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A COMPARISON THEOREM FOR LIE ALGEBRA
HOMOLOGY GROUPS

Tim Bratten

Let M be a Harish-Chandra module associated to a finite
length, admissible representation of real reductive Lie group
G0. Suppose that p is a parabolic subalgebra of the complex-
ified Lie algebra of G0 and let n ⊂ p be the nil radical of p.
In this paper, motivated by some recent work in the study of
zeta functions on locally symmetric spaces, we make a com-
parison between homological properties of M and homological
properties of the minimal globalization of M . In particular, if
p has a real Levi factor, we are able to show that, after con-
jugating by an element from G0, then the n-homology groups
of the minimal globalization of M are, in a natural way, the
minimal globalizations of the n-homology groups of M .

1. Introduction.

Some recent work in the study of zeta functions defined on locally sym-
metric spaces has focused on comparing the homological properties of a
Harish-Chandra module with the homological properties of various global
representations associated to that Harish-Chandra module. In particular,
one recent paper by U. Bunke and M. Olbrich [3] establishes a comparison
theorem for some Lie algebra cohomology groups in order to describe the
singularities of the Selberg zeta function. Even more recently, the same au-
thors have extended their work on the comparison theorem [4] by applying a
result of Kashiwara and Schmid [14]. On the other hand, during the austral
autumn of 1995, A. Deitmar expressed to this author a desire to know a
comparison theorem in some generality, in order to obtain some results in
his study of zeta functions associated to compact Shimura manifolds [7]. It
was this need that provided the motivation for writing down the following
argument.

The purpose of this article is to show that a comparison theorem of a very
general nature can be deduced from a result in [2] by a series of standard
formal reductions. The result in [4] then becomes a special case of our result,
although the methods we utilize are quite different and stem from the work
of H. Hecht and J. Taylor [12], [13].
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Specifically, suppose G0 is a real reductive group of Harish-Chandra class
[8] and let g be the complexified Lie algebra of G0. Recall that a Borel subal-
gebra of g is a maximal solvable subalgebra and that a parabolic subalgebra
is any subalgebra that contains a Borel subalgebra.

Let τ : g → g denote the conjugation of g determined by G0 and fix a
maximal compact subgroup K0 ⊂ G0. We choose a Cartan involution of G0

whose fixed point set is K0 and let θ : g → g denote the extension to g of
the corresponding derivative. A subalgebra of g will be called stable if it is
invariant under both τ and θ. A parabolic subalgebra p ⊂ g is said to be
special of Levi type if it contains a stable Levi factor l. Such a Levi factor
(if it exists) is unique.

Fix a special parabolic subalgebra p of Levi type with nil radical n and
stable Levi factor l. Let L0 be the subgroup of G0 that normalizes both
l and n. Then L0 is a real reductive group of Harish-Chandra class wih
complexified Lie algebra l and maximal compact subgroup K0 ∩ L0. We
refer to L0 as the real Levi factor associated to p.

Let K be the complexification of K0. A g-module M is called a Harish-
Chandra module for (g,K) provided M carries a compatible, algebraic
[9, Section 2, A1 and A2], K action and provided that the resulting (g,K)
structure has finite length. Let KL ⊂ K be the complexification of K0 ∩L0.
Then the Lie algebra homology groups

Hp(n,M)

are Harish-Chandra modules for (l,KL) [18].
Given a Harish-Chandra module M we let Mmin denote its minimal glob-

alization [14], [17]. We remark that the minimal globalization is a canonical
and functorially defined topological G0-module on a dual nuclear Fréchet
(= dnF ) space that consists entirely of analytic vectors. As the name sug-
gests, Mmin embeds continuously and equivariantly in any topological rep-
resentation of G0, on a complete locally convex space, that contains M as
its underlying space of K0-finite vectors. Our main result is the following:

Theorem 1. Let p be a special parabolic subalgebra of Levi type with cor-
responding Levi decomposition p = l + n and let M be a Harish-Chandra
module for (g,K). Fix a (g,K0) equivariant inclusion M → Mmin onto the
K0 finite vectors in Mmin. Let L0 denote the real Levi factor associated to p.
(a) For each p, the Lie algebra homology groups Hp(n,Mmin) have naturally
defined dnF topologies and continuous L0 actions.
(b) The inclusion M → Mmin determines a L0 equivariant topological iso-
morphism Hp(n,M)min ' Hp(n,Mmin).

