−γ(u)}
generates a subgroup in G2, which is isomorphic to SL(2). Further we have
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whγ(t)w−1 = hw(γ)(t) for w ∈W and

hα(t) = h(t, t−1), hβ(t) = h(t−1, t2), hα+β(t) = h(t2, t−1),
hα+2β(t) = h(t, t), hα+3β(t) = h(1, t), h2α+3β(t) = h(t, 1).

(7)

Let P = MN be the standard maximal parabolic subgroup associated
to the short simple root β. Then M = GL(2) and N is a five dimensional
unipotent subgroup of Heisenberg type generated by the following positive
roots

{α, α+ β, α+ 2β, α+ 3β, 2α+ 3β}.
The subgroup Z := {χ2α+3β(x)} is the center. We choose the coordinates on
N as follows: for any n ∈ N , we set

n := n(x, y, z, u, v) := χα+3β(x)χα+2β(y)χ2α+3β(z)χα+β(u)χα(v).(8)

It is easy to check the following Bruhat decomposition of G2 with respect to
the parabolic subgroup P ,

G2 = [P ] ∪ [PwαP ] ∪ [PwαβαP ] ∪ [PwαβαβαP ](9)

and also, if we set

n−(x, y, z, u, v) := χ−α(x)χ−α−β(y)χ−2α−3β(z)χ−α−2β(u)χ−α−3β(v),(10)

then we have n−(x, y,−z,−u,−v) = wαβαβα · n(x, y, z, u, v).

2.4. Certain Characters on the Unipotent Radical N. To define cer-
tain unitary characters of the unipotent radical N , we consider the adjoint
action of the Levi subgroup M on the unipotent radical N . Since the action
keep the center Z stable, we obtain an action of GL(2) on the four dimen-
sional vector space V := N/Z. We notice that the pair (GL(2), V ) has a
structure of irreducible regular prehomogeneous vector space in the sense of
M. Saito.

For any character ψ of N/Z, there exists a σ ∈ V , so that

ψσ(n) = ψ◦(〈σ, n〉)(11)

for any n ∈ N , where the pairing 〈·, ·〉 has property that

〈g · σ, g · n〉 = 〈σ, n〉

for any g ∈ GL(2) and σ, n ∈ V . We will denote

ψσ(·) = ψ◦(〈σ, ·〉)
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and extend ψσ(·) to be a character of the unipotent radical N . When the
field F is a number field or its local completion, the parameterization of the
F -rational GL(2, F )-orbits on V (F ) is given in [Wri] and [DaWr]. The
representatives of F -rational GL(2, F ) nonsingular orbits on V (F ) are of
following three types: σ1 = (0, 1, 1, 0), σ2 = (0, 1, 0, a), and σ3 = (1, 0, b, c),
where a, b, c ∈ F satisfy the condition that the polynomials x2 + a and
x3 + bx − c are irreducible over F . For these typical representatives of the
nonsingular orbits, we may make the associated characters more precise:

ψσ1(n(x, y, z, u, v)) = ψ◦(u+ y)

ψσ2(n(x, y, z, u, v)) = ψ◦(av + y)(12)

ψσ3(n(x, y, z, u, v)) = ψ◦(cv + bu+ x).

3. Fourier Coefficients of Eisenstein Series.

Let F be a number field and A = AF the adele ring of F . For p ∈ P , let
δP (p) := |det Ad(p)|n|, where n is the Lie algebra of the unipotent radical
N . Then one has, for h(t1, t2) ∈ T ,

δP (h(t1, t2)) = |t21t2|3.(13)

Consider the (unnormalized) smooth induced representation IP (s) :=
indG2(A)

P (A) (δsP ). As usual, to each section fs ∈ IP (s), one may associate an
Eisenstein series

E(g, s; fs) :=
∑

γ∈P (F )\G2(F )

fs(γg).(14)

From the general theory of Eisenstein series, as a function in the complex
variable s, E(g, s; fs) converges absolutely for real part of s large and has a
meromorphic continuation to the whole s-plane. After certain normalization,
the possible poles of the normalized Eisenstein series associated to E(g, s; fs)
are determined in [Jia].

For a unitary character ψσ, the Fourier coefficient of an Eisenstein series
is defined as follows,

Eψσ(g, s; fs) :=
∫
N(F )\N(A)

E(ng, s; fs)ψσ(n)dn(15)

where dn is the normalized Haar measure on N(F )\N(A) as usual.

Theorem 1. Let fs ∈ IP (s) be a factorizable section. Then the Fourier
coefficient of the Eisenstein series E(g, s; fs) with respect to a unitary char-
acter ψσi of N for i = 1, 2, 3, 4 are Eulerian.
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Proof. After unfolding the Eisenstein series, the Fourier coefficient becomes
a sum of four terms, according to the Bruhat decomposition, that is,

Eψσ(g, s; fs) =
∫
N(F )\N(A)

E(ng, s; fs)ψσ(n)dn

=
∑

γ∈P\P

∫
N(F )\N(A)

fs(γng)ψσ(n)dn

+
∑

γ∈P\PwαP

∫
N(F )\N(A)

fs(γng)ψσ(n)dn

+
∑

γ∈P\PwαβαP

∫
N(F )\N(A)

fs(γng)ψσ(n)dn

+
∑

γ∈P\PwαβαβαP

∫
N(F )\N(A)

fs(γng)ψσ(n)dn.

For and w ∈W , one writes N = NwNw as usual. It is clear that the first
term is zero. The second and the third terms will be zero if ψσ(γ−1 · n) 6≡ 1
for all the γ’s and for n ∈ Nwα and n ∈ Nwαβα , respectively.

First it is not difficult to check the following

P\PwαP = wα[B\GLβ(2)]Nwα

P\PwαβαP = wαβα[B\GLβ(2)]Nwαβα

as algebraic varieties. We thus obtain that the second term can be written
as ∑

γ∈B\GLβ(2)

∫
Nwα (A)

fs(wαn1γg)ψσ(γ−1 · n1)dn1

·
∫
Nwα (F )\Nwα (A)

ψσ(γ−1 · n2)dn2,

and the third term can be similarly expressed as

∑
γ∈B\GLβ(2)

∫
Nwαβα (A)

fs(wαβαn1γg)ψσ(γ−1 · n1)dn1

·
∫
Nwαβα (F )\Nwαβα (A)

ψσ(γ−1 · n2)dn2.

