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COMMUTATORS WHICH COMMUTE WITH ONE FACTOR

Helene Shapiro

Dedicated to the memory of Olga Taussky-Todd

Let A and B be n × n matrices, let C = ABA−1B−1 be the
multiplicative commutator of A and B, and assume AC = CA.
Olga Taussky (1961) examined the structure of A and B for
the case where A and B are unitary. Marcus and Thompson
(1966) generalized her results to the case where A and C are
assumed normal. We look at this problem for general A, with
particular attention to the cases where A is diagonalizable or
nonderogatory.

Now let [A,B] = AB − BA be the additive commutator of
A and B and assume A commutes with [A,B]. The finite-
dimensional version of a theorem of Putnam tells us that if A
is normal, then A and B commute. We show that the same
conclusion holds when A is diagonalizable. If A is nonderoga-
tory, then A and B can be simultaneously triangularized.

1. Introduction.

A 1911 paper of Frobenius contains the following theorem.

Theorem A (Frobenius, [9]). Let C = ABA−1B−1 be the commutator of
the two unitary n × n matrices A and B. Assume that the characteristic
roots of B are included in an arc less than a semicircle. If A commutes with
C, then A commutes with B.

Frobenius used this result to further simplify a proof Bieberbach gave of
a theorem of Jordan about matrix groups [8, 9, 2, 22]. We use the term
“cramped” for a unitary matrix whose chacteristic roots are included in an
arc less than a semicircle [1, 26].

Olga Taussky [25], in her 1961 paper, “Commutators of unitary matrices
which commute with one factor”, examined the following question: “What
is the structure of B if A does not commute with B?” Zassenhaus made
further remarks in [32] and Wielandt reformulated Taussky’s theorem in his
review of her paper [31].
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Marcus and Thompson [16] then generalized both theoremA and Taussky’s
result to normal matrices. By using the field of values, they found an appro-
priate generalization for the condition that B be cramped and also found a
simpler proof than the computation used by Frobenius.
Definition. If M is an n× n complex matrix, then the field of values, or
numerical range of M is the set F (M) = {x∗Mx|x ∈ Cn and x∗x = 1}.

The set F (M) is a set of complex numbers which may be viewed as a
set of points in R2 by using the usual correspondence between a complex
number a+ib and the point (a, b). The field of values has been much studied
[13, Chapter 1]. It is a closed, convex set in R2. If λ is an eigenvalue of M ,
with eigenvector x, where x∗x = 1, then x∗Mx = λ, so F (M) contains
the eigenvalues of M . Hence, it contains the polygon formed by taking
the convex hull of the eigenvalues. For any unitary matrix U , we have
F (U∗MU) = F (M), so F (M) is invariant under unitary similarity. When
M is normal, we can diagonalize M with a unitary similarity and then show
that the numerical range is just the convex hull of the eigenvalues. This
leads to the connection between the field of values and cramped matrices.
Unitary matrices are normal, so the field of values of a unitary matrix will
be the convex hull of its eigenvalues. These eigenvalues lie on the unit circle,
so the matrix is cramped if and only if 0 is not in the field of values.

Theorem A′ (Marcus and Thompson [16]). Let C = ABA−1B−1 be the
commutator of the n × n matrices A and B. Assume that A and C are
normal and that 0 is not in F (B). Then AC = CA implies that AB = BA.

The proof of Marcus and Thompson uses the fact that commuting normal
matrices can be simultaneously diagonalized with a unitary similarity, to-
gether with the fact that F (B) contains the diagonal entries of B. (If x = ei
is the i′th unit coordinate vector, then x∗Mx = mii.)

This result has also been studied for bounded operators on a Hilbert
space. Putnam [19] proved the Frobenius theorem for unitary operators
on a Hilbert space, and DePrima and Richard [3] established the following
improvement of the Marcus and Thompson theorem.

Theorem A′′. Let A and B be bounded, invertible linear operators on a
complex Hilbert space and let C = ABA−1B−1. If A is normal, then either
AB = BA or 0 is in the closure of F (B).

Marcus and Thompson [16] also generalized results in Taussky’s 1961
paper with the following theorem.

