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TOEPLITZ ALGEBRAS ASSOCIATED WITH
ENDOMORPHISMS
AND PIMSNER-VOICULESCU EXACT SEQUENCES

M. KHOSHKAM AND G. SKANDALIS

Let A be a C*-algebra and a a *-endomorphism of A. The
analogue of Pimsner-Voiculescu exact sequences are obtained
for the pair (A, «). We prove that the corresponding Toeplitz
algebra remains KK-equivalent to A.We also consider the sit-
uation where a semigroup (Ctt)teﬂia+ of x-endomorphisms is act-
ing on A and formulate similar exact sequences. In this part
we use the language of Connes-Higson E-theory.

Introduction.

One of the most celebrated results in the K-theory of C*-algebras is the exact
sequence proved by M. Pimsner and D. Voiculescu ([10]). This sequence
allows one to compute the K-groups of a crossed product C*-algebra Ax,Z,
from a six term exact sequence involving K-groups of A, obtained from the
K-theory sequence associated with an extension of Ax,Z by A ® K(H)
where o € Aut (A). This extension referred to as the generalized Toeplitz
extension, is given by a C*-algebra denoted by 7, called the Toeplitz algebra
associated with the pair (A, «). Pimsner and Voiculescu proved that the
natural inclusion of A in 7, induces an isomorphism at the level of K-
groups. This allows one to obtain a six term exact sequence involving only
the K-groups of A and the crossed product Ax,Z. Later, in [5], using a
generalization of Connes’ “Thom isomorphism”, T. Fack and G. Skandalis
obtained the same exact sequence for K K-groups.

In this article we are concerned with extending Pimsner Voiculescu Exact
Sequence to the situation where « is an Endomorphism. Our first task will
be to define an appropriate notion of the Toeplitz algebra and an extension
from which the K-theory sequence can be obtained. It is proved that this
generalized Toeplitz algebra is still K K-equivalent to A. We then obtain
similar results in the case of semigroups (indexed by R, ) of endomorphisms.

While this work was almost finished, we received a remarkable preprint
by Mihai Pimsner ([9]), who considers the same Toeplitz algebra and proves
the same extension and K K-theory results as ours in a much more general
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situation than that of a single endomorphism: Pimsner considers a Hilbert
A-module E which is ‘generating’ in that sense that the closed ideal spanned
by the scalar products (z,y), =,y € E is A itself and a morphism ¢ from
A into L(E). An endomorphism is then just the particular case E = A and
p(A) c A=K(A) C L(A) = M(A)".

We think however that our paper may help understanding Pimsner’s more
general and interesting point of view. Moreover, our results may be used
to give an alternate proof of Pimsner’s (when ¢(A4) C K(F)). Indeed, the
condition on F means that X(E) and A are Morita equivalent; hence K(H)®
K(FE) is isomorphic to K(H) ® A (at least in the separable case). We then
get a morphism from KC(H) ® A into itself which brings us to our case.

The organization of this paper is as follows.
— In Section 1, the Toeplitz algebra 7, for a pair (A, «) with o € End (A) is
defined and the basic properties are established. In particular, we show that
7, is a full corner of a crossed product. This will be useful in realization of
certain semigroup C*-algebras.
— In Section 2, we deal with K K-groups and construction of an invertible
element in the group K K(A,7,).
— Section 3 is concerned with extending our results of Sections (1) and (2)
to a semigroup (ay)ier+ of endomorphisms of a C*-algebra A. An appropri-
ate notion of Toeplitz algebra is defined and the corresponding extension is
formulated. In the continuous case, the Toeplitz algebra is K-Theoretically
trivial.

One possible application for these results is in the study of semigroup C*-
algebras ([3]). From the basic theory if S is a simple inverse semigroup, then
it has a decomposition into a type of semi-direct product (known as Bruck
Reilly product) of a group G with the bicyclic semigroup C. The action of
C on G is given by an endomorphism « of G. It can be proved that C*(S)
the C*-algebra of S is *-isomorphic to the Toeplitz algebra associated with
the pair (C*(G), ). These ideas will be pursued elsewhere.

Finally, we point out that in ([4]), Ruy Excel obtains a generalization of
Pimsner-Voiculescu Exact Sequence. But he considers a different situation
dealing with ideals and C*-algebras equipped with an action of S. The
only overlap is that we both obtain Pimsner Voiculescu Exact Sequence as
a special case. However, our methods are independent.

'Even in that case, our Toeplitz algebra differs slightly from Pimsner’s. This will be
explained at the end of the first section.
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1. The Toeplitz algebra 7.

Notation. Recall that if A is a C*-algebra, F, F' are Hilbert A-modules,
z € E, and y € F, we denote by 6,, : F — E the operator z — z(y, 2).
An operator from F' to FE is said to be compact if it belongs to the closure
IC(F, E) of the vector space spanned by 6, , for x € E, y € F.

Let A be a C*-algebra and o an endomorphsm of A. Let H,4 be the
Hilbert A-module ¢?(N, A), i.e., the set of sequences (,,),en such that the
series ), oy 5%y is norm convergent.

