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1. Introduction.

In 1986, George Lusztig stated some interesting properties of character
sheaves with non-zero restriction to the unipotent variety and proved them
for the group SO2n+1(Fq) under the assumption that the characteristic p
of Fq is good. In February 1992, the author has given lectures on that
proof of Lusztig in the Seminar “Faisceaux Caractères” at the École Nor-
male Supérieure and it was no doubt for her that the same method should
work for the other types of groups (both classical and exceptional), as it has
been already noticed by Lusztig. It is one purpose of this paper to show
that the question can be reduced to statements uniquely involving repre-
sentations of some Coxeter groups. In particular we shall show that the
method employed by Lusztig for the group SO2n+1(Fq) provides a general
process (based on both “parabolic induction” of character sheaves and gen-
eralized Springer correspondence) for associating a well-defined unipotent
class to any character sheaf which has non-zero restriction to the unipotent
variety.

A different map from the (all) set of character sheaves to the set of unipo-
tent classes has been defined by Lusztig in 1992, under the assumption that
p is “large enough” (that is sufficiently large, so that we can operate with
the Lie algebra of G as if we were in characteristic zero). That map is the
composition of two maps: One from character sheaves to a set of parameters
in the Langlands dual of G and one from this set of parameters to unipo-
tent classes in G. The images of a given character sheaf by these two maps
coincide (that result gives an answer to a question that J. Arthur asked the
author in June 1995: It is a first step in the understanding of how the two
classifications of character sheaves given by Lusztig correspond together).

It is a pleasure to thank Gunter Malle and Jean-Loup Waldspurger who
carefully read an earlier version of this paper and suggested improvements.
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2. Preliminaries on character sheaves.

Let k be an algebraic closure of a finite field Fq of q elements. We fix a prime
number ` invertible in k. Let G be a connected reductive algebraic group
over k. We assume that the characteristic p of k is good for G. Let T be a
maximal torus of G and W := NG(T )/T the Weyl group G with respect to
T .

Following Lusztig [7], we shall review a definition of character sheaves on
G. Let DG be the bounded derived category of constructible Q`-sheaves on
G, and letMG be the full subcategory of DG consisting of perverse sheaves.
Let S(T ) be the set of isomorphisms classes of local systems L on T such
that rankL = 1 and such that L⊗e ' Q` for some integer e ≥ 1, invertible in
k. Take a local system L in S(T ) such that w∗L ' L for some w ∈W . Then
one can construct a complex KLw ∈ DG as in [7, 12.1]. For each L ∈ S(T ), we
denote by ĜL the set of isomorphism classes of irreducible perverse sheaves
A on G such that A is a constituent of the i-th cohomology perverse sheaf
pH i(KLw) of KLw for some w and some i ∈ Z. The set Ĝ of character sheaves
of G is defined as the union of ĜL, where L runs over all the elements in
S(T ).

Let A be a character sheaf in ĜL. Assume chosen, once and for all, an
isomorphism of abstract groups from the set of isomorphisms classes of tame
local systems of rank one on k× onto k×, this gives rise to an isomorphism
S(T ) ∼→T ∗ where T ∗ is the dual group of T (see [10, Section 1.6]), hence the
local system L which is associated by Lusztig with the character sheaf A can
be interpreted as a semisimple element s of G∗, the Langlands dual of G.

By [7, Corollary 11.4], there is a well-defined map

Ĝ −→ {W -orbits on T ∗}.

If A ∈ Ĝ corresponds to s ∈ T ∗ we say that A lies in the series defined by s;
the subset of Ĝ consisting of all character sheaves in the series defined by s
will be denoted by Ĝs.

(2.1) Let L be a Levi subgroup of a parabolic subgroup P of G and let L̂ be
the set of character sheaves on L. In [7, 4.1], Lusztig introduced the notion
of induction indGL of character sheaves. In particular, for each A ∈ L̂s, indGLA
is a semisimple perverse sheaf on G, and each irreducible direct summand is
a character sheaf which belongs to Ĝs (see [7, Proposition 4.8 (b)]).

(2.2) A character sheaf on G is said to be cuspidal if it is not contained in
indGLA for any Levi subgroup L of a proper parabolic subgroup of G and any
A ∈ L̂. Since p is good (almost good would be sufficient here), it is known by
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[7] that, for any cuspidal pair (Σ, E), the (shift of) intersection cohomology
complex IC(Σ̄, E) [dimΣ], extended to the whole of G by zero on G− Σ̄, is
a cuspidal character sheaf on G. All the cuspidal character sheaves on G are
obtained in this way.

