
pacific journal of mathematics
Vol. 182, No. 1, 1998

MÖBIUS INVARIANT Qp SPACES ASSOCIATED WITH THE
GREEN’S FUNCTION ON THE UNIT BALL OF Cn

Caiheng Ouyang, Weisheng Yang and Ruhan Zhao

In this paper, function spaces Qp(B) and Qp,0(B), associated
with the Green’s function, are defined and studied for the unit
ball B of Cn. We prove that Qp(B) and Qp,0(B) are Möbius
invariant Banach spaces and that Qp(B) = Bloch(B), Qp,0(B) =
B0(B) (the little Bloch space) when 1 < p < n/(n − 1), Q1 =
BMOA(∂B) and Q1,0(B) = VMOA(∂B). This fact makes it possi-
ble for us to deal with BMOA and Bloch space in the same way.
And we give necessary and sufficient conditions on bounded-
ness (and compactness) of the Hankel operator with antiholo-
morphic symbols relative to Qp(B) (and Qp,0(B)). Moreover,
other properties about the above spaces and |ϕz(w)|, ϕz(w) ∈
Aut(B), are obtained.

1. Introduction.

As well known, there are several equivalent statements for analytic functions
of bounded mean oscillation (BMOA). On the unit disc D of C, the following
condition associated with the Green’s function gD(z, a)

(1.1) f ∈ BMOA(D)⇔ sup
a∈D

∫
D

|f ′(z)|2gD(z, a)dxdy <∞,

yielded by the Littlewood-Paley identity, is an important one of those equiv-
alences, since not only the characterization of Carleson measure for BMOA
and the Fefferman’s duality theorem were obtained by it [8], but also the
version of (1.1) on the Riemann surface R with the Green’s function GR

sup
α∈R

∫
R

|F ′(w)|2GR(w,α)dwdw̄ <∞

is usually regarded as the definition of BMOA on R for convenience [11]. In
[1] and [2], the spaces of analytic functions on D, 0 < p <∞,

Qp(D) =
{
f ∈ A(D) : sup

a∈D

∫
D

|f ′(z)|2gpD(z, a)dxdy <∞
}
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and

Qp,0(D) =
{
f ∈ A(D) : lim

|a|→1

∫
D

|f ′(z)|2gpD(z, a)dxdy = 0
}

were introduced which are from the variants of condition (1.1) on the degree
of gD. The main results are that for 1 < p < ∞, Qp(D) = the Bloch space,
Qp,0(D) =the little Bloch space, for p = 1, Q1(D) = BMOA(D), Q1,0(D) =
VMOA(D) and as 0 < p < ∞,AD ⊂ Qp,0(D) ⊂ Qp(D) where AD is the
Dirichlet space on D. This shows that the above Qp(D) and Qp,0(D) are
both nontrivial and significant.

For the unit ball B of Cn, we have [12]

f ∈ BMOA(∂B)⇔ sup
a∈B

∫
B

|∇̃f(z)|2|f(z)− f(a)|p−2G(z, a)dλ(z) <∞,

0 < p <∞. Taking p = 2 especially then

(1.2) f ∈ BMOA(∂B)⇔ sup
a∈B

∫
B

|∇̃f(z)|2G(z, a)dλ(z) <∞,

where ∇̃, G and dλ denote the invariant gradient, the invariant Green’s func-
tion and the invariant volume measure, respectively [Section 2]. So it is
natural to ask what is the class Qp of holomorphic functions satisfying the
condition

sup
a∈B

∫
B

|∇̃f(z)|2Gp(z, a)dλ(z) <∞, 0 < p <∞.

The main purpose of this paper is on it.
The paper is organized as follows: In Section 2, we explain some nota-

tions, concepts and the results used in what follows which can be found in
[9], [12], [13], [14] and [17]. In Section 3, we prove that Qp(B) are Möbius
invariant Banach spaces (Theorem 3.3), and as 1 < p < n

n−1
, Qp(B) =

Bloch(B), Q1(B) = BMOA(∂B), as 0 < p ≤ n−1
n

or p ≥ n
n−1

, Qp(B) are triv-
ial (Theorem 3.8). Section 4 contains the results about Qp,0,B0 and VMOA
corresponding to Section 3. In Appendix, we give an elementary proof of a
conclusion used in Lemma 4.2 that ρ(z, w) = |ϕz(w)| is a Möbius invariant
metric in the unit ball. Although |ϕz(w)| is widely applied, but the invari-
ance and the triangle inequality about it have not been shown elsewhere.
And they seem difficult to be proved by means of a direct extension from
the case of one complex variable in [8].
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2. Preliminaries.

Let B denote the unit ball in Cn (n ≥ 2 throughout this paper), and for
a ∈ B,ϕa(z) is the Möbius transformation of B which satisfying ϕa(0) =
a, ϕa(a) = 0 and ϕa = ϕ−1

a . ϕa ∈ Aut(B),Aut(B) is the group of biholomor-
phic automorphisms of B, cf. [13].
H(B) denotes the collection of all holomorphic functions in B. Let ∇f =

( ∂f
∂z1
, . . . , ∂f

∂zn
) denote the complex gradient of f,Rf =

n∑
j=1

zj( ∂f∂zj ) denote the

radial derivative of f. Let dλ(z) = dv(z)

(1−|z|2)n+1 where dv is the normalized
volume measure in Cn, then dλ is M-invariant [13], which means,∫

B

f(z)dλ(z) =
∫
B

f ◦ ψ(z)dλ(z)

for each f ∈ L1(λ) and ψ ∈ Aut(B).
Let 4̃f(z) = 4(f ◦ ϕz)(0) denote the invariant Laplacian of f [13], and

∇̃f(z) = ∇(f ◦ ϕz)(0) denote the invariant gradient of f [14]. By a direct
computation, we get for f ∈ H(B),

|∇̃f(z)|2 = (1− |z|2)(|∇f(z)|2 − |Rf(z)|2) =
1
4
4̃|f |2(z).

