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1. Introduction.

In [AS], Amitsur and Small observed that if G is a finitely generated group
(on a set X), then they were only finitely many possible irreducible repre-
sentations of dimension n over a field F if the characteristic polynomials of
all words (in X) of length at most 2n were fixed. This followed immediately
from Shirshov’s theorem (cf. [Pr] or [Ro]). However, Shirshov’s Theorem
does not give a condition which determines the isomorphism class of the
irreducible module.

In this note, we investigate the connection between the character of a finite
dimensional representation of a semigroup and its composition factors. It is
folklore that, over a field of characteristic 0, the character of a representation
determines its composition factors. In positive characteristic p, this can fail
for several reasons – a composition factor may have multiplicity a multiple
of p, there can be inseparable extensions and there can be division algebras
whose degree is a multiple of p. In Section 2, we prove that these are the
only reasons for this failure. We prove (Theorem 2.6) that if F is a perfect
field, S is a semigroup and V is a finite dimensional F [S]-module such that
every composition factor has multiplicity less than p, then the composition
factors are determined by its character.

Let X be a generating set for a subalgebra of Mn(F ) with F a field. Let
g(X,n) denote the smallest positive integer g such that the subalgebra is
spanned by all words (in X) of length at most g. Let g(n) be the maximum
of of g(X,n) for all possible generating sets X. We in fact prove that the
composition factors are determined by the traces of elements of length at
most 2g(n)+1. Clearly, g(n) ≤ n2−1. Paz [Pz] showed that g(n) is bounded
by n2/3 (approximately). This has recently been improved by Pappacena
[Pa] to show that g(n) ≤ √2n3/2 + 3n (see [Pa] for a slightly more precise
estimate).
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One can do much better in certain conditions and we ask what is the best
possible result in this direction. It is likely that g(n) can be taken to be
linear in n (Paz conectured that 2n suffices – we give an example to show
that g(n) ≥ 2n − 2). We show that if X satisfies certain conditions, then
g(X,n) is linear in n.

We also discuss the use of Brauer characters to study representations in
positive characteristic. This has long been used to study modular represen-
tations of finite groups. However, one can use this in the study of arbitrary
finite dimensional representations of semigroups. We show (Theorem 5.1)
that the Brauer character of a finite dimensional representation uniquely de-
termines its composition factors. We also show that one can prove a version
of Burnside’s trace theorem using the Brauer character.

In another direction, we consider Burnside’s Theorem that torsion linear
groups are locally finite. We define the notion of a torsion semigroup (every
element generates a finite semigroup). We give a somewhat shorter proof
of a result of McNaughton and Zalcstein [MZ] that a finitely generated
torsion semigroup acting on a finite dimensional module is finite. In positive
characteristic, this is an immediate consequence of Shirshov’s Theorem.

The paper is organized as follows. In Section 2, we develop some basic
results about characters and prove that if the character of an irreducible
representation is nonzero, then it determines the representation and that
moreover, one only needs to know the character values on a small set of
elements. We give an example to show what one may expect to be true.

In Section 3, we prove an analog of the symmetric function theorem in
positive characteristic and consider some problems related to the quotient
division ring of the ring of generic matrices. We also prove some results show-
ing that under certain circumstances if X generates an irreducible semigroup
of Mn(F ), then words of small length will contain a basis for FS. We show
how to improve a result of Pearcy [Pe] on finite dimensional representations
of C∗-algebras.

In Section 4, we consider some properties of torsion semigroups and prove
some results about linear torsion semigroups.

In Section 5, we define the Brauer character of a representation and prove
some basic properties. We also show how some characteristic zero results
can be extended to positive characteristic using Brauer characters.

The original draft of this paper was written in 1993. We would like to
thank L. Small and C. Pappacena for reading this manuscript and for making
several suggestions. The third author would also like to thank MSRI for its
hospitality during the preparation of the final draft.

This paper is dedicated to the memory of Professor Olga Taussky-Todd.
She not only had tremendous influence on matrix theory but was a very
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good friend to the third author.

2. Characters and representations.

Let S be a semigroup and F a field. We consider finite dimensional rep-
resentations of S over F . If V is a finite dimensional F [S]-module, let trV
denote its character.

The following result is folklore.

Theorem 2.1. Let S be a semigroup. Let V1, . . . , Vd be nonisomorphic
finite dimensional F [S]-modules with nonzero characters χj. Then the χj
are F -linearly independent.

Proof. Let Mj be the annihilator of Vj in F [S]. Let N = ∩jMj. Thus,
A := F [S]/N is a finite dimensional semisimple F -algebra with the Vj being
a complete set of representatives for its simple modules. Thus, we can choose
elements ej in F [S] such that ejVi = 0 if i 6= j and ej acts as the identity
on Vi. Choose sj ∈ S with χj(sj) 6= 0. Thus, χi(ejsj) = 0 for i 6= j and is
nonzero if i = j. The result follows.

