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1. Introduction.

Let π be a cuspidal representation of GLn(AF ), where AF is the ring of
adeles of a number field F . Write π = ⊗vπv, where each πv is an irreducible
unitary representation of GLn(Fv). Here Fv is the completion of F with
respect to v. Let v be a place of F such that πv is spherical. There exist
unramified quasicharacters µ1,v, . . . , µn,v of F ∗v such that πv is a constituent
of the representation I(µv), µv = µ1,v ⊗ · · · ⊗ µn,v, induced from character
µv of Tv, a Cartan subgroup of GLn(Fv) which for simplicity is taken to be
the subgroup of diagonal matrices, extended trivially along the subgroup of
upper triangular unipotent matrices Uv of GLn(Fv). Let Av be the diagonal
matrix diag(µ1,v($v), . . . , µn,v($v)) where $v is a uniformizing parameter,
|$v|v = q−1

v . Here qv is the cardinality of the residue field Ov/Pv, where Ov
and Pv are the ring of integers of Fv and its unique maximal ideal, leading to
the normalization |$v|v = q−1

v of | |v. The class of πv is uniquely determined
by the conjugacy class of Av in GLn(C), the L-group of GLn.

Let χ be an arbitrary character of F ∗ \ A∗F . Write χ = ⊗vχv. Let S
be a finite set of places of F such that πv and χv are both unramified for
every v 6∈ S. Let Λ2 and Sym2 denote the exterior and the symmetric square
representations of GLn(C), respectively. Let s ∈ C. Set

L(s, πv,Λ2 ⊗ χv) = det(I − Λ2(Av)χv($v)q−sv )−1

=
∏

1≤i<j≤n
(1− µi,vµj,vχv($v)q−sv )−1

and

L(s, πv,Sym2 ⊗ χv) = det(I − Sym2(Av)χv($v)q−sv )−1

=
∏

1≤i≤j≤n
(1− µi,vµj,vχv($v)q−sv )−1.
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Finally, set

LS(s, π,Λ2 ⊗ χ) =
∏
v 6∈S

L(s, πv,Λ2 ⊗ χv)

and

LS(s, π,Sym2 ⊗ χ) =
∏
v 6∈S

L(s, πv,Sym2 ⊗ χv).

The basic analytic properties of these two L-functions for arbitrary n are
studied and proved by several authors (cf. [2, 4, 8, 9] for exterior square
and [3, 8, 9] for symmetric square; in the context of [3] the twisted case has
been taken up by William Banks).

When χ is the square of another character χ0, then

LS(s, π,Λ2 ⊗ χ) = LS(s, π ⊗ χ0,Λ2)

and the twisted L-function is nothing new. This is in particular the case if
χ is a character of order 2m+ 1, since

LS(s, π,Λ2 ⊗ χ) = LS(s, π ⊗ χ−m,Λ2).

On the other hand, if χ is a non-square character of even order, then
LS(s, π,Λ2 ⊗ χ) is completely new. Similarly for Sym2. The purpose of this
paper is to prove:

Theorem 1.1. Both L-functions LS(s, π,Λ2⊗χ) and LS(s, π,Sym2⊗χ)
are non-zero for Re(s) = 1.

While the theorem readily follows from Theorem 5.1 of [8] by considering
GLn as Siegel Levi subgroups of special orthogonal groups when χ = 1, the
case of L-functions twisted by an arbitrary character is more delicate.

Applications of Theorem 1.1 that we know of are all in the case that n is
even and, in fact, the even case is deeper (see the next paragraph). But for
the sake of completeness, we treat the odd case as well.