In [14] and [17], the invariant Green’s function is defined as G(z, a) =
g(ϕa(z)), where

g(z) =
n+ 1

2n

∫ 1

|z|
(1− t2)n−1t−2n+1dt.

About g, we have (cf. [12], Lemma 1):

Proposition 2.1. Let n ≥ 2 be an integer, then there are positive constants
C1 and C2 such that for all z ∈ B \ {0},

C1(1− |z|2)n|z|−2(n−1) ≤ g(z) ≤ C2(1− |z|2)n|z|−2(n−1).

Bloch(B) denotes the Bloch space and B0(B) the little Bloch space in B.
BMOA(∂B) and VMOA(∂B) denote bounded mean oscillation and vanish-
ing mean oscillation on ∂B, respectively.

In [9], for 1 < p <∞ the Besov p-spaces Bp(B) were defined as follows:

‖f‖Bp = |f(0)|+ (p− 1)‖Qf‖Lp(λ),

Bp(B) = {f ∈ H(B) : ‖f‖Bp <∞}
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(cf. Definition 3.1 of [9]). If p = ∞, the corresponding Besov space was
defined by the Bloch space. Bp(B) are Möbius invariant Banach spaces and
for 1 < p ≤ q ≤ ∞, have

Bp(B) ⊆ Bq(B) ⊆ B∞(B) = Bloch(B)

(cf. Propositions 3.2 and 3.3 of [9]).
For f ∈ H(B), 0 < p <∞, a ∈ B, let

Ip(f, a) =
∫
B

|∇̃f(z)|2Gp(z, a)dλ(z),

Jp(f, a) =
∫
B

|∇̃f(z)|2(1− |ϕa(z)|2)npdλ(z).

Definition 2.2. We define

‖f‖2Qp = sup
a∈B

Ip(f, a),

Qp(B) = {f ∈ H(B) : ‖f‖Qp <∞},

and

Qp,0(B) =
{
f ∈ H(B) : lim

|a|→1
Ip(f, a) = 0

}
.

Denote E(a, r) = {z ∈ B : |ϕa(z)| < r} and Ē(a, r) = {z ∈ B : |ϕa(z)| ≤ r}.
Let L2(v) denote the Hilbert space of square–integrable complex–valued

functions in B and L2
a(v) the Bergman subspace of holomorphic functions

in L2(v). If P denotes the orthogonal projection of L2(v) onto L2
a(v), the

Hankel operator of symbol f ∈ L2(v) is defined in L2
a(v) by

Hf (h) = (I − P )(fh), h ∈ L2
a(B).

In general Hf may be unbounded.
Throughout this paper, C and Cj are positive constants which are not

necessarily the same in each appearence. When there is no danger of con-
fusion, we shall write Bloch, BMOA, Bp and Qp in place of Bloch (B),
BMOA(∂B), Bp(B) and Qp(B), etc.

3. Characterizations of Qp Spaces and Bloch Space.

Lemma 3.1. There are positive constants C1(p) and C2(p) (independent
of f and a) such that

Ip(f, a) ≥ C1(p)Jp(f, a) ≥ C2(p)|∇̃f(a)|2
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for 0 < p <∞, f ∈ H(B) and a ∈ B.
Proof. The first inequality can be obtained by Proposition 2.1 and |ϕa(z)| <
1. The second inequality is proved as follows:

Jp(f, a) =
∫
B

|∇̃f(z)|2(1− |ϕa(z)|2)npdλ(z)

=
∫
B

|∇̃(f ◦ ϕa)(z)|2(1− |z|2)np−n−1dv(z)

≥
∫
B1/2

|∇̃(f ◦ ϕa)(z)|2(1− |z|2)np−n+1(1− |z|2)−2dv(z).

For z ∈ B1/2, (1 − |z|2)np−n+1 ≥ (3/4)np−n+1 when np − n + 1 ≥ 0 and
(1− |z|2)np−n+1 ≥ 1 when np− n+ 1 < 0, thus

Jp(f, a) ≥ C(p)
∫
B1/2

|∇̃(f ◦ ϕa)(z)|2(1− |z|2)−2dv(z).

Since R(f ◦ ϕa)(z) = 〈∇(f ◦ ϕa)(z), z̄〉, by Schwarz inequality we can get

|∇̃(f ◦ ϕa)(z)|2 = (1− |z|2)(|∇(f ◦ ϕa)(z)|2 − |R(f ◦ ϕa)(z)|2)

≥ (1− |z|2)2|∇(f ◦ ϕa)(z)|2.
It follows from the subharmonicity of |∇(f ◦ ϕa)(z)|2 that

Jp(f, a) ≥ C(p)
∫
B1/2

|∇(f ◦ ϕa)(z)|2dv(z)

≥ C(p)|B1/2||∇(f ◦ ϕa)(0)|2
= C2(p)|∇̃f(a)|2.