By Bruhat decomposition for GL(2), it suffices to check the condition

ψσ(γ−1 · n) 6≡ 1
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for γ = wβ and γ = χ−β(t). Let n(x, y, z, u, v) be an element in N as in (8),
§2.3. Then one can easily check that

wβ · n(x, y, z, u, v) = n(−v,−u, p(z, x, y, u, v), y, x)

and

χβ(t) · n(x, y, z, u, v) = n(x, y + a1xt, z + a4x
2t3 + b2y

2t,

u+ b1yt+ a2xt
2, v + cut+ b3yt

3 + a3xt
3)

where ai = ±1, bj = ±2 or ±3, and c = ±3. Because

Nwα = {n(x, y, z, u, 0) : x, y, z, u ∈ F}
Nwαβα = {n(x, y, 0, 0, 0) : x, y ∈ F},

the nontriviality condition ψσ(γ−1 · n) 6≡ 1 for γ = wβ and γ = χ−β(t) can
be seen by straightforward computation. Therefore, we obtain that

Eψσi (g, s; fs) =
∑

γ∈P\PwαβαβαP

∫
N(F )\N(A)

fs(γng)ψσi(n)dn

=
∫
N(A)

fs(wαβαβαng)ψσi(n)dn

=
∏
v

∫
N(Fv)

fs,v(wαβαβαng)ψσi,v(n)dn.

We denote the local integral by

Iσiv (s, fs) :=
∫
N(Fv)

fs,v(wαβαβαn)ψσi,v(n)dn.(16)

The main Theorem is

Theorem 2. Let F be a number field. The Fourier coefficients of the
Eisenstein series E(g, s; fs) with respect to the additive unitary characters
ψσi for i = 1, 2, 3, 4 can be written in the following forms, respectively.
(1) When σ1 = (0, 1, 1, 0),

Eψσ1
(e, s; fs) =

[ζSF (3s− 1)]2

ζSF (3s)ζSF (6s− 2)ζSF (9s− 3)

∏
v∈S

Iσ1
v (s, fs,v),

where S is such a finite subset of places of F that if v ∈ S, v is finite
and fs,v and ψv are unramified.
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(2) When σ2 = (0, 1, 0, a),

Eψσ2
(e, s; fs) =

ζSF (
√
a)(3s− 1)

ζSF (3s)ζSF (6s− 2)ζSF (9s− 3)

∏
v∈S

Iσ2
v (s, fs,v),

where S is such a finite subset of places of F that if v ∈ S, v is finite
and fs,v and ψv are unramified and a is a unit at v.

(3) When σ3 = (1, 0, 0, a),

Eψσ3
(e, s; fs) =

ζS
F (a

1
3 )

(3s− 1)

ζSF (3s)ζSF (3s− 1)ζSF (6s− 2)ζSF (9s− 3)

∏
v∈S

Iσ3
v (s, fs,v),

where S is such a finite subset of places of F that if v ∈ S, v is finite
and fs,v and ψv are unramified and a is a unit at v.

(4) When σ4 = (1, 0, b, a), we assume that F contains the third root of
unity, and then we have

Eψσ4
(e, s; fs) =

ζSK(3s− 1)
ζSF (3s)ζSF (3s− 1)ζSF (6s− 2)ζSF (9s− 3)

∏
v∈S

Iσ4
v (s, fs,v)

where K is a cubic extension of F generated by one of the roots of the
irreducible polynomial x3 + bx− a, and S is a finite subset of places of
F determined by a, b, fs, and ψ.

Remark 1. As mentioned in §1, ζF (3s)ζF (6s− 2)ζF (9s− 3) is the normal-
izing factor for this family of Eisenstein series [Jia]. The theorem actually
means that the Fourier coefficient of the normalized Eisenstein series with
respect to the character ψσ gives the ratio ζK(3s−1)

ζF (3s−1)
, where K is the three

dimensional semisimple commutative algebra corresponding to the orbit σ.
In the fourth part of Theorem 2, we have an assumption that the base

field F contains the third root of unity. We believe that this assumption is
made for some technical reasons and should not be essential.

Theorem 2 will be proved in §6 based on the results in §5.

4. Local Uniqueness.

Let F be a nonarchimedean local field of characteristic zero. We shall prove
the following local uniqueness property for the functional related to our local
integral.

Theorem 3 (Local Uniqueness). Let σ be a representative of a nonsin-
gular orbit of GL(2) on N/Z. Then the dimension of the space

HomG2

(
indG2(F )

P (F ) (δsP ), indG2(F )
N(F ) (ψσ)

)
is at most one.
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Proof. It is enough to prove the result for a specifically chosen representative
of each nonsingular orbit, for instance, σi for i = 1, 2, 3 as in (12). By
Frobenius Reciprocity Law and the standard argument, it suffices to prove
that for i = 1, 2, 3, the uniqueness of the distribution Ti on G2(F ) satisfying
the following quasi-invariant property:

(p, n) ◦ Ti(ϕ) = δsP (p)ψ−1
σi

(n)Ti(ϕ)(17)

for ϕ ∈ S(G2(F )) and p ∈ P, n ∈ N . Equivalently, it is enough to prove the
dimension of the the space of the general functions Ti defined by

Ti(ϕ) :=
∫
G2(F )

ϕ(g)Ti(g)dg

and with the following quasi-invariant property

Ti(pgn) = δ−sP (p)ψ−1
σi

(n)Ti(g)(18)

is at most one.
We shall first prove that there exist no such distributions on G2(F ) with

support in the union of all lower dimensional cells, i.e. in G2(F )\PwαβαβαP .
This will imply the uniqueness we need since on the open cell PwαβαβαP
there is one such distribution up to a scalar.

It is sure that there are no such distributions having support in P by the
nontriviality of the additive character. The same reason works for distribu-
tions on PwαP or on PwαβαP . More precisely, we have

PwαP = [PwαN ] ∪ [Pwαβχβ(t)N ]

PwαβαP = [PwαβαN ] ∪ [Pwαβαβχβ(t)N ].

By checking the roots in Nwα and in Nwαβα , we can easily figure out that any
distribution with property (17) or (18) on PwαN or on PwαβαN vanishes.

Similarly, we have

(χβ(t)N)wαβ = 〈χα, χα+β, χα+2β, χ2α+3β〉
(χβ(t)N)wαβαβ = 〈χα, χα+β〉.

The distributions Ti on Pwαβχβ(t)N or on Pwαβαβχβ(t)N give rise to dis-
tributions Ti on χβ(t)χα+β(u) with following property

T (χβ(t)χα+β(u)) = T (χβ(t))ψ−1
σi

(χα+β(u))

= T (χβ(t))ψ−1
σi

(χα+3β(3ut2)χα+2β(−2ut)),
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because

χβ(t)χα+β(u) = χα+β(u)χβ(t)χα+3β(3ut2)χα+2β(−2ut)χ2α+3β(3u2t).

