
pacific journal of mathematics
Vol. 181, No. 3, 1997

DETERMINATION OF MODULAR ELLIPTIC CURVES BY
HEEGNER POINTS

Wenzhi Luo and Dinakar Ramakrishnan
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1. Introduction.

For every integer N ≥ 1, consider the set K(N) of imaginary quadratic
fields such that, for each K in K(N), its discriminant D is an odd, square-
free integer congruent to 1 modulo 4, which is prime to N and a square
modulo 4N . For each K, let c = ([x]− [∞]) be the divisor class of a Heegner
point x of discriminant D on the modular curve X = X0(N) as in [GZ].
(Concretely, such an x is the image of a point z in the upper half plane H
such that both z and Nz are roots of integral, definite, binary quadratic
forms of the same discriminant D ([B]).) Then c defines a point rational
over the Hilbert class field H of K on the Jacobian J = J0(N) of X. Denote
by cK the trace of c to K.

Let f be a normalized newform of level N , weight 2 and trivial character.
It is given by a Fourier expansion

∑
n≥1 ane

2πinz, z ∈ H, with a1 = 1. The
form 2πif(z)dz defines a differential of the first kind on the compactification
of the Riemann surface Γ0(N)\H, in fact a class ωf , rational over the field
Q(f) of coefficients, on X. There is an abelian variety factor Jf over Q of
the Jacobian J whose cotangent space over C is spanned by the [Q(f) : Q]
conjugates, under Aut(C), of ωf . For every Heegner point x coming from
K, let cf,K denote the component of cK in Jf (K)⊗Q ⊂ J(K)⊗Q; this is
denoted by cf,1 in [GZ], where 1 signifies the trivial character of the class
group of K.

An elliptic curve E over Q is said to be modular if, for a newform f of
weight 2 (necessarily with Q-coefficients), E is isogenous to Jf ; equivalently,
by the Eichler-Shimura congruence relations and Faltings’s isogeny theorem,
L(s, E) = L(s, f). (Modularity is known to be true for a large class of E/Q
by the recent deep works of Wiles, Taylor-Wiles and Diamond.) When E is
modular, the conductor of E agrees, by the work of Carayol ([C]), with the
level N of f . In their fundamental paper, Gross and Zagier gave a formula
(cf. [GZ], Chap. I, Section 6), for each Heegner point x, expressing the
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derivative at s = 1 of the L-function over K of such a modular elliptic curve
E in terms of the canonical height ĥ(cf,K) of cf,K over K. Our main result
here is the following:

Theorem A. Let E,E′ be modular elliptic curves over Q of conductors
N,M , with asssociated newforms f, g of weight 2, such that, for a non-zero
scalar C, we have

ĥ(cf,K) = Cĥ(cg,K),

for all Heegner divisors cK coming from imaginary quadratic fields K in
K(N) ∩ K(M). Suppose that some cf,K is non-zero in J(K) ⊗ Q. Then
N = M and E is isogenous to E′ over Q.

One can show by using [GZ] that some cf,K is non-zero in J(K) ⊗ Q iff
the order of zero of L(s, E) at s = 1 is ≤ 1.

The proof will be given in the next section. It uses a variant of the
method of [LR], and this Note could be viewed as an addendum to [LR]. It
relies, in addition to [GZ], on the important work of H. Iwaniec ([Iw]) on
the quadratic twists of derivatives of modular L-series. The subject matter
of ([Iw]) concerned the average values of such twists, leading to a non-
vanishing result, established earlier and independently by Bump-Friedberg-
Hoffstein ([BFH]) and Murty-Murty ([MM]), needed to complement Koly-
vagin’s work ([Ko]) on modular elliptic curves.

Our proof, which uses properties of twisted averages of modular L-series
and their derivatives (see Theorem C), will also work for forms f with Q(f)
different from Q, determining the abelian variety Jf up to isogeny. The
method works for forms f of higher (even) weight as well. To elaborate,
Shouwu Zhang has recently proved a higher analog of the formula of Gross
and Zagier (see Corollary 0.3.2 of [Z]), and applying our argument below
to this situation, one gets a variant of Theorem A determining (the motive
of) f by the heights of the f -components of (homologically trivial) Heegner
cycles, assuming one of them has a non-trivial height.