Lemma 3.2. For f ∈ H(B), the following three quantities are equivalent:

‖f‖2B, sup
z∈B
|∇̃f(z)|2, sup

a∈B
Jn+1

n
(f, a).

Proof. We can get the result by a little modification of the proof of Theorem
2.4 in [6] and using the equality 4̃|f |2(z) = 4|∇̃f(z)|2.
Theorem 3.3. Qp are Möbius invariant Banach spaces equipped with the
norm |f(0)|+ ‖f‖Qp .Qp are M-invariant,which means f ◦ ϕ ∈ Qp and ‖f ◦
ϕ‖Qp = ‖f‖Qp whenever f ∈ Qp and ϕ ∈ Aut(B).

Proof. The invariance of Qp and ‖ · ‖Qp is obvious because |∇̃f |, G(z, a) and
dλ are M– invariant.
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From the definition of ∇̃f(z) = ∇(f ◦ ϕz)(0),

∇̃(f + h)(z) = ∇[(f + h) ◦ ϕz](0)

= ∇(f ◦ ϕz)(0) +∇(h ◦ ϕz)(0)

= ∇̃f(z) + ∇̃h(z).

Therefore
|∇̃(f + h)(z)|2 ≤ (|∇̃f(z)|+ |∇̃h(z)|)2.

Ip(f + h, a) =
∫
B

|∇̃(f + h)(z)|2Gp(z, a)dλ(z)

≤
∫
B

(|∇̃f(z)|+ |∇̃h(z)|)2Gp(z, a)dλ(z)

= Ip(f, a) + Ip(h, a) + 2
∫
B

|∇̃f(z)| · |∇̃h(z)|Gp(z, a)dλ(z).

By Hölder inequality,∫
B

|∇̃f(z)| · |∇̃h(z)|Gp(z, a)dλ(z)

≤
[∫

B

|∇̃f(z)|2Gp(z, a)dλ(z)
]1/2 [∫

B

|∇̃h(z)|2Gp(z, a)dλ(z)
]1/2

= [Ip(f, a)]1/2[Ip(h, a)]1/2.

Thus

Ip(f + h, a) ≤ Ip(f, a) + Ip(h, a) + 2[Ip(f, a)]1/2[Ip(h, a)]1/2,

[Ip(f + h, a)]1/2 ≤ [Ip(f, a)]1/2 + [Ip(h, a)]1/2.

Taking sup
a∈B

on the two sides, we can get

‖f + h‖Qp ≤ ‖f‖Qp + ‖h‖Qp .

‖f‖Qp = 0, when f ≡ const . On the other hand, suppose ‖f‖Qp = 0, then
(1−|z|2)2|∇f(z)|2 ≤ |∇̃f(z)|2 ≡ 0 and so |∇f(z)| ≡ 0 on B, thus f ≡ const.
on B.

We have proved that ‖ · ‖Qp is a seminorm on Qp. If two functions whose
difference is only a constant function are regarded as the same one, then Qp

is a normed linear space with norm ‖ · ‖Qp . In the following we will prove
the completeness.

Let {fk}∞k=1 be a Cauchy sequence in Qp. By Lemma 3.1 and Lemma 3.2,
‖f‖B ≤ C‖f‖Qp for all f ∈ H(B), thus {fk} is also a Cauchy sequence in
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Bloch space (in the Bloch norm). According to the proof of Proposition
4.2 of [15], there is a function f ∈ H(B) such that fk → f uniformly on
compact subsets of B (as k → ∞), therefore ∂fk(z)

∂zj
→ ∂f(z)

∂zj
as k → ∞, for

j = 1, 2, · · · , n and z ∈ B. So we can get |∇̃(fk−fm)(z)|2 → |∇̃(fm−f)(z)|2
as k →∞. For any ε > 0, there exists a positive integer N , such that

‖fm − fk‖Qp < ε,

as m, k ≥ N. By Fatou’s Lemma, as m ≥ N,

Ip(fm − f, a) =
∫
B

|∇̃(fm − f)(z)|2Gp(z, a)dλ(z)

=
∫
B

lim
k→∞

|∇̃(fm − fk)(z)|2Gp(z, a)dλ(z)

≤ lim
k→∞

∫
B

|∇̃(fm − fk)(z)|2Gp(z, a)dλ(z)

≤ lim
k→∞

‖fm − fk‖2Qp ≤ ε2.

Taking sup
a∈B

and square roots at the two ends above, gives

lim
m→∞ ‖fm − f‖Qp = 0.

By the triangle inequality,

‖f‖Qp ≤ ‖fN − f‖Qp + ‖fN‖Qp ≤ ε+ ‖fN‖Qp <∞,

hence f ∈ Qp.

Proposition 3.4. f ∈ Qp ⇔ sup
a∈B

Jp(f, a) <∞ for 0 < p ≤ 1.

Proof. Suppose f ∈ Qp, then sup
a∈B

Ip(f, a) < ∞. By Lemma 3.1, Jp(f, a) ≤
CIp(f, a), therefore

sup
a∈B

Jp(f, a) <∞.