We remark that the result in [4] establishes the comparison theorem for
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parabolic subalgebras of g defined over R (i.e. any p such that τp = p). A
parabolic subalgebra defined over R is always special of Levi type, since in
this case p ∩ θp is a stable Levi factor. On the other hand, it is possible to
define entire manifolds of parabolic subalgebras of g such that each point
is conjugate to a special parabolic subalgebra of Levi type, yet none of the
points is a parabolic subalgebra defined over R. For example suppose G0 is
any real reductive group which is not split and consider the full flag manifold
X of Borel subalgebras of g. A result of Matsuki [15] implies that every point
in X is G0-conjugate to a special point of Levi type, but in this example no
Borel subalgebra of g is defined over R. In the case of a full flag manifold,
the comparison theorem was already shown in [13].

The paper is organized as follows. In the second and third sections we give
a proof of the comparison theorem. Our first task is to translate a geometric
result established in [2] into the language of n-homologies using a dictionary
which is nearly identical to the well known case of a full flag manifold. Formal
considerations and tensoring arguments complete the proof. We then finish
the article by rephrasing our result in terms of Lie algebra cohomology and
a topological duality.

This paper was motivated by some discussions with Anton Deitmar. The
author has also benefited from some helpful discussions with Jorge Vargas.
The work for this paper was completed while the author was supported by
a post-doctoral position in FaMAF, Universidad Nacional de Córdoba.

2. Translating the geometric argument.

Let p = l + n be a Levi decompostion for a parabolic subalgebra of g and
let M be a g module. Let U(g) and U(n) denote the enveloping algebras of
g and n, respectively. We define the n-homologies of M to be the derived
functors for the right exact functor of coinvariants

H0(n,M) = C⊗U(n) M

from the category of g-modules to the category of l-modules. Since U(g) is
a free U(n)-module, the derived functors for the coinvariants funtor can be
computed using resolutions by free U(g)-modules.

Let Z(g) denote the center of U(g). A homomorphism of algebras σ :
Z(g) → C is called an infinitesimal character. Given an infinitesimal char-
acter σ, we let Uσ denote the corresponding quotient of U(g) by the ideal
generated from the kernel of σ. Since Uσ is a free U(n)-module [16] it fol-
lows that we can compute the derived functors for the coinvariants of a Uσ
module using resolutions by free Uσ-modules.



26 TIM BRATTEN

Let Z(l) denote the center of U(l). When M is a Uσ module (or more gen-
erally a Z(g) finite module) then the homology groups Hp(n,M) are finite
direct sums of generalized Z(l) eigenspaces [5], [18]. In fact, the Harish-
Chandra maps make the relation between the character σ and these gener-
alized eigenvalues explicit. We adopt the notations used in [2], [12]. Specifi-
cally, let h be the universal Cartan subalgebra of g. There are unnormalized
Harish-Chandra maps: Z(g)→ U(h) and Z(l)→ U(h). In addition, there is
an injection of algebras Z(g)→ Z(l) uniquely determined by the requirement
that the following diagram commute:

Let Σ ⊂ h∗ be the universal root system, let W denote the Weyl group
of Σ and let Wl ⊂ W be the Weyl group corresponding to the Levi factor
l ⊂ p. A fundamental result of Harish-Chandra uses the above morphisms to
define identifications of the characters of Z(g) (also of Z(l)) with W orbits
(repectively Wl orbits) in h∗. In particular, let Σ+ ⊂ Σ be the set of positive
roots [2], [12] and let ρ be one half the sum of the elements in Σ+. Then
λ ∈ h∗ is identified with a character of Z(l) via the map:

Z(l)→ U(h) λ+ρ−→ C.

Suppose that σ = W · λ. Then σ is called regular provided α̌(λ) is not
zero for each α ∈ Σ. Let Jσ ⊂ Z(g) be the kernel of σ and identify Jσ with
a subset of Z(l) via the morphism Z(g)→ Z(l). Let V lσ denote the quotient
of Z(l) by the ideal generated from Jσ.

