
pacific journal of mathematics
Vol. 182, No. 1, 1998

THE EXPONENT FOR THE MARKOFF-HURWITZ
EQUATIONS

Arthur Baragar1

In this paper, we study the Markoff-Hurwitz equations
x2

0 + ...+x2
n = ax0 · · ·xn. The variety V defined by this equation

admits a group of automorphisms A ∼= Z/2∗· · ·∗Z/2 (an n+1 fold
free product). For a solution P on this variety, we consider the
number NP (t) of points Q in the A-orbit of P with logarithmic
height h(Q) less than t. We show that if a is rational, and P is
a non-trivial rational solution to this equation, then the limit

lim
t→∞

logNP (t)
log t

= α(n)

exists and depends only on n. We give an effective algorithm
for determining these exponents. For large n, this gives the
asymptotic result

logn
log 2

< α(n) <
logn
log 2

+ o(n−.58).

Introduction.

Consider the Markoff-Hurwitz equations

x2
0 + · · ·+ x2

n − ax0 · · ·xn = 0(0.1)

first studied by Markoff (for n = 2, a = 3) [M], and Hurwitz [H]. Let
V denote the affine variety defined by the zero-locus of Eq. (0.1) over the
rationals. Note that Eq. (0.1) is a quadratic in each of its variables, so we
can define the automorphism on V

σ0 : (x0, ..., xn) 7→ (ax1 · · ·xn − x0, x1, ..., xn)

which takes the root T = x0 of the equation

T 2 − ax1 · · ·xnT + x2
1 + · · ·+ x2

n = 0
1While at the University of Waterloo, Waterloo, Canada.
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to the other root T = x′0 = ax1 · · ·xn − x0. We can similarly define the
automorphisms σ1, ..., σn, and the group of automorphisms A generated by
σ0, σ1, ..., σn.

We define a logarithmic height on V by setting

h(x0, ..., xn) = max
i
{h(xi)},

where the height on the right hand side is the usual logarithmic height on
Q. We set

NP (t) = #{Q ∈ A(P ) : h(Q) < t}.
In this paper, we show:

Theorem 0.1. If a is rational and P is a rational point on V not equal
to (0, ..., 0), then the limit

lim
t→∞

logNP (t)
log t

= α(n)(0.2)

exists and depends only on the dimension n. Furthermore, α(2) = 2,

2.430 < α(3) < 2.477

2.730 < α(4) < 2.798

2.963 < α(5) < 3.048

and
logn
log 2

< α(n) <
logn
log 2

+ o(n−.58).

This improves on the results found in an earlier work [Ba1]: We have
extended the result to orbits of rational points; the limit in Eq. (0.2) replaces
a limit supremum; the bounds on α(n) for small n are an order of magnitude
sharper; and the asymptotic bounds on α(n) improve on the previous result
α(n)�<< logn. We also give a (slowly) convergent algorithm for calculating
α(n). Zagier [Z] credits Cohn with the result α(2) = 2.

Cohn’s idea is to compare the orbit A(P ) with the Euclid tree. In [Ba1],
for n > 2, we compared the orbits A(P ) with the Euclid-like tree Er rooted
at r = (r1, ..., rn), with ri > 0 for all i, and generated by the branching
operations

Ti : (a1, ..., an) 7→ (ai, a1 + ai, ..., âi + ai, ..., an + ai),

for i = 1, ..., n. The hat ˆ indicates that that component is omitted. We
think of these trees as n-branch generalizations of the two branch Euclid
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tree, so named since moving down the tree (toward the root) is the Euclidean
algorithm (see [Z]). We use the same notation h for a height function on Er
defined by

h(a1, ..., an) = a1 + ...+ an.

We set
Er(t) = {a ∈ Er : h(a) < t},

and define nr(t) to be the cardinality of Er(t). We showed in [Ba1]:

Theorem 0.2 ([Ba1]). Suppose a is an integer and P is a non-trivial
integer solution to Eq. (0.1). Then there exist roots r and s, with ri ≥ si > 0
for all i, which satisfy

nr(t) << NP (t) << ns(t).

This indicates that we should concentrate our efforts on the study of Er,
and do so in Sections 1 through 5.

We study the growth of nr(t) by considering the function

fr(s) =
∑
a∈Er

(h(a))−s.

There exists a real number α(r) such that fr(s) converges for all s with
Re(s) > α(r), and diverges for all s with Re(s) < α(r). This boundary of
convergence is related to nr(t) by the classical result

lim sup
t→∞

lognr(t)
log t

= α(r).