Corollary 2.2. Let V and W be finite dimensional simple F [S]-modules.
Assume trV 6= 0. Then V ∼= W if and only if trV = trW . Moroever, the
bilinear form (x, y) = tr(xy) is nondegenerate on the algebra generated by
the image of S in End(V ).

Proof. The first part is an immediate consequence of the theorem. The
bilinear form is associative (i.e. (x, yz) = (x, yz)) and symmetric, whence its
radical is an ideal. Since the algebra is simple and the form is not identically
zero, the radical of the form is 0 as claimed.

In fact, we do not need to know the entire character to determine the
module. Fix a generating set X for the semigroup S. We write `(s) = `X(s)
for the length of s (as a word in the elements of X). Let Xi denote the set of
elements in S of length at most i. Let g(X,n) denote the smallest positive
integer g ≥ 2 such that if V is a module of dimension (over F ) at most n for
S, then the image of FS in End(V ) is spanned by words of length at most
g.

Theorem 2.3. Let S be a subsemigroup of Mn(F ), F a field, such that the
trace form on FS is nondegenerate. Let s1, . . . , sd be a basis of elements in
S for FS.
(a) Any s ∈ S is uniquely determined by tr(ssi) for 1 ≤ i ≤ d;
(b) Let X be a generating set for S. The character of S is determined by

the values tr(xsisj), 1 ≤ i, j ≤ d, and tr(xsi), x ∈ X ∪ {1}, 1 ≤ i ≤ d.
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(c) Let K be the subfield of F generated over the prime field by {tr(s)|s ∈
S}. Then K is generated by the elements given in (b).

(d) trV is determined by trV (s) for all s with `(s) ≤ 2g(X,n) + 1.

Proof. (a) is obvious by definition of nondegenerate.
Let s∗i be a dual basis for FS with respect to the trace form. Note that the

s∗i are determined by tr(sisj) and are in particular K-linear combinations of
the si.

We now prove (b) and (c). It suffices to show that we can determine the
tr(ssi) for each i and for each s ∈ S and that tr(ssi) is in the field generated
by the elements given in (b). For then, we may write s =

∑
i tr(ss∗i )si. In

particular, tr(s) =
∑
i tr(ss∗i ) tr(si). Then (b) and (c) follow.

Let s ∈ S. We induct on the length of s (as a word on the elements of
X). If s has length 1, this is given. Otherwise, write s = xs′ where s′ has
smaller length than s. By hypothesis (and the remark above), we know that
s′ =

∑
aisi where the ai are determined by the given information. Thus,

tr(ssj) =
∑
i ai tr(xsisj).

Now (d) follows immediately from (b).

The previous result is how one proves Burnside’s result giving a condition
for finiteness.

Corollary 2.4. Let S be a subsemigroup of Mn(F ). Assume that the
trace form on FS is nondegnerate. If | tr(S)| = m and dimFS = d, then
|S| ≤ md. In particular, if S acts irreducibly, then either tr(S) ≡ 0 or
|S| ≤ mn2

.

Of course, there are examples where the character is identically 0. Two
examples where the character is 0 are:
(a) An inseparable finite field extension E/F with module E;
(b) a central division algebra D/F with dimD a multiple of the charac-

teristic with module D.

We shall see that this are essentially the only examples of irreducible
representations with trivial character, and moreover this cannot occur over
perfect fields.

Theorem 2.5. Let ρ : S → End(V ) be a finite irreducible representation
of the semigroup S. Let A be the F -algebra generated by ρ(S) ⊆ End(V ).
Then the character χ of ρ is identically 0 if and only if A ∼= Mr(D) where
D is division ring such that either Z = Z(D) is not separable over F or
dimZ D is a multiple of the characteristic. In particular, if F is perfect, the
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character is nonzero.

Proof. We can view χ as a character on A. Suppose dimZ D = m2. Then
it is straightforward to compute that χ = m(tZ/F ◦ tA/Z), where tZ/F is the
field trace from Z to F and tA/Z is the reduced trace on the central simple
Z-algebra A. So χ = 0 if and only if either m = 0 in F or Z/F is not
separable.

If F is perfect, then of course Z/F is separable. So we only need show
that m 6= 0 in F . This just amounts to showing the Brauer group of F has
no p-torsion where 0 < p is the characteristic of F . This is a well known
result of Albert. (Let K be the algebraic closure of F . Then the Brauer
group of F is isomorphic to H2(GF ,K

∗) where GF is the absolute Galois
group of F . Since x 7→ xp is an automorphism K∗, multiplication by p is an
automorphism on H2(GF ,K

∗). In particular, there are no elements of order
p.)

