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UNIVERSAL LINKS FOR S2×̃S1

V́ictor Núñez

There exists a five component link U ⊂ S2 × S1 such that
every closed, connected, orientable 3-manifold M with H1(M)
6= 0 is a branched covering over S2 × S1 with branching set
exactly the link U .

There exists a five component link U ⊂ S2 ⊗ S1 such that
every closed, connected, non-orientable 3-manifold M with
the Bockstein of the first Stiefel-Whitney class, βw1(M) = 0,
is a branched covering over S2⊗S1 branched along the link U .

1. Introduction.

Refining a well known result, Hilden and Montesinos ([2, 3]) proved that
every orientable 3-manifold is a 3-fold branched covering of the 3-sphere S3.
With this result as a starting point, Thurston ([5]) proved the striking fact
that there exists a link U ⊂ S3 such that every orientable 3-manifold is a
branched covering of S3 with branching set exactly the link U . Thurston
called universal a link with this property.

Berstein and Edmonds proved ([1]), among other things, the following
characterization theorem

i) An orientable 3-manifold M is a 3-fold branched covering of S2 × S1 if
and only if H1(M) 6= 0.

ii) A non-orientable 3-manifold M is a 3-fold branched covering of S2⊗S1

if and only if the Bockstein of the first Stiefel-Whitney class, βw1(M) = 0.
We call a link U ⊂ S2×S1 a universal link for S2×S1 if every orientable

3-manifold M with H1(M) 6= 0 is a branched covering of S2 × S1 with
branching set the link U . We call also a link U ⊂ S2⊗S1 a universal link for
S2⊗S1 if every non-orientable manifold M with βw1(M) = 0 is a branched
covering of S2 ⊗ S1 branched along U .

In this work we show the existence of a universal link for S2 × S1 , and a
universal link for S2 ⊗ S1.

The most interesting result of Berstein and Edmonds is that every non-
orientable manifold is a branched covering of P 2 × S1 of at most six sheets.
It would be very interesting, as González-Acuña asked, to decide if there
exists a universal link for P 2 × S1.

I thank Fico González-Acuña for useful conversations.
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56 VÍCTOR NÚÑEZ

2. Existence of branched coverings.

The symbol S2×̃S1 denotes either the product S2×S1, or the non-orientable
bundle of 2-spheres over S1, S2⊗S1. A convenient way of regarding S2×̃S1

is as a quotient of S2 × I. Namely, we identify S2 × {0} with S2 × {1} by
the identity to obtain S2 × S1, and we identify S2 × {0} with S2 × {1} by a
reflection along the plane of the paper to obtain S2 ⊗ S1 (see Figure 1).

An open proper map ϕ : M 3 → N 3 is called a branched covering if there
exists a link L ⊂ N3 such that the restriction ϕ| : M3−ϕ−1(L)→ N−L is a
finite covering space; this covering space ϕ| is called the associated covering
space of ϕ. The map ϕ is called a d-fold branched covering if the associated
covering space is d-fold. We call ϕ a simple branched covering if the preimage
of each point under ϕ has at least d− 1 points, where ϕ is d-fold.

Let β : H1(M ;Z2)→ H2(M ;Z) be the coboundary Bockstein homomor-
phism associated to the exact sequence of coefficients 0→ Z → Z → Z2 → 0.

A link U ⊂ S2×S1 is called a universal link for S2×S1 if every orientable
3-manifold M with H1(M) 6= 0 is a branched covering of S2 × S1 with
branching set the link U . A link U ⊂ S2 ⊗ S1 is called a universal link for
S2⊗S1 if every non-orientable manifold M with βw1(M) = 0 is a branched
covering of S2 ⊗ S1 branched along U . By a link in S2 × I we understand
a collection of disjoint properly embedded arcs and circles. We call a link
U ⊂ S2 × I a universal link for S2×̃S1 if, after closing S2 × I obtaining
S2×S1, the resulting link U is a universal link for S2×S1, and, after closing
S2× I obtaining S2⊗S1, the resulting link U is a universal link for S2⊗S1

We state our main theorem, but the proof is postponed to Section 4.

