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1. Introduction.

To a classical modular cusp form f(z) with Fourier expansion

f(z) =
∞∑
n=1

ane
2πinz

one can associate the Dirichlet series

L(f, s) =
∞∑
n=1

an
ns
.

Hecke showed that L(f, s) converges absolutely in some right half plane, has
an analytic continuation to the whole s-plane, and satisfies a nice functional
equation. In addition, Hecke discovered that if f(z) is an eigenfunction
for the Hecke operators, then the associated Dirichlet series has an Euler
product expansion

L(f, s) =
∏

p prime

(
1− αp

ps

)−1 (
1− βp

ps

)−1

.

Siegel introduced a theory of modular forms on the domains

Hn = {Z = X + iY ∈Mn(C)| tZ = Z, Y > 0},

called the Siegel upper half plane of genus n. If f(Z) is a Siegel modular
cusp form, then f(Z) has a Fourier expansion

f(Z) =
∑
T>0

integral, symmetric

aT e
2πitr(TZ),
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and one can associate to f(Z) a Dirichlet series

L(f, s) =
∑

T modulo
integral

equivalence

aT
|T |s .

Hecke’s original proof of the analytic continuation and functional equation
for the one dimensional case goes over with little change to the higher di-
mensional case, giving the analytic continuation and functional equation for
Dirichlet series attached to Siegel modular cusp forms of any genus. How-
ever, Hecke’s proof of the Euler product expansion for the Dirichlet series
attached to eigenfunctions of the Hecke operators on the upper half plane
completely fails in the higher dimensional case. It is clear that these Dirichlet
series do not have Euler product expansions.

For a Siegel modular cusp form f(Z) of genus n = 2, Andrianov suggested
the following construction [1].

Define

L(f, T0, s) =
∞∑
m=1

amT0

ms
,

where T0 is a positive definite integral symmetric matrix. He was then able
to prove that L(f, T0, s) converges in some half plane, has a meromorphic
continuation to the whole s-plane, and satisfies a nice functional equation.
Moreover, if f(Z) is an eigenfunction of the Hecke operators, then the Dirich-
let series L(f, T0, s) have Euler product expansions.

At the same time, Shimura was studying modular forms of half-integral
weight [15]. A modular cusp form of half-integral weight has a Fourier
expansion of the usual type

f(z) =
∞∑
n=1

ane
2πinz.

Consider the analogue of the classical Dirichlet series attached to f(z)

L(f, s) =
∞∑
n=1

an
ns
.

As in Hecke, L(f, s) has an analytic continuation to the whole s-plane and
satisfies a nice functional equation. But L(f, s) has an Euler product ex-
pansion only in very special cases. Then Shimura considered a family of
Dirichlet series attached to f(z)

L(f, t0, s) =
∞∑
n=1

at0n2

ns
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with t0 a positive integer. As in the Siegel modular case, Shimura was able
to prove that the L(f, t0, s) converge in some half plane, have meromorphic
continuation to the whole s-plane, satisfy a nice functional equation, and all
have Euler product expansions.

Both Andrianov and Shimura obtained the meromorphic continuation of
their Dirichlet series by using the Rankin-Selberg method. In this method,
the analytic continuation of a Dirichlet series follows from the analytic con-
tinuation of a certain Eisenstein series.

Andrianov’s construction, like Hecke’s, does not provide a definition of the
local L- and ε-factors. In [12] we suggested a reformulation of Andrianov’s
construction which, like J. Tate’s thesis for GL1 or Jacquet-Langlands for
GL2, allows for the definition of L and ε factors for GSp4 over local and global
fields. Our construction was based on a generalization of a Whittaker model.
The uniqueness of this generalized model was proved by Novodvorsky and
the author in [10]. Later on it was considered by Rodier [14]. The complete
proof of uniqueness in all cases was given by Novodvorsky.

The computation of the L and ε factors, however, was not done explicitly.
This seems to be an interesting problem. One of the aims of this paper is
to present the results of these computations in some cases. For instance, let
π be a representation of GSp4(k) induced from a Borel subgroup (k a local
non-archimedean field). Denote by Lπ the representation of GL4(k) which
corresponds to π under the Langlands correspondence associated with the
natural embedding of LGSp4 = GSp4(C) in LGL4 = GL4(C) [3]. Then we
have that our L and ε facotrs for π are equal to the standard L and ε for Lπ.
Let τ be a mysterious cuspidal nongeneric representation of PGSp4. (For a
finite field this representation was found by Mrs. Srinivasan and labelled θ10

[16].) We prove that if Lτ exists then it should be an induced representation
πK which will be defined at the end of Section 4. During the discussion
of this result with R. Langlands, he pointed out that he had suggested a
different approach to the computation of Lτ [9].