Theorem 2.6. Let S be a semigroup generated by a set X and F a field.
Let Cn denote the family of completely reducible F [S]-modules of dimension
n such that the corresponding trace forms are nondegenerate and the multi-
plicity of each composition factor is less than the characteristic of F (if F
has positive characteristic). If V ∈ Cn, then the isomorphism type of V is
determined by trV (s) for all s ∈ X2f+1, where 1 < f is the minimum value
such that Xf contains a basis for the image FS ⊆ EndF (S).

Proof. Let mW denote the multiplicty of each simple module W as a composi-
tion factor of V . Then trV =

∑
mW trW . The fact that the trace form is non-

degenerate implies that trW is nonzero when mW > 0. By (2.3)(d), trV is de-
termined by the data given. Thus, Theorem 2.1 implies that the mW (viewed
as elements in F ) are uniquely determined. Since 0 ≤ mW < char(F ) for F
of positive characteristic, it follows that mW is uniquely determined.

We shall use the convention that 1 ∈ X0. If the image of S is not commu-
tative, then the span of X must be at least 2-dimensional, whence f ≤ d− 2
(for then X1 must span at least a 3-dimensional space and if the span of Xi

is equal to the span of Xi+1, then their span is the same as that of S). So
we may take f ≤ d − 2. If X is commutative, then f < dimV (see [Pz]).
Pappacena [Pa] has shown that f may be taken to be

√
2n3/2 + 3n.

Using the result of Pappacena [Pa] and Theorem 2.6 allows us to improve
a result of Pearcy. We thank Chi-Kwong Li for pointing out the result of
Pearcy. We first restate a special case of the previous result in terms of
simultaneous similarity.

Corollary 2.7. Let K be a field of characteristic zero. Let Xi, Yi, 1 ≤ i ≤ t
be n× n matrices over K. Assume that
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(a) trW (X1, . . . , Xt) = trW (Y1, . . . , Yt) for every W which is a monomial
of length 2f(n) + 1 in t noncommuting variables; and

(b) the algebras generated by the Xi and Yi are semisimple.
Then there exists U ∈ GLn(K) such that UXiU

−1 = Yi, 1 ≤ i ≤ t.
Proof. Let A be the free algebra on t noncommuting variables. Then any
ordered set Z1, . . . , Zt of t matrices gives a representation (or equivalently
a module) of A. Denote this module by M(Z). The previous result and
the hypothesis on traces implies that the composition factors of M(X) and
M(Y ) are the same. The semisimplicity condition implies that therefore
M(X) ∼= M(Y ) which is precisely the assertion of the theorem.

The next result is the promised extension of [Pe]. One can state a more
general result (with the same proof) for finite dimensional representations
of C∗-algebras.

Corollary 2.8. Let X and Y be n×n matrices over an algebraically closed
field K of characteristic zero. Suppose that trW (X,X∗) = trW (Y, Y ∗) for
every monomial W of degree at most 2f(n)+1 in 2 noncommuting variables.
Then there exists a unitary matrix U such that UXU−1 = Y .

Proof. Let N denote the space of column vectors of dimension n. Consider
the two modules of the free algebra on 2 generators defined by sending the
generators to X and X∗ or Y and Y ∗. Note that the algebra generated
by X and X∗ acts completely reducibly (the algebra is closed under the ∗
operation; if M is a subspace of N invariant under X and X∗, then the
complementary subspace M⊥ is also invariant). So the previous result ap-
plies and we see that there exists U ∈ GLn(K) such that UXU−1 = Y and
UX∗U−1 = Y ∗. This implies by a well known elementary argument that we
can take U unitary (alternatively, we can apply a result of Speiser).

As noted in [AS], Shirshov’s theorem implies that if one fixes the char-
acteristic polynomials (of degree n) for all elements in Xj, j < 2n, there are
only finitely many possible semisimple representations for S (in [AS], they
take j ≤ 2n, but in fact using Shirshov’s Theorem (cf. [Ro, 4.2.8]), one
gets the sharper bound). Theorem 2.6 uses traces rather than characteristic
polynomials – longer words are used, but a uniqueness theorem is obtained
as opposed to a finiteness theorem. The following example shows that in
fact Shirshov’s theorem does not yield uniqueness.

An easy calculation also shows that the set of words of length at most
2p− 3 do not span the full matrix algebra.

Example 2.9. Let p be an odd prime. Let S be the nonabelian group
of order p3 and exponent p (viewed as a semigroup). Let X = {x, y} be
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a generating set of S (so xp = yp = 1 and z := xyxp−1yp−1 generates the
center of S and has order p). Let F be an algebraically closed field of any
characteristic different from p. Then S has p− 1 irreducible representations
ρi of dimension p such that ρj(a) has the same characteristic polynomial for
any a of length at most 2p− 1.