Theorem B. Let C = ABA−1B−1 be the commutator of the n×n matrices
A and B. Assume that A and C are normal and that AC = CA. After a
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simultaneous unitary similarity, we may assume that A = α1In1 ⊕ α2In2 ⊕
· · · ⊕ αtInt where α1, α2, · · · , αt are distinct and that C is diagonal. Then
B = PW , where P is a permutation matrix and W = W1 ⊕W2 ⊕ · · · ⊕Wt

where Wi is ni × ni, and C = APA−1P−1. Conversely, if A and B are in
the form described, then AC = CA, and C = APA−1P−1 is diagonal.

In this paper we shall examine the case where A is not normal and obtain
generalizations of Theorem B for the cases where A is diagonalizable and A
is nonderogatory.

There is an analagous problem for the additive commutator [A,B] =
AB − BA. If A commutes with [A,B], what can we say about the pair
A and B? We examine this in Section 4 in connection with a theorem of
Putnam [20].

2. Preliminaries.

We work over the complex numbers C, however, most of our results hold
over an algebraically closed field of characteristic 0. If M is an n×n matrix,
then spec(M) denotes the set of eigenvalues (spectrum) of M . Through-
out Sections 2 and 3, A and B denote nonsingular, n × n matrices and
C = ABA−1B−1 is the multiplicative commutator of A and B. We set
spec(A) = {α1, α2, . . . , αt}, where α1, α2, . . . , αt are distinct and let ni de-
note the algebraic multiplicity of the eigenvalue αi. We can then apply a
similarity to put A into a block diagonal form, A1⊕A2⊕ · · · ⊕At, where Ai
is ni × ni and spec(Ai) = {αi}. This block diagonal form for A comes from
decomposing Cn into a direct sum of the generalized eigenspaces of A. Thus,
if Vi = {x ∈ Cn|(A−αi)kx = 0 for some positive integer k} is the generalized
eigenspace of A, corresponding to αi, then Vi is an invariant subspace of A,
with dim(Vi) = ni, and Cn = V1 ⊕ V2 ⊕ · · · ⊕ Vt. The i′th diagonal block Ai
in the block diagonal form of A represents the action of A on the subspace
Vi.

If we apply a similarity, S, to both A and B, then S−1CS is the multiplica-
tive commutator of S−1AS and S−1BS; note also that A and C commute if
and only if S−1AS and S−1CS commute. So, without loss of generality, we
may assume that A = A1⊕ A2⊕ · · · ⊕ At. Any matrix M which commutes
with A must then have the form M1 ⊕M2 ⊕ · · · ⊕Mt, where Mi is ni × ni.
This can be proven by using the well known result that the matrix equation
RX − XT = 0 has nontrivial solutions, X, if and only if R and T have a
common eigenvalue [10, 13, 23]. Partition M into blocks conformal with the
diagonal blocks of A. The equation AM = MA then gives AiMij = MijAj.
Since Ai and Aj do not have a common eigenvalue unless i = j, we must
have Mij = 0 whenever i 6= j. Alternatively, one can easily show that if M
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commutes with A, then the generalized eigenspaces Vi, of A, are invariant
subspaces of M, and hence M must be in the block diagonal form.

We use term “triangular” to mean upper triangular; note that the diagonal
entries of a triangular matrix are its eigenvalues. Matrices which commute
can be put in triangular form with a simultaneous similarity [7], furthermore,
it is possible to do this with a unitary similarity. The proof of this depends on
the fact that if RT = TR and ρ is an eigenvalue of R, then the eigenspace for
ρ is invariant under T. Hence, one can choose a vector, x, in this eigenspace
which is also an eigenvector of T. Let x be the first vector in a basis for Cn;
then the similarity transformation corresponding to this new basis will put
R and T in the forms

R −→


ρ ∗ ∗ · · · ∗
0
0 R̃
0

T −→

τ ∗ ∗ · · · ∗
0
0 T̃
0


Since R̃T̃ = T̃ R̃, the argument can be repeated until R and T have been
triangularized. By choosing x to be a vector of length 1, and using it as
the first vector in an orthonormal basis, one can show that R and S can be
simultaneously triangularized with a unitary similarity. Finally, note that
one can specify the order of the diagonal entries for the matrix R.