The existence of such nonzero distributions on χβ(t)χα+β(u), hence on
Pwαβχβ(t)N or on Pwαβαβχβ(t)N implies

ψσi(χα+β(u)) = ψσi(χα+3β(3ut2)χα+2β(−2ut))

for all t, u ∈ F . This is an obvious contradiction.
The nonexistence of such distributions on each piece implies the nonexis-

tence of such distributions on their union since there are only finitely many
pieces. This proves the theorem.

5. Unramified Computation.

In this section, we assume that F is a nonarchimedean local field of charac-
teristic zero. We shall compute the unramified local integral for each orbit
separately.
5.1. Case: σ3 = (1, 0, 0, a). In this subsection, we assume that the base
field F contains the third root of unity. We are going to compute the fol-
lowing integral

I(fs, ψσ3) =
∫
N(F )

fs(wαβαβαn(x, y, z, u, v))ψ◦(av + x)dn(19)

with unramified data (fs, ψ◦), that is, fs is the unramified section in IP (F )(s)
so that fs(1) = 1 and ψ◦ is the unramified additive character of the field F .
Recall from Section 2.3 that wαβαβα · n(x, y, z, u, v) = n−(x, y,−z,−u,−v),
where

n−(x, y, z, u, v) := χ−α(x)χ−α−β(y)χ−2α−3β(z)χ−α−2β(u)χ−α−3β(v).

In other words, we shall compute the following integral

I(fs, ψσ3) =
∫
F 5
fs(n−(x, y,−z,−u,−v))ψ◦(av + x)dn.(20)

We need some lemmas for our computation of the integral.

Lemma 1. Let a ∈ F , s a complex number, and e an integer. Then∫
|x|≥qe

|x|−sψ◦(ax)dx

=

0, if e > ord(a) + 1,
q−e(s−1)−q−(s−1)|a|s−1

1−q−(s−1) (1− q−1)− q−s|a|s−1, if e ≤ ord(a) + 1.
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Lemma 2. Let ψ◦ be an unramified additive character and a ∈ O×.
Assume that q ≡ 1 (mod 3). Then

∑
ξ,ζ,ν∈F×q ;µ∈Fq

ψ◦([aξ3−µ3−ζ2 +ζ−3µζ]π−1ν) =

{
0, if a 6≡ α3 (mod πO);
3q, if a ≡ α3 (mod πO).

Remark 2. Lemma 1 follows from easy calculation. The proof of Lemma 2
will need more effort. The case when a ≡ α3 (mod πO) for some α ∈ O× will
be proved as a corollary (Corollary 3, in §5.2) of Proposition 6 and Corollary
2 in §5. The case when a 6≡ α3 (mod πO) will be more complicated and
proved in the last section.

We shall reduce the computation of integral I(fs, ψσ3) by using Bruhat
decomposition once for each variable. We introduce some notations for our
reduction.

I+ :=
∫
F 4,|v|≤1

fs(n−(x, y,−z,−u,−v))ψ◦(av + x)dn(21)

I− :=
∫
F 4,|v|>1

fs(n−(x, y,−z,−u,−v))ψ◦(av + x)dn.(22)

It is easy to see that

I+ =
∫
F 4
fs(n−(x, y,−z,−u))ψ◦(x)dn

since fs is K-invariant (where K = G2(O)) and a is a unit. When |v| > 1,
we have the following Bruhat decomposition related to the root −α− 3β:

χ−α−3β(−v) = hα+3β(v−1)χα+3β(−v)kα+3β(v).

It follows from the facts stated in §2 that hα+3β(v−1) = h(1, v−1) and
δP (h(1, v−1)) = |v|−3, and also

n−(x, y,−z,−u)χ−α−3β(−v)

= h(1, v−1)n−(xv, y,−zv−1,−uv−1)χα+3β(−v)kα+3β(v).

Hence we obtain that

I− =
∫
F 4,|v|>1

fs(n−(x, y,−z,−u)χα+3β(−v))|v|−3s+1ψ◦(av + xv−1)dn.
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Applying the commutator relations in §2.2, we have the following

fs(n−(x, y,−z,−u)χα+3β(−v))

= fs(n−(x− vz + 3vuy − u3v2, y − vu2,−z + vu3,−u))

and then

I− =
∫
F 4,|v|>1

fs(n−(x, y,−z,−u))|v|−3s+1ψ◦(av − vu3 + xv−1 + z − 3uy)dn.

(23)

Then we cut the domain of integration further and consider the case
of |u| > 1. We have χ−α−2β(−u) = hα+2β(u−1)χα+2β(−u)kα+2β(u). Since
hα+2β(u−1) = h(u−1, u−1) and hα+2β(u−1) · n−(x, y,−z) = n−(x, u−1y,
−u−3z), we have

I−− =
∫
F 3;|u|,|v|>1

fs(n−(x, y,−z)χα+2β(−u))|v|−3s+1|u|−9s+4

·ψ◦(av − vu3 + xv−1 + zu3 − 3u2y)dn.

By the commutator relations in §2.2,

fs(n−(x, y,−z)χα+2β(−u)) = fs(n−(x+ u3z2 + 3uy(y − uz), y − uz,−z)).
Hence we obtain that

I−− =
∫
F 3;|u|,|v|>1

fs(n−(x, y,−z))|v|−3s+1|u|−9s+4

(24)

· ψ◦(av − vu3 + (x− u3z2 − 3uy(y + uz))v−1 − 2zu3 − 3u2y)dn.

For the variable z, when |z| > 1, we similarly have the Bruhat decomposi-
tion χ−2α−3β(−z) = h2α+3β(z−1)χ2α+3β(−z)k2α+3β(z), and then
h2α+3β(z−1) = h(z−1, 1), h2α+3β(z) · n−(x, y) = n−(z−1x, z−1y), and
fs(n−(x, y)χ2α+3β(−z)) = fs(n−(x+ zy3, y)). Hence we obtain

I−−− =
∫
F 2;|z|,|u|,|v|>1

fs(n−(x, y))|v|−3s+1|u|−9s+4|z|−6s+2

(25)

· ψ◦(av − vu3 + (xz − z2y3 − u3z2 − 3uyz2(y + u))v−1 − u2z(2u+ 3y))dn.