There is a striking difference between L-functions for GLn and L-functions
for GSp4. The L-function of a representation of GLn depends only upon
embeddings in representations induced from the appropriate parabolic sub-
groups. The same is true for generic representations of GSp4. However,
for nongeneric representations of GSp4, embeddings in representations in-
duced from some reductive subgroups give a contribution to the L-function.
This implies that cuspidal representations of GSp4 can have nontrivial L-
functions.

In the proceedings of the Corvallis conference, there is an article by Novod-
vorsky where similar questions were studied by him and me [11]. It also
contains a study of the L-function corresponding to π × σ, where π is a
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representation of GSp4 as before and σ a representation of GL2.
We would like to express our gratitude to R. Howe, R. Langlands, A. Weil,

and G. Zuckerman for interesting and stimulating discussions. This paper is
based on two lectures given in G. D. Mostow’s “Lie Group Seminar” at Yale
in the late 1970’s. Note taking and final editing were done by J. Cogdell, to
whom we are very grateful. This article has circulated as a preprint for a
number of years. We would like to thank Dinakar Ramakrishnan for giving
us the opportunity to publish it in this volume dedicated to Olga Taussky-
Todd.

2. GSp4 and its subgroups.

Let k be any field of characteristic 6= 2. Let J =
(

0 I2
−I2 0

)
be the standard

skew symmetric matrix of dimension 4. Then define

GSp4 = {g ∈ GL4(k)|tgJg = λJ for some λ ∈ k×},

which is an algebraic group defined over k. We let C denote the center and
B denote the standard Borel subgroup of GSp4.

Let S denote the subgroup of GSp4 comprised of all matrices of the form(
I2 A
0 I2

)
with tA = A.

Then S is an abelian group and is equal to the unipotent radical of the
parabolic subgroup

P =

{
g ∈ GSp4

∣∣∣∣g =

(
∗ ∗
0 ∗

)}
.

Let P = MS be the Levi decomposition of P , M being the reductive part.
Any homomorphism of S into k can be written in the form s 7→ tr(βs)

with β ∈ M2(k) with tβ = β. A linear form s 7→ tr(βs) on S is called
nondegenerate if det(β) 6= 0.

Now fix a non degenerate linear form `(s) = tr(βs) on S. Let D denote
the connected component of the stabilizer of ` in M . Then there is a unique
semisimple algebra K over k, with (K : k) = 2, such that D ' K× as an
algebraic group over k. It is known that either K = k⊕k or K is a quadratic
extension of k. The subgroup of GSp4 which will be most important in our
investigation of L-functions will be R = DS. We introduce

N = {s ∈ S | tr(βs) = 0}.



L-FUNCTIONS FOR GSp4 263

If K is the semisimple algebra over k determined by D, as above, then let
V = K2 and consider the group

G = {g ∈ GL2(K)|det(g) ∈ k×}.

We will write vectors of V in row form and let G act on the right. On V we
consider the skew symmetric form

ρ(x, y) = TrK/k(x1y2 − x2y1),

where x = (x1, x2) and y = (y1, y2) are elements of V . Then it is easy to see
that G preserves ρ up to a factor in k×. (More precisely, the action of g ∈ G
changes TrK/k(x1y2 − x2y1) by det(g) ∈ k×.) If we then consider V as a 4
dimensional vector space over k, we get a natural embedding

G ↪→ GSpρ = {g ∈ GL4(k)|ρ(xg, yg) = λρ(x, y)}.

If we define the k-linear transformation ι on V by

ι : (x1, x2) 7→ (x̄1, x̄2)

then ι preserves ρ and gives us a well defined element of GSpρ. (Here x 7→ x̄
denotes the non-trivial automorphism of K/k.)

Proposition 2.1. There exists an isomorphism GSpρ ' GSp4 such that
G ∩R = DN .