Applying this to the situation AC = CA, we see that after a simultaneous
similarity, we may assume A = A1 ⊕ A2 ⊕ · · · ⊕ At, where spec(Ai) = {αi},
and C = C1⊕C2⊕· · ·⊕Ct, where Ci is ni×ni and Ai and Ci are triangular.

We begin with a simple matrix proof for the finite dimensional case of The-
orem A′′. This proof resembles the original proof of Marcus and Thompson
gave for Theorem A′ and is also similar to the argument in Remark 4 of
[3, p. 254]. We use the fact that if M̃ is a principal submatrix of M , then
F (M̃) ⊆ F (M).

Theorem 1. Assume A is normal and 0 is not in F (B). Then AC = CA
if and only if AB = BA.

Proof. If AB = BA, then C = I, so obviously AC = CA. Now assume
AC = CA. Since A is normal, there is a unitary matrix U such that U∗AU =
α1In1 ⊕ α2In2 ⊕ · · · ⊕ αtInt . Applying U to A,B and C, we may assume
A is already in this diagonal form. Then CA = AC implies that C =
C1 ⊕ C2 ⊕ · · · ⊕ Ct, where Ci is ni × ni.

From C = ABA−1B−1 we get CBA = AB. Partition B conformally
with the blocks of A and C and denote the ij block by Bij. Then the i′th
diagonal block of CBA is αiCiBii, while the i′th diagonal block of AB is
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αiBii. Hence, CiBii = Bii. Now, F (Bii) ⊆ F (B), so 0 is not in F (Bii). So
Bii is nonsingular, and the equation CiBii = Bii tells us Ci is an identity
matrix. Therefore C = I and AB = BA.

We now drop the assumption that A is normal and see what the hypothesis
AC = CA tells us about the structure of A and B. Most of our results deal
with the cases where A is diagonalizable or nonderogatory, and make no
assumptions about B. Notice that while F (B) = F (U−1BU) for a unitary
similarity, U , in general F (B) 6= F (S−1BS) for a general similarity S. Hence
the condition 0 /∈ F (B) will not be preserved if we apply a general similarity.

Our first result concerns the eigenvalues of C.

Theorem 2. If AC = CA then each eigenvalue of C is a quotient of
eigenvalues of A. Thus, if λ is an eigenvalue of C, then λ = αi/αj for some
i and j.

Proof. Since AC = CA, we can assume A and C are upper triangular; the
diagonal entries will be the eigenvalues. From C = ABA−1B−1, we get
A−1C = BA−1B−1, so A−1C is similar to A−1. But A−1C is upper triangu-
lar, and for some i, has a diagonal entry λ/αi. So λ/αi must be an eigenvalue
of A−1. Therefore, λ/αi = 1/αj for some j, and λ = αi/αj.

Observe that BAB−1 = C−1A, and so A commutes with C if and only
if A commutes with BAB−1, which is similar to A. Note that B(Vi) is
the generalized eigenspace of BAB−1, for the eigenvalue αi. Hence, when
AC = CA, the space B(Vi) will be invariant under A. Our next result is
stated in matrix language, but actually tells us that spec(C) = {1} if and
only if B(Vi) = Vi for each i.

Theorem 3. Assume AC = CA. Then there is a similarity which will
simultaneously put A in the form A1 ⊕ A2 ⊕ · · · ⊕ At, where Ai is ni × ni,
and spec(Ai) = {αi}, and B in the form B1 ⊕ B2 ⊕ · · · ⊕ Bt, where Bi is
ni × ni, if and only if spec(C) = {1}.
Proof. Since AC = CA, we may assume A = A1 ⊕A2 ⊕ · · · ⊕At where Ai is
ni × ni and spec(Ai) = {αi} and C = C1 ⊕ C2 ⊕ · · ·Ct where Ci is ni × ni.
Furthermore, since AiCi = CiAi, we may assume the blocks Ai and Ci are
upper triangular.