Following the same procedure, we obtain the following 16 integrals

I++++ =
∫
F

fs(n−(x))ψ◦(x)dx
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I+++− =
∫
F ;|y|>1

fs(n−(x))|y|−9s+3ψ◦(xy3)dxdy

I++−+ =
∫
F ;|y|≤1,|z|>1

fs(n−(x))|z|−6s+2ψ◦(xz − z2y3)dn

I++−− =
∫
F ;|z|,|y|>1

fs(n−(x))|y|−9s+3|z|−6s+2ψ◦(xzy3 − z2y3)dn,

I+−++ =
∫
F ;|u|>1;|z|,|y|≤1

fs(n−(x))|u|−9s+4ψ◦(x− 3uy2 − 3u2yz − u3z2)dn

I+−+− =
∫
F ;|u|,|y|>1;|z|≤1

fs(n−(x))|y|−9s+3|u|−9s+4

·ψ◦(xy3 − 3uy(y + uz)− u3z2)dn

I+−−+ =
∫
F ;|u|,|z|>1;|y|≤1

fs(n−(x))|u|−9s+4|z|−6s+2

·ψ◦(zx− z2y3 − 3uy2z2 − 3u2yz2 − u3z2)dn

I+−−− =
∫
F ;|u|,|z|,|y|>1

fs(n−(x))|u|−9s+4|z|−6s+2|y|−9s+3

·ψ◦(xy3z − z2y3 − 3uy2z2 − 3u2yz2 − u3z2)dn

I−+++ =
∫
F ;|v|>1;|u|≤1

fs(n−(x))|v|−3s+1vψ◦(av − u3v + xv−1)dn

I−++− =
∫
F ;|v|,|y|>1;|u|≤1

fs(n−(x))|v|−3s+1|y|−9s+3

·ψ◦(av − u3v + xy3v−1 − 3uy)dn

I−+−+ =
∫
F ;|v|,|z|>1;|u|,|y|≤1

fs(n−(x))|v|−3s+1|z|−6s+2

·ψ◦(av − u3v + xzv−1 − z2y3v−1 + z − 3uyz)dn

I−+−− =
∫
F ;|v|,|z|,|y|>1;|u|≤1

fs(n−(x))|v|−3s+1|z|−6s+2|y|−9s+3

·ψ◦(av − u3v + xy3zv−1 − z2y3v−1 + z − 3uyz)dn

I−−++ =
∫
F ;|v|,|u|>1;|z|,|y|≤1

fs(n−(x))|v|−3s+1|u|−9s+4

·ψ◦(av − u3v + (x− 3uy(y + uz)− u3z2)v−1 − 3u2y − 2u3z)dn

I−−+− =
∫
F ;|v|,|u|,|y|>1;|z|≤1

fs(n−(x))|v|−3s+1|u|−9s+4|y|−9s+3

·ψ◦(av − u3v + (xy3 − 3uy(y + uz)− u3z2)v−1 − 3u2y − 2u3z)dn

I−−−+ =
∫
F ;|v|,|u|,|z|>1;|y|≤1

fs(n−(x))|v|−3s+1|u|−9s+4|z|−6s+2

·ψ◦(av − u3v + (xz − z2y3 − 3uyz2(y + u)− u3z2)v−1 − (3y + 2u)zu2)dn
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I−−−− =
∫
F ;|v|,|u|,|z|,|y|>1

fs(n−(x))|v|−3s+1|u|−9s+4|z|−6s+2|y|−9s+3

·ψ◦(av − u3v + (xy3z − z2y3 − 3uyz2(y + u)− u3z2)v−1 − (3y + 2u)zu2)dn.

Proposition 1. Assume that a is a unit in F . We have

I+++− = I++−+ = I++−− = I+−+− = I+−−+ = I+−−− = 0

and

I−++− = I−+−− = I−−++ = I−−+− = I−−−− = 0.

Proposition 2. Assume that a is a unit in F . We obtain that

I++++ = (1− q−3s)

I+−++ = −(1− q−3s) + (1− q−3s)(1− q−9s+2)(1− q−9s+3)−1.

Proposition 1 and 2 imply that

Corollary 1. Assume that a is a unit in F . We have

I+ = (1− q−3s)(1− q−9s+2)(1− q−9s+3)−1.

Proposition 3. Assume that a is a unit in F .

I−+++ =

{
(1− q−3s)(−q−3s+1 − q−6s+2), if a 6∈ O×,3;
(1− q−3s)(2q−3s+1 + 2q−6s+2), if a ∈ O×,3.

The remainder are two cases I−+−+ and I−−−+, which need more computa-
tion. First we are going to prove the following Lemma, which will be applied
to the calculation of the integrals I−+−+ and I−−−+.

Lemma 3. Let b be an element of F×. Then∫
|x|=1

ψ◦(bπmx3)dx =

{
0, if |bπm+1| > 1,
q−1

∑
χ∈F×q ψ◦(bπ

mχ3), if |bπm+1| ≤ 1.

Proof. Let x = χ+ πx1 with χ ∈ F×q and x1 ∈ O. Then

B(b,m) =
∫
|x|=1

ψ◦(bπmx3)dx

= q−1
∑
χ∈F×q

ψ◦(bπmχ3)
∫
|x1|≤1

ψ◦(bπm+1[3χ2 + 3χπx1 + π2x2
1]x1)dx1.
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By the key lemma in [Igu], the polynomial map

x1 7→ [3χ2 + 3χπx1 + π2x2
1]x1

is a measure-preserved analytic homeomorphism from O to itself since we
assume that 3χ2 is a unit in O. Hence, by substituting the polynomial, we
obtain

B(b,m) = q−1
∑
χ∈F×q

ψ◦(bπmχ3)
∫
|x2|≤1

ψ◦(bπm+1x2)dx2

=

{
0, if |bπm+1| > 1,
q−1

∑
χ∈F×q ψ◦(bπ

mχ3), if |bπm+1| ≤ 1.

Proposition 4. Assume that F contains the third root of unity and |a| =
1. Then we have

I−+−+ =

{
(1− q−3s)q−9s+2[1 + q−1S(a)], if a 6∈ O×,3;
(1− q−3s)q−9s+2[−2 + q−1S(a)], if a ∈ O×,3.

where

S(a) : =
∑

ξ,ζ,ν∈F×q ;µ∈Fq
ψ◦([aξ3 − µ3 − ζ2 + ζ − 3µζ]π−1ν)

is the exponential sum as in Lemma 2.

Proof. By the integration with respect to the variable x, we obtain

I−+−+ =
(1− q−3s)

(1− q−3s+1)

∫
|v|,|z|>1;|u|,|y|,|zv−1|≤1

(1− q−3s+1|zv−1|3s−1)

·|v|−3s+1|z|−6s+2ψ◦(av − u3v − z2y3v−1 + z − 3uyz)dn.

