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LOOP ALGEBRAS, GAUGE INVARIANTS AND A NEW
COMPLETELY INTEGRABLE SYSTEM

M. Quinn and S.F. Singer

One fruitful motivating principle of much research on the
family of integrable systems known as “Toda lattices” has
been the heuristic assumption that the periodic Toda lattice
in an affine Lie algebra is directly analogous to the nonpe-
riodic Toda lattice in a finite-dimensional Lie algebra. This
paper shows that the analogy is not perfect. A discrepancy
arises because the natural generalization of the structure the-
ory of finite-dimensional simple Lie algebras is not the struc-
ture theory of loop algebras but the structure theory of affine
Kac-Moody algebras. In this paper we use this natural gen-
eralization to construct the natural analog of the nonperiodic
Toda lattice. Surprisingly, the result is not the periodic Toda
lattice but a new completely integrable system on the periodic
Toda lattice phase space. This integrable system is prescribed
purely in terms of Lie-theoretic data. The commuting func-
tions are precisely the gauge-invariant functions one obtains
by viewing elements of the loop algebra as connections on a
bundle over S1.

1. Introduction.

Toda lattice models belong to a general class of integrable systems associated
to vector space splittings of Lie algebras. Suppose that a Lie algebra g
(with corresponding connected Lie group G) splits as a vector space into
g = k+b, where k and b are subalgebras (corresponding to subgroups K and
B respectively). One can naturally identify g∗ ∼= k∗+b∗, and hence coadjoint
orbits of B can be thought of as sitting inside g∗. The invariant functions
on g∗, when restricted to a coadjoint orbit of B, give a family of Poisson-
commuting functions on that orbit and generate flows there described by Lax
pair equations; this is the content of the Kostant-Symes involution theorem
[Ko],[Sy]. And so, provided the dimensions are right, one can generate
interesting completely integrable systems on the coadjoint orbits of B. The
classical Toda lattices arise in this way from various splittings of sl(n,R)
and sl(n,C); their construction generalizes to arbitrary simple Lie algebras
(see for instance [Pe]).

377

http://nyjm.albany.edu:8000/PacJ/
http://nyjm.albany.edu:8000/PacJ/1997/v181no2.html
http://nyjm.albany.edu:8000/PacJ/1997/


378 M. QUINN AND S.F. SINGER

In the present paper the algebra considered is a central extension L̃g of an
infinite dimensional loop algebra associated to a finite-dimensional simple Lie
algebra g. In Section 2 we review a well-known construction (e.g. [GW2],
[RS], [RSF]) of the real symmetric periodic Toda phase space as a coadjoint
orbit, obtained from a splitting of L̃g in the manner described above. Because
of the remarkable fact that coadjoint orbits in (L̃g)∗ are parameterized by
conjugacy classes in the finite dimensional group G, a natural choice of
invariant functions on (L̃g)∗ is available via the class functions of G. We
give a construction of these invariant functions in Section 3, and in Section 4
address a technical issue that ensures the generic non-degeneracy of these
functions on the Toda phase space. In Section 5 we show that this family of
functions generates a completely integrable system on our phase space and
that the Hamiltonian of the periodic Toda lattice is not contained in this
family. Finally, we have included a glossary of notation at the back.

The idea of using conjugation-invariant functions on G to construct a
family of commuting functions, the proof of the existence of loop-regular
elements in the Toda phase space and other results in Sections 3 and 4 were
first presented in Quinn’s thesis [Qu]. The authors wish to thank Victor
Guillemin, David Vogan and Allen Knutson for helpful conversations. Singer
gratefully acknowledges the support of the Bunting Institute of Radcliffe
College and ONR grant #N00014-89-J-3112.

2. Background.

In this section we fix some notation and review the definition of the Toda
phase space. The most difficult technical point is the construction (due
to Goodman and Wallach [GW]) of an extended loop algebra that has an
associated group, as it is not true that every infinite-dimensional Lie algebra
has an associated Lie group.

First we recall a few standard facts from Lie theory. See for example
[H] or [Kn] for the finite dimensional theory; for facts concerning infinite-
dimensional Lie algebras and groups see [K] and [PS]. Take g to be a simple
finite-dimensional Lie algebra over C of rank `, with corresponding connected
and simply-connected Lie group G. Let B(·, ·) denote the Killing form on
g. Fix a Cartan subalgebra h ⊂ g, with corresponding Cartan subgroup H,
and let ∆ denote the set of roots associated to the pair (g, h).

Pick a set Π = {α1, . . . , α`} of simple roots and let ∆+ denote the corre-
sponding positive roots. Let α∗ denote the highest root so that α∗ =

∑
kiαi

for some positive integers ki. Choose a Chevalley basis {Eα}α∈∆∪{Hαi}αi∈Π

for g, so that Eα belongs to the α rootspace, and Hα = [Eα, E−α] is nor-
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malised by α(Hα) = 2. Then the real span of

{iHα, Eα − E−α, i(Eα + E−α) : α ∈ ∆}

gives a compact real form k of g. Let K be the corresponding compact
real subgroup of G. Then one has Cartan decompositions g = k + ik and
G = K exp(ik). Let a be the real span of {Hα}α∈∆, and n the complex span
of {Eα}α∈∆+ . Take A and N to be the corresponding subgroups of G. Then
one has Iwasawa decompositions g = k + a + n and G = KAN. We follow
convention in letting B denote the group AN and letting b denote its Lie
algebra.