On the other hand, suppose sup
a∈B

Jp(f, a) <∞, then from 1− |ϕa(z)|2 ≤ 1

and 0 < p ≤ 1, we have
J1(f, a) ≤ Jp(f, a),

thus
sup
a∈B

∫
B

|∇̃f(z)|2(1− |ϕa(z)|2)ndλ(z) <∞.
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It leads to f ∈BMOA by Lemma 4.1 and Theorem B of [5]. By (1.2), we
have

(3.1) sup
a∈B

∫
B

|∇̃f(z)|2G(z, a)dλ(z) <∞,

when f ∈ BMOA. By properties of the Green’s function G(z, a), there exists
a positive δ ∈ (0, 1), so that |G(z, a)| ≥ 1 when |ϕa(z)| < δ and G(z, a) ≤
C(δ)(1− |ϕa(z)|2)n when |ϕa(z)| ≥ δ, thus

Ip(f, a) =
∫
B

|∇̃f(z)|2Gp(z, a)dλ(z)

=

(∫
|ϕa(z)|<δ

+
∫
|ϕa(z)|≥δ

)
|∇̃f(z)|2Gp(z, a)dλ(z)

≤
∫
|ϕa(z)|<δ

|∇̃f(z)|2G(z, a)dλ(z)

+ [C(δ)]p
∫
|ϕa(z)|≥δ

|∇̃f(z)|2(1− |ϕa(z)|2)npdλ(z)

≤
∫
B

|∇̃f(z)|2G(z, a)dλ(z) + [C(δ)]pJp(f, a).

By (3.1) and sup
a∈B

Jp(f, a) <∞, we get f ∈ Qp.

Proposition 3.5. For p ∈ (0, 1], when 2n
n−(n−1)p

< q < 2
1−p , we have

Bq ⊆ Qp. Especially let p = 1, then when 2n < q <∞ have Bq ⊆ BMOA .

Proof. Applying (2.8) in [9], Hölder inequality and the M-invariance of the
Green’s function, then

Ip(f, a)

=
∫
B

|∇̃f(z)|2Gp(z, a)dλ(z)

=
∫
B

(
1
2

√
4̃|f |2(z)

)2

Gp(z, a)dλ(z) =
∫
B

(Qf(z))2Gp(z, a)dλ(z)

≤
(∫

B

(Qf(z))2µdλ(z)
)1/µ

·
(∫

B

Gpµ/(µ−1)(z, a)dλ(z)
)(µ−1)/µ

, for µ > 1

≤ 1
(2µ− 1)2

‖f‖2B2µ

(∫
B

gpµ/(µ−1)(z)dλ(z)
)(µ−1)/µ

.

By Proposition 2.1

I(f, a)
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≤ C

(2µ− 1)2
‖f‖2B2µ

[∫
B

(1− |z|2)pµn/(µ−1)|z|−2pµ(n−1)/(µ−1)dλ(z)
](µ−1)/µ

≤ C

(2µ− 1)2
‖f‖2B2µ

[∫ 1

0

r[−2pµ(n−1)/(µ−1)]+2n−1(1−r)[pµn/(µ−1)]−n−1dr

](µ−1)/µ

.

The integral at the end above is finite if n
n−(n−1)p

< µ < 1
1−p . Let 2µ = q.

Then when 2n
n−(n−1)p

< q < 2
1−p we have Ip(f, a) ≤ C‖f‖2Bq . Thus

‖f‖2Qp ≤ C‖f‖2Bq ,

and so Bq ⊆ Qp. Let p = 1. Then it follows from (1.2) that

Bq ⊆ Q1 = BMOA when 2n < q <∞.

Remark 1. Proposition 3.3 of [9] said that for 1 < p ≤ q ≤ ∞, have

Bp ⊆ Bq ⊆ B∞ = Bloch .

So our Proposition 3.5 shows that BMOA is such a space that is inserted
between {Bq, 2n < q <∞} and the Bloch space, i.e.

{Bq, 2n < q <∞} ⊆ BMOA ⊂ Bloch .

Remark 2. In fact, provided q < 2
1−p one have Bq ⊆ Qp from the

nondecreasing of the Besov space. So the condition 2n
n−(n−1)p

< q may be
dropped.

Remark 3. Suppose that p = n−1
n
. Then Bq ⊆ Qn−1

n
if q < 2n. But then

Theorem 4.6 of [9] is equivalent to that the Besov space Bq is trivial if and
only if q ≤ 2n. This suggests us to consider whether Qn−1

n
is also trivial. In

Proposition 3.7 below, we will verify that is true by another way.

Proposition 3.6. For f ∈ H(B), the following are equivalent.
(i) f ∈ Bloch(B);
(ii) f ∈ Qp for some p ∈ (1, n

n−1
);

(iii) f ∈ Qp for all p ∈ (1, n
n−1

);
(iv) sup

a∈B
Jq(f, a) <∞ for some q ∈ (1,∞);

(v) sup
a∈B

Jq(f, a) <∞ for all q ∈ (1,∞).
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Furthermore ‖f‖2B, ‖f‖2Qp(1 < p < n
n−1

) and sup
a∈B

Jq(f, a) (1 < q < ∞) are

equivalent.

Proof. (i) ⇔ (ii) ⇔ (iii) is as follows:
Using Lemma 3.1 and Lemma 3.2, we get

‖f‖2Qp = sup
a∈B

Ip(f, a) ≥ C1 sup
a∈B
|∇̃f(z)|2 ≥ ‖f‖2B,

thus from f ∈ Qp, we have f ∈ Bloch(B).
On the other hand, suppose f ∈ Bloch(B), by Lemma 3.2 and Proposition

2.1

Ip(f, a) =
∫
B

|∇̃f(z)|2Gp(z, a)dλ(z)

=
∫
B

|∇̃(f ◦ ϕa)(z)|2Gp(z, 0)dλ(z)

≤ C1‖f ◦ ϕa‖2B
∫
B

(1− |z|2)np

(1− |z|2)n+1|z|2(n−1)p
dv(z)

≤ C2‖f‖2B
∫ 1

0

(1− r)np−n−1r2n−1−2(n−1)pdr.