By substitution, zv−1 7→ z, we have

I−+−+ =
(1− q−3s)

(1− q−3s+1)

∫
|v|>|z−1|;|u|,|y|,|z|≤1

(1− q−3s+1|z|3s−1)|v|−9s+4|z|−6s+2

·ψ◦([a− u3 − z2y3 + z − 3uyz]v)dn.

Then, making substitutions: zy3 7→ z, vy−3 7→ v, uy 7→ u, and zy3 7→ z, we
obtain

I−+−+ =
(1− q−3s)

(1− q−3s+1)

∫
|v|>|z−1|;,|z|≤|y3|;|u|≤|y|≤1

(1− q−3s+1|z|3s−1|y|−9s+3)
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·|v|−9s+4|y|−9s+5|z|−6s+2ψ◦([ay3 − u3 − z2 + z − 3uz]v)dn.

Let y = πiy1 for i = 0, 1, 2, · · · . Then

I−+−+ =
(1− q−3s)

(1− q−3s+1)

∞∑
i=0

qi(9s−6)

∫
|v|>|z−1|;,|z|≤q−3i;|u|≤q−i

(1− q−3s+1+i(9s−3)|z|3s−1)

·|v|−9s+4|z|−6s+2ψ◦([−u3 − z2 + z − 3uz]v)
∫
|y1|=1

ψ◦(avπ3iy3
1)dy1d∗,

where d∗ = dudvdz. By Lemma 3, the integration in y1 can be simply
expressed as∫

|y1|=1

ψ◦(avπ3iy3
1)dy1 =

{
0, if |v| ≥ q3i+2;
q−1

∑
ξ∈F×q ψ◦(avπ

3iξ3), if |v| = q3i+1.

Since |v| > |z−1| ≥ q3i, the integral I−+−+ does not vanish only if |v| = q3i+1.
This implies |z| = q−3i.

By setting u 7→ πiu, z 7→ π3iz, and v 7→ π−3i−1v, we get

I−+−+ = (1− q−3s)q−9s+4
∞∑
i=0

q−i
∑
ξ∈F×q∫

|u|≤1;|z|=|v|=1

ψ◦([aξ3 − u3 − z2π3i + z − 3uzπi]π−1v)dvdzdu

= (1− q−3s)q−9s+4
∞∑
i=0

q−i
∑
ξ∈F×q

J(i, ξ).(26)

The inner integral J(i, ξ) will be treated separately for i ≥ 1 and for i = 0.
When i ≥ 1, one has

J(i ≥ 1, ξ) =
∫
|u|≤1;|z|=|v|=1

ψ◦([aξ3 − u3 + z]π−1v)dvdzdu,

since the additive character ψ◦ is unramified. Then we have

J(i ≥ 1, ξ) = −q−1

∫
|u|≤1;|v|=1

ψ◦([aξ3 − u3]π−1v)dvdu

= −q−1

∫
|u|≤1;|v|=1

ψ◦([a− u3]π−1v)dvdu

= −q−2
∑
µ∈Fq

∫
|v|=1

ψ◦([a− µ3]π−1v)dvdzdu

=

{
q−2, if a 6∈ O×,3;
−2q−2, if a ∈ O×,3.
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Hence we have that

∞∑
i=1

q−i
∑
ξ∈F×q

J(i, ξ) =

{
q−2, if a 6∈ O×,3;
−2q−2, if a ∈ O×,3.(27)

When i = 0, we have

J(0, ξ) =
∫
|u|≤1;|z|=|v|=1

ψ◦([aξ3 − u3 − z2 + z − 3uz]π−1v)dvdzdu

= q−3
∑

ζ,ν∈F×q ;µ∈Fq
ψ◦([aξ3 − µ3 − ζ2 + ζ − 3µζ]π−1ν).

Hence
∑
ξ∈F×q J(0, ξ) = q−3S(a). Therefore we obtain

I−+−+ =

{
(1− q−3s)q−9s+2[1 + q−1S(a)], if a 6∈ O×,3;
(1− q−3s)q−9s+2[−2 + q−1S(a)], if a ∈ O×,3.

This proves the proposition.

Proposition 5. Assume that F contains the third root of unity and |a| =
1. Then we have

I−−−+ = (1− q−3s)(q−18s+5 − q−18s+6)(1− q−9s+3)−1.

Proof. First integrating variable x, we have

I−−−+ =
(1− q−3s)

(1− q−3s+1)

∫
|v|,|u|,|z|>1;|y|,|zv−1|≤1

(1− q−3s+1|zv−1|3s−1)

·|v|−3s+1|u|−9s+4|z|−6s+2ψ◦(av − u3v

−(z2y3 + 3uyz2(y + u) + u3z2)v−1 − (3y + 2u)zu2)dn.

By substituting zv−1 7→ z, the integral is reduced to be

I−−−+ =
(1− q−3s)

(1− q−3s+1)

∫
|v|,|u|,|zv|>1;|y|,|z|≤1

(1− q−3s+1|z|3s−1)|v|−9s+4|u|−9s+4

·|z|−6s+2ψ◦([a− z2y3 − 3uy2z2 − 3u2z(z + 1)y − (z + 1)2u3]v)dn.

It follows that if |z + 1| = 1, then the integral will be zero by Lemma 1.
Hence we only need to consider the condition |z + 1| < 1, i.e. z ∈ −1 + πO,
and the integral must be

I−−−+ = (1− q−3s)
∫
|v|,|u|>1;|y|≤1;|z+1|<1

|v|−9s+4|u|−9s+4
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·ψ◦([a− z2y3 − 3uy2z2 − 3u2z(z + 1)y − (z + 1)2u3]v)dn.

Making the following substitutions: yu−1 7→ y, vu3 7→ v, u−1 7→ u, yz 7→ y,
and then z + 1 7→ z, we deduce the integral to be

J =
∫
|vu3|>1;|u|,|z|<1;|y|≤|u|

|v|−9s+4|u|−18s+8

· ψ◦([avu3 + (z − 1)−1y3 − 3y2 − 3zy − z2]v)dn

where I−−−+ = (1 − q−3s)J . Let h(y, z) = −(z − 1)−1y3 − 3y2 − 3zy − z2.
Setting u 7→ πiu, we obtain

J =
∞∑
i=1

qi(18s−9)

∫
|y|≤q−i;|v|≥q3i+1;|z|<1

|v|−9s+4

· ψ◦(h(y, z)v)
∫
|u|=1

ψ◦(avπ3iu3)dud∗,

where d∗ = dvdydz. By Lemma 3, the inner integration about variable u
can be deduced as follows:

∫
|u|=1

ψ◦(avπ3iu3)du =

{
0, if |vπ3i| ≥ q2,

q−1
∑
µ∈F×q ψ◦(avπ

3iµ3), if |vπ3i| = q.