Now let N be an odd (rational) prime, and K′(N) the set of imaginary
quadratic fields K of discriminant D which are 1 modulo 4 and satisfy

(
D
N

)
=

−1. Denote by B the quaternion division algebra over Q which is ramified
only at N and ∞, and fix a maximal order R in B. Let Y be the associated
curve of genus zero, whose points in any Q-algebra A are given by {α ∈
B⊗A−{0} | tr(α) = Nrd(α) = 0}, where Nrd (resp. tr) denotes the reduced
norm (resp. trace). Let X be the algebraic curve defined as the double coset
space (R ⊗ Ẑ)∗\(B ⊗ Af )∗ × Y/B∗, where Ẑ denotes the projective limit of
{Z/nZ} and Af = Q⊗ Ẑ the finite adeles of Q. In [G], one finds a definition



DETERMINATION OF MODULAR ELLIPTIC CURVES BY HEEGNER POINTS 253

of special points x of discriminant D, for each K ∈ K′(N). Moreover, one
finds there a beautiful formula relating, for each newform f of weight 2,
level N and trivial character with base change fK to GL(2)/K, the value
L(1, fK) (= L(1, f)L(1, f, χD)) with an analog of the height 〈xf0,K , xf0,K〉
(on Pic(X)) of the f0-component of x. Here f0 denotes the Hecke eigenform
on B∗ associated to f by Eichler; see [JL], Sec. 16, or [Sh] for a proof. (It
should be noted that a generalization of this for N not prime, but still with(
D
N

)
= −1, is sketched in [GZ], Chap. V, Sec. 3.) Our arguments below

work (easily) in this case as well and furnish the following:

Theorem B. Let E,E′ be modular elliptic curves over Q with associated
newforms f, g of weight 2 and of prime levels N,M . Suppose that for all
special points x coming from the imaginary quadratic fields K in K′(N) ∩
K′(M), we have (for some non-zero scalar C)

〈xf0,K , xf0,K〉 = C〈xg0,K , xg0,K〉.

Suppose that some 〈xf0,K , xf0,K〉 is non-zero. Then N = M and E is isoge-
nous to E′ over Q.

This Note is dedicated to the memory of Olga Taussky-Todd. Perhaps it is
fitting that it concerns heights and special values, as it was while attending
the lectures of B. Gross on this topic in Québec in June 1985 that the
second author first met Olga. We would like to thank B. Gross and W.
Duke for comments on an earlier version of the article. Thanks are also due
to different people, Henri Darmon in particular, for suggesting that a result
such as Theorem A above might hold by a variant of [LR]. Both authors
would also like to acknowledge the support of the NSF, which made this
work possible.

2. The proof.

Let E,E′, f, g be as in Theorem A. For any imaginary quadratic field K of
discriminant D, we have

(2.1) L(s, f)L(s, f, χD) = L(s, E/K) = L(s, E)L(s, ED),

where L(s, f, χD) denotes the twisted L-function of f by the quadratic
Dirichlet character χD associated to K/Q by class field theory, and ED
denotes the twist of E by D. There is a similar formula involving g and E′.

By hypothesis, there exists an imaginary quadratic field K0 with discrimi-
nant D0 in K(N)∩K(M) and Hilbert class field H0 such that the correspond-
ing cf,K0 is non-zero in Jf (K0) ⊗ Q. Then cf,K0 comes from a non-torsion
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point on Jf (K0), and hence its canonical height ĥ(cf,K0) must be non-zero
(see [Si], Thm. 9.3(d), for example). By Theorem 6.3 of Gross-Zagier [GZ],
we have, for any K ∈ K(N) of discriminant D and ring of integers O,

(2.2) L′(1, E/K) =
8π2 (f, f)
u2
√|D| ĥ(cf,K),

where u is the order of O∗/{±1}, and (f, f) the Petersson norm of f .