Suppose spec(C) = {1}. Partition B conformally and compute the ij
block on both sides of the equation CBA = AB. This gives CiBijAj =
AiBij, or BijAj = C−1

i AiBij. Now Ai and Ci are upper triangular, and
since spec(C) = {1}, each diagonal entry of Ci (and thus of C−1

i ) is a one.
Therefore, every diagonal entry of the triangular matrix C−1

i Ai is αi and so
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spec(C−1
i Ai) = {αi}. Hence, whenever i 6= j, the equation XAj = C−1

i AiX
has no nontrivial solutions. Therefore, Bij = 0 if i 6= j, and B has the
desired block diagonal form.

Conversely, if A and B have the given block diagonal forms, then C =
C1 ⊕ C2 ⊕ · · · ⊕ Ct where Ci = AiBiA

−1
i B−1

i and AiCi = CiAi. Theorem 2
then tells us spec(Ci) = {1} for each i, and hence spec(C) = {1}.

The following examples are instructive.

Example 1. Let A = ( 1 0
0 −1 ) and B = ( 0 1

1 0 ). Then C = −I so A and B both
commute with C. However, AB 6= BA. Observe that B interchanges the
two eigenspaces of A. Also, A and B are unitary, but 0 ∈ F (B).

Example 2. Let A = ( 1 1
0 1 ) and B =

(
b1 x
0 b2

)
. Then C will have the form

( 1 y
0 1 ), for some y, and AC = CA. Whenever b1 6= b2, the matrices A and B

will not commute.

3. Generalizations of Theorem B.

The method used in [16] to prove Theorem B serves to establish the following
generalization.

Theorem 4. Assume A is diagonalizable. Then AC = CA if and only if
there is a simultaneous similarity which puts A in the form α1In1 ⊕ α2In2 ⊕
· · · ⊕ αtInt and B in the form P (W1 ⊕W2 ⊕ · · · ⊕Wt), where P is an n× n
permutation matrix and Wi is ni × ni. We also have C = APA−1P−1.

Proof. Suppose AC = CA. Then we may assume A = αiIn1 ⊕ α2In2 ⊕
· · · ⊕ αtInt and C = C1 ⊕ C2 ⊕ · · · ⊕ Ct. Partition B conformally. From
C = ABA−1B−1 we get A−1C = BA−1B−1. So the matrix A−1C =
(α1)−1C1⊕ (α2)−1C2⊕· · ·⊕ (αt)−1Ct is similar to the diagonal matrix A−1.
Therefore, each Ci can be diagonalized. Let Si be a similarity that diago-
nalizes Ci, then S = S1⊕ S2⊕ · · · ⊕ St will diagonalize C and S−1AS = A.
So, without loss of generality, we may assume A = α1In1 ⊕ α2In2 ⊕ · · · ⊕
αtInt and C is diagonal. Invert both sides of A−1C = BA−1B−1 to get
C−1A = BAB−1. The diagonal matrix C−1A is then similar to the diago-
nal matrix A. Hence, there is a permutation matrix P such that C−1A =
PAP−1. So, we have PAP−1 = C−1A = BAB−1, which gives (P−1B)A =
A(P−1B). Since P−1B commutes with A, we must have P−1B = W1⊕ W2⊕
· · · ⊕Wt, where Wi is ni × ni.

Conversely, suppose A = α1In1 ⊕ α2In2 · · · ⊕ αtInt and B = PW where
W = W1 ⊕ W2 ⊕ · · ·Wt. Then C = ABA−1B−1 = APWA−1W−1P−1 =
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APA−1P−1. Now PA−1P−1 is diagonal, because the effect of the permuta-
tion similarity P is to rearrange the diagonal entries of A−1, so C is diagonal
and thus commutes with A.

Remark. If A has n distinct eigenvalues (t = n), then W will be diagonal,
so B will be the product of a permutation matrix and a diagonal matrix
(sometimes called a monomial matrix).

In Theorem 4, the equation C = APA−1P−1 shows us how the eigenvalues
of C are quotients of eigenvalues of A, as we saw in Theorem 2. When
spec(C) = {1}, we get a stronger conclusion.

Theorem 5. Assume A is diagonalizable and AC = CA. Then AB = BA
if and only if spec(C) = {1}.
Proof. If AB = BA, then C = I, so spec(C) = {1}.