Plugging this into the original integral and setting v 7→ π−3i−1v, we get

J = q−9s+4
∞∑
i=1

qi(−9s+6)

·
∑
µ∈F×q

∫
|y|≤q−i;|v|=1;|z|<1

ψ◦([h(y, z)π−3i−1 + aπ−1µ3]v)dvdydz

= q−9s+4
∞∑
i=1

qi(−9s+6)J(i),

and

J(i) =
∑
µ∈F×q

∫
|y|≤q−i;|v|=1;|z|<1

ψ◦([h(y, z)π−3i−1 + aπ−1µ3]v)dvdydz

=
∑

ν,µ∈F×q
ψ◦(aπ−1µ3ν)

∫
|y|≤q−i;|z|<1

ψ◦(h(y, z)π−3i−1ν)

·
∫
|v|<1

ψ◦([3y2 + 3yz + z2]π−3i−1v)dvdydz.
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The nonvanishing of the integration about v implies |z| ≤ q−i. Then we
write

J(i) =
∑

ν,µ∈F×q
ψ◦(aπ−1µ3ν)[J1(i, ν) + J2(i, ν)],

where

J1(i, ν) =
∫
|y|,|z|≤q−i−1

ψ◦(h(y, z)π−3i−1ν)

·
∫
|v|<1

ψ◦([3y2 + 3yz + z2]π−3i−1v)dvdydz

and

J2(i, ν) =
∫
|y|,|z|=q−i

ψ◦(h(y, z)π−3i−1ν)

·
∫
|v|<1

ψ◦([3y2 + 3yz + z2]π−3i−1v)dvdydz.

First we are going to calculate the integral J1(i, ν). We make substitutions:
y 7→ πi+1y, z 7→ πi+1z, and v 7→ πv, and obtain

J1(i, ν) = q−(2i+3)

∫
|y|,|z|≤1

ψ◦(−(πi+1z − 1)−1y3π2ν − [3y2 + 3yz + z2]π1−iν)

·
∫
|v|≤1

ψ◦([3y2 + 3yz + z2]π2−iv)dvdydz

= q−(2i+3)

∫
|y|,|z|≤1;|3y2+3yz+z2|≤q2−i

ψ◦(−[3y2 + 3yz + z2]π1−iν)dydz.

Since 3y2 + 3yz + z2 = (z − (ω− 1)y)(z − (ω2 − 1)y) holds over O, we set{
z1 = z − (ω − 1)y,
y1 = z − (ω2 − 1)y.

Then the Jacobi of this transform is ω − ω2, which is a unit in O. This
means that the transform is by the key lemma in [Igu] a measure-preserved
analytic homeomorphism from O2 to O2. Hence the integral can be written
as

J1(i, ν) = q−(2i+3)

∫
|y|,|z|≤1;|yz|≤q2−i

ψ◦(−yzπ1−iν)dydz = q−(2i+3)D(i, ν).

It is easy to verify that when i = 1, the integral

D(1, ν) =
∫
|y|,|z|≤1

ψ◦(−yzπ0ν)dydz = 1,
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and when i = 2, the integral

D(2, ν) =
∫
|y|,|z|≤1

ψ◦(−yzπ−1ν)dydz = q−1.

For i ≥ 3, the integral can be reduced as follows.

D(i ≥ 3, ν) =
∫
|z1|≤1;|y1|≤min{q2−i,1}

ψ◦(−y1z1π
1−iν)dy1dz1

+q−1

∫
|y1|,|z1|≤1;|y1z1|≤q3−i

ψ◦(−y1z1π
2−iν)dy1dz1

= q−1

∫
|y1|,|z1|≤1;|y1z1|≤q3−i

ψ◦(−y1z1π
2−iν)dy1dz1

= · · ·
= q−(i−2)

∫
|y1|,|z1|≤1;|y1z1|≤q0

ψ◦(−y1z1π
−1ν)dy1dz1

= q−i+1.

Hence we obtain that J1(i, ν) = q−(3i+2), which is independent of the variable
ν, and then that

J(i) =
∑

ν,µ∈F×q
ψ◦(aπ−1µ3ν)[q−(3i+2) + J2(i, ν)]

= −(q − 1)q−(3i+2) +
∑

ν,µ∈F×q
ψ◦(aπ−1µ3ν)J2(i, ν).

Next we are going to show that∑
ν,µ∈F×q

ψ◦(aπ−1µ3ν)J2(i, ν) = 0.

We notice first of all that∫
|v|<1

ψ◦([3y2 + 3yz + z2]π−3i−1v)dv =

{
0, if |3y2 + 3yz + z2| > q−3i,

q−1, if |3y2 + 3yz + z2| ≤ q−3i.

After setting y 7→ πiy and z 7→ πiz, we obtain

J2(i, ν) = q−2i−1

∫
|y|=|z|=1;|3y2+3yz+z2|≤q−i

ψ◦

·
( −y3ν

(zπi − 1)π
− (3y2 + 3yz + z2)π−i−1ν

)
dydz.

Since (zπi − 1) is a unit in F for i ≥ 1, by setting ν(zπi − 1)−1 7→ ν,∑
ν,µ∈F×q

ψ◦(aπ−1µ3ν)J2(i, ν)
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=
∑

ν,µ∈F×q
ψ◦(−aπ−1µ3ν)

·
∫
|y|=|z|=1;|3y2+3yz+z2|≤q−i

ψ◦(−y3π−1ν + (3y2 + 3yz + z2)π−i−1ν)dydz.

It suffices to show that the integral∫
|y|=|z|=1;|3y2+3yz+z2|≤q−i

ψ◦(−y3π−1ν + (3y2 + 3yz + z2)π−i−1ν)dydz,

which is denoted by J ′2(i, ν), is equal zero. Since we assume that F contains
the third root of unity ω, we can decompose the quadratic polynomial as

3y2 + 3yz + z2 = (z − (ω − 1)y)(z − (ω2 − 1)y) ∈ πiO.
Let z1 = z− (ω− 1)y. Then z− (ω2− 1)y = z1 + (ω−ω2)y. Since (ω−ω2)y
is a unit, one knows that

z1(z1 + (ω − ω2)y) ∈ πiO
implies that z1 ∈ πiO or z1 + (ω − ω2)y ∈ πiO. Without lose of generality,
we may assume that z1 ∈ πiO. By replacing the part related to z, we obtain

J ′2(i, ν) = q−2i−1

∫
|y|=1;|z1|≤q−i

ψ◦(−y3π−1ν + z1(z1 + (ω − ω2)y)π−i−1ν)dydz1

= q−2i−1

∫
|y|=1;|z1|≤q−i

ψ◦(−y3π−1ν + z1(ω − ω2)yπ−i−1ν)dydz1

= 0

since i ≥ 1 and the integration with respect to z1 is zero. In other words,
we have

J(i) = −(q − 1)q−(3i+2).