Let Guni be the unipotent variety of G. Let Ĝ0 be the set of cuspidal
character sheaves on G. Let Ws be the Weyl group of CG∗(s) (with respect
to T ∗), identified with a subgroup of W .

Fact 2.3. Assume that G is simple of adjoint type (with rankG 6= 0).
Then Ĝs contains at most one cuspidal character sheaf with non-zero re-
striction to Guni and such a character sheaf exists exactly in the following
cases:

Type of GCondition on n Type of Ws

Bn n = 2t(t+ 1) Ct(t+1) × Ct(t+1)

Cn n = 2t(4t± 1) D4t2 ×B4t2±2t

Dn n = 8t2 D4t2 ×D4t2

G2 G2

F4 F4

E8 E8

where t ≥ 1.

Proof. It can be trivially extracted (see the appendix) from the explicit
classification of cuspidal characters sheaves provided by Lusztig in [7], Sec-
tion 23.

Remark 2.4. Fact 2.3 has been already noticed by Lusztig in [8], (4.1)
and (7.11).

(2.5) Any character sheaf of G is obtained as a direct summand of indGLA
for the Levi complement L of some parabolic subgroup P of G and a cuspidal
character sheaf A on L.

Let L be a Levi subgroup of a parabolic subgroup of G such that L̂0 is
non-emtpy. We set

WG
L := NG(L)/L.

Then, by [6, Theorem 9.2 (a)], the group WG
L is a finite Coxeter group. Now

let s ∈ T ∗ such that L̂0
s is not empty, and let A ∈ L̂0

s.
By [14, (5.16.1) and II, proof of (4.21)] (see also [5, (8.5)]), the stabilizer

of A in WG
L is the image of the canonical map

(NG∗(L∗) ∩ CG∗(s))/CL∗(s) ↪→ NG∗(L∗)/L∗,
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where L∗ ⊆ G∗ denotes the standard Levi subgroup dual to L and CG∗(s)
(resp. CL∗(s)) denotes the centralizer of s in G∗ (resp. L∗). We see that
this stabilizer only depends on G, s and L, and we shall therefore denote it
by WG

L,s.

(2.6) Let L be a Levi subgroup of some parabolic of G and let s ∈ T ∗ be a
semisimple element. Let L̂0

uni be the subset of all A ∈ L̂0 such that A has
non-zero restriction to Luni.

Assume that s isolated in G∗ (i.e., such that CG∗(s) has the same semisim-
ple rank as G∗) and that the set L̂0

s ∩ L̂0
uni is non-empty.

Then, if G is of exceptional type, Fact 2.3 shows us that L = T (which
implies that WG

L = W and WG
L,s = Ws), if G is of classical type the descrip-

tions of the groups WG
L (see [6], (12.1.3) and (13.1.3)) and WG

L,s (see [8],
Section 4.1) are as follows.

Type of GType of WG
L Type of WG

L,s

Bn Cn−2t(t+1) Ca × Cb where a+ b = n− 2t(t+ 1)

Cn Bn−2t(4t±1)

{
Ba ×Bb where a+ b = n− 2t(4t± 1), if t ≥ 1
Da ×Bb where a+ b = n, if t = 0

Dn Dn−8t2 Da ×Db where a+ b = n− 8t2

(2.7) Let K := indGLA. Now let A := EndMGK be the endomorphism alge-
bra of K in MG. It is known by [8],(2.4) (a), (2.5) (b), (see also [6, (3.4)]),
that A is isomorphic to the group algebra Q`[WG

L,s]. Hence we have a de-
composition

indGL(A) =
∑

E∈Irr(WG
L,s

)

E ⊗Ks
E

where Ks
E ∈ Ĝs.

(2.8) Let Ĝuni be the set of isomorphism classes of characters sheaves A ∈ Ĝ
such that the restriction of A to Guni is non-zero. Then (2.7) allows us to
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define a bijective map
(L, s,E) : L Levi subgroup of some parabolic subgroup of G

s ∈ T ∗ such that L̂0
s ∩ L̂0

uni is non empty

E irreducible character of WG
L,s


−→Ĝuni

by sending (L, s,E) to Ks
E ∈ Ĝuni.

