
pacific journal of mathematics
Vol. 181, No. 3, 1997

AN ELEMENTARY CASE OF SERRE’S CONJECTURE

David E. Rohrlich and Jerrold B. Tunnell

To the memory of Olga Taussky-Todd

The conjecture of Serre referred to in the title is the one relating Galois
representations to modular forms [12]. Let Q denote the field of algebraic
numbers in C and Z the subring of algebraic integers. Fix a prime number
` and a prime ideal l of Z lying over `, and put F` = Z/l. Given a cuspidal
Hecke eigenform f(z) =

∑
n>1 a(n)e2πinz of level N , weight k, and character

ε, we consider the continuous semisimple representation ρf : Gal(Q/Q) →
GL(2,F`) associated to f by the work of Shimura (k = 2), Deligne (k > 2),
and Deligne-Serre (k = 1). It is characterized up to isomorphism by the
formulas

tr ρf (σp) = a(p) mod l(1)

and

det ρf (σp) = ε(p)pk−1 mod l,(2)

where p runs over primes not dividing N` and σp ∈ Gal(Q/Q) is any
Frobenius element corresponding to any prime ideal of Z lying over p. Let
σ∞ ∈ Gal(Q/Q) denote the restriction to Q of complex conjugation. In
conjunction with the Chebotarev density theorem, formula (2) implies that
det ρf (σ∞) = −1. One says that ρf has “odd determinant.” Serre’s conjec-
ture is a partial converse to this statement. It asserts that every continuous
irreducible representation ρ : Gal(Q/Q) → GL(2,F`) of odd determinant is
isomorphic to ρf for some f , and it provides a choice of N , k, and ε for which
the required eigenform f should exist.

The present note is devoted to a very special case of the conjecture. Let
us call ρ dihedral if its image is a dihedral group. We consider the case
where ρ is dihedral and ` = 2. One curious feature of Serre’s conjecture is
that when ` = 2 the requirement that ρ have odd determinant is vacuous,
because det ρ(σ∞) is equal to ±1 in any case, hence equal to −1 if ` = 2.
Thus the conjecture implies that every continuous irreducible representation
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ρ : Gal(Q/Q) → GL(2,F2) has the form ρf for some f . When ρ is dihedral
this assertion is actually known (in the problematic case where ρ is induced
from a real quadratic field the existence of f follows from a trick of Serre)
and the only remaining issue is whether f can be chosen so that N , k, and
ε are as predicted. Now for ` > 3 it is precisely this sort of issue which has
been tackled with great success in the work of Ribet [11] and Diamond [6].
However, the case ` = 2 is largely untouched, and the present note is an
attempt to obtain the correct N , k, and ε by ad hoc arguments in the case
at hand.

Even this modest goal is more than we are able to achieve. A dihedral
representation of Gal(Q/Q) over F2 is induced from a uniquely determined
quadratic field K, and we can exhibit a form f with the correct N , k, and
ε only when the discriminant of K is either odd or divisible by 8. To some
extent this outcome may be inevitable, because we look for f among clas-
sical modular forms rather than among the modular forms in characteristic
` defined by Katz [7], and there is an example of Serre showing that when
` is 2 or 3 the predicted choices of N , k, and ε cannot always be attained
using classical modular forms alone. It should be added, however, that while
Serre’s example involves a representation of dihedral type (in the sense that
the associated projective representation has dihedral image) the representa-
tion itself is not in fact dihedral.

This note is based on work done more than ten years ago. We would like
to thank Serre for his guidance at the time and Dinakar Ramakrishnan for
urging us to publish the result. It is an honor to dedicate the paper to the
memory of Olga Taussky-Todd.

1. A technical lemma.

Given positive integers N and k and a Dirichlet character χ modulo N ,
let Sk(N,χ) denote the space of cusp forms of weight k for Γ1(N) with
character χ. If χ is trivial then we also write Sk(N). We shall often identify
an element of Sk(N,χ) with its q-expansion, writing f =

∑
a(n)qn if f(z) =∑

n>1 a(n)e2πinz, and we shall tolerate the slight abuse of notation inherent
in an equation such as g = f(dz), where d is a positive integer and g =∑
a(n)qdn. Three points regarding the q-expansion need to be mentioned

here. First, if a(n) ∈ Q for all n and σ ∈ Gal(Q/Q) then the formal conjugate
fσ =