Applying (2.2) to K0, we get the non-vanishing of L′(1, E/K0) as ĥ(cf,K0)
6= 0. On the other hand, since L(s, f, χD0) is holomorphic at s = 1, we
see by (2.1) that the order of zero at s = 1 of L(s, E) is at most that of
L(s, E/K0), which is ≤ 1. (The converse is also true, namely that the height
of some Heegner point is non-zero if L(s, E) vanishes to order ≤ 1, but we
will not need this.) Also, since ĥ(cf,K) = Cĥ(cg,K), with C 6= 0, we deduce
the analogous fact about L(s, E′). To sum, we have

(2.3) ords=1 L(s, E) ≤ 1 ≥ ords=1 L(s, E′).

Moreover, applying (2.2) for E and E′, and using the proportionality of
the f - and g-components of the Heegner points, we get

(2.4) L′(1, E/K) =
C (f, f)
(g, g)

L′(1, E′/K),

for all K ∈ K(N) ∩ K(M).

First suppose that L(s, E) and L(s, E′) both vanish at s = 1. Then by
(2.1), we have

(2.5) L′(1, EK) = L′(1, E)L(1, ED) and L′(1, E′K) = L′(1, E′)L(1, E′D).

Combining (2.4) and (2.5), we then get

L(1, f, χD) = C1L(1, g, χD),

with

C1 =
C (f, f)L′(1, E′)

(g, g)L′(1, E)
,

and this holds for every K = Q(
√
D) in K(N) ∩ K(M). Applying Theorem

B of our earlier paper [LR], one then concludes that N = M and f = g.
Then E is isogenous to E′ over Q, proving Theorem A in this case.

Next suppose that L(s, E) and L(s, E′) are both non-zero at s = 1.
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In this case, L′(1, E/K) = L(1, E)L′(1, ED); similarly for E′. Then (2.4)
implies (∀K ∈ K(N) ∩ K(M))

(2.6) L′(1, f, χD) = C2L
′(1, g, χD),

with

C2 =
C (f, f)L(1, E′)

(g, g)L(1, E)
.

Theorem A is then a consequence of the following result with k = m = 1.
(Note that w(f) = 1 here as L(1, E) 6= 0.)

Theorem C. Let f, g be normalized newforms of levels N,M and weights
2k, 2m respectively, with trivial character. Let w(f) denote the sign of the
functional equation (root number) of f . Suppose there is a constant C ′ such
that

L′(k, f, χD) = C ′L′(m, g, χD),

for all fundamental discriminants D in the set

D = {D |Dw(f) < 0, D ≡ ν2 (mod 4R), for some ν prime to R},

where R is any multiple of NM . Then

k = m, N = M, and f = g.

Proof. The argument requires only a small, but straightforward, modification
of the proof of Theorem B of [LR]. We will use the same notation as in
Section 3 of loc. cit., except otherwise indicated. In particular, F will denote
a smooth function with compact support in R∗+ with B =

∫
R∗+
F (t)dt > 0.

Let ` be 1 or a odd prime not dividing R. Our main tool is the twisted
sum (for T > 0)

(2.7) Sf,`(T ) =
∑

L′(k, f, χD)F
( |D|
T

)
χD(`),

where the sum runs over D in D with µ(D) 6= 0. When ` = 1, this sum
was analyzed in [Iw], establishing a strong asymptotic formula in T (com-
pare [MM]). We make use of (only) [Iw], and assume familiarity with its
contents.

Arguing as in Section 3 of [LR], we deduce that

(2.8) Sf,`(T ) = BC0Lf,`(k)T logT + βfT + O(T
13
14 +ε),
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for some constant βf , with C0 and  Lf,`(s) as in Proposition 3.6 of [LR].
For ` = 1, this is Iwaniec’s formula. (It is likely that the error term can
be improved by using the recent work of Heath-Brown [H], but this is not
necessary for us here.)