Let S € L(Ha) be the forward shift: i.e., S((zn)nen) = (Un)nen € Ha
where, for n # 0, y, = x,_1 and yo = 0.

Define the faithful *-representation m, of A in H 4 setting for a € A and
(xn)nEN c HA

7a(@) (@) nen) = (0" (@)2a)nen € Ha.

Forall a € A, m,(a)S = Sm,(a(a)). It follows that the closed vector span
of { "7 (a)S*™ : m,n €N, a € A} is a C*-subalgebra of L(H.,).
Definition 1.1. The C*-subalgebra of £L(H 4) generated by { S™m, (a)S*™ :
m,n € N, a € A} is denoted by 7, and is called the Toeplitz algebra
associated with (A, a). We denote by d, or just d the morpism 7, as a
morphism from A to 7.

If A is unital and «(1) = 1, then 7, (1) is the identity element of £L(H.4),
thus S € 7, and 7, is the C*-subalgebra of L(H4) generated by S and
d,(A). In general, let A be the C*-algebra obtained from A by adjoining an
identity. Let & : A — A be the unital extension of a to A. Then 7, sits in
75 as a two sided ideal.

The construction of the Toeplitz algebra 7, satisfies the following natural-
ity. Let A, and B be C*-algebras with endomorphisms « and ( respectively.
To any s-homomorphism ¢ : A — B such that ¢ o @ = [ 0 ¢ there cor-
responds a *-homomorphism 7, : 7, — 73 given by 7,(5"d,(a)S*™) =
$"ds(ip(a))S" ™.

—If A and B are unital and ¢(1) = 1, we have an identification Hj ® 4 B =
Hp thus a morphism £(H4) — L(Hp) which maps 7, into 7.

— In particular, let ¢ : A — C be the morphism with kernel A. Then 7. is
a morphism from 73 to the Toeplitz algebra 7 associated with the identity
morphism of C whose kernel is 7.

— To prove the existance of the morphism 7, in the general case, extend ¢
to a unital morphism ¢ : A — Bj; the corresponding morphism 75 : 75 — 73
maps 7, C 75 into 75 C 7T;.

Let us explore the structure of the Toeplitz algebra 7,:
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Let a,b € A and n,m € N; let £, n € H4 be the elements defined by
&(n) = a, &(k) = 0 for k # n, n(m) = b and n(k) = 0 for k # m. Then,
Oc., = S"dn(ab*)(1 — SS*)S*" € 7,. Since the elements of the above form
span K(H.,), it follows that K(Ha) C 7,. As T, C L(Ha) = M(K(H,)) it
follows that K(Ha) = K(H) ® A is contained in 7, as an essential ideal.

We next “compute” the quotient T4 /K(H):

Let (A, )nen be the sequence of C*-algebras with A,, = A for every n € N.
For m > n set ¢, = ™™™ A, — A,,. Let A, = lim A, be the direct
limit C*-algebra. Let h, : A — A, be the canonical map from A = A, to
the direct limit. Define ao, : Ao — Ao by setting a. (hy,(z)) = h,(a(x)) for
x € A. This is compatible with ¢,, ,,’s and extends to A. Since o 0 h,, =
h,oa = h,op,,1 = h,_ it follows that o, is an automorphism of A,
(and at o hy, = hypq)-

We set h = hy. The algebra A,, admits the following abstract character-
ization.

Proposition 1.2. We keep the above notation. Let B be a C*-algebra,
o : A — B a x-homomorphism and (8 an automorphism of B such that
coa = fBoo. Then there exists a unique *-homomorphism oo : Asw — B
such that oo 0 G = 80 0o and oo 0 h = 0. Moreover, Ay and o, are
uniquely determined by these conditions.

Proof. If 0, : Asw — B is a x-homomorphism satisfying the above condi-
tions, then 8" oo, 0h, = 000l oh, = 00h = o, whence g, 0h,, = 3 "o0,
which shows the uniqueness of o.

Define 0,, = 7™ o0 : A— B. If m > n, then

Om © Pmmn = Om © o™t = /Bim ogoa™™

=Mo" oo =0""00=0,.

By the universal property of direct limit there exists a *-homomorphism
O : Ase — B. Moreover, for all n we have 0,,oax = $o0,,, hence oo 0o =
B0 0.

Let D be a C*-algebra with an automorphism §, and let j : A — D be a
x-homomorphism such that joa = d oj. Assume that if B is a C*-algebra,
o : A — B a sxhomomorphism and § an automorphism of B such that
ooa = f$oo, then there exists a unique *-homomorphism ¢’ : D — B
such that 0’ o j = o and 0’ 06 = o o’. Then there exist (unique) -
homomorphisms [ : D — A, and J : A, — D intertwining § with a., and
such that hol = j and j o J = h. The uniquness statements imply that
IoJ =1idu__ and J oI = idp, whence D is canonically *-isomorphic with
As. U
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It follows from this proposition that the construction of the pair (A, o)
is functorial: Let B be another C*-algebra endowed with an endomorphism
B. To any s-homomorphism ¢ : A — B such that ¢ o @ = (0 ¢ there
corresponds a x-homomorphism ¢, : A, — Bs such that ¢, 0 a, =
Boo © Poo. In particular, let & be the unital endomorphism of ’{1/ extending a.
The corresponding inductive limit C*-algebra is the algebra A, obtained by
adjoining a unit to A, endowed with the unital automorphism a., extending
Qoo -

In what follows, we consider A, as a C*-subalgebra of A, x,_Z.