∑
a(n)σqn is an element of Sk(N,χσ), where χσ(n) = χ(n)σ. Second,

the action of the Hecke operator Tp on Sk(N,χ) can be written

f |Tp =
∑

a(pn)qn + χ(p)pk−1
∑

a(n)qpn,

with the understanding that if p divides N then χ(p) = 0 in keeping with
the usual convention for Dirichlet characters modulo N (in the literature,
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the operator Tp is often denoted Up when p divides N). Finally, if a(n) ∈ Z
for all n and

∑
b(n)qn is an arbitrary element of Z[[q]] then the notation

f ≡ ∑
b(n)qn (mod l) will mean that a(n) ≡ b(n) (mod l) for all n. If∑

b(n)qn is actually the q-expansion of a cusp form g then we also write
f ≡ g (mod l).

Our primary tool in this note is the following standard application of the
Deligne-Serre lemma ([5], Lemme 6.11). Let S be any set of prime numbers
and f ∈ Sk(N,χ) a cusp form with Fourier coefficients in Z. Suppose that
for every prime p /∈ S there exists λp ∈ Z with f |Tp ≡ λpf (mod l). We
assume also that f 6≡ 0 (mod l). Then there exists a nonzero cusp form
f ′ ∈ Sk(N,χ) and for each p /∈ S an element λ′p ∈ Z such that f ′|Tp = λ′pf

′

and λ′p ≡ λp (mod l). To deduce this conclusion from [5] one may assume
first of all that the λp lie in a sufficiently large number field K. One then
takes the ring O of [5] to be the localization at l ∩K of the ring of integers
of K, and one observes that in the present situation the eigenvalues λ′p
are a priori algebraic integers, as are the Fourier coefficients of some scalar
multiple of f ′.

Suppose that V is a finite-dimensional vector space over F` and ρ :
Gal(Q/Q)→ GL(V ) a continuous representation. For the purposes of Serre’s
conjecture, the correct way to define the conductor of ρ is to imitate the defi-
nition of the Artin conductor of a complex Galois representation but to omit
the contribution at `. Thus one chooses a finite Galois extension K of Q
such that ρ factors through Gal(K/Q), and for each prime number p 6= `
one considers the sequence of ramification subgroups I0 ⊃ I1 ⊃ I2 ⊃ . . . of
Gal(K/Q) at a prime ideal of K above p. The exponent of p in the conductor
of ρ is the integer ap(ρ) > 0 defined by

ap(ρ) =
∑
n>0

[I0 : In]−1 dimV/V In ,

where V H denotes the subspace of H-invariants of a subgroup H of
Gal(K/Q). The conductor of ρ is

N(ρ) =
∏
p6=`

pap(ρ).

If ρ is irreducible, two-dimensional, and of odd determinant, then the pa-
rameter N associated to ρ by Serre’s conjecture is simply N(ρ).

Henceforth ` = 2. Thus l is a prime ideal of Z of residue characteristic
2. The subset of Sk(N,χ) consisting of primitive forms of conductor N (i.e.
“normalized new forms of level N”) will be denoted Primk(N,χ), or simply
Primk(N) if χ is trivial.
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Lemma. Let g =
∑
b(n)qn be an element of Prim1(2νNr, χ), where ν ∈

{0, 2, 3}, N is odd, r is either 1 or an odd prime not dividing N , and χ2 = 1.
Assume that N = N(ρg). Also, if r 6= 1 assume that b(r) 6≡ 1 (mod l); if
ν = 2 assume that b(n) = 0 whenever n is even; and if ν = 3 assume that
b(2) 6≡ 0 (mod l). Put k = 2 if ν ∈ {0, 2} and k = 4 if ν = 3. Then there
exists an element f ∈ Primk(N) such that ρf ∼= ρg.

Proof. The proof can be broken into three steps:
(i) There is a positive divisor M of N and an element f =

∑
a(n)qn of

Primk(M) such that a(p) ≡ b(p) (mod l) for all p not dividing 2Nr.
(ii) If f is as in (i) then ρf ∼= ρg.

(iii) If M is as in (i) then M = N .
Step (ii) follows from the Chebotarev density theorem: Indeed the semisim-
ple representations ρf and ρg are determined up to isomorphism by their
characteristic polynomials, and referring to (1) and (2) we see that if p - 2Nr
then

tr ρf (σp) = a(p) mod l = b(p) mod l = tr ρg(σp)

and

det ρf (σp) = pk−1 mod l = χ(p) mod l = det ρg(σp).