We therefore call α(r) the exponent of nr(t). In [Ba1], we showed α(r) =
α(n) depends only on n and found some bounds on α(n). Those bounds
cannot be improved using the methods of [Ba1].

The main result of this paper is the development of a convergent algorithm
to calculate α(n). In Section 1, we develop a crude algorithm which we show
(in Theorem 2.3) converges. As a consequence, we find (in Theorem 3.2)
that

lim inf
t→∞

lognr(t)
log t

= α(n),

so the limit in Eq. (0.2) of Theorem 0.1 exists. In Section 4 we refine the
algorithm and use it to find bounds on α(n) for small n (see Table 1). The
rate of convergence of this algorithm is unfortunately prohibitively slow, so
these bounds are good to only two significant digits. In Theorem 5.1, we
derive the asymptotic bounds on α(n).
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In the last section, we extend Theorem 0.2 to include rational solutions to
Eq. (0.1) with a ∈ Q. The purpose of this result is to demonstrate that the
exponent α(n) is a characterization of the group A and not just of specific
orbits. We remind the reader that the number of orbits of integer solutions
is finite [H], so α(n) is also a characterization of the integer solutions to an
equation of the form (0.1) with a ∈ Z and at least one non-trivial integer so-
lution. The set of integer solutions though seems special. Silverman showed
that the Markoff equation (n = 2) is birational to P2 minus six lines [S], so
the number of rational points on the Markoff surface with height bounded by
t is exponential in t, and hence the number of A-orbits of rational solutions
must be infinite. One can also use this bijection to show that if S contains
the place at infinity and at least one local place, then the number of A-orbits
of S-integer solutions is infinite. Silverman also studied the Markoff surface
over quadratic imaginary fields, and found the number of orbits of integer
solutions there is often finite. However, over a real number field K not equal
to Q, the set of A-orbits of non-trivial K-integer solutions is either empty
or infinite. In this case, though, the full group of K-rational automorphisms
is quite a bit larger than A [Ba2].

The techniques we use were inspired in part by Boyd’s work on the Apol-
lonian packing problem [Bo1, Bo2, Bo3]. I would also like to thank Cam
Stewart for his helpful advice, and Mike Mossinghoff for his help implement-
ing this algorithm.

1. The Algorithm.

Let us begin with a few more definitions: Let

fr(s, y) =
∑

a∈Er(y)

(h(a))−s;

let ∂Er(y) be the boundary of Er(y) — those nodes in Er that are not in Er(y)
but are attached to Er(y) by one branch; for a > −1, let

ζ(s, a) =
∞∑
n=1

(n+ a)−s

be the Hurwitz zeta function; and for the specific choice r = (1, 1, 2, ..., 2),
define

L(s, y) = (n− 1)
∑

a∈∂Er(y)

ζ

(
s,
an
a1

)
a−s1 ,

U(s, y) = (n− 1)
∑

a∈∂Er(y)

ζ

(
s,
a2

a1

− 1
)
a−s1 .
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In this section, we prove:

Theorem 1.1. For each n ≥ 2, the exponent α = α(n) satisfies

s1 ≤ α ≤ s2

where s1 and s2 depend on n and y and are the unique solutions in (1,∞)
to L(s1, y) = 1 and U(s2, y) = 1.

The following lemma is an amalgam of related results which will be re-
quired at various points in this paper. It is perhaps a bit premature to include
(iii), since I have not yet defined fa(s, V ). I include it here for completeness.

Lemma 1.2. If c > 0, then

(i) fca(s) = c−sfa(s),
(ii) fca(s, y) = c−sfa(s, y/c),
(iii) fca(s, V ) = c−sfa(s, V ),
(iv) nca(x) = na(x/c);

and if ai ≥ bi for all i, then

(i) fa(s) ≤ fb(s),
(ii) fa(s, y) ≤ fb(s, y),
(iii) fa(s, V ) ≤ fb(s, V ),
(iv) na(x) ≤ nb(x).

To prove these, just make node by node comparisons for each tree, and
check the number of nodes in each tree. Lemma 1.2 also demonstrates why
we deal with the function f : When we dilate the root by a constant c, we
can pull it out of f .

Theorem 1.1 embodies two results — an upper bound and a lower bound.
Though the two results are derived in much the same way, the upper bound
involves a few more technicalities, so let us begin with the lower bound.
The philosophy that guides our argument is this: If fr(s) converges (i.e.
s > α(n),) then fr(s, y) is a good approximation to fr(s) provided y is large
enough. So we write

fr(s) = fr(s, y) +
∑

a∈∂Er(y)

fa(s).