Lemma 1. V lσ is a finite dimensional Z(l)-module which is semisimple
when σ is regular.

Proof. Identify Z(g) and Z(l) with subalgebras of U(h) via the Harish-
Chandra maps. Let V hσ denote the quotient of U(h) by the ideal generated
from Jσ. Then it is well known that V hσ is a finite dimensional vector space
which is semisimple as an h-module (and hence as a Z(l)-module) when σ is
regular [16]. Therefore it is sufficient to see that the morphism V lσ → V hσ of
Z(l) modules is injective. But this last point is a straightforward application
of the identification of Z(l) with the Wl invariants in U(h).
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If V is an l module and if λ ∈ h∗ let Vλ denote the Z(l) eigenspace
corresponding to the infinitesimal character χλ = Wl · λ.

Lemma 2. Suppose that σ = W · λ is a regular infinitesimal character
for Z(g). Then F (M) = H0(n,M)λ defines a right exact functor from the
category of Uσ modules to the category of U(l) modules with derived functors
LpF (M) isomorphic to Hp(n,M)λ.

Proof. If M is any Uσ module then there is a surjection V lσ ⊗ H0(n,M) →
H0(n,M) → 0 of Z(l) modules. By the previous lemma V lσ is a finite di-
rect sum of Z(l) eigenspaces so that H0(n,M) is too. Hence H0(n,M) be-
longs to the category of U(l) modules which are finite direct sums of Z(l)
eigenspaces. The result follows since the functor V 7→ Vλ is exact on this
last category.

We now introduce the geometrical data. Let Int(g) be the complex semisim-
ple adjoint group of g and let Y be the quotient of Int(g) by the normalizer
of p: Y is nothing but the flag manifold consisting of all Int(g) conjugates
of p. In particular, Y is a smooth projective variety. Let y ∈ Y denote the
point in Y corresponding to the parabolic subalgebra p and let OY be the
sheaf of regular functions on Y .

For λ ∈ h∗ let Aλ denote the corresponding generalized twisted sheaf of
differential operators on Y [2, Notation as in Section 3] [6, Definition 4.3].
Let X denote full flag manifold for g (this is the projective variety of Borel
subalgebras of g). Then the sheaf Aλ is nothing but the direct image of a
twisted sheaf of differential operators Dλ (with regular coefficients) under
the standard projection π : X → Y . If σ = W · λ is the character of Z(g)
corresponding to λ then Uσ = Γ(Y,Aλ) [1], [16]. Suppose M is a Uσ-module.
The localization of M to Y is the quasicoherent sheaf of Aλ modules defined
by:

∆λ(M) = Aλ ⊗Uσ M.

On the other hand, supposeM is a sheaf of Aλ modules and letMy denote
the stalk of M over the point y ∈ Y . The geometric fiber of M at y is
defined by:

Ty(M) = C⊗OY yMy.

Because exp(adL) ∈ Int(g) stablizes y for each L ∈ l it follows that the
morphism U(l)→ Γ(Y,Aλ) determines a left l action on Ty(M).

Proposition 1. Suppose σ = W ·λ is a is a regular infinitesimal character
and suppose M is a Uσ-module. Then H0(n,M)λ and Ty ◦ ∆λ(M) define
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isomorphic functors from the category of Uσ modules to the category of U(l)
modules.

Proof. According to Lemma 2, H0(n,M) is a finite direct sum of Z(l) eigen-
spaces. Hence, the natural isomorphism: H0(n, Uσ) ⊗Uσ M ' H0(n,M)
descends to an isomorphism: H0(n, Uσ)λ⊗UσM ' H0(n,M)λ. This means it
suffices to show that H0(n, Uσ)λ and Ty(Aλ) are isomorphic as (l, g) bimod-
ules.

According to [6, Proposition 4.5], [12, Proposition 6.1] there is an isomor-
phism of (l, g) bimodules: Cλ ⊗Z(l) H0(n, U(g)) ' Ty(Aλ). Let Jσ ⊂ Z(g) be
the kernel of σ and consider the exact sequence:

Cλ ⊗Z(l) H0(n, JσU(g))→ Cλ ⊗Z(l) H0(n, U(g))→ Cλ ⊗Z(l) H0(n, Uσ)→ 0.