We fix such an isomorphism and consider G as a subgroup of GSp4.
Let H be the subgroup of G defined by H = {( α 0

0 1 ) | α ∈ k×}.
Lemma. Let K be a field and let L1 = {` ∈ Homk(S, k) | ` is a nontrivial
linear functional but `|N is trivial}. Then H acts simply transitively on L1.

Remark. All the groups defined above are algebraic groups defined over
k and all statements made are true in this context. In particular, these
constructions and results are valid for local and global fields and also for the
ring of adeles.

3. Local L and ε factors.

In this section we let k denote a local field.
The Jacquet-Langlands construction of local L and ε factors for GL2 is

based on the definition of a Whittaker model. For a representation π of
GSp4(k) there does not always exist a Whittaker model defined with respect
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to the maximal unipotent subgroup. For GSp4(k) we use a generalized Whit-
taker model defined with respect to the subgroup R introduced in Section
2.

Let ν be a character on Dk and ψ a nondegenerate character on Sk, i.e.,
ψ(s) = ψ0(tr(βs)) with det(β) 6= 0, tβ = β and ψ0 a nontrivial character of
k. Then we get a character αν,ψ on Rk by defining

αν,ψ(r) = αν,ψ(ds) = ν(d)ψ(s)

where r = ds ∈ Rk, d ∈ Dk, s ∈ Sk. We have Dk ' K×.

Theorem 3.1. Let (π, Vπ) be an irreducible smooth admissible preunitary
representation of GSp4(k) and let αν,ψ be a character on Rk as above. Then
there exists at most one (up to scalar multiple) linear functional ` : Vπ −→ C
such that `(π(r)ξ) = αν,ψ(r)`(ξ) for all r ∈ Rk, ξ ∈ Vπ.

We will call such a linear functional an αν,ψ-eigenfunctional. (If k is
archimedean, we also require that ` be continuous in the C∞-topology.)

Using the well-known Gelfand-Kazhdan method, this theorem was proved
by Novodvorsky and the author for the case K a field [10] and for cuspidal
representations by Rodier for arbitrary k [14]. Novodvorsky later proved
the theorem for arbitrary K and nonarchimedean local fields using the same
method (unpublished). The archimedean case is even simpler to handle by
using the fact that in this case any representation is a quotient of a principal
series representation.

R. Howe has proven results from which it follows that, if k 6= C, then
for any infinite dimensional representation (π, Vπ) of GSp4(k) there exists a
nontrivial αν,ψ-eigenfunctional on Vπ for an appropriate choice of ν, ψ, and
R [5]. If k = C, the only representations for which this fails will be the Weil
representations. One can prove that these representations never occur as
components of cuspidal automorphic representations.

Let (π, Vπ) be an irreducible smooth representation of GSp4(k) and let `
be an αν,ψ-eigenfunctional. For a vector ξ ∈ Vπ we define the generalized
Whittaker function Wξ(g) on GSp4(k) by

Wξ(g) = `(π(g)ξ).

If we letWν,ψ denote this space of functions and let GSp4(k) act onWν,ψ by
right translations, then the representation of GSp4(k) on Wν,ψ is equivalent
to the representation π. From the defining property of ` we see that the
functions Wξ(g) satisfy

Wξ(rg) = αν,ψ(r)Wξ(g)
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for r ∈ Rk. We call the space Wν,ψ a generalized Whittaker model for π. If
we let W ξ(g) = Wξ(ιg), then the space W comprised of the functions W ξ(g)
for ξ ∈ Vπ is the generalized Whittaker model associated to the character
αν̄,ψ, where ν̄ is the character on Dk defined by ν̄(d) = ν(d̄).

Let V = K2 be the vector space upon which the group G, defined in
Section 2, acts. Let Φ ∈ S(V ), the space of Schwartz-Bruhat functions on
V , let ν be the character of K× ' Dk chosen above, and let µ be a character
of k×. Then for s ∈ C we define a function on G by

fΦ(g;µ, ν, s) = µ(det(g))|det(g)|s+ 1
2

k

∫
K×

Φ((0, t)g)|tt̄|s+ 1
2

k µ(tt̄)ν(t)d×t.

Then fΦ(g;µ, ν, s) ∈ indGB′(χ) where B′ is the Borel subgroup of G and χ is
the character on B′ defined by

χ

((
x 0
0 1

) (
t̄ 0
0 t

) (
1 n
0 1

))
= µ(x)|x| 12 +sν−1(t).