Proof of Example 2.9. Let χi denote the character of ρi. The result follows
by noting that χi(a) = 0 for any nonidentity element a of length at most
2p− 1.

3. Generation of Matrix Algebras.

We can use our earlier results to generalize the result that power sums and
symmetric functions generate the same field in characteristic 0. Of course,
this is not true in characteristic p in general.

Theorem 3.1. Let F be a field of characteristic p and ai ∈ F, 1 ≤ i ≤ n.
Assume that no element is repeated more than p− 1 times and that |{ai, 1 ≤
i ≤ n}| = d. Let P be the prime field of F . Let pj =

∑
i a

j
i and sj be the j

the symmetric function in the a′i. Then P (s1, ..., sn) = P (p1, . . . , p2d−1).

Proof. Let S be the free semigroup on a single element x. Consider the
n dimensional representation over F sending x to A := diag(a1, . . . , an).
Let χ be the character. So χ(xj) = pj. A basis for the image of S is
1, A, . . . , Ad−1. Note that because of the assumption on multiplicity, the
character is nondegenerate (e.g., apply Lemma 2.1). The proof of Theorem
2.3 shows that Ad =

∑d−1
j=0 bjA

j where bj ∈ P (p1, . . . , p2d−1). Since sj = ±bj,
P (s1, . . . , sd) ⊆ P (p1, . . . , p2d−1). The reverse conclusion always holds (by
the standard results on symmetric functions).

Let G(F, n, d) denote the ring of generic n × n matrices with d > 1 gen-
erators over the field F . Let D(F, n, d) denote its quotient division ring.

We can obtain a similar result for the generation of the center of the
quotient division algebra for generic matrices. We first note the following.

Theorem 3.2. Let X = {Y1, . . . , Yd} denote d generic matrices generating
G(F, n, d). Assume that there is a set of words W in X, an extension field
E/F and a homomorphism φ : G(F, n, d)→Mn(E) such that φ(W ) linearly
spans Mn(E) (as an E vector space). Then

(a) W is a spanning set for D(F, n, d) over its center Z; and
(b) Z = F (tr(xst)|s, t ∈W ∪ {1}, x ∈ X ∪ {1}).

Proof. We may assume that φ(W ) is a basis (by replacing W by a subset).
Let Yk = (x(k)

ij ).



166 A. FREEDMAN, R.N. GUPTA, R.M. GURALNICK

We claim that W is linearly independent over the rational function field
A = F (x(k)

ij ). Suppose w1, . . . , wn2 are the elements of W . Set f = w1∧ . . .∧
wn2 . This is an element of the n2 exterior power of Mn(Q) ≡ Q. Indeed, it
can be viewed as a polynomial. Since it does not vanish everywhere (apply
the substitution defined by Yi → φ(Yi)), f 6= 0, whence (a).

Let Z ′ = F (tr(xst)) as in (b). It is well known that Z ′ ⊆ Z (cf. [MR]).
The proof of Theorem 2.3 shows that every element in G can be written as a
Z ′-linear combination of elements in W , whence Z(G) ⊂ Z ′. Since Z is the
quotient field of Z(G) (by Posner’s Theorem cf. [MR] or [Ro]), it follows
that Z = Z ′.

Example 3.3. Consider G = G(F, n, 2) with n > 1. Let X,Y be the
standard generators for G.
(a) {X iY j, 0 ≤ i, j < n} is a basis for D/Z.
(b) {X iY Xj|0 ≤ i, j < n} is a basis for D/Z.
(c) Z is generated over F by either

{tr(X iY jX i′Y j′)|0 ≤ i, j, i′, j′ < n}, or

{tr(X iY XjY XkY l)|0 ≤ i, j, k < n, l = 0, 1}∪{tr(X i)|1 ≤ i ≤ 2n−1}.
(d) Z is generated over F by the set of traces of words of length at most

3n.

Proof of Example 3.3. For (a) consider the substitution X diagonal with
distinct eigenvalues and Y a permutation matrix corresponding to an n-cycle.

For (b), take X to be diagonal with distinct eigenvalues and Y a generic
rank 1 matrix.

Then (c) follows. Note that for j ≥ n, Xj is a linear combination of smaller
powers of X where the coefficients are in the field generated by tr(X i) for
0 < i ≤ 2n− 2 by Theorem 3.1 (X has distinct eigenvalues).

Now (d) follows from (c).

Reichstein has observed the following immediate consequence of 2.3.

Proposition 3.4. Let G = G(F, n,m) with m ≥ n2 − 1. Let Yi, 1 ≤ i ≤ m
be the generic matrices generating G. Then Z is generated over F by {tr(w)|
a word of length ≤ 3}.