We wish to use Lemma 1.2 to estimate fa(s). First, we note that Lemma
1.2 has the following corollary:

Corollary 1.3. If c1ri ≤ ai ≤ c2ri for all i and some 0 < c1 < c2, then

c−s2 fr(s) ≤ fa(s) ≤ c−s1 fr(s).
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Though this will always give us an estimate on fa(s), the estimate may
not be too good, since the constants c1 and c2 might not be close to each
other. However, we note that

T k1 (a) = (a1, ka1 + a2, ..., ka1 + an),

from which the jth branch is

TjT
k
1 (a) = (ka1 + aj, (k + 1)a1 + aj, 2ka1 + a2 + aj, ..., 2ka1 + an + aj)

(1.1)

for j = 2, 3, ..., n. For large k, this branch looks a lot like ka1(1, 1, 2, ..., 2),
which suggests we set (and do so from now on) r = (1, 1, 2, ..., 2). Then we
get:

Lemma 1.4. Suppose 1 ≤ a1 ≤ ... ≤ an, and s > α(n). Then

fa(s) ≥
∞∑
k=0

(n− 1)((k + 1)a1 + an)−sfr(s)

≥ (n− 1)ζ (s, an/a1) a−s1 fr(s).

Thus
fr(s) ≥ fr(s, y) + L(s, y)fr(s)

fr(s)(1− L(s, y)) ≥ fr(s, y),

so in particular, L(s, y) ≤ 1. Since L(s, y) is a decreasing function in s for
s > 1, we get

α ≥ s1.

To get an upper bound, we exploit the divergence of fr(s) for s < α(n),
which we express as

lim
y→∞ fr(s, y) =∞.

So we choose y1 much larger than y2, write

fr(s, y1) = fr(s, y2) +
∑

a∈∂Er(y2)

fa(s, y1)

and use Lemma 1.2 to conclude:

Lemma 1.5. If 1 ≤ a1 ≤ ... ≤ an, then

fa(s, y) ≤
∞∑
k=0

n− 1
(ka1 + a2)s

fr

(
s,

y

ka1 + a2

)
+
∞∑
k=0

(k(n− 1)a1 + h(a))−s

≤ (n− 1)ζ (s, a2/a1 − 1) a−s1 fr(s, y) +O(1).
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So we conclude, for a fixed y2,

fr(s, y1) ≤ fr(s, y2) + U(s, y2)fr(s, y1) +O(1)

fr(s, y1)(1− U(s, y2)) ≤ fr(s, y2) +O(1),(1.2)

and if s < α(n), then we can choose y1 so that fr(s, y1) is arbitrarily large.
Thus, we must have U(s, y2) > 1, so

α ≤ s2.

2. Convergence.

To show s2− s1 converges to zero as y goes to infinity, we show that U(s, y)
is bounded above by a constant multiple of L(s, y), and that the slope of
L(s, y) (with respect to s) gets steeper as y grows.

Lemma 2.1. If a ∈ Er, then

an ≤ 2a2.

Proof. We use induction to show

a1 + · · ·+ an − (n− 1)aj ≥ 0

for j = 1, ..., n. Then

a1 + · · ·+ an − (n− 1)an +
1
2

n−1∑
j=3

(a1 + · · ·+ an − (n− 1)aj) ≥ 0,

so
(a1 + a2)

(
n− 1

2

)
+ (a3 + · · ·+ an−1)(0)− an

(
n− 1

2

)
≥ 0.

Also, for a ≥ 1, we have

ζ(s, 2a) ≥ ζ(s, 3a− 1) =
∞∑
k=0

3−s
(
k

3
+ a

)−s
≥ 3−sζ(s, a− 1).

In [Ba1] we found the crude bounds on α(n) of 2 and n, so let us assume
that s ∈ [2, n]. Then, using Lemma 2.1 and the above, we have

ζ

(
s,
an
a1

)
≥ 3−nζ

(
s,
a2

a1

− 1
)
,
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so

U(s, y) ≤ 3nL(s, y).(2.1)

Lemma 2.2.
∂

∂s
L(s, y) < − log

(
y

2n

)
L(s, y).

Proof.

∂

∂s
L(s, y) =

∑
a∈∂Er(y)

∂

∂s

(
ζ

(
s,
a2

a1

− 1
)
a−s1

)

<
∑

a∈∂Er(y)

(
− log

(
a2

a1

)
− log(a1)

)
ζ

(
s,
a2

a1

− 1
)
a−s1

< − log
(
y

2n

)
L(s, y).

In the last step, we used

y < a1 + ...+ an < nan < n2a2.