(2.9) Let Lad be the adjoint group of L and let π : L→ Lad be the canonical
map. Let Lder be the derived subgroup of L. By [7], (17.10), we can write
any A ∈ L̂0 in the form A = π∗(Ā)⊗L where Ā ∈ L̂0

ad and L is a tame local
system on L which is the inverse image of a local system on L/Lder under
the canonical map L→ L/Lder.

We have a corresponding embedding of dual groups L∗der ⊆ L∗. If Ā lies
in the series of Lad defined by s ∈ T ∗∩L∗der and L corresponds to the central
element z of L∗, then A lies in the series of L defined by s := sz. Clearly,
we have CL∗(s) = CL∗(s). Note that if L = T then s = 1.

Assume that Lad has a cuspidal character sheaf Ā such that Ā has non-zero
restriction to the unipotent variety of Lad. Then Ā is uniquely determined,
see (2.3). Let s ∈ T ∗ ∩ L∗der ⊆ L∗ such that Ā lies in the series defined
by s. By [6], Theorem 9.2 (b), we have WG

L,s = WG
L . We consider the

decomposition

indGL(π∗(Ā)) =
∑

E∈Irr(WG
L

)

E ⊗Ks
E,(a)

where Ks
E ∈ Ĝs (cf. 2.7).

Let A ∈ L̂ be any cuspidal character sheaf. If the restriction of A to Luni

is zero then the restrictions of all components of indGL(A) to Guni will also be
zero (see [8], (2.9)). Assume now that the restriction of A to Luni is non-zero.
As at the end of the previous section we can write A = π∗(Ā)⊗ L where Ā
lies in the series of Lad defined by s ∈ T ∗ ∩ L∗der and L is pulled back from
a local system on L/Lder. Let A, Ā lie in the series defined by s, s ∈ T ∗,
respectively.

It is clear that A and π∗(Ā) have the same restriction to Luni (cf. [8],
(2.6) (c)). Moreover, the restriction of the decomposition in (2.7) to Guni

is related to the restriction of that in (a) by the following formula, see [8],
(2.6) (e):

Ks
E =

⊕
E′

(E : E′)Ks
E′ on Guni,(b)
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where E ∈ Irr(WG
L,s), E

′ ∈ Irr(WG
L ) and (E : E′) denotes the multiplicity of

E in the restriction of E′ to WG
L,s.

3. The evaluation of certain class functions.

From now we assume that G has a fixed Fq-rational structure with Frobenius
map F and that T is a maximally-split torus, that is, an F -stable maximal
torus contained in some F -stable Borel subgroup B of G. Let S ⊂ W
be the set of standard generators determined by B. Then F induces an
automorphism of (W,S) which will again be denoted by F . Since G is
defined over Fq then the same holds for G∗ and we denote again by F the
corresponding Frobenius morphism. Moreover, there exists a maximally-
split torus T ∗ contained in some F -stable Borel subgroup B∗ ⊆ G∗, ‘in
duality’ with the pair T ⊆ B (see [3], Section 4.3). We can identify the pair
(W,S) with the corresponding pair (W ∗, S∗) in G∗ (defined with respect
to T ∗ ⊆ B∗) such that the action of F on W corresponds to the action of
F−1 on W ∗. We assume that G has connected center. That fact implies that
centralizers of semisimple elements in G∗ are connected, and these properties
are inherited by Levi subgroups of parabolic subgroups of G.

A complex K ∈ DG is said to be F -stable if F ∗K ' K. For an F -stable
complex K, with a given isomorphism ϕ : F ∗K ∼→K, following [7], (8.4), we
define a characteristic function χK,ϕ : GF → Q` by

χK,ϕ(x) =
∑
i

(−1)i Tr (ϕ,Hix(K)),

where Hi
x(K) denotes the stalk at x ∈ GF of i-th cohomology sheaf Hi(K)

of K, and ϕ is the induced linear map on Hix(K). If K is a G-equivariant
perverse sheaf, χK,ϕ gives rise to a class function on GF .