The proofs for even and odd n are completely different. The even case
follows from applying Theorem 5.1 of [8] to simply connected coverings (spin
groups) of special orthogonal groups and sits within the theory developed in
[8] and [9]. On the other hand the odd case needs to be proved indirectly
and spin groups imply nothing about twisted L-functions with χ 6= 1. This
is due to the fact that the Siegel Levi subgroup of the corresponding spin
group Spin2n remains GLn if n is odd (Remark 2.2). Proofs still rely on
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Theorem 5.1 of [8], but not entirely. One needs to use the holomorphy of
LS(s, π,Λ2 ⊗ χ) on Re(s)=1 (Theorem 9.6.2 of [4]) as well, a result which
is valid since n is odd. Because LS(s, π,Λ2 ⊗ χ) may have a pole at s = 1
when n is even, the method of odd case does not apply to the even case.

The twisted case seems to have some further interesting applications in
number theory and was suggested by Dinakar Ramakrishnan. (See Remark
2.5.) I would like to thank him for the suggestion and useful discussions on
the problem during my stay at Caltech in the Spring of 97. Thanks are also
due to Don Blasius for useful conversations which led to a proof in the odd
case for which we have included two proofs. The other one, which uses base
change [1], is due to Ramakrishnan. Finally, I would like to thank David
Rohrlich for some useful communications.

2. The Even Case.

In this section we prove Theorem 1 when n is even. Let G be either Spin2n

or Spin2n+1, simply connected coverings of groups SO2n or SO2n+1, split
special orthogonal groups in 2n and 2n+ 1 variables, respectively. The field
of definition F could be either local or global. Let B = TU be a Borel
subgroup of G with a maximal torus T and the unipotent radical U. We
may and shall assume T projects onto the subgroups of diagonal elements
in SO2n or SO2n+1, respectively. Denote by ∆ = {α1, · · · , αn} the set of
simple roots of T in the Lie algebra of U. Let Mθ = M ⊃ T be the Levi
subgroup of G generated by θ = {α1, · · · , αn−1} and let P = MN, N ⊂ U,
be the corresponding standard parabolic subgroup of G. The group G being
simply connected implies MD = SLn, where MD is the derived group of M.
Let R be the set of kth roots of 1, where n = 2k. We have

Lemma 2.1. M ∼= (GL1 × SLn)/R.

Proof. Given α ∈ ∆, let Hα be the corresponding coroot. Let n = 2k
and let A be the connected component of the center of M. Then A ⊂ T.
Assume G = Spin2n. Being the connected component of the center of M,
A = (

⋂
α∈θ kerα)0 and a simple calculation shows that

A =


n−2∏
j=1

Hαj (λ
j)Hαn−1(λk−1)Hαn(λk)|λ ∈ F ∗

 ,
where n = 2k. Although we do not need to know, the center of M is A∪ cA,
where c = Hαn−1(−1)Hαn(−1). Moreover center Z(G) of G is

Z(G) = {1, z, c, cz},
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where

z =
n−2∏
j=1

Hαj ((−1)j)Hαn−1(−1)

if k is even, and

z =
n−2∏
j=1

Hαj ((−1)j)Hαn(−1)

otherwise.
The center of MD = SLn is

{Hα1(λ)Hα2(λ2) · · ·Hαn−2(λn−2)Hαn−1(λn−1)|λn = 1}.
In the intersection of MD and A, λk = 1 and A ∩MD = R, completing the
lemma for Spin2n.

On the other hand, if G = Spin2n+1, MD = SLn, and

A = {Hα1(λ)Hα2(λ2) · · ·Hαn−1(λn−1)Hαn(λk)|λ ∈ F ∗},
and again A ∩MD = R. In passing we note that the center Z(M) of M
equals A ∪AHαn(−1). The lemma is now complete.

Remark 2.2. It can be shown that if n is odd, then M ∼= GLn. If
G = Spin2n+1, the other component of Z(M) is ηA, where η is a generator
of Z/nZ, the center of SLn. In other words,

η = Hα1(ξ)Hα2(ξ2) · · ·Hαn−1(ξn−1),

where ξ is a primitive nth root of 1.