As for (iii), a theorem of Carayol [3] implies that N(ρf ) 6M (see Carayol [4]
or Livné [9]). Since N(ρf ) = N(ρg) by (ii) and N(ρg) = N by assumption,
it follows that N 6M , whence M = N because M divides N .

It remains to prove (i). The proof is divided into cases according as
ν = 0, 2, or 3, but for the sake of efficiency we begin with an argument
which is needed in all three cases. Suppose that r 6= 1. Put N ′ = N or
N ′ = 2N , and let f0 ∈ S2(N ′r) be a nonzero eigenvector of the operators
Tp for p 6= 2, with corresponding eigenvalues λp. Let f =

∑
a(n)qn be the

primitive form in S2(N ′r) such that a(p) = λp for p - 2Nr, and let M be
the conductor of f , so that M divides N ′r. We claim that if λr 6= ±1 then
M divides N ′. The proof is as follows. By the theory of new forms, f0 is
a linear combination of the cusp forms f(dz), where d runs over divisors
of N ′r/M . If M does not divide N ′ then r divides M , and consequently
d is prime to r. A standard calculation then shows that each f(dz) is an
eigenvector of Tr with eigenvalue a(r), whence the same is true for f0. But
f0 is by assumption an eigenvector of Tr with eigenvalue λr. Thus λr = a(r),
and in particular, a(r) 6= ±1. This is a contradiction, because −a(r) is the
eigenvalue of an involution on S2(N ′r), namely the Atkin-Lehner involution
at the prime r ([1], p. 147, Thm. 3(iii)).
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Put τ = σ−1
l , where σl ∈ Gal(Q/Q) is some fixed Frobenius element at l.

Case 1. ν = 0.

Let h = g2. Then h ∈ S2(Nr) and h ≡∑ b(n)2q2n (mod l). Consequently
hτ ≡ ∑ b(n)q2n (mod l). But hτ ∈ S2(Nr) also, and a straightforward cal-
culation shows that hτ |Tp ≡ b(p)hτ (mod l) for p 6= 2. Hence the Deligne-
Serre lemma provides a nonzero cusp form f0 ∈ S2(Nr) and for each p 6= 2
an element λp ∈ Z such that f0|Tp = λpf0 and λp ≡ b(p) (mod l). Let
f =

∑
a(n)qn be the primitive form in S2(Nr) such that a(p) = λp for

p - 2Nr. If r 6= 1 then b(r) 6≡ 1 (mod l) by assumption, and consequently
λr 6= ±1. Thus we can apply our preliminary remark with N ′ = N to
conclude that f ∈ Prim2(M) for some divisor M of N . By construction,
a(p) ≡ b(p) (mod l) for p - 2Nr.

Case 2. ν = 2.

Certainly g2 ∈ S2(4Nr). We claim that in fact g2 ∈ S2(2Nr). To verify
this, put

C =

(
1 0

2Nr 1

)
, D =

(
1 −1/2
0 1

)
, W =

(
0 −1

4Nr 0

)
,

so that
C = WDW−1.

Since C is a representative of the nontrivial coset of Γ0(4Nr) in Γ0(2Nr) it
suffices to see that

g|C = −g,
or equivalently, that

(3) (g|W )|D = −(g|W ).

In other words, we must check that the q-expansion of g|W contains only odd
powers of q. But g is a primitive form of conductor 4Nr, and therefore g|W =
c
∑
b(n)qn for some constant c ([10], p. 166, Thm. 4.6.15). Furthermore,

if n is even then b(n) = 0 by assumption. Therefore (3) does hold, and
consequently g2 ∈ S2(2Nr) as claimed.

Next choose integers a and b such that 4a+Nrb = 1, and put

A =

(
2a b
−Nr 2

)
.

Also put

B =

(
1 0
Nr 1

)
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and let C be as in the previous paragraph. Then A,B, and C are repre-
sentatives for the distinct right cosets of Γ0(2Nr) in Γ0(Nr). On the other
hand, the matrices

W ′ =

(
0 −1

2Nr 0

)

and

W ′′ =

(
0 1
−Nr 0

)

normalize Γ0(2Nr) and Γ0(Nr) respectively. It follows that g2|W ′(A+B +
C)W ′′ ∈ S2(Nr). Now write g2 =

∑
c(n)qn. A standard calculation gives

(4) g2|W ′(A+B + C)W ′′ =
∑

c(2n)qn + 2−1(g2|J)(z/2)

where

J =

(
4 1

−4Nrb 4a

)
.