(3.1) We denote by (Σ, E) the cuspidal pair for L (in the sense of [6],
Definition 2.4) such that the (shift of) intersection cohomology complex
IC(Σ̄, E) [dimΣ], extended to the whole of L by zero on L−Σ̄ (which is a cus-
pidal character sheaf on L) belongs to L̂s. Following Lusztig [8], Section 3.2,
we choose an isomorphism F ∗E ∼→E inducing the map q

1
2 (dim(L/Z(L)0)−dimΣ)

times identity on the stalk over u of E , where u ∈ Σ(Fq) with F acting triv-
ially on the set of irreducible components of the variety Bu of Borel subgroups
containing u. The induced complex inherits a natural mixed structure. The
canonical induced mixed structure on the cuspidal character sheaf on L is
compatible with the isomorphism (2.7). We denote by χKs

E
and χKs

E′
the cor-

responding characteristic functions, with the notations of (2.7) and (2.9 (a)).
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Using (2.9 (b)) we obtain

χKs
E

=
∑
E′

(E : E′)χKs
E′
,(c)

where E′ ∈ Irr(WG
L ) and (E : E′) denotes the multiplicity of E in the

restriction of E′ to WG
L,s ⊆WG

L .
Let NG be the set of pairs (C, E) where C is a unipotent class of G and E is

an irreducible local system on C which is G-equivariant for the conjugation
action of G. From the list in the introduction of [6] we see that the set NG
contains at most one cuspidal pair, and if such a pair exists then the rank
of G/Z(G) is even. We shall denote by C ′ ≤ C the usual partial order on
unipotent classes. The local system E has a natural mixed structure.

We define a class function YC,E : GF → Q` as follows:

YC,E(g) := χIC(C,E)(g), g ∈ CF
,(d)

extended by zero on GF −CF
(where the mixed structure on IC(C, E) is that

extending the one given by the above distinguished isomorphism F ∗E ∼→E).
Let E′ ∈ Irr(WG

L ). We shall denote by (CE′ , EE′) the pair which cor-
responds with E′ under the generalized Springer correspondence (see [6],
Theorem 6.5 and [1] for the explicit description of that correspondence). We
shall set YE′ := YCE′ ,EE′ and we shall denote by dimBE′ the dimension of the
variety of Borel subgroups of G containing a fixed element in the class CE′ .

A unipotent element u of GF is said split if F acts trivially on the set of
irreducible components of the variety of Borel subgroups containing u. The
assumption that p is good remains in force. Then it is known [13, 12, 2] that
for each F -stable unipotent clas C of G there exists a unique split element
u ∈ CF up to GF–conjugacy except in the following case, i.e., G of type E8,
q ≡ −1 (mod 3) and u is of type D8(a3) (notation of [3]). In this exceptional
case, split elements do not exist in CF . From now we are assuming that p
is good and that if G of type E8, q 6≡ −1 (mod 3).

Theorem 3.2. Let s ∈ T ∗ and E ∈ Irr(WG
L,s). We assume that the

element s ∈ T ∗ is isolated in G∗ and that the set L̂0
s∩ L̂0

uni is non-empty. Let
C be an F–stable unipotent class in G and let u ∈ CF be a split element.
Then

χKs
E

(u) =
∑
E′

mE′ (−1)rankG qdimBE′+ 1
2 srankL YE′(u),

where E′ ∈ Irr(WG
L ), where mE′ denotes the multiplicity of E in the re-

striction of E′ to WG
L,s ⊆ WG

L and srankL denotes the semisimple rank of
L.
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Proof. By (2.9 (b)), it is sufficient to check that

χKs
E′

(u) = (−1)rankG qdimBE′+ 1
2 srankL YE′(u),

for any E′ ∈ Irr(WG
L ).

First note that the center Z(L) of L is connected (since the center of G is),
that L/Z(L) is simple and the rank of L/Z(L) is even (since the set L̂0

s∩ L̂0
uni

is non-empty).
Then, according to [6], Theorem 6.5,

Ks
E′ |Guni

' IC(CE′ , EE′) [dimCE′ + dim Z(L)],

extended by zero on Guni−CE′ . The restriction of HdimCE′−dim Z(L)(Ks
E′) to

CE′ is isomorphic to EE′ , the canonical mixed structure on Ks
E′ induces by

this way a mixed structure on EE′ and Lusztig has shown in [8], (3.4) (a)
that this mixed structure has the property that F ∗EE′ ∼→EE′ induces on the
stalk over a split element of CE′ the identity map times qm2 where

m = dimG− dimCE′ − dim Z(L).

Since dim Z(L) = rankL− srankL rankL = rankG, we get

dimCE′ + dim Z(L) = dimCE′ + rankG− srankL.

Hence, using that dimCE′ and rank L/Z(L) are even, we see the sign cor-
responding with the shift is (−1)rankG.