Corollary 1.3. Assume that A is unital and that a(1) = 1. Let B be a
unital C*-algebra, o : A — B a unital x-homomorphism and v a unitary in
B such that o(a(x)) = vo(x)v*, for all x € A. Then there exists a unique
s-homomorphism & : AxXo L — BXgZ such that 6(d(z)) = o(x) for all
x € A, and 6(u) = v where (B is the inner automorphism of B associated
with v and u is the unitary of Ao Z defining the crossed-product.

Proof. Let 0, : Asw — B be the associated *-homomorphism (Proposition
1.2). We have 0, (a()) = voo(x)v*, for all x € A,,. By the universal
property of the crossed product, there exists a unique *-homomorphism
G AwwXa Z — BxgZ such that 6(z) = 0, (z) for allz € A, and 6(u) = v.

Moreover, h,(x) = u "h(z)u” for all x € A and n € N, so that A, Z
is generated by h(A) and u; the uniqueness of ¢ follows immediately. O

Corollary 1.4. There exists a unique *-homomorphism V : A, X, 7 —
To/K(Ha) such that, for all a € A, V(h(a)) is the image of d(a) € T, in
the quotient and, for all v € Ay, ¥(uzx) = vi)(x), where u is as above and

v is the image of S* € M(T,) in M(T,/K(HaA)).

Proof. If A is unital and «(1) = 1, this is an immediate consequence of
Corollary 1.3. )

In the non unital case, let & be the unital endomorphism of A extending
a. By the unital case, we get a homomorphism ¥ : Aoox ~7Z — 75 /K(H 3).
Note that moreover A, x,_7Z is the kernel of the map ANOON;;Z — C*(Z)
corresponding to the unital equivariant morphism Z; — C and that
7./K(Ha,) is the kernel of the morphism 75/K(H ;) — 7 /K(¢*(N)). Since
the diagram - N

Ao 7= T3 /K (M)

l l
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is commutative, it follows that W(AxXa_) C To/K(H.).
Furthermore, any W : Ao X, Z — 7, /K(H.4) satisfying the conditions of

the statement, extends to a morphism from A% —Z to 75 /K(H ;) mapping
u to v, from which the uniqueness of ¥ follows. |

Theorem 1.5. The x-homomorphism ¥ of Corollary 1.4 is an isomor-
phism. In other words, we have an exact sequence

0> ARKH) -1, = AxX0Z — 0.

Proof. For x € A, m,n € N, the image of S™d(z)S* in 7,/K(Ha) is
U (u™h(z)u*"), whence ¥ is onto.

To show that V¥ is one to one, we may assume that A is unital and
a(l) = 1. Let (e,)nen denote the canonical basis of ¢*(N) and set b, =
e,®1 € (N, A) = H4. The set of T € L(H ) such that the sequence a "o
h({(b,,Tb,)) converges in norm in A, is a closed subspace of L(H4). More-
over, forallz € A, m,n, k € Nwe have o *((by, S"d(2)S*"b;.)) = a ™oh(z)
if £ > m = n and to 0 otherwise. Consequently, T" — lim, . a " o
h({b,,Tb,)) is a completely positive map F : 7, — A, such that, for all
x €A, mneN, ES™dxz)S*™) =0if m # n and E(S™d(x)S*™) =
a™ o h(x). Clearly lim,, ., o™ o h({(b,,Tb,)) =0 for all T € K(H.a4), so
that E defines a completely positive map ® : 7,,/K(H4) — Aws. The compo-
sition @ o VU is easily seen to be the conditional expectation A, X, 7Z — A
which is the identity on A, and maps u*z to 0 for all z € A, and k # 0.
As this conditional expectation is faithfull, ¥ is one to one. |

When « is an automorphism of A we see immediately that A, identifies
with A; therefore, the exact sequence of Theorem 1.5 is a generalization of
the Toeplitz exact sequence of [10].

The following theorem characterizes the *-representations of the Toeplitz
algebra 7,. If 7 is a non degenerate *-representation of 7., then mod is a *-
representation o of A and T' = 7(S) is an isometry, where 7 is the extension
of 7 to the multiplier algebra. For all a € A we have o(a)T = To(a(a)).
The converse is also true:

Theorem 1.6. Let B be a C*-algebra and H be a Hilbert B-module. Let
o: A — L(H) be a *-representation of A on H and let T € L(H) be an
isometry such that o(a)T = To(a(a)). Then, there exists a x-representation
m T, — L(H) such that for all x € A, m,n € N, 7n(S™d(z)5*") =
T™o(x)T*". Moreover, 7 is faithful if and only if the restriction of o to the
kernel of T is faithful.