But g2|J = (g|J)2, and since J is the “W -operator” on S1(4Nr, χ) at the
prime 2 we have g|J = λǧ with λ ∈ Q× and ǧ ∈ Prim1(4Nr, χ). (See [2], p.
224. The term “W -operator” refers to an operator of Atkin-Lehner type.)
Put

h = 2λ−2g2|W ′(A+B + C)W ′′ ∈ S2(Nr)

and write ǧ =
∑
b̌(n)qn, so that (4) becomes

(5) h = 2λ−2
∑

c(2n)qn +
(∑

b̌(n)qn1
2

)2

with q 1
2

= eπiz. The conductor of χ is either odd or an odd multiple of 4, and
in the latter case |b(2)| = 1 ([10], p. 170, Thm. 4.6.17(1)). Since b(2) = 0
by assumption we deduce that χ has odd conductor. It follows that the W -
operator defined by J is an involution of S1(4Nr, χ) ([2], p. 223, Prop. 1.1)
and that g = ǧ ([2], p. 224, (1.1)), whence λ = ±1. Returning to (5), we find
that h ≡ ∑ b(n)2qn (mod l) and consequently that hτ ≡ ∑ b(n)qn (mod l).
The Deligne-Serre lemma now provides a nonzero cusp form f0 ∈ S2(Nr)
and for each p 6= 2 an element λp ∈ Z such that f0|Tp = λpf0 and λp ≡ b(p)
(mod l). To complete the argument we simply repeat the last four sentences
of Case 1.
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Case 3. ν = 3.

Write g2 =
∑
c(n)qn and put h =

∑
c(4n)qn. Then g2 ∈ S2(8Nr)

and consequently h ∈ S2(2Nr) ([8], p. 287). But c(2n) ≡ b(n)2 (mod l),
whence c(2n)τ ≡ b(n) (mod l). It follows that hτ ≡ ∑

b(2n)qn (mod l),
and then a straightforward calculation shows that hτ |Tp ≡ b(p)hτ (mod l)
for p 6= 2. Furthermore, hτ is nonzero modulo l because b(2) 6≡ 0 (mod l)
by assumption. Hence by the Deligne-Serre lemma there is a nonzero form
f0 ∈ S2(2Nr) and for each p 6= 2 an eigenvalue λp ∈ Z such that f0|Tp = λpf0

and λp ≡ b(p) (mod l). Let g1 =
∑
b1(n)qn be the primitive form in S2(2Nr)

such that b1(p) = λp for p - 2Nr, and let N1 be the conductor of g1. Then
N1 divides 2N (if r 6= 1 apply the preliminary remark with N ′ = 2N). Also
b1(p) ≡ b(p) (mod l) for p - 2Nr. We now consider cases, according as N1

does or does not divide N .
First suppose that N1 does divide N . Put h1 = g2

1 ∈ S4(N1), so that
hτ1 ≡

∑
b1(n)q2n (mod l). Applying the Deligne-Serre lemma once again, we

obtain a nonzero cusp form f1 ∈ S4(N1) and for each p 6= 2 an element λ′p ∈ Z
such that f1|Tp = λ′pf1 and λ′p ≡ b1(p) (mod l). In particular, λ′p ≡ b(p)
(mod l) for p - 2Nr. If f =

∑
a(n)qn is the primitive form determined by f1

then a(p) ≡ b(p) (mod l) for p - 2Nr, and the conductor M of f divides N1

and hence N .
Next suppose that N1 does not divide N . Write N1 = 2L, where L divides

N . Thus g1 ∈ Prim2(2L). We now argue as in Case 2, but with N replaced
by L. More precisely, choose integers a and b such that 4a + Lb = 1, and
put

A =

(
2a b
−L 2

)
.