Next the following formula (see [16], page 54)

2 dimBE′ = dimCE′ + rankG− dimG,

joint to the above value for m, provides us the power of q.

Remark 3.3. Let us state the following property.
(P) There exists an irreductible representation E′1 of WG

L such the following
hold.
(a) The representation E′1 occurs with multiplicity one in the induced

representation IndW
G
L

WG
L,s

(E);

(b) If E′ occurs in IndW
G
L

WG
L,s

(E), then dimCE′ ≤ dimCE′1 , with equality
only for E′ = E′1.
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In [8], (4.10), Lusztig sketched the proof of Property (P) for groups of types
Bn. In [1] we give a complete proof of that fact and we also prove that
Property (P) holds for other groups of classical type (for type Cn, we need
to assume that t 6= 0, i.e., that L 6= T ). Note that for exceptional groups
(see 2.6) the only case to consider is L = T .

When Property (P) holds, Theorem 3.2 implies that

χKs
E

(u) = (−1)rankG qdimBE′+ 1
2 srankL

+ some linear combination of Y(C′,E)(u),

where C ′ are unipotent classes of G such that dimC ′ ≤ dimCE′1 .

In that case, we are able to define a map

Sup : Ĝuni −→ {unipotent classes of G}

by composition of the inverse of the map defined in (2.8) and of the map

(L, s,E) 7→ CE′1 .

(3.4) By [7, (17.8.3)] we have a bijection

Ĝs ←→
∐
F
M(GF), together with injections F ↪→M(GF),

where F runs over the families of irreducible characters of Ws, GF is a finite
group, and M(GF) is the set of GF -conjugacy classes of pairs (x, σ) where
x ∈ GF and σ is an irreducible representation of the centralizer of x in GF .
(For the definition of families, see [5], Chap. 4.)

(3.5) Define a function M(GF) → Q`
×

by m := (x, σ) 7→ λm, where m is
the scalar by which x acts on the representation σ of the centralizer of x in
GF (see [5], 11.1). Then λm is a root of 1 dor any m ∈ M(GF). We assume
that GF is a vector space of dimension d over F2 (it is always the case if G
is of classical type). Then M(GF) is a vector space of dimension 2d over F2

and there is a unique quadratic form Q on it, with values in F2, such that
λm = (−1)Q(m) for any m ∈M(GF) and such that

{m,m′} = 2−d (−1)Q(m+m′)+Q(m)+Q(m′),

where {, } : M(GF)×M(GF)→ Q` is the pairing defined by Lusztig in [5],
(4.14.3).
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We now state another property in order to describe a way to get the whole
of [8], (1.6).
(L) Let mE be the element of M(GF) which corresponds with Ks

E under
the bijection (3.4). Then there is a Lagrangian subspace XM(GF ) of
M(GF) and a unipotent class C of G which is canonically associated
with XM(GF ) such that the following hold.

(a) If E′ occurs in the induced representation IndW
G
L

WG
L,s

(E) and if mE /∈
XM(GF ) then CE′ 6⊃ C;

(b) If mE ∈ XM(GF ), there exists a unique irreductible representation
E′1 of WG

L occuring in IndW
G
L

WG
L,s

(E) such that CE′1 ⊃ C; in this case
it occurs with multiplicity one and CE′1 = C.

Note that, in case F is a cuspidal family (see [5], (8.1)), it is in some sense
the counterpart of [15], (6.12.1).

Corollary 3.6. Assume that property (L) holds. Let u ∈ CF be a split
element. Then, under the assumptions of Theorem 3.2,

χKs
E

(u) =

(−1)rankG q
dimBE′

1
+ 1

2 srankL if mE ∈ XM(GF ),

0 if mE /∈ XM(GF ).

Proof. It follows clearly from Theorem 3.2.

Remark 3.7. In [15, Lemma 6.11], Shoji proved similar results for unipo-
tent character sheaves (that is the case s = 1) without condition on support.

4. Dual characterization.

In Remark 3.3 (under the assumption that Property (P) holds true) we
have defined a map Sup from the set of isomorphism classes of characters
sheaves A ∈ Ĝ such that the restriction of A to Guni is non-zero to the set of
unipotent classes. In [7], Theorem 10.7, Lusztig defined a map from all the
set Ĝ (i.e., without assuming non-zero restriction to the unipotent variety)
to the set of unipotent classes.