Now assume F is a non-archimedean local field. Let σ be a spherical
representation of GLn(F ) whose central character is ω. Let χ be an unram-
ified character of F ∗. Consider χ as a character of the F -points of the split
component of M whose kernel is R(F ). Since χ is trivial on the F -points
R(F ) of R which is the intersection of the derived group SLn(F ) of M with
GL1(F ), it can be extended to a character of M which we still denote by χ.

There is a natural F -surjection

M→ GLn → 0

defined by the covering map from Spin2n onto SO2n. It defines an isomor-
phism onto SLn upon restriction to MD. The representation σ then lifts



ON NON-VANISHING OF TWISTED SYMMETRIC... 315

to a spherical representation τ of M . More precisely, τ is any irreducible
constituent of this lift since this map may no longer be a surjection at the
level of F -points. We can now consider τ ⊗ χ as a spherical representation
of M .

Let LM = M̂ be the L group of M, with the trivial action of Galois group
disregarded. Then M̂D, the derived group of M̂ is M̂D

∼= SLn(C)/{±1}.
One quick way of seeing this is to consider M̂ as a Levi subgroup of Ĝ =
PSO2n(C) or PSp2n(C) according as G = Spin2n or Spin2n+1, respectively.
Then

M̂ = GL1(C)(SLn(C)/{±1}).

Let ̂̃M = GLn(C) denote the GLn-Levi subgroup of SO2n(C). The cov-
ering map ϕ from SO2n(C) onto PSO2n(C) = Ĝ leads to a surjection from̂̃
M onto M̂ which we still denote by ϕ. Its restriction from SLn(C) onto
SLn(C)/{±1} is their corresponding covering map. We define a similar map
for the case G = Spin2n+1 using the covering map ϕ : Sp2n(C)→ PSp2n(C).

Let Aσ ⊂ GLn(C) be the conjugacy class attached to σ. By abuse of nota-
tion, we use Aσ to also denote a representative of Aσ as in the introduction.
One has a surjection ̂̃

M
ϕ−→ M̂−→0

sending

Aσ 7→ ϕ(Aσ) = Aτ

with obvious meaning for Aτ .
In general, characters of F -points of a connected reductive group are

parametrized by 1-cocycles of Weil group of F/F into the center of the
connected component of its L-group [7]. The group M being split, the pa-
rameter attached to χ becomes χ itself, now again as a character of F ∗, if
one interprets GL1(C) as the center of M̂ . The class attached to χ is then
χ($) ∈ GL1(C), the center of M̂ . If χ($) = −1, it is given by

diag(i, . . . i, i−1, . . . , i−1) mod (±I),

i =
√−1, in PSO2n(C) (in the case G = Spin2n), the element of order 2 in

the standard Cartan subgroup of PSO2n(C). A similar element in SO2n(C)
is −I whose adjoint action is trivial.

Let r and r0 be the adjoint actions of M̂ and ̂̃M on the Lie algebra n̂ of N̂ ,
repsectively. Then r · ϕ = r0. Moreover r(χ($)) is multiplication by χ($).
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On the other hand

r(Aτ ) = r · ϕ(Aσ)

= r0(Aσ)

= Λ2(Aσ)

if G = Spin2n, while

r(Aτ ) = Sym2(Aσ)

for G = Spin2n+1. Consequently

r(Aτχ($)) = χ($)Λ2(Aσ)

or

r(Aτχ($)) = χ($)Sym2(Aσ)

according as G = Spin2n or Spin2n+1. We have therefore proved:

Lemma 2.3. Let σ be a spherical representation of GLn(F ) and χ an
unramified character of F ∗. Consider χ as a character of M and lift σ to a
spherical representation τ of M = M(F ). Then

L(s, τ ⊗ χ, r) = L(s, σ,Λ2 ⊗ χ)

if G = Spin2n, while

L(s, τ ⊗ χ, r) = L(s, σ,Sym2 ⊗ χ)

if G = Spin2n+1.