Finally we obtain

J = q−9s+4
∞∑
i=1

qi(−9s+6)J(i) = −(q − 1)q−9s+2
∞∑
i=1

qi(−9s+3)

=
−(1− q−1)q−18s+6

(1− q−9s+3)
.

This finishes the proof.

Summarizing the results from the computations above, we obtain:

Corollary 2. Assume that the local field contains the third root of unity
and a be a unit in F . For the unramified additive character ψσ3 associated
to σ3 = (1, 0, 0, a), we have,
(1) when a ∈ O×,3,

I(fs, ψσ3) = (1− q−3s)(1 + q−3s+1)(1 + q−3s+1 + q−6s+2)
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+
(1− q−3s)(q−9s+1 − q−18s+4)(S(a)− 3q)

(1− q−9s+3)
,

and
(2) when a 6∈ O×,3,

I(fs, ψσ3) = (1− q−3s)(1− q−3s+1)(1− q−6s+2)

+
(1− q−3s)(q−9s+1 − q−18s+4)S(a)

(1− q−9s+3)
.

Proof. Note that I(fs, ψσ3) = I+ + I−. By Corollary 1, we have

I+ = (1− q−3s)(1− q−9s+2)(1− q−9s+3)−1.

By Proposition 3, 4, and 5, we have, when a ∈ O×,3,

I− = (1− q−3s)(1 + q−3s+1)(1 + q−3s+1 + q−6s+2)− I+

+
(1− q−3s)(q−9s+1 − q−18s+4)(S(a)− 3q)

(1− q−9s+3)
,

and when a 6∈ O×,3,

I− = (1− q−3s)(1− q−3s+1)(1− q−6s+2)− I+

+
(1− q−3s)(q−9s+1 − q−18s+4)S(a)

(1− q−9s+3)
.

The proposition follows.

5.2. Case: σ1 = (0, 1, 1, 0). In this case, the integral is

I =
∫
F 5
fs(n−(x, y,−z,−u,−v))ψ◦(u+ y)dn.(28)

Using the same notations, we deduce easily that I−− = I+− = 0 and

I =
∫
F 3
fs(n−(x, y,−z))ψσ1(y)dzdxdy

·
(

1 +
∫
|u|≤1;|v|>1

|v|−3s+1ψσ1((u+ u2)v)dvdu

)
.

The straightforward calculation gives us∫
F 3
fs(n−(x, y,−z))ψσ1(y)dzdxdy =

(1− q−3s)(1− q−9s+3)
(1− q−3s+1)
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and

1 +
∫
|u|≤1;|v|>1

|v|−3s+1ψσ1((u+ u2)v)dvdu = (1 + q−3s+1).

Hence we have

Proposition 6. For the unramified additive character ψσ1 associated to
σ1 = (0, 1, 1, 0), we have

I(fs, ψσ1) =
ζ2
v (3s− 1)

ζv(3s)ζv(6s− 2)ζv(9s− 3)
.

The following Corollary gives the evaluation of the exponential sum in
Lemma 2 when a ∈ O×,3.

Corollary 3. With the notations as in above, we have

S(a) =
∑

ξ,ζ,ν∈F×q ;µ∈Fq
ψ◦([aξ3 − µ3 − ζ2 + ζ − 3µζ]π−1ν) = 3q

when a ∈ O×,3.

Proof. When a = b3 ∈ O×,3, it is easy to check that the vectors σ3(a) =
(1, 0, 0, a) and σ1 = (0, 1, 1, 0) are in the same GL(2,O)-orbit on the preho-
mogeneous space (GL(2), V ). More precisely, we may choose

g =

(
−b 1

−(1 + ω)b (1 + ω)ω2

)
∈ GL(2,O)

so that g · (1, 0, 0, a) = (0, 1, 1, 0). Hence for unramified data, we have

I(f◦s , ψσ3(a)) = I(f◦s , ψσ1).

By Propositions 4 and part (1) of Proposition 3, we obtain

(1− q−3s)(q−9s+1 − q−18s+4)(S(a)− 3q)
(1− q−9s+3)

= 0.

Hence we have S(a) = 3q.
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5.3. Case: σ2 = (0, 1, 0, a). Here we assume that a is a unit in F such
that x2 + a is irreducible over F . The integral we shall compute is

I =
∫
F 5
fs(n−(x, y,−z,−u,−v))ψ◦(av + y)dn.(29)

A similar type of calculation works in this case, which gives us

I =
∫
F 3
fs(n−(x, y,−z))ψσ2(y)dzdxdy

·
(

1 +
∫
|u|≤1;|v|>1

|v|−3s+1ψσ2((a+ u2)v)dvdu

)
.

Further, we have

1 +
∫
|u|≤1;|v|>1

|v|−3s+1ψσ2((a+ u2)v)dvdu =
(1− q−6s+2)

(1− χa(q)q−3s+1)

where χa(q) = (−a
q

), the quadratic character. Therefore we obtain

Proposition 7. Let a be a unit in F . For the additive character ψσ2 with
σ2 = (0, 1, 0, a), we have

I(fs, ψσ2) =
ζv(3s− 1)Lv(3s− 1, χa)
ζv(3s)ζv(6s− 2)ζv(9s− 3)

where χa is the character determined by F (a 1
2 )/F via the local class field

theory.

6. The Proof of Theorem 2.

Let F be a number field. Let p be a prime ideal in OF and v be the corre-
sponding place. Then Fv = Fp is the local field associated to p and v.

Part (1) and (2) of Theorem 2 follow directly from Proposition 4 and 5,
respectively. In the following, we are going to prove part (3) and (4) of
Theorem 2.

By the assumption of part (4) of Theorem 2, the base field F contains the
third root of unity, denoted by ω. Given a GL(2,A)-orbit σ4 = (1, 0, b, a) of
type 4, the field K generated by one of the roots of the irreducible polynomial
x3 + bx− a is a cubic extension over the base field F . If p is unramified over
K, then one has from [CaFr] that

pOK =


P1P2P3, f1 = f2 = f3 = 1,
P1P2, f1 = 1, f2 = 2,
P, f = 3.
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Correspondingly, one has

K ⊗F Fp =


Fp ⊕ Fp ⊕ Fp,
Fp ⊕ Fp(α),
KP.