Let us summarize Lusztig’s construction. By [7], Corollary 16.7, there
exists a well-defined map

Ĝs −→ {two-sided cells in Ws}.
(For the definition of two-sided cells, see [5], pages 137 and 160. For the link
of that map with the bijection (3.4), see [5], Theorem 5.25.)
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The subset of Ĝs consisting of all character sheaves which belong to the
two-sided cell c of Ws will be denoted by Ĝs,c. (Note that Ĝs,c is a finite
set which is a symplectic vector space over F2 or a non abelian analogue.)
Then Lusztig [11], (10.5), describes a canonical construction by which we
can associate with a pair (s, c) (where s ∈ T ∗ and c is a two-sided cell in Ws)
a well-defined unipotent class C in G. This is done as follows. (We assume
here the center of G is connected, for the general case see [11], (10.4).)

Let Y be the group of one parameter subgroups of T . Then Y is naturally
a module for W . By restriction Y is also a module for Ws. There is a well-
defined irreducible representation of Ws which corresponds to c. (We denote
it as E(c) and we call it the special representation of Ws corresponding
to c.) Let bE(c) be the smallest non-negative integer i such that the Ws-
module E(c) occurs in the i–th symmetric power of Y . (Then E(c) occurs
with multiplicity one in the bE(c)-th symmetric power of Y .) There exists a
unique irreducible representation E of W such that E occurs with non-zero
multiplicity both in the representation induced from E(c) and in the bE(c)-th
symmetric power of the W -module Y .

Under Springer’s correspondence the representation E corresponds to a
pair consisting of a unipotent class C in G and an irreducible, G-equivariant
local system E on C. Thus, we can define a map

ΦG : {(s, c) | s ∈ T ∗ and c two-sided cell in Ws}
−→ {unipotent classes in G}

by associating with the pair (s, c) the unipotent class C.
Lusztig proved the following result (without assumption of connected cen-

ter) for p “large enough” (that is sufficiently large, so that we can operate
with the Lie algebra of G as if we were in characteristic zero).

Theorem 4.1 (Cf. [11], Theorem 10.7 and [9], (4.6)). Let s ∈ T ∗ and let
c be a two-sided cell in Ws. Let C = ΦG(s, c). Then the following hold.
(a) If A ∈ Ĝs,c and C ′ is a unipotent class such that A|{g} 6= 0 for some

g ∈ C ′ then dimC ′ ≤ dimC, with equality only for C ′ = C.
(b) There exists some A ∈ Ĝs,c and some g ∈ C such that A|{g} 6= 0.

Assuming that Property (P) holds true and that p is large enough to apply
the results of [11], by the same argument as [11], proof of Theorem 10.7 (i),
page 173, we obtain

Sup(A) = ΦG(s, c).(∗)
It is natural to guess more generally that the equality (∗) holds true in good
characteristic (with the assumption q 6≡ −1 (mod 3) in case G of type E8).
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Note that when (∗) holds true, it gives a link between the two classifications
of character sheaves with non-zero restriction to the unipotent variety.

5. Appendices.

5.1. Appendix A. Cuspidal character sheaves. The following proper-
ties have been used in the proof of Fact 2.3. We have extracted them from
[7] for helping the reader in reading our paper.

We assume now that s is a given semisimple element of G∗ such that
the set Ĝs contains a cuspidal character sheaf (denoted by A). Then the
following hold:
(a) The semisimple element s is isolated.
(b) The family which corresponds to A is cuspidal in the sense of [7],

(23.15) (see [7], (17.13.11)).
Type An. In this case G does not have any cuspidal character sheaf at all

unless n = 0.
Type Bn. We assume that G = SO2n+1(k). Then G∗ = Sp2n(k). Since p is

odd and G has a cuspidal character sheaf, the group Ws is of type Cr ×Cr′ ,
where r + r′ = n, with (r ≥ 1 and r′ ≥ 1) (see [7], 23.5. (i)) and G has a
cuspidal family. From [7], 23.16 (i), it follows that the number r (resp. r′)
is twice a triangular number. Each series Ĝs contains at most one cuspidal
character sheaf and, for each pair (r, r′) as above there is a (unique) series Ĝs

such that the group Ws is of type Cr×Cr′ which contains a cuspidal character
sheaf (see [7], 23.17 and 23.19 (c1)). The cuspidal character sheaves on G
are supported by the closure of the conjugacy class of σv, where σ is a
semisimple element of G with C0

G(σ) isomorphic to, or doubly covered by
SO(d+d′+1)2(k) × SO(d−d′)2(k), with r = d2 + d and with r′ = d′2 + d′ and
v is a certain unipotent element in C0

G(σ); by using [7], 23.2 (c) and 23.19
(c1), we see that σ = 1 if and only if r = r′ (note that in this case, setting
r = r′ = t2 + t, we get 2n+ 1 = 4t2 + 4t+ 1 = (2t+ 1)2). Each G-conjugacy
class (σv)G as above is F -stable.