Theorem 2.4. Assume n is even. Let π = ⊗vπv be a cuspidal repre-
sentation of GLn(AE). Let χ = ⊗vχv be a character of F ∗ \ A∗F . Let S
be a finite set of places of F such that if v 6∈ S, then both πv and χv are
unramified. Then both LS(s, π,Λ2 ⊗ χ) and LS(s, π,Sym2 ⊗ χ) are non-zero
for Re(s) = 1.

Proof. We lift π to a cuspidal representation τ of M = M(AF ), using the
natural F -surjection

M→ GLn → 0
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defined by the covering map from Spin2n onto SO2n as in the local case.
Similarly for Spin2n+1 and SO2n+1. Also consider χ as a character of M .
Then

LS(s, τ ⊗ χ, r) = LS(s, π,Λ2 ⊗ χ)

by Lemma 2.3. Similarly for LS(s, π,Sym2 ⊗ χ). The theorem now follows
by applying Theorem 5.1 of [8] to (Spin2n,M) or (Spin2n+1,M), accordingly.

Remark 2.5. Theorem 2.4 can be used to prove cyclic base change for
globally generic cuspidal representations of GSp4(AF ) for any number field
F . The idea is due to Ramakrishnan and is as follows. Let K/F be a
cyclic extension of F and fix a globally generic cuspidal representation π of
GSp4(AF ). By the unpublished results of Jacquet, Piatetski-Shapiro, and
Shalika, as well as Theorem 8.1 of [6], there exists a cuspidal representa-
tion π′ of GL4(AF ), where Langlands classes agree at all the unramified
places with those of π with respect to the embedding LGSp4 = GSp4(C) ⊂
GL4(C)=LGL4. (To use the results of Kudla-Rallis-Soudry [6], one needs
to first appeal to Theorem 5.1 of [8] to conclude that the degree 5 standard
L-function LS(s, π, r5) has no zero at s = 1.) Now let π′K be the base change
lift of π′ to GL4(AK) as in [1]. Then

LS(s, π′K ,Λ
2) = LS(s, π′,Λ2)LS(s, π′,Λ2 ⊗ χ),

where χ is the character of F ∗ \ A∗F correspsonding to K/F by class field
theory. But using the identities

LS(s, π′,Λ2) = LS(s, π,Λ2)

= LS(s, π, r5)LS(s, 1),

LS(s, π′,Λ2) has a pole at s = 1, as LS(s, π, r5) has no zero at s = 1. By
Theorems 2.4, LS(s, π′,Λ2 ⊗ χ) is non-zero at 1. Then LS(s, π′K ,Λ

2) has a
pole at s = 1 and by the unpublished results of Jacquet, Piatetski-Shapiro,
and Shalika quoted above, π′K descends to an automorphic representation
πK of GSp4(AK). This πK is the base change lift of π to K/F .

3. The Odd Case.

In view of Remark 2.5, the machinery of previous section does not work.
As we shall see one can use a trick to reduce the problem to the even case.
But there is one case that we can immediately dispose of. Let π = ⊗vπv
be a cuspidal representation of GLn(AF ), where n is now odd. Let χ be a
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character of F ∗ \A∗F . As before, let S be a finite set of places of F for which
v 6∈ S implies both πv and χv are unramified. For simplicity, in the proofs
we shall assume χ is quadratic. We have

Proposition 3.1. Suppose n is odd. Then the L-function LS(s, π,Sym2⊗
χ) 6= 0 for Re(s) = 1.

Proof. We have

LS(s, π × (π ⊗ χ)) = LS(s, π,Λ2 ⊗ χ)LS(s, π,Sym2 ⊗ χ),(1)

where the L-function on the right is the Rankin-Selberg product L-function
for π and π ⊗ χ (cf. [5, 8]). By Theorem 5.1 of [8], LS(s, π × (π ⊗ χ)) 6= 0
for Re(s) = 1. But by Theorem 9.6.2 of [4] LS(s, π,Λ2 ⊗ χ) is holomorphic
for Re(s) = 1. The assertion now follows.