Another application of Lemma 2 shows that this last space is nothing but
H0(n, Uσ)λ. By considering the morphism Z(g)→ Z(l) one immediately sees
that Cλ ⊗Z(l) H0(n, JσU(g)) is zero.

An element λ ∈ h∗ is called antidominant provided α̌(λ) is not a positive
integer for each α ∈ Σ+. We say λ is antidominant for Y provided λ is Wl
conjugate to something antidominant.

Lemma 3. Assume λ is regular and antidominant for Y and suppose M
is a Harish-Chandra module for (g,K) with an infinitesimal character. Let
Mmin denote the minimal globalization of M . Assume p is a special parabolic
subalgebra of Levi type with corresponding Levi decomposition p = l+ n. Let
L0 be the real Levi factor associated to p.
(a) The l module Hp(n,Mmin)λ has a naturally defined dnF topology and a
continuous L0 action.
(b) Any (g,K0) equivariant inclusion M → Mmin onto the K0 finite vec-
tors in Mmin determines an L0 equivariant isomorphism (Hp(n,M)λ)min '
Hp(n,Mmin)λ.

Proof. Suppose M (and therefore Mmin as well) has infinitesimal character
σ. According to the Casselman-Osborne Lemma [5] the homology groups
Hp(n,M)λ and Hp(n,Mmin)λ will both vanish for all p unless σ = W · λ.
Therefore we assume σ = W · λ.

Let F.(M) and F.(Mmin) be the Hochschild resolutions of M and Mmin

respectively (these are just canonical resolutions by free Uσ modules) [2],
[11]. In particular:

Fp(Mmin) = ⊗p+1Uσ ⊗Mmin.

Since Uσ is a dnF space with a countable basis it follows that Fp(Mmin) is a
dnF Uσ module [12]. Via the tensor product of the adjoint action on Uσ with
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the action on Mmin one obtains a continuous G0-action on Fp(Mmin). This
action is not compatible with the left g action, nevertheless the two actions
are homotopic [11]. Via the functorality, the analogous considerations hold
for the complex Ty ◦∆λ(F.(Mmin)) with respect to the left l action and the
induced L0 action.

According to the comparison theorem in [2, Theorem 7] the homology
groups hp(Ty ◦∆λ(F.(Mmin))) have Hausdorff topologies and the morphism
M →Mmin defines an L0-equivariant isomorphism

hp(Ty ◦∆λ(F.(M)))min ' hp(Ty ◦∆λ(F.(Mmin))).

Thus the desired result follows immediately from Proposition 1.

3. A proof of the comparison theorem.

We can now complete the proof of Theorem 1 via some formal reductions
and tensoring arguments.

For a moment, suppose that M is a Harish-Chandra module with in-
finitesimal character σ. Observe that the structure of Hp(n,Mmin) as a
topological module for L0 remains unchanged whether it is determined by
the Hochschild resolution defined over the the algebra Uσ or over U(g) since
each of these algebras is dnF with a countable basis and since continuous
quasi-isomorphisms are good in the dnF category [12, A.9 Corollary]. Using
the Hochschild resolution with coefficients from Uσ we obtain a complex

H0(n, Fp(Mmin)) = H0(n, Uσ)⊗p Uσ ⊗Mmin

that splits as a finite direct sum according to the splitting of H0(n, Uσ) into
generalized Z(l) eigenspaces. Thus the L0-module Hp(n,Mmin) splits as a
finite topological direct sum of its generalized Z(l)-eigenspaces. As we saw
in Lemma 2, in case σ is a regular infinitesimal character, then Hp(n,M)
and Hp(n,Mmin) are direct sums of regular Z(l)-eigenspaces.

For an arbitrary Harish-Chandra module M we use the Hochschild resolu-
tion defined over U(g) to specify the structure of Hp(n,Mmin) as a topological
L0 module. Nevertheless, in order to carry out the tensoring argument it
seems we need to know that the generalized Z(l) eigenspaces occurring in
Hp(n,Mmin) can be computed as the homolgy groups of a complex of dnF
spaces. We continue with the notations of the previous section.