Let T (F, n, d) denote the trace ring of G(F, n, d) (see [Ro]). Then the
center C is generated by the coefficients of the characteristic polynomials
of words in X. If the characteristic of F is 0, then any coefficient of the
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characteristic polynomial of a matrix A can be expressed as a polynomial in
tr(Aj). The analagous question for T (F, n, d) is much more difficult.

Question 3.5. Find m so that the center C of T (F, n, d) can be generated
by {cj(Xd)|1 ≤ j ≤ m}. If F has characteristic zero, find m so that C is
generated by tr(Xd).

L. Small asked the following question in relation to questions about finitely
generated algebras of GK dimension 1. See [SS] and [SW].

Question 3.6. Let S be an irreducible semigroup of Mn(F ) generated by
a subset X. Find a function g(n) so that Xg(n) is a spanning set for the
algebra generated by S.

Clearly, we may take g(n) = n2 − 1. Paz [Pz] showed that g(n) can be
bounded by approximately n2/3. Pappacena [Pa] has dramatically improved
the bound to g(n) ≤ √2n3/2 + 2n (his result is actually slightly better than
this and as we have noted above, he has results about arbitrary finite di-
mensional algebras). This has had some nice consequences about PI rings
of GK dimension 1.

Example 2.9 shows that one can do no better than 2n− 2 in general.
We next prove under relatively general assumptions that one can choose

g linear in n.

Theorem 3.7. Let X be a generating set for a semigroup S ⊆ Mn(F ).
Assume that S spans Mn(F ) Let A ∈ X.

(a) If rk(A) = 1, then X2n−1 spans Mn(F );
(b) If A has distinct eigenvalues, then X2n−2 spans Mn(F ).

Proof. Set R = Mn(F ).
(a) Let I = AR. Then I has dimension n. It follows that spAXj+1 =

spAXj if and only if spAXj = I. Since AX0 has dimenion 1, it follows that
spAXn−1 = I. In particular, I ⊂ Xn. Let A1, . . . , An be a basis for I. They
each have rank 1 as well and that R = ⊕iRAi. So, as above, we see that
RAi ⊂ spXn−1Ai ⊂ spX2n−1. Thus R = spX2n−1 as desired.

(b) We may assume that A is diagonal with distinct eigenvalues. Let
Ai be the rank 1 matrix with 1 as the ith digaonal entry and 0 elsewhere.
Then Ai can be expressed a polynomial in A of degree at most n− 1. Thus,
Ai ∈ spXn−1. As above, R = ⊕iRAi ⊆ spX2n−2.

4. Fields of Definition and Torsion Semigroups.

We next investigate the field of definition for a representation. See [CR]
also.
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Theorem 4.1. Let S be a semigroup. Let ρ be an irreducible K-representa-
tion of S with character χ.
(a) If ρ is absolutely irreducible, then ρ is defined over any subfield F of

K with trivial Brauer group containing {χ(s) : s ∈ S}.
(b) If ρ is an irreducible K representation of S with nontrivial character

χ, then ρ is defined over any field F containing χ(s), s ∈ S such that
FS involves no division algebras.

Proof. Let U be the K-algebra generated by ρ(S). Let F be a field satisfying
our hypotheses above. Let T be the F subalgebra of Mn(K) generated by
ρ(S).

First consider the case where ρ is absolutely irreducible over K. Then the
trace form is nondegenerate (because we may pass to the algebraic closure).
Let B ⊂ S be a K-basis for KS. By Theorem 2.3, every element of T is an
F -linear combination of B. Thus, dimF T = n2. Since T has pi degree n (as
does KT ), it follows that T ∼= Md(D) where D is a division algebra of pi
degree n/d. In particular, by dimension, D has center F . Since the Brauer
group of F is trivial, this implies that D = F and r = n. Thus, ρ is defined
over F .

Now consider the general case. By hypothesis, T = Mr(L) for some
finite extension field L of F . Set M = L ⊗F K. By the previous lemma,
U ∼= T ⊗F K ∼= Mr(L ⊗F K) and [M : K] = [F : L]. Since ρ is irreducible,
M is field. Let ρ′ : S → Mr(M) be the representation by viewing ρ as
mapping S into Mr(M). By (a), ρ′ is defined over L. Thus, ρ is equivalent
to a representation into Mr(L) ⊆Mn(F ) as desired.

Corollary 4.2. Let S be a finite semigroup. Let ρ be an irreducible F -
representation of S with character ρ with F of positive characteristic. Then
ρ is defined over the finite field P (χ) where P is the prime field.

Proof. Clearly, every irreducible representation of S is defined over a finite
field (every irreducible representation of S is defined over the algebraic clo-
sure of the prime field because tensoring with another algebraically closed
field will not change the number of irreducible representations; there are
only finitely many such representations and so each is defined over some
finite field). So we may assume K is finite. Since K is perfect, the character
is nontrivial. Since the Brauer group of any finite field is zero, we can apply
the previous result.