Theorem 2.1. The link in Figure 1 is a universal link for S2×̃S1.

Figure 1.
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In this section we review a theorem of Berstein and Edmonds ([1]) on
the existence of branched coverings over S2×̃S1. Our purpose is to find a
‘normal’ explicit form of the branching set.

Let M be a non-orientable 3-manifold, and let F ⊂ M be an orientable
(connected) surface. Then F is called a Stiefel-Whitney surface for M if
M − F is orientable.

Remark. If F is a Stiefel-Whitney surface for M , then F represents the
Poincaré dual of the first Stiefel-Whitney class, PDw1(M) ∈ H2(M ;Z2).

Lemma 2.1 ([1]). Let M be a non-orientable 3-manifold. Then βw1(M) =
0 if and only if there exists F ⊂ M a two-sided Stiefel-Whitney surface for
M .

We recall some definitions. If c is an oriented simple closed curve in
an oriented 2-manifold X2, then the Dehn homeomorphism (or Dehn twist)
along c is the homeomorphism t(c) : X2 → X2 defined as follows: Choose
a regular neighbourhood of A ⊂ X2 of c with a fixed orientation preserving
embedding [−1, 1] × S1 ∼= A such that c corresponds to {0} × S1, and the
orientation of c agrees with the standard orientation of S1. Then t(c) is
defined on A by (r, eiθ) 7→ (r, ei(θ+r/2+1/2)), and by the identity outside A.
If a is an arc in intX2, then the arc homeomorphism (or disc twist) along a
is the homeomorphism t(a) : X2 → X2 defined as follows: Choose a regular
neighbourhood D ⊂ X2 of a, then t(a) is the identity outside D, and define
t(a) on D so that a is mapped onto itself with the ends reversed and so that
a foliation of D−a by circles is preserved and each circle is mapped to itself
by a rotation through an angle which varies from 0◦ on ∂D to 180◦ on circles
close to a.

Figure 2.
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Lemma 2.2. Let M be a closed, connected 3-manifold. If M is orientable,
suppose H1(M ;Z) 6= 0. If M is non-orientable, suppose βw1(M) = 0.
Then there exists a 3-fold simple branched covering ϕ : M → S2×̃S1 with
branching set a link as depicted in Figure 2.

Remark. In Lemma 2.2 the existence of a three-sheeted branched covering
of M over S2×̃S1 is a necessary and sufficient condition for H1(M ;Z) 6= 0,
in case M is orientable, and for βw1(M) = 0, in case M is non-orientable
(see [1]).

Proof of Lemma 2.2. We will follow closely the proof of Berstein and Ed-
monds. Let M be a closed connected 3-manifold. If M is orientable,
choose F ⊂ M a surface representing the Poincaré dual of a primitive class
v ∈ H1(M ;Z). If M is non-orientable, choose F ⊂ M a two-sided Stiefel-
Whitney surface for M . Let W denote M cut open along F . Then W is a
connected, orientable 3-manifold, and ∂W is the disjoint union of two copies,
F0 and F1, of F . We can recover M from W by identifying F0 and F1 with
a homeomorphism h : F0 → F1. Choosing a handle decomposition for W
having only 1-handles and 2-handles, we can write

W = V 3
0 ∪ (G2 × I) ∪ V 3

1 ,

where V 3
i is homeomorphic to the union of Fi×I plus 1-handles joined along

Fi × {1}, and ∂V 3
i = Fi ∪G2, i = 0, 1.

We let ψ : F → S2 be a fixed 3-fold simple branched covering. This
induces a (product) 3-fold simple branched covering ψi : Fi×I → S2×I (i =
0, 1) with branching set the disjoint union of 2g(F ) + 2 properly embedded
arcs connecting S2 × {0} with S2 × {1}.