Now let W ∈ Wν,ψ. Then we define

L(W,Φ, µ, s) =
∫
DN\G

W (g)fΦ(g;µ, ν, s) dg

=
∫
N\G

W (g)Φ((0, 1)g)µ(det g)|det g|s+ 1
2

k dg.

In the usual manner, the integral defining L(W,Φ, µ, s) converges in some
half plane Re(s) > s0 and has a meromorphic continuation to the whole
s-plane.

As in Tate’s thesis [17], [8], or [7], the L(W,Φ, µ, s) admit a greatest
common denominator for all W ∈ Wν,ψ and Φ ∈ S(V ). This allows us
to define the function L(π, µ, s) by the property that L(W,Φ,µs)

L(π,µ,s)
is an entire

function for all W ∈ Wν,ψ and Φ ∈ S(V ). In our definition, L(π, µ, s)
depends upon the choice of ν, ψ, and R. It is easy to see that for a fixed R,
L(π, µ, s) does not depend on ψ. In the most important cases we can prove
that it does not depend on the choice of ν or R either. See, for example,
Theorem 4.4 below and [13]. For simplicity we do not include ν in our
notation for L(π, µ, s), which is called the local L-factor, or the local Euler
factor, associated to the pair (π, µ).

Proposition 3.2. There is a (local ) functional equation

ε(π, µ, ψ, s)
L(W,Φ, µ, s)
L(π, µ, s)

=
L(W, Φ̂, µ−1, 1− s)
L(π̂, µ−1, 1− s)
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where Φ̂ denotes the Fourier transform of Φ with respect to the trace form on
V , π̂ is the contragredient representation to π, and ε(π, µ, ψ, s) is an entire
function without zeros.

Proof. Denote by (τ,Wτ ) the representation indGB′χ where χ is the character
on B′ defined by

χ

((
x 0
0 1

) (
t̄ 0
0 t

) (
1 n
0 1

))
= µ(x)|x| 12 +s ν−1(t).

Then the map β : Φ 7→ fΦ(g;µ, ν, s) defines a homomorphism β : S(V ) −→
Wτ . Let T = ker(β). Then L(W,Φ, µ, s) is a bilinear G quasi-invariant
functional on Vπ × S(V ) which is equal to zero for any Φ ∈ T , and hence
is actually a bilinear functional on Vπ ×Wτ . Here, being G quasi-invariant
means that for (ξ, w) ∈ Vπ ×Wτ we have

(π(g)ξ, τ(g)w) = µ−1(g)|det g|− 1
2−s(ξ, w).

It is clear that L(W, Φ̂, µ−1, 1− s) can also be considered as a bilinear func-
tional on Vπ×S(V ). Using properties of intertwining operators, it is possible
to show that L(W, Φ̂, µ−1, 1 − s) is zero for the same Φ ∈ T . In fact, the
composition map [Φ 7→ Φ̂ 7→ f Φ̂(g, µ−1, ν̄, 1 − s)] also has kernel T . Hence
L(W, Φ̂, µ−1, 1 − s) is also a bilinear G-quasi-invariant form on Vπ × Wτ .
Then, using the uniqueness of our generalized Whittaker models, it is easy
to show that such bilinear G quasi-invariant linear forms on Vπ ×Wτ are
unique up to scalar multiples. Letting s vary, we obtain a meromorphic
function γ(π, µ, ψ, s) such that

L(W, Φ̂, µ−1, 1− s) = γ(π, µ, ψ, s)L(W,Φ, µ, s).

Then ε(π, µ, ψ, s) is given by

ε(π, µ, ψ, s) = γ(π, µ, ψ, s)
L(π, µ, s)

L(π̂, µ−1, 1− s) .

4. Computation of the local L and ε factors.

In this section we restrict our attention to the case where k is a non-
archimedean local field. Let S0(V ) = {Φ ∈ S(V )|Φ((0, 0)) = 0}. Then
we divide the poles of L(π, µ, s) into two types. We call a pole of L(π, µ, s)
regular if it is a pole of some L(W,Φ, µ, s) with Φ ∈ S0(V ). A pole of
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L(π, µ, s) is called exceptional if it is not a pole of any L(W,Φ, µ, s) when Φ
is restricted to lie in S0(V ).