When 1 < p < n
n−1

, we have np−n−1 > −1 and 2n−1−2(n−1)p > −1,
hence, ∫ 1

0

(1− r)np−n−1r2n−1−2(n−1)pdr = M(p) <∞.
It follows that

‖f‖2Qp = sup
a∈B

Ip(f, a) ≤ C3‖f‖2B.

(i) ⇒ (v): When f ∈ Bloch(B), by Lemma 3.2,

sup
z∈B
|∇̃(f ◦ ϕa)(z)|2 ≤ C‖f ◦ ϕa‖2B = C‖f‖2B <∞,

Jq(f, a) =
∫
B

|∇̃f(z)|2(1− |ϕa(z)|2)nqdλ(z)

=
∫
B

|∇̃(f ◦ ϕa)(z)|2(1− |z|2)nqdλ(z)

≤ C‖f‖2B
∫
B

(1− |z|2)nq−n−1dv(z)

≤ C‖f‖2B/(q − 1).

Thus for all q ∈ (1,∞) we have

sup
a∈B

Jq(f, a) ≤ C‖f‖2B/(q − 1) <∞.
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(v) ⇒ (iv) is obvious.
(iv) ⇒ (i): Suppose there exists q > 1, so that sup

a∈B
Jq(f, a) < ∞. By

Lemma 3.1,
Jq(f, a) ≥ C(q)|∇̃f(a)|2,

and by Lemma 3.2,

sup
a∈B

Jq(f, a) ≥ C(q) sup
a∈B
|∇̃f(a)|2 ≥ C(q)‖f‖2B.

Therefore f ∈ Bloch(B).

Remark 4. The main theorem of [6] is (i) ⇔ (iv) in Proposition 3.6 when
q = n+1

n
.

Proposition 3.7. When 0 < p ≤ n−1
n

or p ≥ n
n−1

, Qp contain only the
constant functions; when n−1

n
< p < n

n−1
, Qp contain all polynomials.

Proof. Let f be a nonconstant function in Qp. Write

f(z) =
∑
α

aαz
α,

where α = (α1, . . . , αn) is an n-tuple of nonnegative integers and zα =
zα1

1 · · · zαnn . Since f is nonconstant, there exists α0 6= 0 such that aα0 6= 0.
Now we come to prove zα0 ∈ Qp.

Denote α0 = (k1, . . . , kn), then it is easy to know that
(3.2)

aα0z
α0 =

1
(2π)n

∫ 2π

0

· · ·
∫ 2π

0

f(z1e
iθ1 , . . . , zne

iθn)e−ik1θ1 · · · e−iknθndθ1 · · · dθn.

Let

F (z) = aα0z
α0 ,

Uθf(z) = f(z1e
iθ1 , . . . , zne

iθn) = f ◦ U(z1, . . . , zn)

where U is diagonal matrix diag(eiθ1 , . . . , eiθn). Let

∇̃jf(z) =
∂

∂wj
[(f ◦ ϕz)(w)]|w=0,

thus ∇̃ = (∇̃1, · · · , ∇̃n). By (3.2),

(F ◦ ϕz)(w) =
1

(2π)n

∫ 2π

0

· · ·
∫ 2π

0

(Uθf ◦ ϕz)(w)e−ik1θ1 · · · e−iknθndθ1 · · · dθn,
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∂

∂wj
(F ◦ ϕz)(w)

=
1

(2π)n

∫ 2π

0

· · ·
∫ 2π

0

∂

∂wj
(Uθf ◦ ϕz)(w)e−ik1θ1 · · · e−iknθndθ1 · · · dθn.

Let w = 0, then

∇̃jF (z) =
1

(2π)n

∫ 2π

0

· · ·
∫ 2π

0

∇̃jUθf(z)e−ik1θ1 · · · e−iknθndθ1 · · · dθn.

By Jensen’s Inequality on Convexity (cf. [8]),

|∇̃jF (z)|2 =
[

1
(2π)n

∣∣∣∣∫ 2π

0

· · ·
∫ 2π

0

∇̃jUθf(z)e−ik1θ1 · · · e−iknθndθ1 · · · dθn
∣∣∣∣]2

≤ 1
(2π)n

∫ 2π

0

· · ·
∫ 2π

0

|∇̃jUθf(z)|2dθ1 · · · dθn,

thus

|∇̃F (z)|2 =
n∑
j=1

|∇̃jF (z)|2

≤ 1
(2π)n

∫ 2π

0

· · ·
∫ 2π

0

 n∑
j=1

|∇̃jUθf(z)|2
 dθ1 · · · dθn

=
1

(2π)n

∫ 2π

0

· · ·
∫ 2π

0

|∇̃Uθf(z)|2dθ1 · · · dθn.

It follows that

Ip(F, a) =
∫
B

|∇̃F (z)|2Gp(z, a)dλ(z)

≤
∫
B

[
1

(2π)n

∫ 2π

0

· · ·
∫ 2π

0

|∇̃Uθf(z)|2dθ1 · · · dθn
]
Gp(z, a)dλ(z)

=
1

(2π)n

∫ 2π

0

· · ·
∫ 2π

0

[∫
B

|∇̃Uθf(z)|2Gp(z, a)dλ(z)
]
dθ1 · · · dθn

≤ 1
(2π)n

∫ 2π

0

· · ·
∫ 2π

0

‖Uθf‖2Qpdθ1 · · · dθn.