Proof. Up to passing to A, we may assume that A is a unital C*-algebra
and that o and ¢ are unital morphisms. We first treat the case B = C.



TOEPLITZ ALGEBRAS ASSOCIATED WITH ENDOMORPHISMS 321

Put Hy = ker T* and let H’ be the closure in H of the union of ker T*"
(neN). AsT*"0(a) = o(a™(a))T*", the subspaces H, and H' are invariant
under o(A). Denote by oq the restriction of o to Hy. Moreover, H' admits
the orthogonal decomposition H' = @, .71" Hy, therefore there exists an
isomorphism of Hilbert spaces U : Ha ®,, Hy — H’ such that U((e, ®
a) @ x) = T"og(a)r = T"o(a)x for all n € N, a € A, x € H, (where
(en)nen is the canonical basis of £*(N)). Also U(S ® 1) = TU and for all
a,be A, neN, x € H

U(d(a) ®1)((e, ®b) ® x) = U((e,, ® a"(a)b) ® x)
=T"o(a"(a)b)x
=o(a)T"o(b)x
=o(a)U((e, @) ® x).

Since, the restriction of T' to H'* is a unitary operator v; by Corollary 1.3,
there exists a *-representation 7’ : Ay Xo_Z +— L(H ') such that 7' o h
is the restriction of o to H'* and 7/(u) = v. Then, the representation
7wz — U(x®1)U*+7'oq(x) satisfies the requirements of the theorem, where
q: 7Ty — AsXo 7 is the composition of the quotient map 7, — 7, /K(H )
with ¥~ of Corollary 1.4.

Now, as KC(H 4) is an essential ideal in 7, the representation = is faithful
if and only if its restriction to K(H ) is faithful, which happens if and only
if the representation a +— m(p ® a) is faithful, where p € K is a minimal
projection which, by a good choice of p means that a — 7(d(a)(1 — SS*)) =
o(a)(1 —TT") is faithful.

We finally come to the general case (B # C). We may embed £(H) in
some L(E) where E is a Hilbert space. Then, by the case B = C, there
exists a x-representation 7 : 7, — L(F) whose image is obviously contained

in £(H) C L(E). O

We end this section with a theorem showing that 7, is a full corner of a
crossed product. Let Cy(Z, A) be the C*-algebra of norm bounded sequences
(an)nez of elements of A under pointwise operations and infinity norm. For
each p € Z let j, : A — C,(Z, A) be the morphism such that j,(a) is the
sequence whose n'" term is zero if n < p and a"~?(a) if n > p. Let D be the
C*-subalgebra of C,(Z, A) generated by the elements j,(a) for a € A and
p € Z. The shift on Cy(Z, A) induces an automorphism S of D such that
B0 j, = jp-1, so that D is the smallest subalgebra of C,(Z, A) containing
Jo(A) and invariant under the shift.

Lemma 1.7. The C*-subalgebra Cy(Z,A) of Cy(Z,A) consisting of the
sequences vanishing at infinity is contained in D as an essential ideal. There
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is a x-isomorphism ¢ : D/Cy(Z,A) — A, such that p o qo jo, = h and
poqofl=ayxopoq, where q: D — D/Cy(Z,A) is the quotient map.

Proof. For a € A and p € Z, the only nonzero term of the sequence j,(a) —
Jpi1(a(a)) is a in p' position. Consequentely Cy(Z,A) C D and as D C
Cy(Z,A) = M(Cy(Z, A)), Co(Z,A) is contained in D as an essential ideal.

Note that D is the inductive limit of the algebras D, = Cy(Z,A) +
Jp(A). Therefore, a bounded sequence (a,),ez is in D, if and only if,
lim, . |la,|| = 0 and, for every € > 0, there exists n € Z such that,
for every m € N, |lap1m — a™(a,)]| < e.

Moreover, for every p € Z, let ¢, : D — A, be the map (a,)nez —
az? o h(a,). Clearly ¢, 0 jr = ar¥ if p > k. Therefore, for all z € D the
sequence ¢, (z) converges to some element ¢(z), when p — +o00. Obviously,
¢ is a x-homomorphism whose kernel contains Cy(Z, A) and whose image
is invariant under a., and contains h(A); therefore 1 is surjective. Let
T = (an)nez € ker p. For every e, there exists n € Z such that for every
m €N, |lantm —a™(ay)|| <e. Then

[Aan) |l =l © h(an)|

= llal" o h(an) — e(z)||

=l [l 0 h(a(a,) — apn) <.
Therefore limsup,,_,, . [[@™(a,)| < €, whence limsup,, ., [|Gnim| < 26,
It follows that ker ¢ = Cy(Z, A); therefore ¢ induces the desired isomor-
phism. |

Theorem 1.8. Letv € L({*(Z,A)) be the backward shift: i.e., v((xn)nez) =
(Yn)nez € 2(Z, A) where, for y, = x, 1. Moreover let p: D — L({*(Z, A))
be the x-representation such that p((an)nez) ((Tn)nez) = (anTy)nez. The pair
(p,v) is a covariant representation of (D, [3) and the corresponding represen-
tation of DXgZ is faithful. Identify DxzZ with its image in L((*(Z,A));
the projection P of ¢*(Z,A) onto (*(N,A) is a multiplier of DxsZ and
P(DxgZ)P is the Toeplitz algebra T,; it is a full corner in DxzZ.