Let η1 : D3 → D3 be the 2-fold branched covering with branching set
a properly embedded arc in the 3-ball D3, and let η2 : D3 → D3 be a
homeomorphism. Then η = η1 ∪ η2 : D3 ∪ D3 → D3 is a 3-fold simple
branched covering. Choose w ⊂ ∂D3 a 2-disk that misses the branching set
of η, and choose w′ ⊂ S2 × {1} a 2-disk that misses the branching set of ψi.
Glueing Fi × I with D3 ∪D3 along the preimages η−1(w) and ψ−1

i (w′), we
obtain the fiber boundary connected sum of ψi and η

ψi#η : (Fi × I) ∪ (D3 ∪D3)→ (S2 × I) ∪D3.

Of course (Fi× I)∪ (D3 ∪D3) is homeomorphic to Fi× I plus one 1-handle,
and (S2 × I) ∪D3 ∼= S2 × I.

Notice that the branching set of ψi#η is the union of the branching set
of ψi with a separated little arc connecting S2 × {1}. In this way, adding
1-handles by ‘fiber boundary connected sums’, we can construct a 3-fold
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simple branched covering ϕi : Vi → S2 × I with branching set the union
of 2g(Fi) + 2 long arcs, which join both boundary components of S2 × I,
and the union of several little arcs, one for each 1-handle of Vi, which join
S2 × {1} with itself. See Figure 3.

Figure 3.

By construction ϕi|Fi×{0} coincides with the covering ψi : F → S2. And
ϕ0|G × {0} is equivalent to ϕ1|G × {1} ([1, Theorem 3.4]). Now if M is
orientable, the glueing homeomorphism h : F0 → F1 is isotopic to a lifting of
a product of arc homeomorphisms of S2, which permute the branching set of
ψi; and, in case M is non-orientable, h is isotopic to a lifting of a product of
arc homeomorphisms of S2 as before but followed by a reflection of S2 along
a circle which contains the branching set of ψi ([1, Theorem 4.1]). One can
visualize this last reflection as the result of reflecting Figure 3 along the plane
of the paper. Extending these arc homeomorphisms to S2 × I we produce a
braid in the long arcs of the branching set of ϕ0. Thus by glueing V0 with
V1 along F , we obtain a branched covering ϕ̂ : V0 ∪F V1 → S2× I ∪S2 S2× I
with branching set as in Figure 4.

Figure 4.
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In a similar way we glue G× {0} and G× {1} with a lifting of a product
of arc homeomorphisms of S2. And we obtain a 3-fold simple branched
covering ϕ : M → S2×̃S1 with branching set as shown in Figure 5. This has
the required form of Figure 2.

Figure 5.

3. The moves.

Our goal is to find a link L ⊂ S2×̃S1 such that any closed 3-manifold M is a
branched covering of S2×̃S1 with branching set precisely the link L, where,
if M is orientable, it holds H1(M ;Z) 6= 0, and if M is non-orientable, it
holds βw1(M) = 0.

The plan to follow is:

Start with a simple three-sheeted branched covering ϕ : M → S2×̃S1 as
in Lemma 2.2. We work with the restriction ϕ : M̂ → S2 × I, where S2 × I
is the result of cutting S2×̃S1 along a 2-sphere S2 ⊂ S2×̃S1, and M̂ denotes
M cutted open along ϕ−1(S2). We will fix this notation throughout this
section.

We perform a number of moves in S2×I and in M̂ which, in the interesting
case, are surgeries; but we do not change the homeomorphism type of S2× I
nor of M̂ . Each time we do a move, we construct a new simple 3-fold
branched covering ϕ′ : M̂ → S2×I such that we can still recover a branched
covering M → S2×̃S1; this is possible because the moves are made far
away from the boundaries, and the surgeries are ‘equivariant’ with respect
to ϕ, that is, we construct the glueing maps for each surgery in such a way
that some branched coverings, previously defined in each involved piece, are
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‘glued’ to give rise to a global branched covering. Eventually we will obtain
that the branching set of ϕ′ is a link L′ ⊂ S2× I, which is very symmetrical.