Theorem 2.3. If y > 2n, then

s2 − s1 <
1− 3−n

log y − log(2n)
.

Proof. From Eq. (2.1),

U(s2, y) = 1 < 3nL(s2, y),

and by the mean value theorem, there is an s0 in (s1, s2) so that

L(s2, y)− L(s1, y)
s2 − s1

=
∂

∂s
L(s0, y).

Thus
3−n − 1
s2 − s1

<
∂

∂s
L(s0, y) < − log

(
y

2n

)
L(s1, y).

Hence, our algorithm converges. Note that the rate of convergence guaran-
teed by this argument is only inversely proportional to log y. Unfortunately,
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experiments indicate the actual rate of convergence is as poor. This is why
the approximations found for α(n) are good only to two significant digits.

As a corollary of Theorems 1.1 and 2.3, we get the following result which
we use in the next section:

Corollary 2.4. Recall s1 depends on y and n. For fixed n,

lim
y→∞ s1 = α(n).

3. A lower bound.

In this section we show

lim inf
t→∞

lognr(t)
log t

≥ α(n).

Thus, α(n) is in fact a limit.
Let us abstract our setting a bit. Let A be some arbitrary infinite set,

and let
h : A→ Z+

be a function on A such that the subsets

A(t) = {a ∈ A : h(a) < t}
are finite for any t. Let N(t) be the cardinality of A(t). Define the Dirichlet
series

f(s) =
∑
a∈A

(h(a))−s

and suppose f(s) converges for some s. Then there exists an α ∈ R so that
f(s) converges for all s > α and diverges for all s < α.

As mentioned in the introduction, the exponent α of A is related to the
growth of N(t) by the classical result:

lim sup
t→∞

log(N(t))
log t

= α.

This is the type of setting encountered by Boyd and others in the study of
the Apollonian packing [Bo1, Bo2, Bo3]. In that case, though, Boyd [Bo3]
pointed out that the supremum condition could be dropped. His argument
is marvelously simple and applicable to our situation.

Theorem 3.1 ([Bo3]). Suppose N(t) ≥ 1 for all t > t0, and suppose
we can write

N(t) ≥
∞∑
m=1

N(t/dm)
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for a set of ordered integers 2 ≤ d1 ≤ d2 ≤ .... Suppose also that

g(s) =
∞∑
m=1

d−sm

converges in the interval (r,∞) and g(s1) = 1 for some s1 ∈ (r,∞). Then
for any β ∈ (r, s1), there exists a constant C > 0 such that

N(t) ≥ Ctβ

for all t ≥ t0.

Proof. Note that g(s) is a decreasing function on (r,∞), so g(β) > 1. Hence
there exists an M so that

M∑
m=1

d−βm > 1.

Set t1 = dM t0, and
C = inf

t0≤t≤t1
N(t)t−β.

Then by construction, N(t) ≥ Ctβ for all t ∈ [t0, t1].
Let tm = dm−1

1 t1 for m = 2, 3, ..., and suppose we have shown N(t) ≥ Ctβ
for all t ∈ [t0, tm−1]. Then for k = 1, ...,M and t ∈ [tm−1, tm], we know

t0 = t1/dM ≤ t/dk ≤ tm/d1 = tm−1,

so
N(t/dk) ≥ Ctβ/dβk .

Thus

N(t) ≥
M∑
m=1

C(t/dm)β ≥ Ctβ

for all t ∈ [tm−1, tm]. Hence, by induction, N(t) ≥ Ctβ for all t ≥ t0.

To apply this result to our situation, we note that for t > y,

nr(t) = nr(y) +
∑

a∈∂Er(y)

na(t),

and estimate na(t) by using Eq. (1.1) and (iv) of Lemma 1.2 to get

nr(t) ≥
∑

a∈∂Er(y)

∞∑
k=0

(n− 1)nr

(
t

(k + 1)a1 + an

)
.
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We note that (n + 1)a1 + an ∈ Z and is ≥ 2, so we order these for all
a ∈ ∂Er(y), k = 0, 1, ..., and each with multiplicity n− 1. We relabel the set
d1, d2, ... so that

nr(t) ≥
∞∑
m=1

nr(t/dm),

as is desired in Theorem 3.1. The function g(s) then depends on y and is
precisely L(s, y). We are now ready to prove:

Theorem 3.2.

lim inf
t→∞

lognr(t)
log t

≥ α(n).