Proof. Tt is clear that the pair (p,v) is a covariant representation of (D, 3).
The restriction of the corresponding representation of DxgZ to Co(Z, A)xgZ
is the canonical isomorphism of Cy(Z, A)x3Z with the algebra of compact
operators in (*(Z, A). As Cy(Z, A) is an essential ideal in D, Cy(Z, A)x5Z is
an essential ideal in DX zZ therefore the representation of D x3Z associated
with (p,v) is faithful.

As P is a multiplier of p(D), it is a multiplier of DxzZ. Moreover, (1 —
P)p(D) C K(¢*(Z, A)) so that (1 — P)(DxZ) C K(¢*(Z, A)); it follows that
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DXZ =T, + K(l*(Z, A)); as K(£*(N, A)) C P(Dx3Z)P and K(¢*(N, A)) is
a full corner in K(¢*(Z, A)), it follows that P(DxzZ)P is a full corner in
DNIBZ.

Now for all m,n € N, and a € A, we have v*"p o jo(a)v™ = P(v*"po
Jo(a)v™)P and acts on ¢*(N, A) as S™d(a)S*™. It follows that P(DxzZ)P
contains 7,. Now DxZ is generated by v¥p o j,(a) where p,k € Z, a €
A. Moreover, if n € N, p(j,_n(a) — j,(a"(a))) € K(*(N,A)) C 7,; it is
enough to show that P(v¥po j,(a))P € 7, when p > 0 and p — k > 0. But
vkpoj,(a) = v Ppo jy(a)v? and the result follows. O

*MM

2. KK-Groups.

In ([10]) it is proved that, when « is an automorphism, the canonical inclu-
sion of A in 7, induces an isomorphism at the K-theory level, and deduced
a six term exact sequence computing the K-groups of a crossed-product by
7Z. Here we prove that this holds in general, by showing that the same map
considered as an element of the group KK (A,7,) is invertible. As a con-
sequence of this fact, we obtain a generalized version of Pimsner-Voiculescu
exact sequence for endomorphisms.

Recall (cf. [6]) that if A and B are C*-algebras, an element of KK (A, B)
is given by the homotopy class of a triple (£, 7, F'), where £ is a Z/2Z-
graded Hilbert B-module, 7 : A — L(€) is a *-representation of A on £(€)
as degree zero operators, and F' € £(€) has degree 1 such that for all a € A,
[r(a), F| € K(&), m(a)(F — F*) € K(€) and 7(a)(1 — F?) € K(E).

Given a s-homomorphism ¢ : A — B we denote by [¢]| the element of
KK(A, B) given by the class of (B, ¢,0).

We keep the notation of the first section. In particular d : A — 7, is the
embedding of A into 7,,. Set £© = (*(N, A) and let £ = (2(N\ {0}, A) be
the subspace of £© with zero in the first coordinate. Let Q : £© — £M) be
the orthogonal projection. Let £ denote the Z/2Z-graded Hilbert A-module
EO g eW,

By Theorem 1.6, there is a #-representation of 7~ : T3 — L(EW) such
that 7~ o d is the restriction of d to the invariant subspace E® of £() and
7 (5) = QSQ = SQ. In fact 7~ (x) = S7,(x)S* where 7, : 7, — 7, is the
map induced by o : A — A. Let w: 7, — L(€) be the x-representation such
that for z € 7,,, £ € €O n € €W we have 7(z)(€,n) = (z€, 7 (z)n). Let
F € L(€) be defined for £ € £ n e D by F(£,1) = (n, Q).

Lemma 2.1. The triple (€, 7, F) defines an element of KK(7,, A).

Proof. Clearly F = F* and 1 — F? is the projection (¢,7) — ((1 —Q)&,n), so
that (1 — F?)7, C K(£). If a € A, then 7o d(a) and F commute. Moreover
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(F'7(S) = m(S)F)(&,m) = (Sn — Sn,QSE — SQE) = (0,5(1 — Q)E), so that
©(S)F)T, C K(£). O

Definition 2.2. We denote by [d] the class of the morphism d in KK (A, 7,,)
and by [ the class of the triple (€, 7, F) in KK(7,,A).

Theorem 2.3. We have [d|®@7,0 =14 € KK(A,A) and R4 [d] = 174 €
KK(7,,7.,). In particular, the C*-algebras A and 7T, are KK -equivalent.