One can prove Corollary 4.2 by using Lang’s Theorem. See [Be] for such a
proof for finite groups. The proof is valid for arbitrary irreducible semigroups
whose traces are contained in the algebraic closure of a finite field.
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Let S be a semigroup. We say s ∈ S is torsion if sa = sb for some positive
integers a > b. We say S is torsion if every element is torsion (if S is a group,
this coincides with the usual definition). In particular, any finite semigroup
is torsion.

The Burnside problem for groups has an obvious analog for torsion semi-
groups. Burnside, as a step in considering that problem, proved that every
finitely generated torsion subsemigroup of GLn(K) for K a field is finite.
The analagous result for semigroups was proved in [MZ]. We give another
proof which is a bit shorter and simpler than the one given in [MZ]. In
positive characteristic, the result also follows immediately from Shirshov’s
Theorem. Small has given a different argument in positive characteristic.

Theorem 4.3 ([MZ]). Let S be a finitely generated subsemigroup of
GLn(K) for K a field. Assume that every element of S is torsion. Then S
is finite.

Proof. First observe that there is no harm in assuming that K is algebraically
closed.

Let f(S) denote the semisimplication of S (i.e. view GLn(K) = GL(V )
with V of dimension n, take a composition series 0 = V0 ⊂ V1 . . . ⊂ Vr = V
and consider the representation of S on V ′ =

∑
Vi/Vi−1; then f(S) is the

image of S under this representation).
We first note that f(S) is finite. To see this, we may suppose that S acts

absolutely irreducibly. Also, we may assume that representation is defined
over a field E finitely generated over the prime field (because S is finitely
generated). It follows that the eigenvalues for any element of S are contained
in a finite set (consisting of 0 and roots of unity contained in E). Thus | tr(S)|
is finite, whence by Burnside’s lemma, S is finite (because we are over an
algebraically closed field).

Note the result is also true if S is a group. For if S is group, then f(S)
finite implies that H := ker(f) is finitely generated (by a classical result of
Schreier). Thus, H is a finitely generated unipotent torsion group. If K has
characteristic zero, this implies that H = 1 (and we need not even invoke
Schreier). If K has positive characteristic p, one can reduce to the case of a
nil semigroup (by considering the semigroup generated by x− I as x ranges
over a generating set), where the result is obvious.

Let S be a counterexample with nminimal. Among such counterexamples,
choose with the number of generators minimal. Let X be a generating set
of minimal cardinality for S. Since S is not a group, we may choose x ∈ X
with x not invertible.

Let S(x) denote the semigroup generated by X \{x}. By minimality of X,
it follows that S(x) is finite. Consider the subsemigroup T := xS. Then T
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is generated by x and the finite set xw,w ∈ S(x). So T is finitely generated.
Let Y denote this generating set for T .

We claim that T is finite. Let W be a hyperplane in V containing xV
(since x is not invertible, this is possible). Note that W is T -invariant. Let
r : T → GL(W ) be the restriction mapping. By the minimality of n, r(T ) is
finite. Let u ∈ V \W . The claim will follow if we can prove that {t(u)|t ∈ T}
is finite.

Let
U = {s(y(u))|y ∈ Y, s = I or s ∈ r(T )}.

Note that if y ∈ Y and t ∈ T , then ty(u) = r(t)(y(u)). Thus, by induction
on the length of a word in T (length with respect to the generating set Y ),
it follows t(u) ∈ U for all t ∈ T . Thus, T is finite.

Since
S = S(x) ∪ T ∪w∈S(x) wT,

the finiteness of S(x) and T implies the finiteness of S.

Note that the last part of the argument shows that if F is replaced by a
division ring, then the previous proof goes through verbatim to show that if
there is a counterexample, then there will be a counterexample with a group.
This gives another result of [MZ].

Corollary 4.4 ([MZ]). Let D be a division ring. If every finitely generated
torsion subgroup of Mn(D) is finite, then every finitely generated torsion
subsemigroup of Mn(D) is finite.

It was shown in [Po] that the result can be extended to semigroups con-
tained in a PI ring (based on an argument of Procesi).

5. Brauer Characters of Semigroups.

The notion of the Brauer character of a finite dimensional representation of
a finite group in positive characteristic is a very useful one. We show here
that this can be defined in much greater generality and that it recovers the
information lost from the possibility that the character may be 0.

Let F be a field of positive characteristic p. We will define Brauer charac-
ters for finite dimensional representations of a semigroup. There is no harm
in replacing F by its algebraic closure (for finite groups one usually works
with a splitting field for the group and F is taken to be a finite field).