Proof. We first note that ζ(s, a) converges in (1,∞) for all a > 0, so L(s, y)
converges in (1,∞) for any y. Suppose β ∈ (1, α(n)). Then by Corollary
2.4, there exists a y so that s1(y) > β. Hence, by Theorem 3.1 there exists
a constant C = C(β) so that

nr(t) ≥ Ctβ

for all t > 2n (since t0 = 2n). Taking logarithms, dividing by log t, and
letting t go to infinity, we get

lim inf
t→∞

lognr(t)
log t

≥ β,

for all β ∈ (1, α(n)), which gives our result.

4. Refinements.

We know the difference of the bounds on α converges to zero like a constant
over log y. Though we cannot as yet improve the (log y)−1, it is possible to
significantly improve the constant. We do this by using Boyd’s observation
that fa(s) is convex with respect to a. Unfortunately, the finite sum fa(s, y)
might not be convex, but we can define a finite sum that is. Let W be the
monoid generated by T1, T2, ..., Tn. Let V be any subset of W and define

fa(s, V ) =
∑
w∈V

(h(w(a)))−s.

So fa(s) = fa(s,W ). This function is computationally difficult to deal with,
since it does not converge very fast, but we only use it as a theoretical tool.
More precisely, we will substitute fr(s, y1) with fr(s, V ) at Eq. (1.2), so all
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we need to observe is that we can pick V finite but still have fr(s, V ) as large
as we want for fixed s < α(n).

Theorem 4.1 (Boyd [Bo2]). Suppose 0 < u < 1, and for V infinite, let
s > α(n), but in any case, let s > 0. Then

fua+(1−u)b(s, V ) ≤ ufa(s, V ) + (1− u)fb(s, V ).

Proof. If s > 0, then the function x−s is convex in (0,∞). That is to say, if
x, y > 0, then

(ux+ (1− u)y)−s ≤ ux−s + (1− u)y−s.

Note that
h(w(x)) = 1Twx,

where the 1T indicates the transpose of 1 = (1, ..., 1). Hence

h(w(ua + (1− u)b)) = 1Tw(ua + (1− u)b)

= uh(w(a)) + (1− u)h(w(b)),

and

fua+(1−u)b(s, V ) =
∑
w∈V

(uh(w(a)) + (1− u)h(w(b)))−s

≤ ufa(s, V ) + (1− u)fb(s, V ).

In the last step, we used the fact that h(w(x)) is always positive for every
non-zero x with non-negative entries.

Note that this observation is true for any tree whose branching operations
are linear and whose nodes never have negative entries.

This theorem is useful because fa(s) is invariant under permutations of
the components of a. This can be proved using induction on the number of
generators in an element w in W , and depends very much on the character of
W . The function fa(s, V ) is not always invariant under these permutations,
but is for certain classes of subsets.

Let the set of permutations Sn on {1, ..., n} act on W by

τ(Ti1 · · ·Tin) = Tτi1 · · ·Tτin .

This is a well defined action. We say a subset V of W is symmetric if for
any w ∈ V , τw ∈ V for all τ ∈ Sn. If V is symmetric, then the function
fa(s, V ) is invariant under permutations of the variables in a.
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The following lemmas use this observation to improve the upper and lower
bounds.

Lemma 4.2. If a = (a1, ..., an) ∈ Er and V is symmetric, then

fa(s, V ) ≤ a−s1 fr(s, V ).

Proof. We set

b =
n∑
j=2

(
a1 + ...+ an

n− 1
− aj

)
rj

where rj = (1, 2, ..., 2, 1, 2, ..., 2) is the vector with every component equal to
two except for the first and jth, which are equal to one. Thus b1 = a1 and
for j = 2, ..., n,

bj = 2a1 − a1 + ...+ an
n− 1

+ aj.

It is clear, using induction, that

1 ≤ bj ≤ aj
for all j, so from Lemma 1.2,

fa(s, V ) ≤ fb(s, V ).

Since V is symmetric, frj (s, V ) = fr(s, V ), so using Theorem 4.1 we con-
clude

fa(s, V ) ≤
 n∑
j=2

(
a1 + ...+ an

n− 1
− aj

)−s fr(s, V )

≤ a−s1 fr(s, V ).

Lemma 4.3. If a ∈ Er, then

fa(s) ≥
(
a1 + a2

2

)−s
fr(s).

Proof. Using Theorem 4.1 we know

fa(s) =
1
2
fa(s) +

1
2
f(a2,a1,a3,...,an)(s)

≥ f( a1+a2
2 ,

a1+a2
2 ,a3,...,an)(s)

≥
(
a1 + a2

2

)−s
fr(s),
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where in the last step, we used

a1 + a2 − aj ≥ 0,

which is easy enough to prove using induction.