Proof. Here the Kasparov products are easily computed: We have [d]|®7,0 =
d*(8) and 8 ®4 [d] = d.(B). Since m o d commutes with F and F is a self
adjoint partial isometry it follows that the class of (£, mod, F') coincides with
the class of ((1—F?)E,i,0) where 4 is the restriction of rod to (1—F?)€ = A
and is therefore given by the identity map A — A = K(A), hence d*(5) = 14.
Now d.(3) is given by (F,o,G) where F = £ ®4 7,, G = F ® 1 and,
for all x € 7., o(r) = w(x) ® 1. Therefore F© = (?(N,7,), FV =
2(N\ {0},7.), 0 = 0@ @ o™ where 0 : T, — L({*(N,7,)) and o :
7. — L(3(N\ {0},7,)) are defined by ¢@(d(a))¢(n) = d(a”(a))é(n) for
a€ Aand 09 (9)é(n) =&(n—1)if n>iand c@(S)¢(i) =0 (i =0,1).
For each t € [0, 5] let T, € L(F®) be defined by

fn_l if n Z 2
(T3€)(n) = { (cost)&, if n=1
(sint)SE&y if n=20.

Then,

. B §n+1 lf n Z 1
(T7)(n) = {(cos )& + (sint)S*& it n=0.

One checks immediately that T} is an isometry such that ¢ (d(a))T; =
T,0®(d(a(a))) for every a € A. Hence, by Theorem 1.6, there exists a *-
representation o\ : T, — L£(F©) defined by 04(S) = T} and ¢\” (d(a)) =
o©(d(a)). Moreover, for every z € T, 0\ (z) — 0©® € K(F©®). Conse-
quentely, (F, o e oM Q) is a homotopy connecting the elements d.(3)
and (F, JT(FO/)z @V Q).

Now F© admits the decomposition F© = T, & FU) which is invari-
ant under 07(:)/)2. It follows that (F, Jfro/)Z ® oW, Q) is the sum of 17, and a
degenerate element. We conclude that d.(8) = 17, . 1
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Lemma 2.4. Let 6 : A — T, be defined by 0(a) = d(a)(1 — SS*). Then,
Ol@r, B=14—[a) e KK(A,A).

Proof. The element [0] @7, f = 0*(3) is defined by (£, 706, F). Given ¢ €
E© = (2N, A) we have (7 00(a)¢)(n) = m(d(a)(1 — SS*))é(n) =0ifn #0
and (70 60(a)£)(0) = a£(0). On the other hand, if £ € £M = (2(N\ {0}, 4),
then (mof(a)f)(n) = w(d(a)(1—55%))&(n) =0if n # 1 and (mof(a)f)(1) =
a(a)&(1). Hence, up to a degenerate module 6*(f3) is represented by the
triple (£, 1, 0) where £(© = £'® = A and, for a € A, p(a) is given by the

matrix = <g oz(aa)>' |

Using exactness of Connes-Higson’s FE-theory ([2]), Theorem 2.3 to re-
place 7, by A in the exact sequence of E-groups associated with the ex-

tension of C*-algebras of Theorem 1.5 and Lemma 2.4 to compute the map
from E (D, A) (resp. E(A, D)) into itself, we get:

Theorem 2.5. Let A, «, and a be as in 1.6. Then we have exact sequences
of Connes-Higson’s E-groups

E(D,4) =% E(D,A) — E(D,Axxa_7)
T l

Ei(D, AxXonsZ) «— E(D,A) =% Ey(D,A)

and
E(A,D) ©% E(A,D) «— E(Axxa_Z,D)
l T
Ey(AxXasZ, D) — Ei(A,D) =% E,(A,D).
Remarks 2.6.

(a) When « is an automorphism, we recover Pimsner-Voiculescu’s exact
sequences ([10]).

(b) The same result holds of course with the “KK"™’-groups of [11]
instead of E-groups.

(¢) We may compare the two Toeplitz extensions comming from « and
Q- We get a diagram of the form:



326 M. KHOSHKAM AND G. SKANDALIS

E(D,A) =% E(D,A)
/! N\
Ei(D, As¥ancZ)  h. | n | E(D,Auxoo )

N\ /!

E(D,Ay) '=*3" E(D,T,_)
for which both top and bottom lines are exact. It follows in particular that
h, induces an isomorphism from the kernel of 1 — «, onto the kernel of
1 — o« and from the cokernel of 1 — o, onto the cokernel of 1 — o, .. Note
that when D = C, the group E(D, A.) = K(As) is the inductive limit of
(Ko(A), o) and it is clear that h, induces isomorphisms at these kernel and
cokernel levels.

3. Semigroup of Endomorphisms.

In this section we define the Topelitz algebra associated with a semigroup of
endomorphisms of a C*-algebra A and formulate the corresponding Toeplitz
extension.

By a semigroup of endomorphisms of a C*-algebra A we mean a mor-
phism « : ¢t — o' from the (additive) monoid R, to the monoid End(A) of
endomorphisms of a A satisfying o = id4 and ¢t — a'(a) is continuous for
every a € A. As «, is a morphism for all s,¢t € R, we have o't* = o' o a®.

Note that we have:

Lemma 3.1. Let (o').cr, be a semigroup of endomorphism of a C*-algebra
A. If o' is an automorphism of A for some t > 0, then o® € Aut(A) for
every s € R,.