As an example consider sl(n,C) = su(n) + an + nn, where an denotes
the algebra of real diagonal traceless n × n matrices, and nn is the algebra
of strictly upper-triangular n × n matrices. The corresponding group fac-
torization is SL(n,C) = SU(n)AnNn, where An is the group of diagonal
n× n matrices of determinant one with real positive entries, and Nn is the
unipotent group of upper-triangular matrices with 1’s on the diagonal. It
follows that Bn is the group of upper triangular matrices of determinant 1
with real, positive diagonal entries.

In general G can be realized as a linear subgroup of SL(n,C) for some n, in
such a way that if g ∈ G has g = k(g)a(g)n(g) as its Iwasawa decomposition
in SL(n,C) then each factor belongs to G and this factorization corresponds
to the Iwasawa decomposition in G. (See [H, p. 257] for a discussion of
Iwasawa decompositions.) We fix such a linear embedding of G, and identify
g with the corresponding Lie subalgebra of sl(n,C).

We describe now some specific infinite-dimensional groups and algebras
for which there are decompositions directly analogous to the ones described
above (the construction is taken from [GW]). Suppose that w is a symmetric
weight function on Z, i.e., w is a positive function on the integers such that
w(k + m) ≤ w(k)w(m), and w(k) = w(−k). In addition suppose that w
is of non-analytic type: limk→∞w(k)1/k = 1, and is rapidly increasing at
infinity: limk→∞ |k|−1/λ logw(k) =∞ for some λ ∈ (1, 2). (For example take
w(k) = exp(|k| 23 ).) Take Aw to be the space of functions f(z) =

∑
k akz

k on
S1 satisfying

‖f‖w :=
∑
k∈Z
|ak|w(k) <∞,

and let Mn(Aw) denote the Banach algebra of n×n matrices with entries in
Aw, with norm given by ‖T‖w := {∑i,j ‖Ti,j‖2w} 1

2 . Define

SLn(Aw) = {g ∈Mn(Aw) : det(g(z)) = 1},
SUn(Aw) = {g ∈ SLn(Aw) : g(z) ∈ SU(n) ∀z ∈ S1},
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Nn(Aw) =

g ∈ SLn(Aw) : g(z) =
∑
k≥0

akz
k, a0 ∈ N

 .

Each of these sets is a Banach-Lie group, with corresponding Banach-Lie
algebra

sln(Aw) = {x ∈Mn(Aw) : tr(x) = 0},
sun(Aw) = {x ∈ sln(Aw) : x(z) ∈ su(n) ∀z ∈ S1},

nn(Aw) =

x ∈ sln(Aw) : x(z) =
∑
k≥0

akz
k, a0 ∈ n

 .
One has Cartan and Iwasawa decompositions analogous to the finite-dimen-
sional case:

sln(Aw) = sun(Aw) + i sun(Aw) = sun(Aw) + an + nn(Aw)

SLn(Aw) = SUn(Aw) exp(i sun(Aw)) = SUn(Aw)AnNn(Aw).

Now define

Lg = {x ∈ sln(Aw) : x(z) ∈ g ∀z ∈ S1},
LG = {g ∈ SLn(Aw) : g(z) ∈ G ∀z ∈ S1}.

LG is a complex Lie subgroup of SLn(Aw) with Banach-Lie algebra Lg. The
algebra and group decompose as:

Lg = k̃+ ĩk = k̃+ a+ ñ

LG = K̃ exp(ĩk) = K̃AÑ

where k̃ = Lg ∩ sun(Aw), ñ = Lg ∩ nn(Aw), K̃ = LG ∩ SUn(Aw) and Ñ =
LG ∩Nn(Aw). Define b̃ = a+ ñ and B̃ = AÑ so that we have

Lg = k̃+ b̃, LG = K̃B̃.

Note that elements of B̃ are analytic functions on the open unit disk whose
power series converges absolutely to a smooth function on the unit circle.

From the Killing form B(·, ·) on g one obtains a non-degenerate bilinear
form on Lg by integration over S1, which by an abuse of notation we also
denote B(·, ·):

B(φ, ψ) =
1

2π

∫ 2π

0

B(φ(eiθ), ψ(eiθ)) dθ.
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Let D = z d
dz

. This derivation gives a natural 2-cocycle ω on Lg defined by
ω(φ, ψ) = B(Dφ,ψ). This C-valued skew-symmetric bilinear form can be
used to construct a central extension of Lg, which we denote L̃g.

Goodman and Wallach [GW] have shown that, provided the weight func-
tion w is of non-analytic type and is rapidly increasing at infinity, there
exists a Banach-Lie group whose Lie algebra is L̃g. This group is a central
extension of LG by C×, and we denote it L̃G. One also has Cartan and
Iwasawa decompositions:

L̃g = k̂+ îk = k̂+ â+ n̂

L̃G = K̂ exp(îk) = K̂ÂN̂.

K̂ is a central extension of K̃ by S1, Â = AR+, and N̂ ∼= Ñ, (correspondingly
k̂ = k̃+ iR, â = a+ R, and n̂ ∼= ñ).

Set b̂ = â+ n̂ and B̂ = ÂN̂. We shall apply the Kostant-Symes approach
to the splitting L̃g = k̂+b̂, and construct the Toda phase space as a coadjoint
orbit of B̂.

The next step is to calculate the coadjoint action of L̃G on L̃g; we follow
the treatment in [PS]. Because L̃G is a central extension its coadjoint action
comes from an action of LG. The adjoint action of Lg on L̃g is

ãdφ
(
ψ, q

)
=
(

adφ ψ, ω(φ, ψ)
)
,

and this in turn comes from an adjoint action of the group LG on L̃g. If
γ ∈ LG and (ψ, q) ∈ L̃g one has

Ãdγ
(
ψ, q

)
=
(

Adγ ψ, q + B(γ−1Dγ,ψ)
)
.