The proof of Lemma 4.2, though straight forward, appears contrived. The
result and proof were inspired by looking at the dual tree (see [Ba1] or
Section 6) where the choice

B =
k−1∑
j=1

AjRj

is more obvious. Here, Rj is the vector with every component equal to zero
except for the jth and kth, which are equal to one. We chose to keep the
focus of this paper on just one tree, rather than switch between the two. If
we had chosen to instead focus on the dual tree, then the proof of the lower
bound would have looked contrived.

We now use Lemmas 4.2 and 4.3 to get the better bounds:

U(s, y) =
∑

a∈∂Er(y)

a−s1

n∑
j=2

ζ

(
s,
aj
a1

− 1
) ,

L(s, y) =
∑

a∈∂Er(y)

a−s1

n∑
j=2

ζ

(
s,
aj
a1

− 1
2

) .
Using these functions, we present in Table 1 the solutions s1 and s2 for

various values of n and y.

n s1 s∗1 s∗2 s2 y n s∗1 s∗2 y
3 2.425 2.430 2.477 2.494 400 7 3.317 3.435 400
4 2.724 2.730 2.798 2.813 400 8 3.453 3.595 300
5 2.957 2.963 3.048 3.063 400 9 3.578 3.734 300
6 3.148 3.155 3.256 3.270 400 10 3.692 3.858 300

Table 1.

The bounds s∗1 and s∗2 are roots of L∗ and U∗, which are obtained by
making one more refinement: For some values of b ∈ Er(y), the bound

fb(s) > (b1)−s
n∑
j=2

ζ

(
s,
bj
b1

− 1
2

)
fr(s)
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is sharper than the bound

fb(s) >
∑

a∈Eb(y)

(a1)−s
n∑
j=1

ζ

(
aj
a1

− 1
2

) fr(s).

We construct L∗ (and similarly U∗) by optimizing these choices.
This table raises an intriguing question: Does α(5) = 3?

5. The asymptotic growth of the exponent.

In this section, we show:

Theorem 5.1.
logn
log 2

< α(n) <
logn
log 2

+ o(n−.58).

Proof. For the lower bound, let us set r = (1, 2, ..., 2). Then, for any s > α(n),
we get

fr(s) > f(1,3,...,3)(s) + (n− 1)f(2,3,4,...,4)(s)

> n2−sfr(s).

Thus,

1 > n2−s

0 > logn− s log 2.

Since this is true for any s > α(n), we get our lower bound for α(n).
For the upper bound, we again set r = (1, 1, 2, ..., 2), and note

fr(s, V ) ≤ 2f(1,2,3,...,3)(s, V ) + (n− 2)f(2,3,3,4,...,4)(s, V ),

so using Lemma 4.2 and Eq. (1.1), we get

fr(s, V )

≤ 2(ζ(s, 1)fr(s, V ) + (n− 2)ζ(s, 2)fr(s, V )) + (n− 2)2−sfr(s, V ) +O(1)

≤ 2fr(s, V )
(

2−s + (n− 1)3−s + (n− 1)
∫ ∞

3

dx

xs
+ (n− 2)2−s−1

)
+O(1).

So, if s < α(n), then we can choose V so that fr(s, V ) is arbitrarily large,
and divide through by it to get

1 ≤ n2−s
(

1 + 2
(

2
3

)s
+

2 · 3
s− 1

(
2
3

)s)
0 ≤ logn− s log 2 +O ((2/3)s) .
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Since α(n) > logn/ log 2, we can find an s ∈ (logn/ log 2, α(n)), and for such
an s, we get

s ≤ logn
log 2

+O
(
n

log 2−log 3
log 2

)
.

Since this is true for all s in (logn/ log 2, α(n)), this gives our upper bound
for α(n).

6. Orbits of rational points.

In this section, we prove a generalization of Theorem 0.2 which includes
non-trivial rational solutions to Eq. (0.1):

Theorem 6.1. Suppose a ∈ Q and P is a non-trivial rational solution to
the Hurwitz equation Eq. (0.1). Then there exist roots r and s, with ri > 0
and si > 0 for all i, such that

nr(t) << NP (t) << ns(t).

For integer solutions to Eq. (0.1) with a an integer, the height of a point
is determined entirely by the valuation at infinity. For a rational point,
other valuations contribute. However, if S is a set of valuations including
the valuation at infinity, and a is an S-integer, then the set of S-integer
solutions to Eq. (0.1) is closed under the action of A. Thus, for a particular
solution P , we can choose a finite set S such that P is an S-integer solution,
a is an S-integer, and S contains the place at infinity. Then, the A-orbit
of P is a set of S-integer solutions, and the heights of points in A(P ) are
determined by the finite set of valuations in S.