Because Uθf = f ◦ U , where U ∈ Aut(B), then by Theorem 3.3 we get
‖Uθf‖Qp = ‖f‖Qp . Therefore

Ip(F, a) ≤ ‖f‖2Qp
1

(2π)n

∫ 2π

0

· · ·
∫ 2π

0

dθ1 · · · dθn
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= ‖f‖2Qp .

Hence
‖aα0z

α0‖2Qp = ‖F‖2Qp = sup
a∈B

Ip(F, a) ≤ ‖f‖2Qp .

So
‖zα0‖Qp ≤ ‖f‖Qp/|aα0 | <∞.

This means that
zα0 ∈ Qp.

On the other hand, we will prove that any monomial zα 6∈ Qp, 0 < p ≤
n−1
n
. Therefore for 0 < p ≤ n−1

n
, Qp contains only the constant functions.

Let zα = zα1
1 · · · zαnn , and |α| = α1 + · · ·+ αn ≥ 1. Then

∇(zα)(z) =
(
∂

∂z1

(zα)(z), . . . ,
∂

∂zn
(zα)(z)

)
= (α1z

α1−1
1 · · · zαnn , . . . , αnz

α1
1 · · · zαn−1

n ).

(Here for the sake of unified expression, still denote ∂
∂zj

(zα)(z) =

αjz
α1
1 · · · zαj−1

j · · · zαnn as αj = 0), and

R(zα)(z) = α1z
α1
1 · · · zαnn + · · ·+ αnz

α1
1 · · · zαnn = |α|zα.

Thus

|∇̃(zα)(z)|2
= (1− |z|2)(|∇(zα)(z)|2 − |R(zα)(z)|2)

= (1− |z|2)(α2
1|zα1−1

1 · · · zαnn |2 + · · ·+ α2
n|zα1

1 · · · zαn−1
n |2 − |α|2|zα|2)

∆=(1− |z|2)J(z).

Observe that the integral∫
B

|∇̃(zα)(z)|2Gp(z, 0)dλ(z)

(Proposition 2.1)

≥ C
∫
B

(1− |z|2)J(z)(1− |z|2)np|z|−2(n−1)p(1− |z|2)−n−1dv(z)

≥ C
∫
B

(1− |z|2)np−nJ(z)dv(z)

≥ C
∫ 1

0

r2n−1(1− r2)np−ndr
∫
S

J(rζ)dσ(ζ)
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= C

∫ 1

0

r2n−1(1− r2)np−ndr · r2|α|−2

∫
S

(α2
1|ζα1−1

1 · · · ζαnn |2

+ · · ·+ α2
n|ζα1

1 · · · ζαn−1
n |2 − |α|2r2|ζα|2)dσ(ζ)

≥ C
∫ 1

0

r2n+2|α|−2−1(1− r)np−ndr
∫
S

(α2
1|ζα1−1

1 · · · ζαnn |2

+ · · ·+ α2
n|ζα1

1 · · · ζαn−1
n |2 − |α|2|ζα|2)dσ(ζ)

(§1.4.9.(1) of [13])

= C

(
α1

(n− 1)!α1! · · ·αn!
(n− 1 + |α| − 1)!

+ · · ·+ αn
(n− 1)!α1! · · ·αn!
(n− 1 + |α| − 1)!

− |α|2 (n− 1)!α!
(n− 1 + |α|)!

)
·
∫ 1

0

r2(n−1+|α|)−1(1− r)np−ndr

= C
(n− 1)!α!

(n− 1 + |α| − 1)!
|α|
(

1− |α|
n− 1 + |α|

)∫ 1

0

r2(n−1+|α|)−1(1− r)np−ndr

= C
(n− 1)|α|(n− 1)!α!

(n− 1 + |α|)!
∫ 1

0

r2(n−1+|α|)−1(1− r)np−ndr = +∞,

if n ≥ 2 and np− n ≤ −1. Thus for any monomial zα with |α| ≥ 1, we have

zα 6∈ Qp, 0 < p ≤ n− 1
n

.

In the following we prove that for p ≥ n
n−1

, Qp contains only the constant
functions as well.

Let p ≥ n
n−1

, suppose that f is not a constant, then there exists a point
a ∈ B and r, 0 < r < 1, such that

|∇̃f(z)|2|E(a,r) ≥ δ > 0.

Hence∫
B

|∇̃f(z)|2Gp(z, a)dλ(z)

≥ Cδ
∫
E(a,r)

(1− |ϕa(z)|2)np|ϕa(z)|−2(n−1)pdλ(z)

= Cδ

∫
E(0,r)

(1− |w|2)np|w|−2(n−1)pdλ(w)

≥ C(1− r2)np−n−1δ

∫
E(0,r)

|w|−2(n−1)pdv(w), np− n− 1 ≥ p− 1 > 0

= C(r)δ
∫ r

0

(t2)n+p−np−1dt2 = +∞.

Because n ≥ 2 and p ≥ n
n−1

. Thus f 6∈ Qp, p ≥ n
n−1

.
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It remains to prove that for n−1
n

< p < n
n−1

, Qp contains all polynomials.
First, for 1 ≤ p < n

n−1
, by Propositions 3.5, 3.6 and (1.2)

{Bq, 2n < q <∞} ⊆ BMOA ⊂ Bloch =
{
Qp, 1 < p <

n

n− 1

}
.