The continuous analogue of the Toeplitz algebra of Section 1 is defined as
follows.

Let m, : A — L(L*(Ry)® A) be defined by 7, (a){(t) = a'(a)(t) for every
e L’ (R,)® A= L*R,,A) and every a € A. Let S; € L(L*(R,) ® A) be
defined by (S:€)(s) =&(s —t) if s >t and (S:€)(s) =0if s < t.

Clearly (S;)icr, is a semigroup of isometries of £(L*(R..)). Moreover, for
every a € A and every t € R, we have m,(a)S, = S;m,(a‘(a)).

It follows that the integrals [;°[;Ssma(a(s, t))S; dsdt where (s, t) — a(s, )
is a continuous function from R, x R, to A with compact support form a
x-subalgebra of L(L*(R,) ® A).

Definition 3.2. Let A and a be as above. The associated Toeplitz algebra,
denoted by 7, is the closure in £(L*(R) ® A) of the algebra formed by the
integrals

// Ssmal(a(s,t))S; dsdt
0 Jo
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where (s,t) — a(s,t) from Ry x R, to A is continuous with compact sup-
port.

Remarks.

(a) By density of continuous functions with compact support in L*-func-
tions, for every a € L*(Ry x Ry; A), [ Sima(a(s,1))S, dsdt € T,.

(b) Let b:t— b(t) be a continuous function from R, to A with compact
support; for s,t € RT set a(s,t) = o’(b(s — t)) when ¢ < inf(1,s) and
a(s,t) = 0 otherwise. Then

/0 OO/O Sra(a(s, £)S; dsdt — /O dt </ wSSSjwa(b(s—t))ds>
- /O S (b(s)) ds.

It follows that [;Ssma(b(s))ds € T,. Clearly 7, is the C*-subalgebra of
L(L*(R,) ® A) generated by these elements.

As in the case of a single endomorphism we have:

Proposition 3.3. The Toeplitz algebra T, contains the ideal of compact
operators of L*(Ry) ® A.

Proof. Set V.=1—2 [“e"'S, dt. It is an isometry and the kernel of V*" is
formed by the functions ¢ — e *P where P is a polynomial of degree less
than n. It follows that 7, contains the elements kr,(a)k’ for every k, k' €
K(L*(R;)) and a € A. Let k € K(L*(R;)) and a € A; by continuity of the
mapping t — a'(a) given € > 0 there exists n > 0 such that ||a'(a) —a|| < e
whenever ¢t < 7. But we can choose z,y € K(L*(R,)) such that k = zy
and z has support in [0,7]. It follows that ||z7,(a)y — k ® a|| < e, whence
k®acT,. O

Next we show that 7, is a full corner of an appropriate crossed product.

Let A, be the C*-algebra as defined in section 1 corresponding to the
endomorphism o' of A, and let h : A — A, be the canonical map. Then a!
induces an automorphism on A, which we denote by al . Since a'oa’ =
a’ o o' each o' induces an endomorphism, of_ of the algebra A.,. Hence,
by Lemma 3.1 we obtain an action of R on A, corresponding to the family
(o, )ter, which will be denoted by av.

Let Cy(R, A) be the C*-algebra of bounded functions from R to A. Let
D C Cy(R;A) be the subalgebra of elements a € Cy(R,A) such that
lim; ., ||a(t)|| = 0, and for every ¢ > 0, there exists ¢ € R such that
for every s > 0, ||a(s +t) — a®(a(t))]| <e. Let §: R — Aut (D) be defined
by (8'f)(s) = f(s —t). Clearly D contains C,(R, D) as an ideal.
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Lemma 3.4. There exists a x-isomorphism ¢ : D/Cy(R, A) — A, such
that for every a € D we have ¢ o q(a) = lim;_. ., a ' o h(a(t)), where q :
D — D/Cy(R, A) is the quotient map.

Proof. Tt is easy to see that for every a € D, the function t — a_ o h(a(t))
admits a limit when ¢t — 4o00. It follows that ¢ is well defined on the
quotient. For each a € A let a(t) = a(a). Then, @ € D and lim; ., a0
h(a(t)) = h(a) . It follows that ¢ is surjective.

Moreover, if a € ker ¢ o ¢, for every e, there exists t € R such that for
every s € Ry, |la(s +t) — a®(a(t))|| < e. Choose t such that ||h(a(t))| =
lasloh(a(t)) —poh(a)|| < e. Therefore limsup,_,, . [|a®(a(t))| < e, whence
limsup,_,. . [la(s +t)|| < 2e. It follows that ker ¢ o ¢ = Cy(R, A). Hence ¢
is an isomorphism. [l

Theorem 3.5. Letv, € L(L*(R, A)) be defined by (v,:€)(s) = &(s+t). More-
over let p: D — L(L*(R, A)) be the *-representation such that (p(a)€)(s) =
as&s. The pair (p,v) is a covariant representation of (D, ) and the corre-
sponding representation of DxgR is faithful. Identify DxgR with its image
in L(L*(R, A)); the projection P of L*(R, A)onto L*(R,, A) is a multiplier
of DxgZ and P(DxgR)P is the Toeplitz algebra T,; it is a full corner in
DxgR.