Then we find a sequence of coverings S2×̃S1 → S2×̃S1 whose composition
is a branched covering and such that the preimage of the link of Figure 1
above, under this composition, is exactly the link L′.

Finally, composing with the covering M → S2×̃S1, we obtain that M is
a branched covering of S2×̃S1 with branching set the link U .

Move 0-th. Add ‘unbranched’ components to the branching set. A branched
covering ψ : X → Y is, by definition, a covering space outside a link L ⊂ Y .
If we choose K ⊂ Y any link disjoint from L, then the same map ψ : X → Y
gives us a covering space ψ| : X−ψ−1(L∪K)→ Y − (L∪K); of course K is
fake branching, and this move will serve only to emphasize some symmetries
in certain pictures below.

First move. The branched covering ϕ : M̂ → S2 × I is determined by a
representation ρ : π1(S2× I −L)→ Σ3, where Σ3 is the symmetric group in
three symbols. The meridians of L are sent to transpositions under ρ, for ϕ
is simple. We picture this representation by writing a permutation (ab) near
to each bridge of the projection of L, and we will call (ab) the colour of the
corresponding meridian.

At each crossing of L the meridians satisfy a relation of type z = yzx−1

in the group π1(S2 × I − L). Since ρ is a homomorphism, it must send x, y
and z to, either the same transposition, or to three distinct transpositions.

One can allways guarantee the second case by using the method of ‘infil-
trating strings’ of Hilden, Lozano and Montesinos ([3]), which is an isotopy,
as shown in Figure 6; and which is our first basic move.

Figure 6.

Second move. We need a lemma from Berstein and Edmonds.
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Lemma 3.1 ([1, Lemma 4.3]). Let ψ : D2 → D2 be a 3-fold simple branched
covering with branching set {y1, y2} ⊂ intD2, and let t be a disk twist about
a simple arc a ⊂ intD2 connecting y1 and y2. Then t3 lifts to a disk twist
about the arc ψ−1(a).

If we choose a ball B3 ⊂ S2 × I such that B3 ∩ L is a pair of properly
embedded arcs in B3 with different colour, then ϕ−1(B3) = B̃ is a 3-ball.
Regarding B3 as a product D2 × I, then ϕ| = ψ × 1 : B̃ → B3, where ψ is
the covering of Lemma 3.1.

Let s : ∂(D2× I)→ ∂(D2× I) be the homeomorphism defined by t3×{0}
on the bottom D2×{0}, and by the identity on ∂(D2×I)−(D2×{0}). Then
by Lemma 3.1, we can lift s : ∂B3 → ∂B3,under ϕ, to a homeomorphism
s̃ : ∂B̃ → ∂B̃ such that, again by identifying B̃ with a product D2 × I, s̃
coincides with t × {0} on the bottom D2 × {0}, and s̃ is the identity on
∂(D2 × I)− (D2 × {0}).

Thus if we perform surgery in S2 × I along B3 with the homeomorphism
s : B3 → B3, and we perform surgery in M̂ along B̃ with the lifting s̃ :
∂B̃ → ∂B̃, we obtain a new 3-fold simple branched covering M̂ → S2 × I
with branching set the link L− B3 union the picture modified inside B3 as
depicted in Figure 7; which is our second basic move.

Figure 7.

4. Universal links.

We state again our main theorem.

Theorem 4.1. Let M be a connected, closed 3-manifold. If M is orientable,
suppose H1(M ;Z) 6= 0. If M is non-orientable, suppose βw1(M) = 0. Then
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there exists a branched covering M → S2×̃S1 with branching set the link of
Figure 1.

Proof. Start with a link in S2×̃S1 such as the one of Figure 2, which is the
branching set of a 3-fold simple branched covering M → S2×̃S1.