Choose a domain B of characteristic zero such that B/I = F for some
maximal ideal I (e.g., take B to be a polynomial ring over the integers).
We may replace B by its integral closure inside the algebraic closure of its
quotient field (by going up, there exists a maximal ideal containing I with
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necessarily the same quotient). We may then localize B at I. So we have
shown that there exists an integral domain D of characteristic zero satisfying
the following conditions:
• There exists a surjection f : D → F̄ ; and
• D is a local, integrally closed domain and its quotient field E is alge-

braically closed.
Let I = ker(f). So I is the unique maximal ideal of D. Then f induces a

surjective group homomorphism from D∗ to F̄ ∗ with kernel 1+I. Since D is
integrally closed and its quotient field is algebraically closed, it is straight-
forward to verify that 1 + I is a divisible group. Thus, f is a split surjection
on D∗. Let µ : F̄ ∗ → D∗ be an injection with fµ(x) = x for all x ∈ E∗.
Define µ(0) = 0.

Now suppose ρ : S → Mn(F ) is a representation of the semigroup S.
We may replace F by its algebraic closure. Define the Brauer character
bρ : S → K as by

bρ(s) =
∑
i

µ(ai),

where a1, . . . , an are the eigenvalues of ρ(s).
Note that if χ is the character of ρ, then

f(bρ(s)) =
∑
i

f(µ(ai)) = χ(s).

So the Brauer character of a representation contains at least as much in-
formation as the character. The next result shows that the Brauer character
contains as much information as possible.

We first introduce some notation. Let F be a field and S a semigroup. Let
C = C(FS) denote the category of finite dimensional (over F ) FS-modules.
Let G0(C) denote the Grothendieck group of this category. This is a free
abelian group on the isomorphism classes of simple finite dimensional FS-
modules. In particular, if X,Y ∈ C, then X = Y in G0 if and only if X and
Y have the same composition factors (including multiplicities).

Suppose E is a field extension of F with dimF E = m. We have res :
C(ES) → C(FS). There is also ext : C(FS) → C(ES) given by M →
M ⊗F E. Note that res ◦ ext is just multiplication by m. In particular, ext
is an injection. It follows easily from this that the same is true for any
field extension E/F . Indeed, the same is true for any commutative ring
extension E/F (where one makes the analagous definitions). First note that
we may assume that E is finitely generated over F ; and so by induction E is
generated by a single element, whence either E is finite dimensional over F or
E = F [t]. The argument above handles the first case. The latter case follows
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by replacing ext in the argument above by the map from C(ES) → C(FS)
induced by the F -homorphism sending t to 0.

If X is a finite dimensional FS-module, let cX(s) denote the characteristic
polynomial of s in its action on X. So cX is a map from S to the set of monic
polynomials of degree dimX. Note that if X = Y in G0, then cX = cY .

Theorem 5.1. Let F be a field and S a semigroup. Let X,Y be finite
dimensional FS-modules. The following are equivalent:
(a) X = Y are equal in G0(C);
(b) X and Y have the same composition factors including multiplicity;
(c) bX = bY ; and
(d) cX = cY .

Proof. Note that all statements hold if and only if they hold over any fixed
field extension. So we may replace F by its algebraic closure.

We have already noted that (a) and (b) are equivalent. Since both the
Brauer character and characteristic polynomial of an element depend only
the composition factors, (b) implies both (c) and (d). Since bX(s) is deter-
mined by the eigenvalues of s, (d) implies (c).

So we need only prove (c) implies (a). If M is a simple FS-module, let
eM(X) denote the multiplicity of M as a composition factor of X.

So X =
∑
eM(X)M in G0. We will prove this by induction on

∑
eM(X).

If this sum is 0, then X = 0 and the result is clear. It follows that trX =∑
eM(X) trM . Since bX = bY , trX = trY . By Theorem 2.1, this implies

that eM(X) = eM(Y ) for each M as elements in F . This implies that
eM(X) ≡ eM(Y ) mod p. Thus, in G0, X = X0 + pX1 and Y = X0 + pY1,
where X0 =

∑
e′(M)M where e′(M) ≡ e(M) mod p and 0 ≤ e′(M) < p.

Thus, it suffices to show that pX1 = pY1 in G0. Since bX = bX0 + pbX1 , it
follows that bX1 = bY1 and the result follows.

Note that the proof above also yields:

Corollary 5.2. Let S denote the collection of simple finite dimensional
simple FS-modules. The collection {bX |X ∈ S} is Q-linearly independent.

If we assume that X and Y have dimension n in Theorem 5.1, then the
Proof of 2.3 shows the following:

Corollary 5.3. Let X,Y be FS-modules of dimension n. Let G be a
generating set for S. The following are equivalent:
(a) X = Y are equal in G0C;
(b) X and Y have the same composition factors including multiplicity;
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(c) bX(s) = bY (s) for all s ∈ G2g(n)+1;
(d) cX(s) = cY (s) for all s ∈ G2g(n)+1.