We assume that π is in general position in the natural meaning. Consider
the collection of all characters η ofH such that there exists a linear functional
` on Vπ such that

(∗) `(π(hts)ξ) = η(h)|h|3/2ν(t)`(ξ)

where h ∈ H, t ∈ D, and s ∈ S. It is not difficult to prove that the collection
∆ of characters for which this linear functional is nontrivial is independent of
ν. Of course, we consider here only the ν such that for some nondegenerate
character ψ of S there exists a nontrivial αν,ψ-eigenfunctional.

Theorem 4.1. The regular part of L(π, µ, s) is equal to
∏
η∈∆ L(s, ηµ),

where the L(s, ηµ) are the standard Tate L-functions.

Proof. It is easy to see that all regular poles come from the asymptotic
behavior of the Wξ(h) when h ∈ H is small.

Recall that h ∈ H has the form h =
( x

x
1

1

)
for x ∈ k×. By h small we

mean x approaching 0 in k. For small h, we can write Wξ(h) in the form

Wξ(h) = ΣiCi(ξ)ηi(h)|h|3/2.

Then it is easy to see that the Ci(ξ) are linear functionals satisfying (∗).

For π not in general positiion a similar result holds [13].

Theorem 4.2. If s0 is an exceptional pole of L(π, µ, s), then there exists
a linear functional ` on Vπ such that

`(π(g)ξ) = µ−1(det g)|det g|−s0− 1
2 `(ξ)

for all g ∈ G, ξ,∈ Vπ.

Proof. Assume that L(π, µ, s) has an exceptional pole at s0, and assume that
for some integral L(W,Φ, µ, s) we have

L(W,Φ, µ, s) =
A(W,Φ)
s− s0

+ · · · .

Then it is obvious thatA is linear in Φ and satisfiesA(W,Φ) = 0 if Φ((0, 0)) =
0. Hence A(W,Φ) is of the form A(W,Φ) = Φ((0, 0))A(W ). It is also clear
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that A(W ) is a linear function of W . Since L(W,Φ, µ, s) is G quasi-invariant,
we see that A(W ) will be a linear functional of the desired type.

It is likely that this condition is also sufficient for s0 to be an exceptional
pole of L(π, µ, s), but this has not been proven.

If our representation has additional structure we are sometimes able to
say more about the form of L(π, µ, s). We recall that π is called generic if
π has a standard Whittaker model, that is, a Whittaker model defined with
respect to a maximal unipotent subgroup U of GSp4.

Theorem 4.3. If π is generic, then L(π, µ, s) has only regular poles.

Proof. It suffices to show that for any generic representation π there cannot
exist any linear functional on Vπ which is G quasi-invariant. The proof is
based on a description of the double cosets P\GSp4/G. This set consists of
exactly two double cosets. If g0 is any representative of the double coset not
containing 1, then P ∩ g0Gg

−1
0
∼= GL2(k). This fact is true over an arbitrary

field k.
In particular, we can take k to be a finite field. Then if π is a generic

representation, denote by ξ a standard Whittaker vector and consider ϕ(g) =
`(π(g)ξ) where g ∈ GSp4 and ` is a linear functional on Vπ which is G quasi-
invariant. Then it is easy to see that ϕ(g) satisfies the functional equations

ϕ(g1g) = β(g1)ϕ(g)

ϕ(gu) = ψ(u)ϕ(g)

where g ∈ GSp4, g1 ∈ G, β a character on G, u ∈ U , a maximal unipotent
subgroup of GSp4, and ψ a generic character on U . Then using the above
double coset decomposition one can prove that any function satisfying such
functional equations must be identically 0.

Now take k to be a non-archimedean local field. We can similarly define
a distribution B(ϕ) on the space of smooth functions with compact support
on GSp4(k) satisfying

B(Lgϕ) = β(g)B(ϕ)

B(Ruϕ) = ψ(u)B(ϕ)

with g ∈ G, u ∈ U , and where Lg and Ru are operators of left and right
translations respectively. Then, using the standard Gelfand-Kazhdan tech-
nique and the double coset decomposition above, we can prove that such a
distribution must be identically 0.
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Now let χ be any character of a Cartan subgroup of GSp4 and extend it
trivially on U to all of B. For x ∈ k×, define characters

χ1(x) = χ



x
x

1
1


 = χ3(x)−1,

χ2(x) = χ



x

1
1
x


 = χ4(x)−1.