From now on we shall treat L̃g = Lg+C as an algebra over R. We introduce
a nondegenerate real-bilinear pairing 〈 ·, · 〉 on L̃g defined by

〈 (φ, p), (ψ, q) 〉 = Re
{
B(φ, ψ) + pq

}
.

Using this form one can embed L̃g ⊂ (L̃g)∗ as a real subspace, and the image
of this embedding is invariant under the co-adjoint action of LG. In fact for
γ ∈ LG and (φ, p) ∈ L̃g ⊂ (L̃g)∗, the co-adjoint action of γ on (φ, p) is given
by

Ãd
∗
γ

(
φ, p

)
=
(

Adγ φ+ pγDγ−1, p
)
.

This action is sometimes called the gauge action of γ ∈ LG on (φ, p) ∈ L̃g.
If two elements of L̃g are conjugate under this action we shall refer to them
as being gauge-conjugate.



382 M. QUINN AND S.F. SINGER

Finally, we are in a position to construct the (symmetric, real, periodic,
tridiagonal) Toda phase space as a coadjoint orbit of the group B̂. From the
splitting L̃g = k̂+ b̂ it follows that L̃g

∗
= k̂∗ + b̂∗. Using the form 〈 ·, · 〉 one

has k̂⊥ ⊂ Ann(k̂) ∼= b̂∗, and this subspace is invariant under the co-adjoint
action of B̂ for if γ ∈ B̂ and (φ, p) ∈ k̂⊥ the co-adjoint action of γ on (φ, p)
is given by

Πk̂⊥ Ãd
∗
γ(φ, p).

Here Πk̂⊥ denotes projection onto k̂⊥ along b̂⊥. One can easily verify that
L̃g = k̂⊥ + b̂⊥ where k̂⊥ = îk and b̂⊥ = ib̂.

The symmetric periodic Toda phase space is defined to be the orbit of B̂
through the element (φo, 1) ∈ k̂⊥ where

φo(z) =
∑
i

(Eαi + E−αi) + Eα∗z
−1 + E−α∗z,

(recall that α∗ =
∑
kiαi is the highest root of g). This orbit consists of all

elements of the form (φ, 1) with

φ = H +
∑
i

qi(Eαi + E−αi) + q∗(Eα∗z
−1 + E−α∗z),

where qi, q∗ > 0 satisfy q∗ · ∏ qkii = 1, and H belongs to a. The periodic
Toda Hamiltonian is H(φ) = 1

2
B(φ, φ).

We shall apply the involution theorem of Kostant and Symes and the
factorization theorem of Adler and van Moerbeke and Reyman and Semenov-
Tian-Shansky in this infinite dimensional setting. For the details of these
theorems see [RS]. Because L̃g = k̂ + b̂ is a splitting of L̃g as a vector
sum of subalgebras and because (0, 1) ∈ L̃g

∗
satisfies 〈(0, 1), [̂k, k̂]〉 = 0 and

〈(0, 1), [b̂, b̂]〉 = 0 we can apply the involution theorem to show that the
restrictions of any coadjoint-invariant functions on L̃g to the Toda phase
space will commute in the standard Poisson structure. Furthermore, the
factorization theorem tells us that if F is a coadjoint-invariant function then
the Hamiltonian flow associated to F on the Toda phase space is given by

(φ(t), 1) = Ãd
∗
b(t)(φ(0), 1),

where exp t∇F (φ(0), 1) = k(t)−1b(t) with k(t) ∈ K̂ and b(t) ∈ B̂.

3. Loop–regularity and invariant functions.

We shall construct a family of Poisson-commuting functions on the Toda
phase space by an application of the Kostant-Symes involution theorem.
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To do so we require invariant functions on (L̃g)∗ (or, more precisely, on
L̃g ⊂ (L̃g)∗). Roughly speaking, coadjoint orbits in L̃g ⊂ (L̃g)∗ correspond
to conjugacy classes in G, and so a natural way to get invariant functions
on L̃g is via the class functions of G. We make this precise as follows.

Definition 3.1. Given (φ, p) ∈ L̃g such that p 6= 0 the differential equation

ḟ(t)f(t)−1 =
1
ip
φ(eit), f(0) = Id,

where f : R→ G is called the monodromy equation associated to (φ, p). The
monodromy M(φ,p) of the element (φ, p) ∈ L̃g is defined by M(φ,p) = f(2π),
and we call

M : L̃g→ G : (φ, p) 7→ M(φ,p)

the monodromy map. An element (φ, p) ∈ L̃g will be said to be loop-regular
if its monodromy is regular, i.e. if the normalizer of M(φ,p) in G is conjugate
to the Cartan subgroup H.

The monodromy equation can be thought of as describing the flow of a
time- and parameter-dependent vector field on a space of matrices. (Recall
that we have fixed a matrix representation of g and G.) Since the parameter
space, namely L̃g, is a Banach space it follows, using standard results from
the theory of differential equations, that the flow depends smoothly on L̃g
and that the monodromy map is smooth. See for example [L]. Thus the
loop-regular elements form an open subset of L̃g, and in Section 4 we show
that they are dense in the Toda phase space.

As an aside we also note that for fixed (φ, p) a solution f(t) to the mon-
odromy equation exists for all t ∈ R. To see this consider the trivial principal
bundle G ↪→ S1×G→ S1 (whose space of connections can be identified with
Ω1(S1) ⊗ g ∼= C∞(S1, g)). The horizontal lift of the curve c(t) : t 7→ exp(it)
through (1, Id) determined by the connection 1

ip
φ is given by (c(t), f(t))

where f(t) solves the monodromy equation for (φ, p). From the theory of
principal bundles if follows that the solution f(t) exists for all t ∈ R.