Proof. Tt is clear that the pair (p,v) is a covariant representation of (D, 3).
The restriction of the corresponding representation of D xR to Cp(R, A)xzR
is the canonical isomorphism of Cy(R, A)xzR with the algebra of compact
operators in L*(R, A). As Cy(R, A) is an essential ideal in D, Cy(R, A) xR is
an essential ideal in D xgR therefore the representation of DxgR associated
with (p,v) is faithful.

Let f be a continuous function on R such that f(t) = 1 if ¢ < 0 and
f(t)=01if ¢t > 1. As f is a multiplier of D and fD C Cy(R, A), f defines a
multiplier of DxgR and f DxsR C K(L*(R, A)). As (1 — P) is a multiplier
of K(L*(R, A)) and (1 — P) = (1 — P)f, it follows that P is a multiplier of
DxsR and (1 — P)DxsR C K(L3(R, A)). As K(L2(R., A)) C P(DxsR)P,
it follows that P(DxzR)P is a full corner in DxgR.

Let Dy C D be the set of b € D such that for all u > 0, b(u) = a*(b(0)).
Let (s,t) — a(s,t) be a continuous function from R, xR, to A with compact
support. Let b : R, x R, — Dgy be a function such that for every s,t €
R,, b(s,t)(0) = a(s,t). Then

/ / Vi Pb(s,t)v, dsdt € P(DxgR)P
0 Jo
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and acts on L?*(R,, A) as

/ / Soma(als, t)S: dsdt.
0 0

It follows that P(DxgR)P contains 7.

Now DxgR is generated by integrals over s,t of terms of the form
vsBt(a(s,t)) = ve_ra(s,t)v,, where for s,t € R, a(s,t) € Dy. Moreover,
since UBy(D,) is dense in D and [3;(Dy) increases with ¢, we may assume
t>0and ¢t > s. Moreover [°[* v, ,(1—P)b(s,t)v, dsdt € K(L*(R, A)) and

hence P (foooffoovs,tb(s, t)vy dsdt) P is the sum of

P (/OOO/;UHQ — P)b(s,t)vr dsdt) P e K(LA(R,, A))

and

oo pt
/ / vs_ ¢ Pb(s, t)v, dsdt € T,
0 —00
and the result follows. |

Remark. Note that any isomorphism of L?(R, A) with L*(R,, A) which
is the identity on L*((k,+00); A) (for k large enough) obviously induces an
isomorphism between DxgR and 7,.

Corollary 3.6. The quotient algebra T, /K(L*(R, A)) is naturally isomor-
phic with AsXasoR. In other words, there is an exact sequence

0— K(L*(Ry, A)) — T — Ao XaoR — 0.

Proof. By Theorem 3.5, since (1 — P)DxgR is contained in K(L*(R, A))
it follows that 7, + K(L?*(R, A)) = DxgR. Hence, 7,/K(L*(Ry,A)) is
canonically isomorphic to DxsR/K(L*(R, A)) = DxgR/Co(R, A)xR; it is
therefore isomorphic to (D/Cy(R, A))x, R, ie., to AxwXaooR (see Lemma
3.4). O

Let us now come to K-theoretic considerations.

Theorem 3.7. The morphism h : A — A, is an isomorphism in E-
theory. The C*-algebras D and T, are contractible in E-theory, i.e., for
any C*-algebra B the groups E(7,,B), E(D,B),E(B,7,) and E(B, D) are
trivial.

Proof. Set Dy = D/Cy((—00,0), A). The exact sequence 0 — Cp(R;, A) —
D, — A, — 0 is an asymptotic morphism ¢ from A, to A.
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Note that for every C*-algebra B, the identity element of the ring E(B, B)
is given by the asymptotic morphism associated with the exact sequence
0— Cy(Ry,B) - C(Ry U{+0},B) - B — 0.

We have a commuting diagram

0— Co(Ry,A) - C(RLU{+0},A) — A —0

| l |

0— Co(Ry,A) — D, — A —0

d l a

0—Co(Ry,A) = C(Ry U{+00},A) — Ao — 0

where 3 : Co(Ry,4) — Co(Ry, A) is given by (B(f))(t) = a:(f(t)) for
every continuous function f : Ry — A and A’ : Co(Ry, A) — Co(R4, As)
is given by (R'(f))(t) = hi(f(t)) for every continuous function f : R, —
A (recall that hy = a_' o h). As (8 is homotopic to the identity among
Co(R, )-linear endomorphisms of Cy(R,, A), the compositions h*(yp) defines
the identity element of E(A, A); as b’ is homotopic to the map f — ho f
among Cj(R,)-linear homomorphisms of Cy(R,, A) into Co(Ry, Ax), hu(p)
defines the identity element of E (A, Aw).

It follows from the six term exact sequence of FE-theory that D is E-
contractible. By Connes’ analogue of the Thom isomorphism it follows
that DxR is E-contractible and by Theorem 3.5, 7, is also E-contractible.

U
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