Theorem 4.4. If π = indGSp4
B χ and π is irreducible, then

L(π, µ, s) =
4∏
i=1

L(s, µχi), ε(π, µ, ψ, s) =
4∏
i=1

ε(s, µχi, ψ),

where the L(s, µχi) and ε(s, µχi, ψ) are the Tate L and ε factors, [17]. In
particular, L(π, µ, s) and ε(π, µ, ψ, s) are independent of ν and R.

The computation of L(π, µ, s) and ε(π, µ, ψ, s) when π is a Weil lift from
a split GO4 can be found in [13].

Consider now a representation τ coming from the dual reductive pair
Sp4×O2 [4], which corresponds to the one dimensional nontrivial represen-
tation of O2. It is known that if O2 is anisotropic then the corresponding
representation of Sp4 is cuspidal [2], [6]. The anisotropic O2 correspond in
a 1-1 manner to the quadratic extensions K of k. Since the Weil represen-
tation depends on the choice of ψ, and for ψ(x) and ψ(λx), λ ∈ NK/k(K×),
we get isomorphic representations, we see that to any quadratic extension K
of k we can attach two cuspidal representations of Sp4. If we extend these
representations to representations of PGSp4(k), we will get two irreducible
cuspidal representations. Take τ to be either of these two representations. It
is possible to show that τ has the same L-factor as the following representa-
tion πK of GL4(k). Denote by σ0 the special representation of GL2 which is
the uniquely defined subrepresentation of indGL2

B0
α, where B0 is the standard

Borel subgroup of GL2 and α
(
b1 x
0 b2

)
=
∣∣∣ b1
b2

∣∣∣ 1
2
. Denote by P2,2 the parabolic

subgroup

P22 =

{(
g11 g12

0 g22

) ∣∣∣∣ gij ∈M2(k)

}
∩ GL4(k).
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Then πK = indGL4
P2,2

(σ0 ⊗ (σ0 ⊗ βK(det g))) where βK is the character of k×

given by

βK(x) =

{
1 if x ∈ NK/k(K×)
−1 if x 6∈ NK/k(K×)

.

One can prove that πK is the only generic unitary representation of GL4(k)
with the same L-function as τ . A very simple proof of this statement was
communicated to the author by H. Jacquet. One can also prove, by using
other properties of the conjectured Langlands correspondence, that for any
other cuspidal representation σ of PGSp4(k) the representation Lσ of GL4(k)
must be generic and cuspidal. Hence if Lτ exists, it equals πK . There is a
very interesting discussion of how to find Lτ in [9]. The approach in [9] is
completely different from ours.

5. Eisenstein Series and Global L-functions.

In this section we let k be a global field.
Let ψ denote a nondegenerate character on SA and ν a character on

DA ∼= IK . Let VA be the adelic points of the vector space on which GA
acts. Take Φ ∈ S(VA), the Schwartz-Bruhat functions on VA. Let µ be a
Gröβencharacter on k (i.e., a character on Ik, trivial on the principal ideles).
Then to Φ we can associate a function on GA defined by

fΦ(g;µ, ν, s) = µ(det g)|det g|s+ 1
2

∫
IK

Φ((0, t)g)|tt̄|s+ 1
2µ(tt̄)ν(t) d×t

where | | denotes the idele norm on IK . Note that fΦ(g;µ, ν, s) ∈ indGAB′Aχ,
where χ is a character on B′A defined by

χ

((
x 0
0 1

)(
t̄ 0
0 t

) (
1 n
0 1

))
= µ(x)|x|s+ 1

2 ν−1(t).

We can then form the Eisenstein series

EΦ(g;µ, ν, s) =
∑

γ∈B′
k
\Gk

fΦ(γg;µ, ν, s).