The following proposition from [PS] gives a parametrization of the gauge
co-adjoint orbits and allows one to describe the invariant functions on L̃g ⊂
(L̃g)∗.

Proposition 3.1 [PS]. The monodromy classifies the gauge co-adjoint
orbits in the following sense:
(1) If γ ∈ LG, then the monodromy of Ãd

∗
γ(φ, p) is γ(1) M(φ,p) γ(1)−1.
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(2) If M(φ,p) and M(φ̃,p) are conjugate in G, then (φ, p) and (φ̃, p) are
gauge-conjugate in L̃g. Specifically, if M(φ,p) = gM(φ̃,p) g

−1 for some
g ∈ G, and if f and f̃ solve the monodromy equation for (φ, p) and
(φ̃, p) respectively, then (φ, p) = Ãd

∗
γ(φ̃, p) where γ(eit) = f(t)gf̃(t)−1.

Hence for fixed p 6= 0, the monodromy map gives a 1-1 correspondence be-
tween coadjoint orbits of LG in Lg × {p} ∈ L̃g and conjugacy classes of
G.

A simple corollary to this proposition is that loop-regular elements can
be conjugated to h× C× under the gauge action:

Corollary 3.1. For any loop-regular (φ, p) there exists γ ∈ LG and a
constant loop µ ∈ h ⊂ Lg such that (φ, p) = Ãd

∗
γ(µ, p).

Proof. By loop-regularity M(φ,p) is conjugate to some x ∈ H. Choose ξ ∈ h
such that x = exp ξ and set µ = ip

2π
ξ. By construction M(µ,p) = x, so

that M(φ,p) and M(µ,p) are conjugate in G. Hence by the second part of
Proposition 3.1, (φ, p) and (µ, p) are gauge-conjugate. I.e. there exists γ ∈
LG with (φ, p) = Ãd

∗
γ(µ, p).

In the case of loop-regular elements in the Toda phase space the same
argument can be strengthened to the following:

Corollary 3.2 [Qu]. For any loop-regular (φ, 1) in the Toda phase space
there exists γ ∈ K̃ ⊂ L̃G, and µ ∈ a ⊂ h, such that (φ, 1) = Ãd

∗
γ(µ, 1).

Proof. The monodromy equation for (φ, 1) is ḟ(t)f−1(t) = 1
i
φ(eit). Since

φ(z) ∈ ĩk, this shows that f(t) ∈ K for all t, and in particular the monodromy
f(2π) = M(φ,1) is in K. By loop-regularity, and since K is the compact form
of G, M(φ,1) can be conjugated in K to an element of the maximal torus
H ∩K of K. Thus there exists k ∈ K and x ∈ H ∩K with M(φ,1) = kxk−1.

Choose ξ ∈ h∩k = ia such that x = exp ξ and set µ = i
2π
ξ. By construction

f̃(t) = exp t
2π
ξ solves the monodromy equation for (µ, 1), and M(µ,1) =

x is conjugate to M(φ,1). Hence (φ, 1) and (µ, 1) are gauge-conjugate by
Proposition 3.1, and specifically one has (φ, 1) = Ãd

∗
γ(µ, 1) where γ(eit) =

f(t)kf̃(t)−1. By construction µ ∈ a, and the loop γ has image in K, so
γ ∈ K̃ as required.

We now define a family of invariant functions on L̃g which, when restricted
to the Toda phase space, will give rise to a completely integrable system. We
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must first define a factorization. Given g ∈ G let k[g] denote the K factor
of g in the Cartan decomposition G = K exp(ik). Next, let Ψ1, . . . ,Ψ`

denote the characters of the irreducible representations corresponding to the
fundamental weights of G. Then dΨ1, . . . , dΨ` are independent at regular
values of G [St, p. 123], and because the fundamental weights occur in dual
pairs the characters occur in conjugate pairs. Thus their real and imaginary
parts give a collection of ` real-valued class functions on G which are also
functionally independent at regular values of G. We denote this collection
χ1, . . . , χ`.

Definition 3.2. For j = 1, . . . , `, define

Fj : L̃g→ R : (φ, p) 7→ χj
(
k
[
M(µ,p)

])
where (µ, p) is any loop in h× C gauge-conjugate to (φ, p).

For µ ∈ h one has M(µ,p) = exp( 2π
i
µ
p
), and k

[
M(µ,p)

]
= exp

(
2π
i

Πa µp
)
, so

that an equivalent expression for Fj is

Fj(φ, p) = χj

(
exp

(
2π
i

Πa
µ

p

))
,

whenever (φ, p) is gauge-conjugate to (µ, p). To see that Fj is well-defined
suppose that (µ, p) and (µ̃, p) are gauge-conjugate elements of h× C. Then
they are conjugate by an element of the affine Weyl group so µ̃ = w · µ+ pλ
for some w in the ordinary Weyl group, and λ in the coroot lattice. Since
exp(2πiλ) = Id and the Weyl group preserves a it follows that

exp
(

2π
i

Πa
µ̃

p

)
= exp

(
w · 2π

i
Πa
µ

p

)
= k exp

(
2π
i

Πa
µ

p

)
k−1

for some k ∈ K. Hence the functions Fj are well-defined and invariant under
the gauge action.

In order to analyze the flows induced by the functions Fj on the Toda
phase space we introduce a family of locally defined functions that are sim-
pler to work with. To construct these local functions we first show that
gauge-conjugation to h× C× is (locally) a well defined map.