Proposition 2. Let m be a positive integer and let Jmσ ⊂ Z(g) be the
ideal obtained by raising Jσ to the mth power. Let Um

σ be the corresponding
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quotient of U(g) by the ideal generated from Jmσ . Then Um
σ is a free U(n)

module.

Proof. The proof is essentially the same as when m = 1 and Um
σ = Uσ,

[16].

Since a Harish-Chandra module M and its minimal globalization are both
Z(g)-finite it follows that the homology groups Hp(n,M) and Hp(n,Mmin)
are both finite direct sums of generalized Z(l) eigenspaces. If V is an l
module (or alternatively a g module) let V(λ) denote the generalized Z(l)
(respectively Z(g)) eigenspace corresponding to λ ∈ h∗. Then there is a
natural isomorphism:

Hp(n,Mmin)(λ) ' Hp(n,Mmin(λ))(λ).

On the other hand, since M(λ) is finitely generated as a U(g)-module, it fol-
lows by simple continuity considerations that there is an m such that Mmin(λ)

is a module for Um
σ . Using the the Hochschild resolution with coefficients in

Um
σ we obtain a complex

H0(n, Fp(Mmin(λ))) = H0(n, Um
σ )⊗p Um

σ ⊗Mmin(λ)

that splits as a finite direct sum according to the splitting of H0(n, Um
σ ) into

generalized Z(l)-eigenspaces. In particular, the generalized Z(l)-eigenspaces
in the n homology groups Hp(n,Mmin)(λ) are the homology groups of a
complex of dnF spaces. Thus a standard long exact sequence argument
coupled with facts about complexes of dnF spaces [12, Proposition A.10]
and the closed range condition for maps between minimal globalizations
[12, Lemma 9.1] allows us to extend the result of Lemma 3 to arbitrary
Harish-Chandra modules [13, Lemma 3.1]:

Lemma 4. Let M be a Harish-Chandra module for (g,K), fix λ ∈ h∗ and
suppose the following two conditions hold whenever M has an infinitesimal
character:
(a) The induced topology on Hp(n,Mmin)(λ) is Hausdorff.
(b) The morphism M →Mmin determines an L0-equivariant topological iso-
morphism (Hp(n,M)(λ))min ' Hp(n,Mmin)(λ)

Then both conditions hold for all Harish-Chandra modules. Furthermore: If
both conditions hold for every λ ∈ h∗ then Theorem 1 holds as well.

Let Σ+(l) ⊂ Σ+ denote the set of positive roots for h in l and let
Σ(n) = Σ+ − Σ+(l) denote the corresponding roots for h in n. Given an
infinitesimal character χλ for l with corresponding parameter λ ∈ h∗ we de-
fine the length n(χλ) of the character [2, Section 9] to be the cardinality of
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{α ∈ Σ(n) | α̌(λ) is a positive integer}. Observe that n(χλ) = 0 if and only
if λ is antidominant for Y . We also introduce the following terminology:
λ is called antidominant for l provided α̌(λ) is not a positive integer for all
α ∈ Σ+(l). Note that each Z(l) infinitesimal character has an l antidominant
parameter.

We now complete the argument by an induction in length, utilizing
[18, Proposition 7.4.6] as well as [18, Proposition 7.4.7].

Lemma 5. Suppose λ ∈ h∗ is antidominant for Y and that M is a
Harish-Chandra module for (g,K). Otherwise make the same assumptions
as Lemma 3. Then we obtain the conditions (a) and (b) of Lemma 4.

Proof. We may assume that λ is antidominant. There is a finite dimensional
irreducible G0-module F µ with lowest weight µ such that λ+ µ is antidom-
inant and regular. Let F µ

L0
be the irreducible L0-module of lowest weight

µ. Filtering F µ by p invariant subspaces with subquotients irreducible L0-
modules and arguing as in [18, Proposition 7.4.6] we obtain a commutative
square with horizontal isomorphims:

Hp(n,Mmin ⊗ F µ)(λ+µ) ' (Hp(n,Mmin)(λ) ⊗ F µ
L0

)(λ+µ)

↑ ↑

Hp(n,M ⊗ F µ)(λ+µ) ' (Hp(n,M)(λ) ⊗ F µ
L0

)(λ+µ).