Type Cn. We assume that G = PSp2n(k) (with n ≥ 1). Then G∗ =
Spin2n+1(k). Since p is odd and G has a cuspidal character sheaf, the integer
n is even (see [7], 23.2.(a)) and the group Ws is of type Dr × Br′ , where
r + r′ = n, with (r ≥ 2 and r′ ≥ 1) or r = 0 or r′ = 0 (see [7], 23.3.
(i) and (ii)) and has a cuspidal family. By [7], 23.16 (i) and (ii), it follows
that r′ is twice a triangular number and that r is an even (since n is even)
square. Each series Ĝs contains at most one cuspidal character sheaf. For
each pair (r, r′) as above with r 6= 0, there is a (unique) series Ĝs such that
Ws is of type Dr ×Cr′ which contains a cuspidal character sheaf. There are
two series Ĝs and Ĝs′ such that Ws = Ws′ = W (see [7], 23.17 and 23.19
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(a)). The cuspidal character sheaves on G are supported by the closure of
the conjugacy class of σu where σ is a semisimple element of G with C0

G(σ)
doubly covered by Sp(d+d′)(d+d′+1)(k) × Sp(d−d′−1)(d−d′)(k), with r = d2 and
r′ = d′2 + d′, and v is a certain unipotent element of C0

G(σ); setting r = a2

and r′ = a′2 +a′, by using [7], 23.2(a) and (23.19.1), we see that σ = 1 if and
only if a = a′ or a = a′+1 (note that in this case, setting a = 2t (a is always
even since r is), we get 2n = 16t2 + 4t or 2n = 16t2− 4t). Each G-conjugacy
class (σv)G as above is F -stable. In the case r = 0, the cuspidal character
sheaf which belongs to Ĝs′ is equal to the tensor product by a tame local
system of rank one of the one which belongs to Ĝs (they have the same
support) and at least one of the two is F -stable.

Type Dn. We assume that G = PSO2n(k). Then G∗ = Spin2n(k). Since p
is odd and G has a cuspidal character sheaf, the integer n is divisible by 4 (see
[7], 23.2.(c)), the group Ws is of type Dr×Dr′ , where r+r′ = n, with (r ≥ 2
and r′ ≥ 2) or r = 0 or r′ = 0 (see [7], 23.5. (ii)) and has a cuspidal family.
It follows from [7], 23.16 (ii) that r and r′ are even (since n is divisible by 4)
squares. Each series Ĝs contains at most one cuspidal character sheaf and,
for each pair of integers (r, r′) such that r 6= r′ and rr′ 6= 0, there is a (unique)
series Ĝs with Ws of type Dr×Dr′ which contains a cuspidal character sheaf.
There are two series Ĝs and Ĝs′ such that r = r′ and there are four series Ĝs,
Ĝs′ , Ĝs′′ and Ĝs′′′ such that Ws = Ws′ = Ws′′ = Ws′′′ = W (see [7], 23.17
and 23.19(c2)). The cuspidal characters sheaves on G are supported by the
closure of the conjugacy class of σv where σ is a semisimple element of G
with C0

G(σ) isomorphic to, or doubly covered by, SO(d+d′)2(k)×SO(d−d′)2(k),
with r = d2 and r′ = d′2, and v is a certain unipotent element of C0

G(σ);
by using [7], 23.2(c) and (23.19.2), we see that σ = 1 if and only if r = r′

(note that in this case, setting r = r′ = (2t)2, we get 2n = 16t2). Each
G-conjugacy class (σv)G as above is F -stable, there is an F -stable cuspidal
character sheaf A of G which is supported by the closure of it and the other
cuspidal characters sheaves which are supported by the closure of the same
conjugacy class (when they exist) are obtained by tensoring A by tame local
systems on G of rank one corresponding to central elements of G∗.