Proposition 3.2. Fix any loop-regular (ψ, q) in L̃g and any (ξ, q) ∈
h×C× gauge-conjugate to (ψ, q). There exists a gauge-invariant loop-regular
neighborhood U ⊂ L̃g of (ψ, q), and a smooth gauge-invariant map

η : U → h× C×

such that η(ψ, q) = (ξ, q), and η(φ, p) is gauge-conjugate to (φ, p) for each
(φ, p) ∈ U .
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Proof. This proposition follows from the implicit function theorem for Ba-
nach manifolds. (See, for example, [AMR] for properties of Banach mani-
folds.) We sketch the argument.

Let Ψ = (Ψ1, . . . ,Ψ`) denote the vector of character maps corresponding
to the fundamental weights of g. Define F : L̃g× (h× C×)→ Cl × C by

((φ, p), (µ, r)) 7→ (
Ψ(M(φ,p))−Ψ(M(µ,r)), p− r

)
.

Then by hypothesis F ((ψ, q), (ξ, q)) = (0, 0), and one can easily check that
the partial derivative of F ((ψ, q), (ξ, q)) with respect to (ξ, q) is invertible,
(the loop-regularity of (ξ, q) is needed here). So by the implicit function
theorem there is a neighborhood Ũ of (ψ, q) and a smooth map η̃ : Ũ 7→ h×C×
such that F ((φ, p), η̃(φ, p)) = (0, 0), and η̃(ψ, q) = (ξ, q). Since (ξ, q) is
loop-regular its stabiliser in the affine Weyl group is trivial, and there is
a neighborhood of (ξ, q) in h × C× on which no two elements are gauge-
conjugate. Shrinking Ũ if necessary we can assume that η̃(Ũ) lies in such a
neighborhood. Now set U = Ãd

∗
LGŨ and define η : U → h × C× to be the

map which first gauge-conjugates (φ, p) ∈ U to Ũ , then maps to h× C× by
η̃. By construction η has the desired properties. (Note that since the set of
loop-regular elements is open in L̃g, we can without loss of generality take
all the open sets constructed to be loop-regular.)

Quinn has proved a stronger version of this result in his thesis: The map η
can be extended smoothly to the central extension of the algebra of smooth
loops in g [Qu]. In that case the theory of Banach manifolds does not apply,
and one needs the Nash-Moser implicit function theorem.

Let η̂ denote the composition of projection onto h with η. (For example,
in the proposition above η̂(ψ, q) = ξ.) We now define a family of gauge-
invariant functions on the set U constructed in Proposition 3.2.

Definition 3.3. For j = 1, . . . , `, define

Ij : U → R : (φ, p) 7→ Re
[
αj

(
η̂(φ, p)
p

)]
= αj

(
Πa
η̂(φ, p)
p

)
.

Take τ j ∈ a, j = 1, . . . , `, to be the dual basis to the simple roots, so that
αi(τ j) = δij. By construction

∑
k τ

kIk(φ, p) = Πa
η̂(φ,p)

p
, and so

Fj|U = χj

(
exp

(
2π
i

∑
k

τkIk

))
.

While this characterization of the Fj’s holds only locally, we use it to show
functional independence of the family.



LOOP ALGEBRAS 387

We finish this section with a calculation of the gradients of the functions
Ij. The following lemma makes the calculation relatively easy.

Lemma 3.1. Suppose (µ, p) is loop-regular and µ ∈ h. Then L̃g has the
vector space splitting

L̃g = [h× C]⊕ ãd
∗
Lg(µ, p),

and this splitting is orthogonal with respect to the form 〈 ·, · 〉.
Proof. To show that h×C and ãd

∗
Lg(µ, p) are orthogonal is straightforward.

Take any ν ∈ Lg and any (µ′, p′) ∈ h× C. Then〈
ãd
∗
ν(µ, p), (µ

′, p′)
〉

=
〈

(µ, p),−ãdν(µ′, p′)
〉

= −〈 (µ, p), ([ν, µ′], 0) 〉
= −Re B(µ, [ν, µ′]).

The last expression is zero by invariance of the Killing form, and because
both µ and µ′ lie in the commutative algebra h.

To show that h × C and ãd
∗
Lg(µ, p) together span L̃g it suffices to show

that given any (ψ, q) ∈ L̃g one can find ξ ∈ h, r ∈ C, and ν ∈ Lg such that

(ψ, q) = (ξ, r) + ãd
∗
ν(µ, p).

Suppose ψ =
∑
ψkz

k, and that ψk = ψok +
∑
α∈∆ ψ

α
kEα is the rootspace

decomposition of ψk in g, with ψok ∈ h. Then r = q, ξ = ψo0, and ν =
∑
νkz

k

with νk = νok +
∑
α∈∆ ν

α
kEα where

ναk =
−1

pk + α(µ)
ψαk , (k 6= 0) νok =

−1
pk
ψok.

(Note that loop-regularity of (µ, p) ensures that pk + α(µ) is never zero.)
νo0 ∈ h can be chosen arbitrarily. Thus [h× C]⊕ ãd

∗
Lg(µ, p) does span L̃g.

That h × C and ãd
∗
Lg(µ, p) intersect trivially now follows from their or-

thogonality, and the non-degeneracy of the form 〈 ·, · 〉. Hence as required
L̃g = [h× C]⊕ ãd

∗
Lg(µ, p).