Outside the braid part of Figure 2, we distiguish the ‘vertical pieces’,
which are the arcs joining the sphere S2 × {1} with the braid part, and the
‘clasp pieces’, each consisting of two little arcs, one with ends in S2 × {1},
and the other one with ends in the braid part.

We begin with a clasp piece. If the meridians of the arcs of this clasp
piece have the same colour, choose a vertical piece with the corresponding
meridian coloured with a different colour. And with an isotopy of S2 × I,
obtain the Figure 8.

Figure 8.

Applying the basic moves we modify the clasp to obtain two vertical pieces
with a little circle around them, as shown in Figure 9 at the bottom: Starting
at the top of Figure 9, in the ball suggested by a thin circle, apply the
second move; twisting thrice, we end with two crossings as in the middle of
Figure 9. Apply the second move again in the middle of Figure 9 inside the
ball suggested by the thin circle, and end in the bottom of Figure 9.
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With another isotopy, we pull the loop at the bottom of Figure 9 around
the new two vertical pieces to the braid part. If the meridians of the arcs
of this clasp piece originally had different colour, we don’t need to interlace
anything, but we just apply the basic moves as in Figure 9. In this way, we
obtain the link of Figure 10, which is the branching set of a modified 3-fold
simple branched covering M → S2×̃S1.

Figure 9.

Figure 10.

In this link, we add ‘unbranched’ circles by move 0th to complete a ‘chain’
like Figure 11. We call this picture a Chain of type I. Notice that this
adding of extra ‘unbranched’ circles, which is Move 0th, corresponds to the
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assignment of the identity permutation of Σ3 to each meridian of each new
circle. Thus we still have a 3-fold simple branched covering M → S2×̃S1.

With the trick of infiltrating arcs, which is the first move, we can guarantee
that all crossings in the braid part have exactly three colours. Using the
second basic move, if needed, we modify the link in such a way that the
braid part is a positive braid (that is, one in which at each crossing the
overpass goes from SW to NE). See Figure 12; we are adding three (opposite)
crossings to the picture on the left to end with two positive crossings as in
the picture on the right.

Figure 11.

Figure 12.

The braid part of the branching set is now a positive braid. At each
crossing of this braid, we modify again the link by succesive applications of
the second move, as shown in Figure 13. This modification is another trick
of Hilden, Lozano and Montesinos ([3]).

Thus the braid part is transformed into vertical pieces with ‘horizontal’
little circles around them. For each little circle we add extra ‘unbranched’
circles, using move 0th, to complete a chain like Figure 14. We call this
picture a chain of type II.
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The situation now is as follows: we have a 3-fold simple branched covering
M → S2×̃S1 whose branching set consists of vertical pieces only (no clasps
nor crossings among these vertical pieces), plus a number of little circles
interlaced with the vertical pieces, and which form one chain of type I, and
many chains of type II. We add more ‘unbranched’ circles interlaced with
the vertical pieces to form new chains of type I; we place each new one
‘unbranched’ chain of type I in between each pair of adjacent chains of type
II. We obtain then a link like Figure 15, in which, if we traverse a vertical
piece, we find chains of little circles by pairs, first one chain of type I and
then one chain of type II.

Figure 13.

Figure 14.
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Figure 15.

Figure 15 is a n-fold covering space of Figure 16. That is, there is a
covering space S2×̃S1 → S2×̃S1 of n sheets, one sheet for each pair of
chains, such that the preimage of Figure 16 is exactly Figure 15. Adding
extra ‘unbranched’ components, if necessary, we guarantee that n is odd in
case M is non-orientable.

Figure 16.

A better picture for the link in Figure 16 is the link of Figure 17. Clearly
the link of Figure 17 is contained in the preimage of the link of Figure 1
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Figure 17.

under a m-fold cyclic branched covering of S2×̃S1 (m is the number of
vertical pieces) branched along two extra vertical pieces. These new vertical
pieces correspond to the axis of rotational simmetry of Figure 17. We can
conclude that the link of Figure 1 is a universal link.
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