Conversely, suppose spec(C) = {1}. Applying a similarity, we may assume
A and B are in the block diagonal form given by Theorem 3. However, since
A is diagonalizable, each diagonal block Ai is actually the scalar matrix αiIni .
(Equivalently, each generalized eigenspace Vi is actually an eigenspace.) So,
we get AB = BA.

If the generalized eigenspaces are orthogonal to each other, then we can
get A into the block diagonal form with a unitary similarity; in this case the
hypothesis 0 /∈ F (B) does tell us something.

Theorem 6. Suppose AC = CA and there is a unitary matrix U such that
U∗AU = A1⊕ A2⊕· · ·⊕ At where Ai is ni×ni and spec(Ai) = {αi}. Then
if 0 /∈ F (B), we have spec(C) = 1.

Proof. As in the proof of Theorem 3, but using a unitary similarity, we may
assume A = A1⊕A2⊕· · ·⊕At with spec(Ai) = {αi} and C = C1⊕C2⊕· · ·⊕Ct.
Partition B conformally and use CBA = AB to get CiBiiAi = AiBii. Since
0 /∈ F (B), we know Bii is nonsingular, so Ci = AiBiiA

−1
i B−1

ii . But CiAi =
AiCi and spec(Ai) = {αi} so Theorem 2 tells us spec(C) = {1}.

Remark. Theorem 1 now follows from Theorems 5 and 6.

Recall that a matrix is said to be nonderogatory if its minimal polynomial
equals its characteristic polynomial. This is equivalent to saying that the
Jordan canonical form for the matrix has exactly one Jordan block for each
eigenvalue; it is also equivalent to saying that each eigenvalue has a one
dimensional eigenspace. When A is nonderogatory, we obtain results in
Theorems 7 and 8 which are analogous to Theorems 4 and 5.
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Lemma. Suppose A =
(
A1 X
0 A2

)
where the diagonal blocks A1 and A2 are

square of sizes k and n − k, respectively, and X is k × (n − k), while 0
represents an (n− k)× k block of zeroes. If A is nonderogatory, then so are
A1 and A2.

Proof. Let mi(x) be the minimal polynomial of Ai for i = 1, 2. Then deg(m1)
≤ k and deg(m2) ≤ n−k. A computation shows m1(A)m2(A) = 0, and hence
A satisfies the polynomialm1(x)m2(x). Since A is nonderogatory, its minimal
polynomial has degree n, so we must have deg(m1) = k and deg(m2) = n−k.
Hence, each block Ai is nonderogatory.

Definition. A square matrix which has exactly one nonzero entry in each
row and column is called a monomial matrix. Equivalently, a monomial
matrix is a matrix which is the product of a permutation matrix and a
nonsingular diagonal matrix.

Note that the inverse of a monomial matrix is also monomial.

Theorem 7. Suppose AC = CA and A is nonderogatory. There is a
simultaneous similarity which puts A into triangular form and B into the
form PT, where P is a permutation matrix and T is upper triangular.

Proof. Let spec(A) = {α1, α2, . . . , αt} and assume n1 ≥ n2 ≥ · · · ≥ nt.
Let xi be an eigenvector for αi. Since A is nonderogatory, xi will span
the eigenspace for αi. Hence, since AC = CA, the vector xi is also an
eigenvector of C. Let Cxi = γixi. Let V be the subspace spanned by
{x1, x2, . . . , xt}. From C = ABA−1B−1 we get AB−1A−1C = B−1, so
A(B−1xi) = (αi/γi)(B−1xi). So B−1xi is an eigenvector of A and thus
must be a multiple of xj for some j. The space V is then invariant under
B−1, and the matrix for the action of B−1 on V , with respect to the basis
{x1, x2, . . . , xt}, will be monomial. But then V is also invariant under B,
and the matrix for the action of B on V is also monomial. Now choose a
basis for Cn in which the first t elements are x1, x2, . . . , xt and let S be the
similarity transformation corresponding to this new basis. Then

S−1AS =

(
D1 A12

0 A2

)
and S−1BS =

(
M1 B12

0 B2

)

where D1 = diag (α1, α2, · · · , αt), the matrix M1 is a monomial matrix of size
t, and A2 and B2 are square blocks of size n− t. Since A is nonderogatory,
so is A2. We have S−1CS =