For each αj ∈ Π take hj ∈ h to be the unique element satisfying αj(x) =
B(x, hj) for every x ∈ h. (Note in particular that hj ∈ a.) The gradient of
Ij is now straightforward to calculate:

Proposition 3.3. Let η and U be as in Proposition 3.2. Suppose (φ, p) ∈
U , γ ∈ LG and µ ∈ h, are such that (φ, p) = Ãd

∗
γ(µ, p) where η(φ, p) = (µ, p).

Then
∇Ij(φ, p) = Ãdγ

(
1
p
hj, − 1

p2
αj(µ)

)
.



388 M. QUINN AND S.F. SINGER

Proof. Because of the invariance of Ij one has ∇Ij(φ, p) = Ãdγ∇Ij(µ, p).
Take (ψ, q) ∈ L̃g and decompose it as (ψ, q) = (ξ, q) + ãd

∗
ν(µ, p), as in

Lemma 3.1, with ξ ∈ h and ν ∈ Lg. Then

〈 (ψ, q),∇Ij(µ, p) 〉 = 〈 (ξ, q),∇Ij(µ, p) 〉+
〈

ãd
∗
ν(µ, p),∇Ij(µ, p)

〉
.

Note that the second term is zero because of the invariance of Ij. The

first term is d
dt

∣∣∣∣
t=0

Ij(µ + tξ, p + tq), and since by construction η fixes a

neighborhood of (µ, p) in h× C,

〈 (ξ, q),∇Ij(µ, p) 〉 =
d

dt

∣∣∣∣
t=0

Re αj
(
µ+ tξ

p+ tq

)
= Re

(
1
p
αj(ξ)− qαj(µ)

p2

)
=
〈

(ξ, q),
(

1
p
hj,− 1

p2
αj(µ)

)〉
.

By the orthogonality of h× C and ãd
∗
Lg(µ, p) the last expression is equal to〈

(ψ, q),
(

1
p
hj,− 1

p2αj(µ)
) 〉

, and we get ∇Ij(µ, p) =
(

1
p
hj,− 1

p2αj(µ)
)
, which

completes the proof.

Let (φ, 1) be a loop-regular element of the Toda phase space. It follows
from combining the above proposition with Corollary 3.2 that the ∇Ij(φ, 1)’s
are linearly independent elements of îk = ĩk + R. Now define fj : R` →
R : ~x 7→ χj(exp( 2π

i

∑
τkxk)), so that locally one has Fj|U = fj(I1, . . . , I`),

and ∇Fj =
∑
k
∂fj
∂xk
∇Ik. One can easily check that because of the functional

independence of the χj’s at regular elements of G the matrix
(
∂fj
∂xk

(~I(φ, 1))
)

is invertible. Putting these pieces together we arrive at:

Corollary 3.3. Let F =
∑
cjFj for some real constants cj. If (φ, 1)

is a loop-regular element of the Toda phase space then ∇F (φ, 1) ∈ îk, and
furthermore ∇F (φ, 1) = 0 if and only if c1 = · · · = c` = 0.

4. Existence of loop-regular elements.

We now show that loop-regular elements form a dense open subset of the
Toda phase space.

On Lg×{1} the monodromy can be regarded as a map M : Lg→ G : φ 7→
f(2π), where f : R → G solves the monodromy equation ḟf−1 = 1

i
φ(eit),
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and f(0) = Id. This map extends to the whole of C∞(R, g), thinking of
Lg ⊂ C∞(R, g) as the subspace of 2π-periodic functions. By an abuse of
notation we shall denote this map by the same letter, M: C∞(R, g) → G,
and refer to it as the lift map.

The reason for this nomenclature is that if we consider the trivial principal
bundle G ↪→ R × G → R (whose space of connections can be identified
with Ω1(R)⊗ g ∼= C∞(R, g)) then the horizontal lift of the curve c(t) : t 7→ t
through (0, Id) determined by the connection 1

i
φ is given by (c(t), f(t)) where

f(t) solves the lift equation for φ. This interpretation also shows that the
solution f(t) exists for all t ∈ R.

It is not hard to verify the following lemma.

Lemma 4.1. If f solves the lift equation for φ ∈ C∞(R, g) and if ψ is an
element of C∞(R, g), then

M(φ+ ψ) = M(φ) M(Adf−1 ψ).

We can now prove the following proposition:

Proposition 4.1 [Qu]. The set of loop-regular elements is open and
dense in the Toda phase space.

Proof. Since the monodromy is a real analytic mapping on the Toda phase
space (see for example [CL, p. 36]), it suffices to show that the set of loop-
regular elements of the Toda phase space is non-empty. We do this by
constructing sequences φk, ψk ∈ C∞(R, g) such that φk +ψk lies in the Toda
phase space and the following properties hold:
(1) M(φk) = M0 is constant in k and M0 is regular in G.
(2) The solution fk : R 7→ G to the lift equation for φk has image in the

compact subgroup K ⊂ G.
(3) ψk ∈ Lg and ψk → 0 as k →∞.
Properties (2) and (3) force Adf−1

k
ψk → 0 as k → ∞, and so one has

M(Adf−1
k
ψk) → Id. Thus M(φk + ψk) → M0 by property (1) and lemma

4.1. Since M0 is regular and the set of regular elements in G is open, for
sufficiently large k the monodromy M(φk + ψk) will be regular and hence
φk + ψk will be loop-regular. So the problem becomes one of finding a
sequence φk + ψk satisfying (1), (2) and (3).

Consider the set {Hα}α∈∆. This forms a root system in h, with a base
given by the simple co-roots {Hαi}αi∈Π. Define H =

∑
α>0Hα, and let

{τ i : i = 1, . . . , `} ⊂ h be a dual basis to the set of simple roots so that
αi(τ j) = δij for all i, j. From the theory of root systems one has that

H =
∑
α>0

Hα =
∑̀
i=1

diHαi = 2
∑̀
i=1

τ i,
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where the coefficients di belong to Z>0. Define

E =
∑̀
i=1

√
diEαi , F =

∑̀
i=1

√
diE−αi .