In the proof of (2.8), we need only redefine V (x) (compare (3.13) of [LR])
as follows:

V (x) =
1

2πi

∫
<(s)=4/5

Γ(k + s)
Γ(k)

x−s
ds

s2
.

With this change, the proof of Proposition 3.6 of [LR] goes through verba-
tim.

We next recall that, when ` is prime to N , Lemma 3.7 of [LR] shows
that Lf,`(k) is L1,`(k) times a rational function of ã`(f) = a`(f)`(1−2k)/2,
which determines the normalized Hecke eigenvalue ã`(f). Now applying the
hypothesis of Theorem C, we get the equality of ã`(f) and ã`(g) for almost
all primes `. Thus, by the strong multiplicity one theorem, f and g coincide,
resulting in the equality of N and M and the Q-isogeny of E and E′.

To complete the proof of Theorem A, it remains for us to consider the
possibility that the orders of zero at s = 1 of L(s, E) and L(s, E′) are
different. If we are in such a case, we may, after interchanging E and E′ if
necessary, assume, thanks to (2.3), that

ords=1 L(s, E) = 0 and ords=1 L(s, E′) = 1.

Then

L′(1, E/K) = L(1, E)L′(1, ED),

while

L′(1, E′/K) = L′(1, E′)L(1, E′D).

Applying (2.4), we get (∀K ∈ K(N) ∩ K(M))

(2.9) L′(1, f, χD) = C3L(1, g, χD),

with
C3 =

C (f, f)L′(1, E′)
(g, g)L(1, E)

.

Sum both sides over discriminants D in D, weighted by F ( |D|
T

). Then the
left hand side has the asymptotic given by (2.8) (with ` = 1), hence with
leading term a (non-zero) multiple of T logT , while the leading term of the
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asymptotic of the right hand side is, by Proposition 3.6 of [LR], a multiple of
T . This gives a contradiction. Hence the hypotheses of Theorem A prevent
L(s, E) and L(s, E′) from having different orders of zero at s = 1. We note
that we are justified in applying the results of [LR] to g as w(g) = −1, so
that the set Dw used in loc. cit., (3.2), is the same as D.

This finishes the proof of Theorem A.

The proof of Theorem B is very similar, in fact simpler. Indeed, since
by hypothesis, there exists some K0 ∈ K′(N) such that 〈xf0,K0 , xf0,K0〉 is
non-zero, we must have, by Proposition 11.2 of [G], that

L(1, E/K0) = L(1, f)L(1, f, χD0) 6= 0,

where D0 is the discriminant of K0. Hence L(1, f) is non-zero. (The converse
is also true; indeed, if L(1, f) is non-zero, then w(f) must be 1, and by using
[W], for example, we can find some K ∈ K1(N) for which L(1, E/K0) 6= 0,
and hence, by [G], that 〈xf0,K , xf0,K〉 is non-zero.) Now since 〈xf0,K , xf0,K〉
is a non-zero multiple of 〈xg0,K , xg0,K〉, L(1, g) is also non-zero. Applying
Gross’s result again, we get

L(1, f, χD) = C4L(1, g, χD),

for a non-zero scalar C4, for all K ∈ K′(M)∩K′(N). So Theorem B of [LR]
applies, resulting in the equality of N and M and the Q-isogeny of E and
E′.

3. Questions.

In Theorem A, one should probably only need the equality of ĥ(cf,K) with
Cĥ(cg,K) for a finite set of K, depending on C,N,M . It will be interesting
to know if it sufices, for C = 1, to know this equality for one single K0 with
cf,K0 of infinite order.

It will also be of interest to know if a p-adic analog of Theorem A can be
proven, i.e., with ĥ replaced by the corresponding p-adic height, for a prime
p not dividing N,M . When p is ordinary for E, there is a p-adic analog
of the Gross-Zagier formula due to Bernadette Perrin-Riou ([PR]), for all
K ∈ K(N) in which p splits. In a related vein, we have learnt recently of
an assertion of D. Bertrand ([Be], Prop. 1), determining any CM curve E
(up to isogeny) by the knowledge of the p-adic height of any point of infinite
order.
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