Let W = Hp(n,M)(λ) and let Ψ(W ) = (W ⊗ F µ
L0

)(λ+µ). Then it follows
from Lemma 3 and Lemma 4 that the morphism W → Hp(n,Mmin)(λ) de-
termines a topological isomorphism: Ψ(W )min ' Ψ(Hp(n,Mmin)(λ)).

We utilize the following result on the translation functors:

Proposition 3. Let λ ∈ h∗ and suppose µ is the extremal weight of a
finite dimensional irreducible l module F µ

l . Let U and V be l modules with
generalized infinitesimal character χλ and view the translation functor

Ψ(U) = (U ⊗ F µ
l )(λ+µ)

as defined on the category of l modules with generalized infinitesimal char-
acter λ. Then the functor Ψ is exact and there is a a surjection:

HomU(l)(U, V )→ HomU(l)(Ψ(U),Ψ(V )).

Now suppose that λ is an l antidominant parameter and suppose in ad-
dition that for any w ∈ Wl and for any ν a weight of F µ

l that the equation
λ + µ − ν = wλ is satisfied if and only if wλ = λ and µ = ν. Then Ψ
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is faithful in the sense that Ψ(U) = 0 if and only if U = 0. In particular,
HomU(l)(U, V ) is isomorphic to HomU(l)(Ψ(U),Ψ(V )).

Proof of Proposition 3. The exactness of Ψ is clear, since W ⊗ F µ
l is Z(l)

finite [18, Proposition 4.5.8 and Corollary 7.13]. On the other hand, the
surjection of the Hom groups can be deduced directly from the adjointness
formulas [18, Proposition 4.5.8]. Finally, the last claim can be easily deduced
(for example) by using the geometric translation functors and the facts about
algebraic localization on a full flag manifold [16]. In particular, one can easily
deduce that the adjoint to Ψ maps essentially onto the category of l modules
with Z(l) infinitesimal character λ.

Because the translation functors commute with the minimal globalization,
to complete the proof of Lemma 5, it suffices to see that Hp(n,Mmin)(λ) has
a Hausdorff topology. But this follows directly, since the map obtained from
the adjointness morphism:

Hp(n,Mmin)(λ) → (Ψ(W )min ⊗ F−µ)(λ)

is continuous and injective by Proposition 3.

In order to complete the induction we need to know that there are enough
finite dimensional irreducible l-modules. To obtain the weight µ that we
need, we may have to pass to a finite covering group G̃0 → G0, but this does
not present a serious difficulty.

Lemma 6. Let λ be an l antidominant parameter for the l infinitesimal
character χλ and suppose that n(χλ) is positive. For any α ∈ Σ let sα ∈ W
denote the corresponding Weyl group reflection. Then there exists:
(i) A finite covering group G̃0 → G0,

(ii) an extremal weight µ ∈ h∗ for a finite dimensional irreducible repre-
sentation F µ of G̃0,

(iii) and an α ∈ Σ(n)
such that the following holds:

(1) n(χλ+µ) and n(χsα(λ)) are both less than n(χλ).
(2) For w ∈W and ν a weight of h in F µ the equation:

wλ+ ν = λ+ µ

has a solution if and only if wλ = λ and ν = µ or else if wλ = sαλ
and ν = sαµ.
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Proof. This result is essentially shown in [16]. In fact, the desired re-
sult can be deduced directly from [2, Lemmas 13, 14 and 15] by utilizing
the irreducible finite dimensional representation dual to the one utilized in
[2].

We now apply the long exact sequence of [18, Proposition 7.4.7] to the
above data.