Theorem 5.1 ([7]). EΦ(g;µ, ν, s) is a holomorphic function of s, ∀s ∈
C, except for a finite number of poles, and satisfies the functional equation

EΦ(g;µ, ν, s) = EΦ̂(g;µ−1ν−1, ν̄, 1− s)

where ν−1 is the Gröβencharacter on k obtained by restriction from IK to
Ik, ν̄ is the character of IK defined by ν̄(a) = ν(ā), and Φ̂ is the Fourier
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transform of Φ. Suppose that µ and ν are a normalized pair, i.e., µ(tt̄)ν(t) =
|tt̄|α implies α = 0. Then if µ(tt̄)ν(t) 6= 1, EΦ(g;µ, ν, s) has no poles. If
µ(tt̄)ν(t) ≡ 1, the poles are only at s = −1

2
, with residue Φ(0)µ(det g), and

at s = 3
2
, with residue Φ̂(0)µ−1(det g)ν−1(det g).

We now turn to the study of global L-functions. So let (π, Vπ) be an
automorphic cuspidal representation of GSp4(A). Then there exists a pair
(ν, ψ), where ψ is a nondegenerate character on SA and ν a character on the
associated group DA ∼= IK , such that for the character αν,ψ on RA = DASA,
there exists a cusp form ϕ ∈ Vπ such that∫

CARk\RA
ϕ(r)α−1

ν,ψ(r)dr 6= 0.

This again is a consequence of the results of Howe referred to above and the
fact that Bk \ BA is dense in GSp4(k)\ GSp4(A). We fix now such a pair
(ν, ψ) and the associated adelic groups as in Section 2.

The nonvanishing of the above integral allows us to define a global gen-
eralized Whittaker model for π. If ϕ ∈ Vπ we define the function Wϕ on
GSp4(A) by

Wϕ(g) =
∫
CARk\RA

ϕ(rg)α−1
ν,ψ(r)dr.

These functions satisfy

Wϕ(rg) = αν,ψ(r)Wϕ(g)

for r ∈ RA. Denote this space of functions by Wν,ψ. The representation
of GSp4(A) on Wν,ψ via right translation is then equivalent to π. For any
local component πP of π there exists a nontrivial ανP ,ψP -eigenfunctional as
in Section 3, where νP and ψP are the local components of the characters
ν and ψ respectively. The global (generalized) Whittaker model will then
factor as a restricted tensor product of the local (generalized) Whittaker
models associated to the ανP ,ψP as in Section 3. The uniqueness of the
global model will then follow from the uniqueness of the associated local
Whittaker models.

Once we have a global (generalized) Whittaker model, we can make con-
structions analogous to those in Section 3 for local fields. In particular for
Wϕ(g) ∈ Wν,ψ and Φ ∈ S(VA) we define

L(Wϕ,Φ, µ, s) =
∫
DANA\GA

Wϕ(g)fΦ(g;µ, ν, s) dg

=
∫
NA\GA

Wϕ(g)Φ((0, 1)g)µ(det g)|det g| 12 +s dg.
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Theorem 5.2. Assume that π is a cuspidal automorphic representation
and ϕ ∈ Vπ. Then L(Wϕ,Φ, µ, s) converges in some half plane Re(s) >
s0 and has a meromorphic continuation to the whole s-plane. Further, if
µ(tt̄)ν(t) is nontrivial (µ and ν a normalized pair), then L(Wϕ,Φ, µ, s) is
holomorphic everywhere. If µ(tt̄)ν(t) ≡ 1, then L(Wϕ,Φ, ν, s) has poles at
s = −1

2
, with residue

Φ(0)
∫
CAGk\GA

µ(det g)ϕ(g) dg,

and at s = 3/2 with residue

Φ̂(0)
∫
CAGk\GA

µ−1(det g)ν−1(det g)ϕ(g) dg.

Proof. The convergence for s in some half plane is standard. The meromor-
phic continuation follows immediately from the identity∫

CAGk\GA
ϕ(g)EΦ(g;µ, ν, s) dg =

∫
DANA\GA

Wϕ(g)fΦ(g;µ, ν, s) dg,

and the meromorphic continuation of EΦ(g;µ, ν, s). To prove this identity,
we let I denote the left hand side above and expand the Eisenstein series.
Then

I =
∫
CAGk\GA

ϕ(g)
∑

γ∈B′
k
\Gk

fΦ(γg;µ, ν, s) dg =
∫
CAB′k\GA

ϕ(g)fΦ(g;µ, ν, s) dg,

since ϕ(g) is an automorphic form on GSp4(A) and thus invariant under
GSp4(k) ⊇ Gk. Next we expand ϕ in its Fourier expansion

ϕ(g) =
∑

ψ∈ Char(Sk\SA)

ψ nontrivial

ϕψ(g),

where the Fourier coefficients are given by

ϕψ(g) =
∫
Sk\SA

ϕ(sg)ψ−1(s)ds.