(
C1 C12
0 C2

)
where C2 = A2B2A

−1
2 B−1

2 . Now
AC = CA implies A2C2 = C2A2 so the argument may be repeated on A2

and B2. After n1 applications of the process, we will have a simultaneous
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similarity which puts A into triangular form and B into a block triangular
form with diagonal blocks M1,M2, . . .Mn which are monomial matrices. In
fact, if r1, r2, . . . , rn1 is the conjugate partition of n1, n2, . . . , nt, then Mi

has size ri and the corresponding diagonal block of A is the diagonal matrix
diag(α1, α2, . . . αri). (Note r1 = t.) Let Mi = PiEi where Pi is a permutation
matrix of size ri and Ei is a diagonal matrix size of ri. Let P = P1 ⊕ P2 ⊕
· · · ⊕ Pt. The effect of multiplying a matrix on the left by P is to rearrange
the first r1 rows by the permutation P1, the next r2 rows by the permutation
P2 and so on. Hence, B can be factored as PT , where T is triangular with
the diagonal matrix Ei in the i′th diagonal block.

Theorem 8. Suppose AC = CA and A is nonderogatory. Then A and B
can be simultaneously triangularized if and only if spec(C) = {1}.
Proof. If A and B are both upper triangular, then C is also upper triangular
with each diagonal entry equal to 1. So spec(C) = {1}.

Conversely, suppose spec(C) = {1}. Then, in the proof of Theorem 7, we
have γi = 1 for each i, and thus A(B−1xi) = (αi)(B−1xi). So B−1xi is a
multiple of xi and the matrix M1 will actually be a diagonal matrix. Using
an induction argument shows that each block Mi is a diagonal matrix, and
hence the permutation matrix P of Theorem 7 is just the identity.

A natural question is whether the hypothesis that A is nonderogatory is
necessary in Theorems 7 and 8. Here is an example of two 4× 4 matrices A
and B such that AC = CA, and spec(C) = {1}, but A and B do not have a
common eigenvector. Hence, they cannot be simultaneously triangularized.

Example 3. Let

A =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 and B =


1 1 0 0
0 0 1 1
1 2 0 0
0 0 1 2

 .
Let R = BAB−1; we have observed that A commutes with C if and only if
A commutes with R. By direct calculation, we get

R =


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 and AR = RA.

Any eigenvector of A has the form (x, y, 0, 0), but no vector of this form is an
eigenvector of B. Hence, A and B have no common eigenvector. However,
AC = CA and from Theorem 2 we know spec(C) = {1}.
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The referee has pointed out that Theorem 8 can be proved independently
of Theorem 7 and can be generalized. Note that A is nonderogatory if and
only if the centralizer of A consists of polynomials in A. Hence, Theorem 8
is a special case of the following result (statement and proof by the referee).

Theorem 8′. Let A and B be invertible. If C = ABA−1B−1 is a polynomial
in A, then A and B are simultaneously triangularizable if and only if C is
unipotent.

Proof. The forward implication is trivial (and holds without the assumption
on C). For the converse, let H be the unit group of the ring F [A], the
ring of polyonimals in A over the field F . Let H1 be the set of unipotent
elements in H; since H can be triangularized, the set H1 is a subgroup of
H. Since B−1AB = C−1A, we see B−1AB is a polynomial in A and hence
B normalizes the group H and the subgroup H1. Let G be the subgroup of
GLn(F ) generated by H1, A and B. Note that H1 is normal in G and, since
C ∈ H1, the group G/H1 is abelian. Hence, the commutator subgroup G′ of
G is unipotent. This is a necessary and sufficient condition for a group to
be triangularizable [11, 15, 30].

4. The additive commutator.

In this section, A and B denote n×n matrices (not necessarily nonsingular)
and [A,B] = AB − BA is their additive commutator. We can use the
methods of the previous section to generalize the finite dimensional case of
the following theorem of Putnam [17]. Putnam’s theorem was for a pair of
bounded operators on a Hilbert space, but we shall only deal with the finite
dimensional cae.

Theorem (Putnam, [20]). If A is normal and A commutes with [A,B],
then A commutes with B.

In Theorem 10, we will show that “A is normal” can be weakened to “A
is diagonalizable”. First, a result for general A.