Checking Theorem 4.6 of [9] and its proof, we know that the Besov space
Bq is nontrivial if and only if q > 2n, and Bq possesses the conditions of
Lemma 3 of [18]. Therefore for q > 2n, Bq contains all polynomials. Thus
the conclusion is true for 1 ≤ p < n

n−1
.

For n−1
n

< p < 1, if let p = n−1
n

+ ε < 1, then by Remark 2 of Proposition
3.5 when q < 2

1−(n−1
n +ε)

= 2n
1−nε , have Bq ⊆ Qp. We can choose δ ∈ (0, 2n2ε

1−nε)
so that 2n < 2n+ δ < 2n

1−nε . Therefore we have also

{all polynomials} ⊂ B2n+δ ⊆ Qp, for p =
n− 1
n

+ ε.

Since ε ∈ (0, 1
n

) arbitrary, it follows that {all polynomials} ⊆ Qp, for n−1
n

<
p < 1. The proof of Proposition 3.7 is completed.

Summarizing the results of Propositions 3.4, 3.6 and 3.7, for the construc-
tion of Qp spaces we have

Theorem 3.8. Qp spaces have the following properties:
(i) When 0 < p ≤ n−1

n
or p ≥ n

n−1
, Qp are trivial. i.e. they contain only

the constant functions. When n−1
n

< p < n
n−1

, Qp are nontrivial, and
each Qp at least contains all polynomials.

(ii) Qp1
⊆ Qp2

for 0 < p1 ≤ p2 ≤ 1.
(iii) Q1 = BMOA .

(iv) Qp = Bloch, and ‖ · ‖Qp is equivalent to ‖ · ‖B for 1 < p < n
n−1

.

Proof. (i) and (iv) are Propositions 3.7 and 3.6, respectively. (ii) follows
from Proposition 3.4. (iii) is just (1.2).

Corollary 3.9. For f ∈ H(B), 1 < p < n
n−1

, f ∈ Qp if and only if Hf̄ is
bounded. Moreover ‖f‖Qp and ‖Hf̄‖ are equivalent quantities.

Proof. It follows from Theorem C of [3] and (iv) of Theorem 3.8.

4. Characterizations of Qp,0 spaces and B0 space.

Lemma 4.1. For every r ∈ (0, 1), if a1 ∈ E(a, 1
2
r), z ∈ B, then there exists

C(r) > 0, such that

1− |ϕa1(z)|2 ≤ C(r)(1− |ϕa(z)|2).
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Proof. M. Jévtic proved in [10] that if a1 ∈ E(a, 1
2
r), then

1− r/2
1 + r/2

≤ 1− |a1|2
1− |a|2 ≤

1 + r/2
1− r/2 .

And since

1 ≥ 1− |ϕa(a1)|2 =
(1− |a1|2)(1− |a|2)
|1− 〈a, a1〉|2 ≥ r2

4
.

Thus for a fixed r, we have

(4.1) (1− |a1|2) ∼ (1− |a|2) ∼ |1− 〈a, a1〉| ∼ (1− |a1|),
where “A ∼ B” means that there exist positive constants C1 and C2 so that
C1A ≤ B ≤ C2A. By the triangle inequality ([13], 5.1.2),

|1− 〈z, a〉|1/2 ≤ |1− 〈z, a1〉|1/2 + |1− 〈a, a1〉|1/2
≤ |1− 〈z, a1〉|1/2 + C(r)(1− |a1|)1/2

and

|1− 〈z, a1〉| ≥ 1− |z||a1| ≥ 1− |a1|.
Therefore

|1− 〈z, a〉|1/2
|1− 〈z, a1〉|1/2 ≤

|1− 〈z, a1〉|1/2 + C(r)(1− |a1|)1/2

|1− 〈z, a1〉|1/2

= 1 + C(r)
[

1− |a1|
|1− 〈z, a1〉|

]1/2

≤ 1 + C(r).

That shows

(4.2)
1

|1− 〈z, a1〉|2 ≤
C(r)

|1− 〈z, a〉|2 .

By (4.1) and (4.2),

1− |ϕa1(z)|2 =
(1− |z|2)(1− |a1|2)
|1− 〈z, a1〉|2

≤ C(r)
(1− |z|2)(1− |a|2)
|1− 〈z, a〉|2 = C(r)(1− |ϕa(z)|2).

Lemma 4.2. For r ∈ (0, 1), a1 ∈ E(a, 1
2
r), z ∈ B\E(a, r), we have

G(z, a1) ≤ C(r)G(z, a),
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where C(r) is a positive constant depending only on r and n (but independent
of a, a1 and z).

Proof. ρ = |ϕa(z)| is a metric (cf. Appendix), |ϕa(a1)| < r
2

and |ϕa(z)| ≥ r,
thus

|ϕa1(z)| ≥ |ϕa(z)| − |ϕa(a1)| > |ϕa(z)| − r

2
,

|ϕa1(z)|
|ϕa(z)| > 1− r

2|ϕa(z)| .

Because |ϕa(z)| ≥ r, we get

|ϕa1(z)| > 1
2
|ϕa(z)|.

By Proposition 2.1 and Lemma 4.1,

G(z, a1) ≤ C (1− |ϕa1(z)|2)n

|ϕa1(z)|2(n−1)
≤ C [C(r)(1− |ϕa(z)|2)]n

2−2(n−1)|ϕa(z)|2(n−1)

= C(r)
(1− |ϕa(z)|2)n

|ϕa(z)|2(n−1)
≤ C(r)G(z, a).