Also put

B =

(
1 0
L 1

)
, W ′ =

(
0 −1

2L 0

)
, W ′′ =

(
0 1
−L 0

)
,

and

J =

(
2 1
−2Lb 4a

)
,

and set C = B2. Since A,B, and C represent the distinct right cosets
of Γ0(2L) in Γ0(L), and g2

1 ∈ S4(2L), we have g2
1|W ′(A + B + C)W ′′ ∈

S4(L). But g2
1|W ′AW ′′ = g2

1|J = (g1|J)2, and the action of J on S2(2L)
defines the Atkin-Lehner involution at 2. As g1 ∈ Prim2(2L) we deduce that
g1|J = ±g1 and hence that g2

1|W ′AW ′′ = g2
1. On the other hand, if we write

g2
1 =

∑
c1(n)qn then a straightforward calculation gives 2g2

1|W ′(B+C)W ′′ =
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∑
c1(2n)qn. Put h1 = 2g2

1|W ′(A+B + C)W ′′ ∈ S4(L). Then

h1 =
∑

c1(2n)qn + 2
∑

c1(n)qn.

But the equation g2
1 =

∑
c1(n)qn also gives

∑
c1(n)qn ≡∑ b1(n)2q2n (mod l).

It follows that c1(2n) ≡ b1(n)2 (mod l), whence hτ1 ≡
∑
b1(n)qn (mod l). A

final appeal to the Deligne-Serre lemma yields a nonzero cusp form f1 ∈
S4(L) and for each p 6= 2 an element λ′p ∈ Z such that f1|Tp = λ′pf1 and
λ′p ≡ b1(p) (mod l). To complete the proof we now repeat the last two
sentences of the previous paragraph, with N1 replaced by L.

2. Dihedral representations.

A consideration of Jordan normal forms shows that an element of even order
in GL(2,F2) is the product of an involution and an element of the center, the
latter necessarily of odd order. On the other hand, a dihedral group contains
no nontrivial central elements of odd order. Thus an element of even order
in a dihedral subgroup of GL(2,F2) is an involution, and therefore the order
of such a subgroup, if at least 6, is twice an odd integer. Let ρ : Gal(Q/Q)→
GL(2,F2) be an irreducible representation with dihedral image. It follows
from the preceding remarks that ρ has the form ρ = indK/Q ϕ, where K is
a quadratic field and ϕ : Gal(Q/K) → F×2 a character of odd order. Let ϕ̃
be the unique complex-valued character of Gal(Q/K) which has the same
order as ϕ and satisfies ϕ(σ) = ϕ̃(σ) mod l for σ ∈ Gal(Q/K). The complex
representation ρ̃ = indK/Q ϕ̃ is a lift of ρ which preserves the dimension
of the 1-eigenspace of ρ(σ) for each σ ∈ Gal(Q/Q). Hence the parameter
N = N(ρ) in Serre’s conjecture is simply the Artin conductor of ρ̃ with the
factor at 2 omitted. In other words,

|D|Nf(ϕ̃) = 2νN,

where D is the discriminant of K, f(ϕ̃) the conductor of ϕ̃, and ν a nonneg-
ative integer.

The determination of ν is a straightforward exercise in class field theory.
Viewing ϕ̃ as a ray class character of odd order, one finds that if 2 splits or
ramifies in K then Nf(ϕ̃) is odd, while if 2 remains prime in K then Nf(ϕ̃)
is either odd or an odd multiple of 4. Hence there are four possibilities:
(i) D and Nf(ϕ̃) are both odd.
(ii) D ≡ ±5 (mod 8) and Nf(ϕ̃) ≡ 4 (mod 8).

(iii) D ≡ 4 (mod 8) and Nf(ϕ̃) is odd.
(iv) D ≡ 0 (mod 8) and Nf(ϕ̃) is odd.
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We see that ν = 0 in case (i), ν = 2 in cases (ii) and (iii), and ν = 3 in
case (iii). Furthermore, according to Serre’s recipe the parameters ε and k
associated to ρ are as follows: ε is the trivial character in all cases and k is
2 or 4 according as ν ∈ {0, 2} or ν = 3 (cf. [12], p. 188). We shall verify
Serre’s conjecture in cases (i), (ii), and (iv):

Theorem. Suppose that D is either odd or divisible by 8. Then there exists
f ∈ Primk(N) such that ρ ∼= ρf .

Proof. The argument is the same as in [12] (p. 218, Prop. 10) but with the
additional input of the technical lemma. We consider the cases D < 0 and
D > 0 separately.