Type G2. Assume that G is simple of type G2. The group G has four
cuspidal characters sheaves. All of them are unipotent (see the proof of [7],
Proposition 20.6) and F -stable. One of them has non-zero restriction to Guni

(it is is supported by the closure of the subregular unipotent class in G).

Type F4. Assume that G is an adjoint group of type F4. The group G
has seven cuspidal character sheaves (see [7], proof of Proposition 21.3). All
of them are unipotent and F -stable. One of them has non-zero restriction
to Guni.
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Type E6. Assume that G is an adjoint group of type E6. The group G
has six cuspidal character sheaves: There are three series corresponding to
central semisimple elements of G∗ and each such series contains two cuspidal
character sheaves (see [7], proof of Proposition 20.3 (a)). Thus if Ĝs contains
a cuspidal character sheaf, then s must be central. The six cuspidal character
sheaves have the same support: The closure of the conjugacy class of σv
where σ is a F–stable semisimple element of G whose connected centralizer
C0
G(σ) is isogenous to SL3(k)× SL3(k)× SL3(k) and v is a regular F -stable

unipotent element in C0
G(σ).

Type E7. Assume that G is an adjoint group of type E7. The group G
has four cuspidal character sheaves: There are two series corresponding to
central semisimple elements of G∗ and each such series contains two cuspidal
character sheaves (see [7], proof of Proposition 20.3 (c)). Thus if Ĝs contains
a cuspidal character sheaf, then s must be central. The four cuspidal charac-
ter sheaves have the same support: The closure of the conjugacy class of σv
where σ is a semisimple element of G whose connected centralizer C0

G(σ) is
isogenous to SL4(k)× SL4(k)× SL2(k) and v is a regular unipotent element
in C0

G(σ).
Type E8. Assume that G is a simple group of type E8. It has 13 cuspidal

character sheaves (see [6], Section 15.6). All of them are unipotent (see
[9], 4.7. (a)) and F -stable. One of them is supported by the closure of a
unipotent class.

5.2. Appendix B. On Jordan decompositions for character sheaves.
The aim of this appendix is an application of (2.5). Let s ∈ T ∗. Let G(s)
be a group dual to CG∗(s) Let L be a standard Levi subgroup of G and let
L(s) be the corresponding standard Levi subgroup of G(s), dual to CL∗(s).
Let s ∈ T ∗ such that L̂0

s is not empty, and let A ∈ L̂0
s. We denote by ĜL,s

the set of character sheaves which are components of the induced complex
indGL(A). Then it follows from (2.5) that there exist bijections

IGL,s : Irr(WG
L,s) → ĜL,s, I

G(s)
L(s),1 : Irr(WG(s)

L(s),1) → Ĝ(s)L(s),1.

Proposition 5.1 [Jordan decomposition]. The following hold.

(a) The sets Ĝ0
s and Ĝ(s)

0

1 have the same cardinality.

(b) Any bijection JLL,s : L̂0
s → L̂(s)

0

1 can be extended to a bijection

JGL,s : ĜL,s → Ĝ(s)L(s),1

by setting

JGL,s = I
G(s)
L(s),1 ◦

(
IGL,s

)−1

.
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(c) Let JGL,s be a bijection as in (b) and let M be any standard Levi subgroup
of G which contains L. We have

JGL,s ◦ IndGM = IndG(s)
M(s) ◦ JML,s.

(d) Assume that there exists M 6= G as in (c) which contains CG∗(s). Then
IndGM induces a bijection between M̂s,L and Ĝs,L.

Proof. The assertion (a) could certainly be extracted from [7], but we can
also prove it by an easy induction on the semisimple rank of G by using (b).
Now (b) follows from [7], (10.4.5), by working with characteristic functions of
character sheaves instead of character sheaves themselves (as in the proof of
[7], Proposition 15.2), using the fact (recalled above) that the groups WG

L,s

and W
G(s)
L(s),1 can be canonically identified. Next (c) follows from (b) by a

standard argument. Finally, it follows from (c), that if M ⊃ CG∗(s), we

have IndGM =
(
JGL,s

)−1 ◦ JML,s.

Remark 5.2. It is natural to guess that there exists a bijection JGL,s as
above which behaves well with the corresponding Fourier pairings associated
to Ĝs and to Ĝ(s)1, see [7], (17.8.3). We hope to have the opportunity to
settle this question elsewhere.
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