(30)

Note that Fp(α) is an unramified quadratic extension over Fp with α2 =
−c ∈ O×v , and KP is an unramified cubic extension over Fp. Since ω ∈ Fp,
KP is a cyclic extension. Hence KP = Fp(τ), where τ is one of the roots of
x3 − d with d a unit in Fv.

Following the formulas in §2 of [Wri] and in Chapter 4 of [Jac], we can
easily find elements gv,1, gv,2, gv,3 ∈ GL(2,Ov) such that gv,1 ◦ (1, 0, b, a) =
(0, 1, 1, 0) if K⊗F Fv = Fv⊕Fv⊕Fv, gv,2◦(1, 0, b, a) = (0, 1, 0, c) if K⊗F Fv =
Fv⊕Fv(α), and gv,3◦(1, 0, b, a) = (1, 0, 0, d) if K⊗F Fv = Fv(τ), respectively,
for all the finite places v of F outside of a finite subset S of places of F
determined by the orbits (1, 0, b, a), (1, 0, 0, d), and (0, 1, 0, c).

Because for the unramified section fs,v, the Fourier coefficients with re-
spect to ψ◦(〈σ, ·〉) and ψ◦(〈gv◦σ, ·〉) for gv ∈ GL(2,O) are equal to each other,
the fourth part of Theorem 2 follows from Corollary 2 and Proposition 6 and
7 in §5.

Finally we shall prove the third part of Theorem 2. In this case we do not
assume that F contains the third root of unity. For each unramified place v of
F , when Fv does not contain the third root of unity, K⊗F Fv = Fv×Fv(d 1

2 ),
otherwise eitherK⊗FFv = Fv⊕Fv⊕Fv if a is a cube at v orK⊗FFv = Fv(a

1
3 )

if a is not a cube. Similarly, we can reduce the computation of the local
integral in this case to the three cases of the computations we made in §5.
Hence the proof of Theorem 2 is completed.

7. Proof of Lemma 2.

This last section is devoted to the proof of Lemma 2 when a 6∈ O×,3. This
means we are going to show that the multivariable cubic exponential sums

S(a) =
∑

ξ,ζ,ν∈F×q ;µ∈Fq
ψ◦([aξ3 − µ3 − ζ2 + ζ − 3µζ]π−1ν) = 0(31)

for a 6∈ O×,3. Here we assume that a ∈ F×q and q ≡ 1(mod 3). When
a ∈ O×,3, S(a) = 3q as stated in Corollary 3 in §5.2.

The idea is to evaluate explicitly the following sum∑
a∈F×q

S(a) =
∑

a,ξ,ζ,ν∈F×q ;µ∈Fq
ψ◦([aξ3 − µ3 − ζ2 + ζ − 3µζ]π−1ν)
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in two different ways.
In one way, it is easy to see by the property that S(ab3) = S(a) for b ∈ F×q

that

∑
a∈F×q

S(a) =
q − 1

3
[S(1) + S(α) + S(α2)](32)

where {1, α, α2} is a set of representatives for the cosets of F×q /F×,3q .
In the other way, we have:

Lemma 4. Let a be a unit of F . Then the sum∑
a∈F×q

S(a) = q(q − 1).

Proof. First we notice that∑
a∈F×q

S(a) =
∑

ζ,ν∈F×q ;µ∈Fq
ψ◦([µ3 − ζ2 + ζ + 3µζ]π−1ν)

∑
a,ξ∈F×q

ψ◦(aξ3π−1ν)

= −(q − 1)
∑

ζ,ν∈F×q ;µ∈Fq
ψ◦([µ3 − ζ2 + ζ + 3µζ]π−1ν)

= −(q − 1)
∑

ν∈F×q ;ζ,µ∈Fq
ψ◦([µ3 − ζ2 + ζ + 3µζ]π−1ν)

+(q − 1)
∑

ν∈F×q ;µ∈Fq
ψ◦(µ3π−1ν).

Since the last sum is zero, we obtain that∑
a∈F×q

S(a) = −(q − 1)
∑

ν∈F×q ;ζ,µ∈Fq
ψ◦([µ3 − ζ2 + ζ + 3µζ]π−1ν)

= −(q − 1)[(q − 1)N(ζ2 − (1 + 3µ)ζ − µ3)

−N−(ζ2 − (1 + 3µ)ζ − µ3)]

where N(ζ2 − (1 + 3µ)ζ − µ3) denotes the number of the solutions of the
equation ζ2−(1+3µ)ζ−µ3 = 0 over F2

q and N−(ζ2−(1+3µ)ζ−µ3) denotes
the number of the points in F2

q which are not a solution of the equation
ζ2 − (1 + 3µ)ζ − µ3 = 0. Thus we have∑

a∈F×q
S(a) = q2(q − 1)− q(q − 1)N(ζ2 − (1 + 3µ)ζ − µ3).
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Let φq(a) be the quadratic residue character associated to q. Then the
number N(ζ2 − (1 + 3µ)ζ − µ3) can be calculated as follows.

N(ζ2 − (1 + 3µ)ζ − µ3) = q +
∑
µ∈Fq

φq(1 + 6µ+ 9µ2 + 4µ3)

= q +
∑
µ∈Fq

φq((µ+ 1)2(4µ+ 1))

= q +
∑
µ∈Fq

φq(µ2(4µ− 3))

= q +
∑
µ∈F×q

φq(4µ− 3)

= q − φq(−3) +
∑
µ∈Fq

φq(4µ− 3)

= q − 1

since φq(−3) = 1 (as we assume that q ≡ 1( mod 3)) and the last character
sum is zero. Therefore we obtain∑

a∈F×q
S(a) = q2(q − 1)− q(q − 1)2 = q(q − 1),

as expected.

According to the two different ways to evaluate the sum∑
a∈F×q

S(a)

and S(1) = 3q, we have

S(α) + S(α2) = 3q − S(1) = 0.(33)

It remains to show that S(α) = S(α2). By Lemma 1 in [Wri1], these two
vectors σ′3 = (1, 0, 0, α) and σ′′3 = (1, 0, 0, α2) are in the same GL(2)-orbit on
the prehomogeneous space V (over either the local field or the residue field).
In fact, it is easy to check that both σ′3 and σ′′3 are in the same GL(2,O)-orbit(

transformed by

(
0 1
α 0

))
. Hence, for unramified data, we have

I(f◦s , σ
′
3) = I(f◦s , σ

′′
3 ).

Following Corollary 2 in §5.1, we must have

S(α) = S(α2).
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This and (33) imply that S(a) = 0 when a 6∈ O×,3 and complete the proof
of Lemma 2.
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