For non-vanishing of LS(s, π,Λ2 ⊗ χ) at Re(s) = 1 we include two proofs.

Proposition 3.2. Suppose n is odd. Then the L-function LS(s, π,Λ2⊗χ)
is non-zero for Re(s) = 1.

First proof: Let E/F be the quadratic extension attached to χ and let Π be
the base change lift of π defined by Arthur and Clozel [1]. Then

LS(s,Π,Λ2) = LS(s, π,Λ2)LS(s, π,Λ2 ⊗ χ).(2)

In a moment we will show that Π is cuspidal. Then the left-hand side
of (2) is non-vanishing for Re(s) = 1 by Theorem 5.1 of [8] applied to
GLn-Levi subgroup of SO2n(AE). The proposition follows from the holo-
morphy of LS(s, π,Λ2) at Re(s) = 1 (Theorem 9.6.2 of [4]) since n is odd.

Suppose Π is not cuspidal. Then by Theorem 3.4.2.b of [1], π ∼= π ⊗ χ.
Let ωπ be the central character of π. Then ωπ = ωπχ

n or χn = 1. Since n is
odd, χ = 1, a contradiction.

Second proof: This is a proof which does not use base change and is con-
sequently longer. It came out of conversations with Blasius before the first
proof was suggested to us by Ramakrishnan.

Let η be an arbitrary (unitary) character of F ∗\A∗F . Consider σ = (π⊗χ)⊗
(π ⊗ η) as a cuspidal representation of GLn(AF )×GLn(AF ). Let M be the
Levi subgroup of Spin4n generated by simple roots {α1, . . . , α2n−1}. Denote
by M′ ⊂M, the Levi subgroup generated by {α1, . . . , αn−1, αn+1, . . . , α2n−1}.
There are natural F -surjections

M→ GL2n → 0
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and
M′ → GLn ×GLn → 0,

obtained by restricting the covering map from Spin4n onto SO4n. Their
restrictions to derived groups of M and M′ are isomorphisms onto SL2n and
SLn × SLn, respectively.

The representation of σ then lifts to a cuspidal representation τ of M ′ =
M′(AF ). There is a natural map from

I(σ) = Ind(GLn(AF )×GLn(AF ), GL2n(AF ), σ)

into I(τ) = Ind(M ′,M, τ). Consequently

LS(s, I(τ)⊗ χ, r) = LS(s, I(σ),Λ2 ⊗ χ),

where r is the adjoint action of M̂ on the Lie algebra of N̂ , the L-group of
N, and MN is the standard parabolic subgroup of Spin4n whose Levi is M.

The non-vanishing of LS(s, I(τ)⊗χ, r) for Re(s) = 1 follows by considering
the Eisenstein series built from the standard parabolic subgroup of G =
Spin4n whose Levi subgroup is M′, no longer a maximal parabolic subgroup,
and the cuspidal representation τ of M ′. The comlex parameter on A′/A
will be set equal to zero. Here A and A′ are split components of M and M′,
respectively. Lemma 2.1 of [10] applies, leading to Theorem 5.1 of [8]. This
implies the non-vanishing of LS(s, I(τ)⊗χ, r) and therefore LS(s, I(σ),Λ2⊗
χ) for Re(s) = 1.

Write π = ⊗vπv, χ = ⊗vχv, and η = ⊗vηv, with all unramified for v 6∈ S.
Let Av be the class in GLn(C) attached to πv and set

Bv = diag(χv($v), ηv($v)) ∈ GL2(C).

Then

L(s, I(σv),Λ2 ⊗ χv) = L(s,Λ2(Av ⊗Bv)⊗ χv($v))
defn= det(I − Λ2(Av ⊗Bv)χv($v)q−sv )−1.