Using the three expressions for H it is easy to verify that the triple {H,E, F}
generates an algebra isomorphic to sl(2,C), with [E,F ] = H, [H,E] = 2E
and [H,F ] = −2F . Consequently there exists an element g ∈ G such that
E + F = AdgH.

Recalling that α∗ =
∑
kiαi is the highest root of g we let c = (

∑
ki) + 1

and set p(k) = 1+2ck
2c

. We can now define the sequences φk, ψk:

φk = p(k)(E + F ) = p(k)
∑̀
i=1

√
di(Eαi + E−αi),

ψk =
1∏`

i=1(p(k)
√
di)ki

(Eα∗z
−1 + E−α∗z).

One can easily check that φk + ψk belongs to the Toda phase space for
each positive integer k, and by construction ψk → 0 as k →∞. The solution
to the lift equation for φk is fk(t) = exp t

i
φk, and since 1

i
φk belongs to the

algebra k it follows that fk(t) lies in K for all t.
Since E + F = AdgH we have φk = Adg(p(k)H), so that

M(φk) = fk(2π) = exp(−2πiφk) = g exp
(
−2πi

1 + 2ck
2c

H

)
g−1

= g exp
(
−2πi

1
2c
H

)
exp(2πiH)−kg−1.

But exp(2πiHα) = Id, (in the adjoint representation Hα is diagonal with
integer entries), and so exp(2πiH) = Id. One also has that for each positive
root α,

α

(
1
2c
H

)
=

1
c
α (Σεi) =

1
c

ht(α) ∈ Q ∩ (0, 1),

where ht(α) denotes the height of α, so that exp(−2πi 1
2c
H) is regular in G.

This implies that we have regularity of the monodromy

M(φk) = g exp
(
−2πi

1
2c
H

)
g−1 = M0 .

Thus the requirements (1), (2) and (3) are satisfied, and the proof is com-
plete.
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5. The flows.

In this section we prove that the period lattice of the Hamiltonian flows
of the Fj’s is trivial. We conclude that these functions form a completely
integrable system and that this system is not the periodic Toda lattice.

Lemma 5.1. If (µ, 1) is a loop-regular element with µ ∈ h, if γ ∈ L̃G
and if Ãd

∗
γ(µ, 1) = (µ, 1), then γ is a constant loop in H.

Proof. Define f(t) = exp(−iµt). Note f(t) ∈ H for all t. Then f solves the
monodromy equation for (µ, 1) :

df(t)
dt

f(t)−1 =
1
i
µ.

Since Ãd
∗
γ(µ, 1) = (µ, 1), it follows that γ(eit)f(t)γ(1)−1 also solves the mon-

odromy equation for (µ, 1). So for all t we have γ(eit)f(t)γ(1)−1 = f(t). By
the loop-regularity of (µ, 1), f(2π) is regular in H, so γ(1) ∈ H.

Now for any t we have γ(eit) = f(t)γ(1)f(t)−1 = γ(1), since f(t) and γ(1)
both lie in H. So γ is a constant loop in H.

Lemma 5.2. Suppose (φ, 1) is a loop-regular element of the periodic Toda
lattice phase space. Suppose b ∈ B̃ and

Ãd
∗
b(φ, 1) = (φ, 1).

Then b = Id.

Proof. First, we claim that b ∈ Ñ. Write b = an with a ∈ A and n ∈ Ñ.
We will show that a = Id. Let ( )−1 denote the natural projection onto the
height −1 subspace of L̃g. (The algebra L̃g has a rootspace decomposition
analogous to the finite-dimensional case and the notion of root height is
well-defined, inducing a Z-grading on L̃g. See for example [RSF].) Then

(φ, 1) = Ãd
∗
aÃd

∗
n (φ, 1)

and hence

(φ, 1)−1 = Ãd
∗
a

(
Ãd
∗
n (φ, 1)

)
−1

= Ãd
∗
a (φ, 1)−1 .

Here the first equality holds because height is invariant under Ãd
∗
a. Since

Ñ is generated by exp ñ, and ñ is the sum of rootspaces of positive height,
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we get the second equality after noting that Toda lattice elements have no
component of height less than −1.

However, because (φ, 1) is in the Toda lattice phase space we know that
there exist strictly positive real numbers q∗ and qi, i = 1, . . . , ` such that

(φ, 1)−1 =

(∑
i

qiE−αi + z−1q∗Eα∗ , 0

)
.

Because a ∈ A we can write a = exp(X) for a unique X ∈ a. Then

Ãd
∗
a(φ, 1)−1 =

(∑
i

e−αi(X)qiE−αi + z−1eα∗(X)q∗Eα∗ , 0

)
.

Thus for each α ∈ Π we have eα(X) = 1. Hence X = 0 and a = Id, so that
b ∈ Ñ. It follows that the constant term in the power series expansion of b
(which is just b(0)), lies in N.

Since (φ, 1) is loop-regular, there is a µ ∈ h and a γ ∈ K̃ such that
(φ, 1) = Ãd

∗
γ (µ, 1) by Corollary 3.2. Hence

Ãd
∗
γ−1bγ (µ, 1) = (µ, 1) ,

which implies that γ−1bγ ∈ H by Lemma 5.1. Write η = γ−1bγ. Then for
any z ∈ S1, we have b (z) = γ (z) ηγ (z)−1.