Let us begin with a few definitions and lemmas.
For any ϕ ∈ A, let us always write

ϕ = σir · · ·σi1
with r minimal. That is, ik 6= ik−1 for all k = 2, ..., r.

Let
Ak = {ϕ ∈ A : ϕ = σir · · ·σi1 , i1 6= k, r = 0, 1, 2, ...}.

Lemma 6.2. Suppose P = (p0, ..., pn) is a rational solution to Eq. (0.1)
and let v be a valuation in S. If v = v∞ is the place at infinity, then there
exists a k so that v∞(pk) ≥ v∞(pi) for all i 6= k. If v is a local valuation,
then let us also suppose there exists a k so that v(pk) > v(pi) for all i 6= k.
Let

p′i = (ap0 · · · pn/pi)− pi.
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Then

v(pk) = v(p0) + ...+ v(pn)− v(pk) +O(1)
v(p′i) = v(p0) + ...+ v(pn)− v(pi) +O(1)

(6.1)

and
v(p′i) > v(pk).

Proof. For v a local valuation,

v(p2
0 + ...+ p2

n) = v(p2
k),

since v(pk) > v(pi) for all i 6= k. Thus,

2v(pk) = v(p0) + ...+ v(pn) + v(a).

Also, since v(pk) > v(pi) for all i 6= k,

v(p′i) = v(ap0 · · · pn/pi) = v(p0) + ...+ v(pn)− v(pi) + v(a).

Subtracting v(pk) from v(p′i), we get

v(p′i)− v(pk) = v(pk)− v(pi) > 0.

For the place at infinity, we note

p2
k ≤ ap0 · · · pn ≤ (n+ 1)p2

k

and
p2
k ≤ p2

0 + ...+ p2
n = pip

′
i ≤ (n+ 1)p2

k,

from which Eqs. (6.1) follow, and the last inequality trivially follows.

Thus, if there exists a k such that v(pi) < v(pk) for all i 6= k, then
v(p′i) > v(pi) for all i 6= k, and we can sensibly define the forward tree from
P with respect to v to be

A+
v = {ϕP : ϕ ∈ Ak}.

Also, as in [Ba1], we can compare A+
v (P ) with the Euclid-like tree E∗

defined by the branching operations

Ei : (A1, ..., An) 7→ (A1, ..., Âi, ..., An, A1 + ...+An).

We send this to the dual tree E defined in the introduction via the linear
map Θ where

Θi(A) = A1 + ...+An −Ai.
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To bound NP (t) from above, we use the following:

Lemma 6.3. Suppose v(pk) ≥ v(pi) for all i 6= k with strict inequality if
v is a local valuation. Let u > 0 bound the function implied by the O(1) in
Eqs. (6.1). Let a = (v(p0), ..., v̂(pk), ..., v(pn)), and suppose ai > u for all i.
Let r = Θ(a− (u, ..., u)), so ri > 0 for all i. Then

N+
P,v(t) = #{Q ∈ A+

v (P ) : h(Q) < t} ≤ nr(t).

Proof. We note that
h(Q) ≥ max

i
{v(qi)},

so
N+
P,v(t) ≤ #{Q ∈ A+

v (P ) : max
i
{v(qi)} < t}.

Thus we need only consider the valuation v. We also note that

nr(t) = #{s ∈ E∗Θ−1r : s1 + ...+ sn < t},
and refer the reader to [Ba1] for a proof. Thus, we can consider E∗ instead of
E . We simultaneously define inductively a correspondence and comparison
between A+

v (P ) and E∗Θ−1r in the following way: We let P correspond to
a− (u, ..., u) = Θ−1r. We let an arbitrary Q correspond to s and let τ be a
reordering of {0, ..., n} such that

v(qτ(0)) ≤ · · · ≤ v(qτ(n−1)) < v(qτ(n)),

and
v(qτ(i−1)) ≥ si + u.

This last is true for P and a−(u, ..., u) by construction. Now, we let στ(i−1)Q
correspond to Eis for i = 1, ..., n. Then, we need only check that

v(qτ(n)) ≥ s1 + ...+ sn + u.

But, from Lemma 6.2,

v(qτ(n)) ≥ v(qτ(0)) + ...+ v(qτ(n−1))− u
≥ (s1 + u) + ...+ (sn + u)− u
≥ (s1 + ...+ sn) + u,

as desired.
Thus, if h(Q) < t, then

t ≥ max
i
{v(qi)} = v(qτ(n)) ≥ s1 + ...+ sn,
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so
N+
P,v(t) ≤ nr(t).