First suppose that D < 0. Write L(s, ϕ̃) =
∑
n>1 b(n)n−s and put g =∑

b(n)qn. Then g ∈ Prim1(2νN,χ), where χ is the Kronecker symbol at D
viewed as a Dirichlet character modulo 2νN . Also ρg ∼= ρ, whence N(ρg) =
N . Now if ν = 2 then we are in case (ii) above, so that ϕ̃ is ramified at
the unique prime of K above 2. Therefore b(n) = 0 for n even. On the
other hand, if ν = 3 then we are in case (iv) above, so that ϕ̃ is unramified
at the unique prime p of K above 2. Therefore the coefficient b(2) = ϕ̃(p)
is nonzero, hence a root of unity, hence nonzero modulo l. Applying the
lemma, we obtain f ∈ Primk(N) with ρf ∼= ρg. This is the desired result,
because ρg ∼= ρ.

Next suppose that D > 0. Let ∞1 and ∞2 denote the two infinite places
of K. We claim that there is a prime ideal r of K, relatively prime to 2N and
of degree one, together with a quadratic Hecke character ξ of K, ramified
precisely at ∞1 and r, such that ϕ̃(r) 6= 1. Granting this claim temporarily,
we complete the proof as follows. Write L(s, ϕ̃ξ) =

∑
n>1 b(n)n−s and put

g =
∑
b(n)qn and r = Nr. Then g ∈ Prim1(2νNr, χ), where χ is the product

of the Kronecker symbol at D and the Legendre symbol at r, viewed as a
Dirichlet character modulo 2νNr. Since ξ is quadratic we still have ρg ∼= ρ
and hence N(ρg) = N . Also b(r) ≡ ϕ̃(r′), where r′ is the conjugate of r
under the nontrivial automorphism of K over Q. Since the representation
induced by ϕ̃ is dihedral we have ϕ̃(r′) = ϕ̃(r)−1; on the other hand, ϕ̃(r)
is a nontrivial root of unity of odd order and is therefore not congruent
to 1 modulo l. Hence b(r) 6≡ 1 (mod l). Furthermore, just as in the case
D < 0, if ν = 2 then b(n) = 0 for n even and if ν = 3 then b(2) 6= 0.
Thus the hypotheses of the lemma are satisfied, and it remains only to check
that a quadratic character ξ with the required properties exists. Let C be
the narrow ray class group of K modulo 4f(ϕ̃), and let c ∈ C be the class
consisting of all principal fractional ideals (γ) such that γ is negative at∞1,
positive at ∞2, and congruent to 1 modulo 4f(ϕ̃). Then c has order 1 or 2.
On the other hand, let C ′ be the wide ray class group of K modulo f(ϕ̃), and
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choose a class b′ ∈ C ′ of odd order such that ϕ̃(b) 6= 1 for b ∈ b′. Choose
a class b ∈ C of odd order which is a preimage of b′ under the natural map
C → C ′. Finally, let r be a prime ideal of degree one, relatively prime to
2N , which belongs to the class bc. Then r2 ∈ b2 and consequently ϕ̃(r) 6= 1.
If n is the order of b then rn belongs to the ray class c and therefore has
a generator ρ which is negative at ∞1, positive at ∞2, and congruent to
1 modulo 4. The quadratic Hecke character ξ associated to the extension
K(
√
ρ)/K is then ramified precisely at ∞1 and r.

Remarks. 1) The “trick of Serre” alluded to in the introduction is the
replacement of ϕ̃ by ϕ̃ξ in the case D > 0. Since ξ is chosen to have
mixed signature the representation indK/Q ϕ̃ξ has odd determinant and so
corresponds to a modular form of weight one rather than to a Maass form.

2) It is easy to pinpoint where the argument breaks down in case (iii)
above: In this case ϕ̃ is unramified at the unique prime ideal of K above 2,
and consequently the Fourier coefficient b(2) of g is nonzero. This violates
a hypothesis of the technical lemma, namely that when ν = 2 the Fourier
coefficients b(n) are zero for even n. Without this assumption formula (3)
in the proof of the lemma is false.

3) We lack examples or counterexamples bearing on the possible validity
of our theorem in case (iii). As we have mentioned in the introduction,
Serre’s counterexample does not quite match our situation.
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J., 54 (1987), 179-230.

Boston University
Boston, MA 02215
E-mail address: rohrlich@math.bu.edu

and

Rutgers University
New Brunswick, NJ 08903
E-mail address: tunnel@math.rutgers.edu