Using the realization of G as a linear subgroup of SL(n,C) described in
Section 2, now consider the characteristic polynomial det (b(z)− λ). Since
b(z) ∈ B̃ this is an analytic function of z on the open unit disk which is
constant on the boundary of the disk since det (b(z)− λ) = det (η − λ) for
any z ∈ S1. By an application of the maximum modulus principle it follows
that this equality actually holds throughout the interior of the unit disk as
well. In particular setting z = 0 and using the fact that b(0) lies in N gives

det (η − λ) = det (b(0)− λ) = (1− λ)n .

So η = Id and b(z) = γ(z) Id γ(z)−1 = Id.

Proposition 5.1. Let F1, . . . , F` be the functions from Definition 3.2.
Let c1, . . . , c` be real constants. Let (φ (t) , 1) denote any trajectory of the
Hamiltonian flow associated to F =

∑`
j=1 cjFj. If (φ(0), 1) is a loop-regular

element of the periodic Toda phase space and φ(2π) = φ(0) then c1 = c2 =
· · · = c` = 0. In other words, the period lattice for the real flows of the
Hamiltonians F1, . . . , F` is trivial.
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Proof. By the factorization theorem [RS] the Hamiltonian flow associated
to F is given by

(φ(t), 1) = Ãd
∗
b(t) (φ(0), 1) ,

where exp[t∇F (φ(0), 1)] = k(t)−1b(t) with k(t) ∈ K̂ and b(t) ∈ B̂. If φ(2π) =
φ(0) then (φ (0) , 1) = Ãd

∗
b(2π) (φ (0) , 1), and by Lemma 5.2 it follows that

b(2π) = Id . Hence exp[2π∇F (φ(0), 1)] ∈ K̂.
However ∇F (φ(0), 1) ∈ îk by Corollary 3.3, and so exp[2π∇F (φ(0), 1)]

belongs to K̂ ∩ exp(îk). Because of the Cartan decomposition L̃G = K̂ ·
exp(îk) this forces exp[2π∇F (φ(0), 1)] = Id, and ∇F (φ(0), 1) = 0. Hence,
also by Corollary 3.3, c1 = c2 = · · · = c` = 0 as required.

Notice that because of the decomposition L̃G = K̂B̂, by the factorization
theorem the flows induced on the Toda phase space by the Fj’s are complete.
Note also that because M(φ,1) ∈ K for elements of the phase space, on the
phase space we have

Fj(φ, 1) = χj
(
M(φ,1)

)
.

Corollary 5.1. The functions F1, . . . , F` constitute a completely integrable
system on the Toda phase space.

Proof. It follows from the Kostant-Symes involution theorem that the func-
tions F1, . . . , F` form a commuting family on the Toda phase space. Because
the dimension of the Toda phase space is twice the number of functions,
it remains to show that these functions are generically independent. By
Proposition 4.1 it suffices to show that at any loop-regular element (φ, 1) the
gradients of the restrictions of the functions F1, . . . , F` to the Toda phase
space are linearly independent. But if these gradients were linearly depen-
dent then (φ, 1) would be a fixed point of a nontrivial linear combination of
the Fj’s, which would contradict Proposition 5.1. Hence the functions are
generically independent, and the system is completely integrable.

Corollary 5.2. The functions F1, . . . , F` do not all commute with the gen-
eralized real symmetric periodic Toda lattice Hamiltonian.

Proof. Pick a loop-regular point (φ, 1) in the phase space, and set ~F =
(F1, . . . , F`). Let ~Fc denote the connected component of the level set of ~F
containing (φ, 1) and note that this consists entirely of loop-regular elements.
Because the flows induced by the Fj’s commute and are complete there is
an associated action of (R`,+) on ~Fc. Since dim ~Fc = ` and the Fj’s are
functionally independent on the level set the orbits of this action are open
in ~Fc. But ~Fc is a disjoint union of such orbits and is connected, hence ~Fc
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consists of a single orbit and the action is transitive. Because the period
lattice is trivial it follows that ~Fc is diffeomorphic to R`, and in particular is
non-compact.

Now ~Fc is a closed subset of the Toda phase space, which itself can be
regarded as a closed subset of R2`+1 — essentially it is cut out by the poly-
nomial equation q∗ ·∏ qkii = 1. Thus ~Fc is a closed non-compact subset of
R2`+1, and consequently is unbounded. But level sets of the Toda Hamilto-
nian H(φ) = B(φ, φ) are bounded and so the level set of H through (φ, 1)
cannot contain the level set ~Fc. Hence it cannot contain the flow of the Fj’s
through (φ, 1), and so H does not commute with all of the Fj’s.
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Glossary of Notation

g .......... a simple Lie algebra over C
h .......... a Cartan subalgebra of g
b .......... a Borel subalgebra of g
k .......... a compact form of g

G ........ the simply connected Lie group corresponding to g
H ........ the Cartan subgroup of G corresponding to h
B ........ the Borel subgroup of G corresponding to b
K ........ the compact subgroup of G corresponding to k

Lg ....... the loop algebra
b̃ .......... the algebra of loops with constant term in b, and no z−1 terms
k̃ .......... the algebra of loops with image in k

LG ...... the loop group
B̃ ......... the subgroup of loops with constant term in B, and no z−1 terms
K̃ ......... the real subgroup of loops with image in K

L̃g ........ the centrally extended loop algebra
b̂ .......... the real subalgebra b̃+ R
k̂ ........... the real subalgebra k̃+ iR

L̃G ...... the centrally extended loop group
B̂ ......... the real subgroup corresponding to b̂
K̂ ......... the real subgroup corresponding to k̂
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