For the lower bound, we use:

Lemma 6.4. For a fixed v and P , suppose that A+
v (P ) is defined. For

any Q ∈ A+
v (P ), choose k so that v(qk) > v(qi) for all i 6= k. Suppose also

that
h(q′i) = h(q0) + ...+ h(qn)− h(qi) +O(1)

for all Q ∈ A+
v (P ) and i 6= k. Let a = (h(q0), ..., ĥ(qk), ..., h(qn)) and r =

Θ(a + (u, ..., u)). Then

NP (t) ≥ #{Q ∈ A+
v (P ) : h(Q) < t} ≥ nr(t).

The proof is similar to the proof of Lemma 6.3.
We are now prepared to prove Theorem 6.1:

Proof of Theorem 6.1. Let us fix P and choose S appropriately. For a
valuation v ∈ S, choose j so that v(pj) ≥ v(pi) for all i 6= j. For any
Q ∈ A(P ), choose k so that v(qk) ≥ v(qi) for all i 6= k. Note that if
v(qk) > v(pj), then in fact v(qk) > v(qi) for all i 6= k (this follows from
Lemma 6.2). Let us set

m = max
v∈S
{(n− 1)v(pj), u}

where u bounds all the functions implied by the O(1) in Eqs. (6.1) for all
v ∈ S. Let

Uv = {Q ∈ A(P ) : v(q0) + ...+ v(qn)− v(qi) ≤ m for some i},
U =

⋂
v∈S

Uv.

Since P ∈ Uv for all v, U 6= ∅. Also, if Q ∈ U , then

v(q0) + ...+ v(qn)− v(qi) ≤ m
for some i. The quantity on the right is smallest when i = k. If we have
v(qi) = v(qk) for some i, then v(qk) ≤ v(pj) < m. Otherwise, from Eq. (6.1)
we get

v(qi) ≤ v(qk) ≤ m+ u ≤ 2m.

Since this is true for all v ∈ S, and S is finite, we conclude that the height
of Q is bounded. There are only a finite number of such Q, so U is finite.
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Now, suppose Q 6∈ U . Then Q 6∈ Uv for some v. If there is an i such that
v(qk) = v(qi), then v(qk) ≤ v(pj), and

v(q0) + ...+ v(qn)− v(qi) ≤ (n− 1)v(pj) ≤ m,

which means Q ∈ Uv, a contradiction. Therefore, v(qk) > v(qi) for all i 6= k.
Hence, by Lemma 6.3, there exists an r so that

N+
Q,v(t) < nr(t).

Thus,

NP (t) = O(1) +
∑
Q∈∂U

N+
Q,v(t)

≤
∑
Q∈∂U

nr(t).

Here, the v and r depend on Q. Since this is a finite sum, we can define s
so that 0 < si = min

Q∈∂U
{ri}. Then, we get

NP (t) << ns(t),

as desired.
For the lower bound, we argue as follows: For the place at infinity, P

non-trivial and i 6= j,
v∞(p′i) > v∞(pj).

Thus, A(P ) is infinite. Hence, there exists a v so that Uv 6= A(P ). Write
v0 = v, and choose Q0 6∈ Uv0 . Label the rest of the elements of S as
S = {v0, ..., vs}. Define Qi and S0 inductively for i = 1, ..., s in the fol-
lowing fashion: If Uvi ⊃ A+

vi−1
(Qi−1), we set Qi = Qi−1 and place vi ∈ S0.

Otherwise, we choose Qi so that Qi ∈ A+
vi−1

(Qi−1), but Qi 6∈ Uvi . Suppose
now that Q ∈ A+

vs
(Qs), and vs(qk) > vs(qi) for all i 6= k. Then, for all

v ∈ S \ S0, and for the same k, v(qk) > v(qi) for all i 6= k. Thus,

h(Q) =
∑

v∈S\S0

v(qk) +O(1),

where the O(1) includes the contributions from all valuations in S0. In
particular, we have an analogue of Eq. (6.1): For all Q ∈ A+

vs
(Qs) and all

j 6= i,

h(q′i) = h(q0) + ...+ h(qn)− h(qi) +O(1).(6.2)
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We now appeal to Lemma 6.4 to conclude

NP (t) ≥ N+
Qs,vs

(t) ≥ nr(t),

as desired.

Remark. We have really proven a version of Theorem 6.1 for totally real
fields. For an arbitrary field, one must deal with complex valuations. Over
the reals, the singularity (0, ..., 0) is isolated, but this is no longer the case
over C, which complicates the problem.
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