Theorem 9. If spec(A) = {α1, α2, . . . , αt} and A commutes with [A,B],
then there is a nonsingular matrix S such that S−1AS = A1⊕A2⊕ · · ·⊕At,
where Ai is ni × ni and spec(Ai) = {αi}, and S−1BS = B1 ⊕B2 ⊕ · · · ⊕Bt
where Bi is ni × ni. Equivalently, each of the generalized eigenspaces of A
is invariant under B.

Proof. Applying a similarity to A,B, and [A,B], we may assume that A is
in the desired form. Then, since A commutes with [A,B], we must have
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[A,B] = R1 ⊕ R2 ⊕ · · · ⊕ Rt where Ri is ni × ni. Partition B conformally.
Since AB −BA is block diagonal, when i 6= j we must have AiBij = BijAj.
Since Ai and Aj have no common eigenvalue, Bij = 0 when i 6= j and hence
B is in the desired block diagonal form.

Theorem 10. If A is diagonalizable and A commutes with [A,B], then A
commutes with B.

Proof. Applying a similarity to A,B, and [A,B], we may assume A and B
have the forms given in Theorem 9. However, since A is diagonalizable, we
can actually assume each diagonal block Ai is a scalar matrix, and so we get
AB = BA.

Our next result deals with the case where A is nonderogatory. The proof
uses the Jacobson Lemma [14].

Jacobson Lemma. If a and b are elements of a finite dimensional algebra
over a field of characteristic zero, and a commutes with [a, b], then [a, b] is
nilpotent.

Theorem 11. If A is nonderogatory and A commutes with [A,B], then A
and B can be simultaneously triangularized.

Proof. Let α be an eigenvalue of A. Since A is nonderogatory, the eigenspace
for α is one dimensional. Let x span this eigenspace. Since A commutes
with [A,B], this eigenspace is invariant under [A,B] and hence x is also
an eigenvector of [A,B]. But the Jacobson Lemma tells us that [A,B] is
nilpotent. Hence every eigenvalue of [A,B] is zero and [A,B]x = 0. So
A(Bx) = BAx = αBx and Bx must be a multiple of x. Thus, x is an eigen-
vector of B. Using x as the first vector in a basis for Cn, the corresponding
similarity will put A and B into the forms

A −→


α ∗ ∗ · · · ∗
0
0 Ã
0

B −→

β ∗ ∗ · · · ∗
0
0 B̃
0

 .
Now Ã will be nonderogatory and will commute with [Ã, B̃], so we may
repeat the process until A and B have been triangularized.

The following example shows that the assumption that A is nonderogatory
is needed in Theorem 11.

Example 4. Let A =
(

0 0 1
0 0 0
0 0 0

)
and let B be any 3×3 matrix such that b31 =

0. A calculation shows that [A,B] is strictly upper triangular and commutes
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with A. However, if b21 and b32 are both nonzero, then A and B have no
common eigenvector, and hence cannot be simultaneously triangularized.
Note that A is not nonderogatory; its minimal polynomial is x2.

The referee has pointed out that Theorem 11, like Theorem 8, can be
generalized as follows:

Theorem 11′. Let F be an algebraically closed field of characteristic 0 and
let A,B ∈ Mn(F ). Suppose [A,B] = f(A) for some polynomial F . Then A
and B can be simultaneously triangularized.

Proof. It follows by induction on i that [Ai, B] = fi(A) for some polynomial
fi. (AiB = A(BAi−1 + fi−1(A)) = BAi + f(A)Ai−1 + Afi−1(A).) Thus,
the Lie algebra generated by A and B is contained in the Lie algebra L :=
F [A]+F ·B and F [A] is an abelian ideal of L. Hence, the derived algebra of L
is abelian and L is solvable. By Lie’s theorem, L is triangularizable.

If both A and B commute with [A,B], then A and B are said to be
quasi-commutative matrices. Results of McCoy in [17] and [18] show that
quasi-commutative matrices can be simultaneously triangularized. Drazin
generalized this result in [4]. See also [5] and [24]. The analogous problem
for the multiplicative commutator has been analyzed by R.C. Thompson
[27, 28, 29] and by I. Sinha, [24].
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