If we substitute this Fourier expansion in the above expression for I, we
note from the left invariance of fΦ(g;µ, ν, s) under NA, that the Fourier
coefficients involving characters ψ which are not trivial on NA will be killed
upon integration. If we let Ω denote the set of nontrivial characters on Sk\SA
which are trivial on NA, then we get

I =
∫
CAHkDkNA\GA

∑
ψ∈Ω

ϕψ(g)fΦ(g;µ, ν, s) dg.
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Here we have used the decomposition B′ = HDN. Now, from our lemma at
the end of Section 2, it follows that Hk acts simply transitively on Ω. Then,
since fΦ(g;µ, ν, s) is invariant under Hk by our choice of µ, we can rewrite
the above as

I =
∫
CAHkDkNA\GA

∑
h∈Hk

ϕψ(hg)fΦ(g;µ, ν, s) dg

where ψ is our character on Sk \ SA fixed above. Then

I =
∫
CADkNA\GA

ϕψ(g)fΦ(g;µ, ν, s) dg

=
∫
DANA\GA

(∫
CADk\DA

ϕψ(tg)fΦ(tg;µ, ν, s) dt

)
dg

=
∫
DANA\GA

(∫
CADk\DA

ϕψ(tg)ν−1(t) dt

)
fΦ(g;µ, ν, s) dg

=
∫
DANA\GA

∫
CADk\DA

∫
Sk\SA

ϕ(tsg)ψ−1(s)ν−1(t) ds dt

 fΦ(g;µ, ν, s) dg

=
∫
DANA\GA

(∫
CARk\RA

ϕ(rg)α−1
ν,ψ(r) dr

)
fΦ(g;µ, ν, s) dg

=
∫
DANA\GA

Wϕ(g)fΦ(g;µ, ν, s) dg,

as desired.

This method of obtaining the meromorphic continuation of L(W,Φ, µ, s)
through the continuation of an Eisenstein series is what is commonly called
the Rankin-Selberg method [7], [12].

Once we have the meromorphic continuation of L(W,Φ, ν, s) we can define
L(π, µ, s) as in Section 3, i.e., L(π, µ, s) is a function defined so that L(W,Φ,µ,s)

L(π,µ,s)

is entire for all choices of W ∈ Wν,ψ and Φ ∈ S(VA).
As noted above, to the local factors πP , νP , and ψP of π, ν and ψ respec-

tively, we can associate the local (generalized) Whittaker model WνP ,ψP .
Then we can form the local integrals L(WP ,ΦP , µP , s) for WP ∈ WνP ,ψP

and ΦP ∈ S(VP) and thereby define the local L and ε-factors L(πP , µP , s)
and ε(πP , µP , ψP , s).

Theorem 5.3. L(π, µ, s) =
∏
P L(πP , µP , s). Then:

1) The product converges in some half plane Re(s) > s0.
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2) The product has a meromorphic continuation to the whole s-plane.
3) We have the functional equation

L(π, µ, s) = ε(π, µ, s) L(π̂, µ−1, 1− s)

where ε(π, µ, s) =
∏
P
ε(πP , µP , ψP , s) and, as usual, this product does not

depend on ψ.
4) If for some P0, πP0 is generic, then L(π, µ, s) is holomorphic.

Proof. Choose ϕ ∈ Vπ and Φ ∈ S(VA), which are factorizable. Then we can
decompose the integral∫

DANA\GA
Wϕ(g)fΦ(g;µ, ν, s) dg =

∏
P

∫
DPNP\GP

WϕP (g)fΦP (g;µP , νP , s) dg

which gives L(W,Φ, µ, s) =
∏
P L(WP ,ΦP , µP , s). Then the convergence

and meromorphic continuation of this product follows from the previous
theorem. Statement 3) follows quickly from this. In order to prove 4) we
have to use the following local result: If π is generic, then an embedding
of π into indGSp4

G ω cannot exist for any one dimensional representation ω of
G. The main idea of the proof of this statement was given in the proof of
Theorem 4.3.
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