Using
Λ2(Av ⊗Bv) = Λ2Av ⊗ Sym2Bv ⊕ Sym2Av ⊗ Λ2Bv,

we have

L(s,Λ2(Av ⊗Bv)⊗ χv($v)) = L(s,Λ2Av ⊗ Sym2Bv ⊗ χv($v))

· L(s,Sym2Av ⊗ Λ2Bv ⊗ χv($v)).

But now
Sym2Bv = diag(χ2

v($v), χvηv($v), η2
v($))
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and
Λ2Bv = χv($v)ηv($v).

Then

L(s, I(σv),Λ2 ⊗ χv) = L(s,Λ2Av ⊗ χv($v))L(s,Λ2Av ⊗ ηv($v))

· L(s,Λ2Av ⊗ χvη2
v($v))L(s,Sym2Av ⊗ ηv($v)).

Taking the product for all v 6∈ S, this implies:

LS(s, π,Λ2 ⊗ χ)LS(s, π,Λ2 ⊗ η)LS(s, π,Λ2 ⊗ χη2)LS(s, π,Sym2 ⊗ η) 6= 0

for Re(s) = 1. All the L-functions attached to twists of Λ2 are holomorphic
for Re(s) = 1, again by Theorem 9.6.2 of [4], n being odd. Suppose η = θ2,
θ ∈ ̂F ∗ \ A∗F , so that

LS(s, π,Sym2 ⊗ η) = LS(s, π ⊗ θ, Sym2).

Let ωπ be the central character of π. Then ωπθn becomes the central charac-
ter of π ⊗ θ. Suppose ω2

πθ
2n 6= 1. Then by Theorem 7.5 of [3] or [5] applied

to Equation (1) with χ = 1, LS(s, π⊗θ, Sym2) is holomorphic for Re(s) = 1.
Consequently

LS(s, π,Λ2 ⊗ χ) 6= 0

for Re(s) = 1, completing the proposition.

Corollary 3.3. Suppose n is odd. Then LS(s, π,Sym2⊗χ) has a (simple)
pole at s = 1 if and only if π ⊗ χ ∼= π̃.

Proof. By

LS(s, π × (π ⊗ χ)) = LS(s, π,Sym2 ⊗ χ)LS(s, π,Λ2 ⊗ χ),

Propostion 3.2 of this paper and Theorem 9.6.2 of [4], LS(s, π,Sym2 ⊗ χ)
has a (simple) pole at s = 1 if and only if LS(s, π × (π ⊗ χ)) does. But by
[5] the last L-function has a pole at s = 1 if and only if π ⊗ χ ∼= π̃.

4. The Completed L-Functions.

Suppose n is even. For each v ∈ S, let L(s, πv,Λ2⊗χ) and L(s, πv,Sym2⊗χ)
be the local L-functions attached to (τv⊗χv, r), where r is the adjoint action
of M̂ on n̂ with G = Spin2n and Spin2n+1, respectively, as in [9]. Here
τ = ⊗vτv, where τ is as in Section 2. We may and will use the local base
change identity

L(s,Πv,Λ2) = L(s, πv,Λ2)L(s, πv,Λ2 ⊗ χv)
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(cf. Ramakrishnan’s proof for the global one) to define L(s, πv,Λ2 ⊗ χv) if
n is odd. This can be proved using the local global arguments in [9]. We
can use the same type of identity to define L(s, πv,Sym2 ⊗ χv). Uniqueness
argument of [9] shows that even if n is even, our L-functions, alluded to at
the beginning of the paragraph, satisfy such identities. We now set

L(s, π,Λ2 ⊗ χ) =
∏
v

L(s, πv,Λ2 ⊗ χv)

and
L(s, π,Sym2 ⊗ χ) =

∏
v

L(s, πv,Sym2 ⊗ χv).

We then have (Theorem 7.7 of [9]).

Theorem 4.1. The completed L-functions L(s, π,Λ2⊗χ) and L(s, π,Sym2⊗
χ) both sastisfy a standard functional equation, sending s to 1 − s. Conse-
quently they are both non-zero for Re(s) = 0 and 1.
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