Again, one should compare this to Shirshov’s Theorem which asserts that
if we replace G2g(n)+1 by G2n−1, then we can conclude that there are only
finitely many possibilities for Y if cY = cX on G2n−1. The example in Section
2 shows that this information does not determine Y uniquely.

Question 5.4. Determine g′(n) so that the composition factors of X are
uniquely determined by bX (or cX) on words of length at most g′(n). In
particular, can one take g′(n) = 2n.

Clearly, we can take g′(n) = g(n). Is it possible that g′(n) may be taken
to be less than g(n)?

The previous result allows us to state various analogs of characteristic 0
results. Since the Brauer character depends only on the composition factors,
it obviously cannot yield any direct information about nonsplit extensions. If
V is a finite dimensional FS-module, let V ss denote the semisimple module
which has precisely the same composition factors as V .

If V is a finite dimensional FS-module, we may write V as an element
in G0 uniquely as V =

∑
i=0 p

iVi where each composition factor of Vi has
multiplicity less than p.

Corollary 5.5. Let F be an algebraically closed field. Let V,W be finite
dimensional FS-modules. The following are equivalent:

(a) V = W in G0; and
(b) trVi = trWi

for each i.

Proof. By 2.1 and the assumption on multiplicities, (b) implies (a). We
show that (a) implies (b) by induction (on the dimension of V ). If V = 0,
the result is clear. Since bV = bW , trV0 = trV = trW = trW0 . Thus, by
2.1, V0 = W0 in G0. So, V ′ = W ′ in G0, where V ′ = (V − V0)/p and
W ′ = (W −W0)/p. The result follows by induction.

We now prove the analog of Burnside’s Theorem about semigroups with
finitely many traces.

Corollary 5.6. Let V be a finite dimensional vector space over F . Let
S be a semigroup in End(V ) acting completely reducibly. Let bV denote the
corresponding Brauer character. Then S is finite if and only if {bV (s)|s ∈ S}
is finite. Moreover, if the value set of bV has cardnality m, then |S| ≤ mn2

.

Proof. We first claim that we may assume that F is algebraically closed. If F
is perfect, this is clear for then S still acts completely reducibly. In general,
this is not the case.
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Let E denote the algebraic closure of F . Let A = FS. So A is a semisimple
F -algebra. Thus, A embeds into (A⊗FE)/J , where J is the Jacobson radical.
It follows that A acts faithfully on W := (V ⊗F E)ss. Thus, elements of S
act distinctly on the E[S]-module W (and V and W have the same Brauer
character).

Define Vi as above and let bi denote its Brauer character and ti its char-
acter. Let s1, . . . , sd be a spanning set for FS consisting of elements of
S. Suppose bV (sjs) = bV (sjs′) each all j. In particular, this implies
that t0(sjs) = t0(sjs′) for all j, whence s − s′ acts trivially on V0. Thus,
b0(sjs) = b0(sjs′) for all j. By considering the module V ′ := (V − V0)/p, we
see that bV ′(sjs) = bV ′(sjs′) for all j. Thus, by induction, s−s′ acts trivially
on V ′ as well. Since V is semisimple, this implies that (s − s′)(V ) = 0 as
claimed.

Thus, the map s→ bV (sjs) is an injection on S, whence |S| ≤ md.

Corollary 5.7. Let V be a finite dimensional vector space over the field F .
Let S be a semigroup contained in End(V ) acting semisimply. If {cV (s)|s ∈
S} is finite, then S is finite.

Proof. The finiteness of the set of characteristic polynomials implies the
finiteness of the value set of the Brauer character.

Corollary 5.8. Let V be a finite dimensional vector space over the field F .
Let S be a semigroup contained in End(V ) acting semisimply. The following
are equivalent:

(a) S is finite;
(b) {bV (s)|s ∈} is finite;
(c) {cV (s)|s ∈} is finite; and
(d) S is finitely generated torsion.

Our last result is a generalization of a well known result for finite groups.

Corollary 5.9. Let R be an integral domain of characteristic zero with
quotient field Q. Let M be a maximal ideal of R such that R/M has positive
characteristic p. Let S be a semigroup. Suppose L1 and L2 are finitely gen-
erated R-projective R[S]-modules such that L1⊗RQ = L2⊗RQ in G0(Q[S]).
Then L1/ML1 = L2/ML2 in G0((R/M)[S]).

Proof. There is no loss in assuming that Q is algebraically closed and that
R is a local integrally closed domain. In particular, this implies that L1 and
L2 are free R-modules. Set Vi = Li/MLi.

Let s ∈ S. Since L1 ⊗R Q = L2 ⊗R Q in G0(Q[S]), s has the same
characteristic polynomial on L1 and L2. This implies that s has the same
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characteristic polynomial on V1 and V2 (since the characteristic polynomial
is obtained by reduction modulo M). Now apply Corollary 5.3.
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