Lemma 7. Let λ and µ be as in the previous lemma and suppose M is
a Harish-Chandra for (g,K). Changing notations briefly, let M̂ denote the
minimal globalization of M and let V = (M ⊗ F µ)(λ+µ). Suppose that L̃0 ⊂
G̃0 is the real Levi factor associated to p and let F µ

L0
denote the irreducible

L̃0 module with extremal weight µ. Then there exists the following morphism
of long exact sequences:

→(Hp(n, M̂)(sαλ) ⊗ F µ
L0

)(λ+µ)→Hp(n, V̂ )(λ+µ)→(Hp(n, M̂)(λ) ⊗ F µ
L0

)(λ+µ)→

↑ ↑ ↑

→(Hp(n,M)(sαλ)⊗F µ
L0

)(λ+µ)→Hp(n, V )(λ+µ)→(Hp(n,M)(λ)⊗F µ
L0

)(λ+µ)→ .

To complete the proof of the comparison theorem we only need to see
that Hp(n,Mmin)(λ) is the minimal globalization of Hp(n,M)(λ) for an arbi-
trary λ ∈ h∗. Using induction, the previous lemma and some considerations
mentioned earlier, we see that (Hp(n,Mmin)(λ) ⊗ F µ

L0
)(λ+µ) is the minimal

globalization of (Hp(n,M)(λ)⊗F µ
L0

)(λ+µ). Thus the desired result follows by
Proposition 3.

4. Cohomology and topological duality.

We begin this last section by briefly recalling a few notions involved in defin-
ing Hp(n,Mmin) = TorpU(n)(C,Mmin) as a topological module [12, Section 2].
A free dnF module for U(n) is any module of the form U(n) ⊗ A where A
is a dnF space. When A is also an n-module then A is a topological dnF
module precisely when the action map U(n)⊗A→ A is continuous. In this
case the map A→ U(n)⊗A by a 7→ a⊗ 1 defines a splitting of U(n)⊗A as
a topological vector space.

Now suppose that A and B are dnF modules and suppose that we have a
continuous surjection B → A→ 0 of modules which we also assume defines
a splitting of B as a topological vector space. In addition suppose that F is
a free dnF module and that there is a continuous morphism F → A of U(n)
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modules. Then there exists a continuous morphism F → B of modules such
that the diagram:

commutes. Thus an application of [12, Proposition A.8] shows that the struc-
ture of of TorpU(n)(C, A) as a topological module is independent of the free
resolution of A.

On the other hand one can resolve C by free dnF modules. Then a
standard argument, coupled with (for example) [12, Corollary A.11] shows
that once again the same topological module is obtained. In particular, if
M is a Harish-Chandra module for (g,K) and if C.(n,Mmin) denotes the
standard Koszul complex

Cp(n,Mmin) =
∧p
n⊗Mmin

then it follows from the work in the previous section that this complex has
Hausdorff homology. Thus, using the standard complex to relate Lie algebra
homolgy with Lie algebra cohomolgy [10, 2.17 and 2.18] and applying the
results of the previous section, we can obtain a comparison theorem for the
Lie algebra cohomolgy groups [4, Theorem 1.3]. That is: making the same
assumptions as in Theorem 1 we obtain natural isomorphisms for the Lie
algebra cohomology groups:

Hp(n,M)min ' Hp(n,Mmin).

The standard complex also defines a natural duality relating the Lie al-
gebra cohomolgy of the dual with the dual of the Lie algebra homolgy
[10, 2.17 and 2.18]. Since the continuous dual defines an exact functor on
dnF spaces and since the standard complex has Hausdorff homology, this
identification passes to continuous duals. Thus one can also express the
content of Theorem 1 in terms of n-homologies (or n-cohomologies) of the
maximal globalization [14], [17] of a Harish-Chandra module (although we
remark that the comparison theorem is in fact false for a maximal globaliza-
tion as was pointed out to us by H. Hecht). In particular, let M∨ denote the
K finite dual of M and let M ′

max denote the continuous dual of the maximal
globalization Mmax of M . Then there is a natural isomorphism M ′

max 'M∨
min
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[17]. Let d be the dimension of n. Then it follows from the previous consid-
erations that the n-homologies (as well as the n-cohomologies) of a maximal
globalization provide maximal globalizations for the real Levi factor and that
we can (for example) rephrase Theorem 1 in terms of the following Poincaré
duality for Lie algebra cohomology [3, Proposition 4.4]:

Hp(n,Mmax) ′ ' Hd−p(n,M∨
min)⊗

∧d
n.
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