Proposition 4.3.
(i) Qp,0 are trivial (containing only the constant functions) when p ≥ n

n−1
.

(ii) Qp,0 ⊂ Qp whenever 0 < p <∞.
Proof. (i) suppose f ∈ Qp,0, from the definition of Qp,0, there exists a r0 ∈
(0, 1), such that

(4.3) Ip(f, a) =
∫
B

|∇̃f(z)|2Gp(z, a)dλ(z) ≤ 1

when r0 ≤ |a| < 1, i.e. a ∈ B\E(0, r0). Suppose that there exists a z0 ∈
B\E(0, r0) so that |∇̃f(z)|2 > 2ε0 > 0. By the continuity of |∇̃f(z)|2, there
exists 0 < δ < 1

2
such that when z ∈ E(z0, δ), |∇̃f(z)|2 > ε0. By integral

transformation and Proposition 2.1,

Ip(f, z0) =
∫
B

|∇̃f(z)|2Gp(z, z0)dλ(z)

≥ ε0

∫
E(z0,δ)

Gp(z, z0)dλ(z)

= ε0

∫
|z|<δ

gp(z)dλ(z)
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≥ Cε0

∫
|z|<δ

(1− |z|2)np−n−1

|z|2p(n−1)
dv(z)

≥ 2nCε0(1− δ2)np−n−1

∫ δ

0

r2n−1−2p(n−1)dr.

When p ≥ n
n−1

, we have 2n− 1− 2p(n− 1) ≤ −1, thus

Ip(f, z0) =∞.
It contradicts z0 ∈ B\E(0, r0) and (4.3), therefore |∇̃f(z)|2 = 0 for all
z ∈ B\E(0, r0). Since

|∇̃f(z)|2 = (1− |z|2)(|∇f(z)|2 − |Rf(z)|2) ≥ (1− |z|2)2|∇f(z)|2,
thus |∇f(z)| = 0 for all z ∈ B\E(0, r0). By the subharmonicity of |∇f(z)|,

|∇f(z)| = 0 for all z ∈ B,
so f ≡ const. on B.

(ii) When p ≥ n
n−1

, Qp are trivial by Theorem 3.8, hence Qp,0 = Qp. From
now on, we suppose that 0 < p < n

n−1
, and use the idea in [2].

Suppose, on the contrary, that there exists f ∈ Qp,0\Qp. Then

lim
|a|→1

Ip(f, a) = 0,(4.4)

sup
a∈B

Ip(f, a) =∞.(4.5)

By (4.4) there exists r0 ∈ (0, 1), so that

sup
a∈B\Ē(0,r0)

Ip(f, a) ≤ 1,

and so, by (4.5) we must have

sup
a∈Ē(0,r0)

Ip(f, a) =∞.

There are only two cases: Case 1, there exists at least one point a ∈ Ē(0, r0)
so that Ip(f, a) = ∞; Case 2, Ip(f, a) < ∞ for all a ∈ Ē(0, r0) but there
exists a sequence {ak} ⊂ Ē(0, r0) so that lim

k→∞
Ip(f, ak) = ∞. First we will

deal with Case 2.

Case 2. Ip(f, a) < ∞ for all a ∈ Ē(0, r0) but there exists a sequence
{ak}∞k=1 ⊂ Ē(0, r0) so that

(4.6) lim
k→∞

Ip(f, ak) =∞.
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Since Ē(0, r0) is closed and bounded, and so compact, we can suppose that
lim
k→∞

ak = a0 ∈ Ē(0, r0). We can choose a ball E(a0, s) small enough, s ≤
1
3
, r0 + s ≤ r1 < 1, so that ak ∈ E(a0,

1
2
s) for k ≥ k0, where k0 is a positive

integer. By Lemma 4.2,∫
B\E(a0,s)

|∇̃f(z)|2Gp(z, ak)dλ(z) ≤ Cp

∫
B

|∇̃f(z)|2Gp(z, a0)dλ(z)

= C1 <∞.

On the other hand, let M1 = sup{|∇̃f(z)|2, z ∈ Ē(a0, s)},M2 =
max{1, ( 3

4
)np−n−1}, by Proposition 2.1 and ρ(z, ak) ≤ ρ(z, a0) + ρ(a0, ak)

(cf. Appendix),∫
E(a0,s)

|∇̃f(z)|2Gp(z, ak)dλ(z) ≤M1

∫
E(ak,

3
2 s)

Gp(z, ak)dλ(z)

≤ CM1

∫
|z|< 3

2 s

(1− |z|2)np−n−1

|z|2(n−1)p
dv(z)

≤ CM1

∫
|z|< 1

2

(1− |z|2)np−n−1

|z|2(n−1)p
dv(z)(4.7)

≤ 2nCM1M2

∫ 1
2

0

r2n−1−2(n−1)pdr

=
2nCM1M2

2n− 2(n− 1)p

(
1
2

)2n−2(n−1)p

= C2 <∞.(4.8)

Here r0 +s ≤ r1 < 1 is used, so that Ē(a0, s) ⊂ Ē(0, r1), and so M1 <∞; p <
n
n−1

is also used, so that 2n− 1− 2(n− 1)p > −1.
For k ≥ k0, we have

Ip(f, ak)

=
∫
E(a0,s)

|∇̃f(z)|2Gp(z, ak)dλ(z) +
∫
B\E(a0,s)

|∇̃f(z)|2Gp(z, ak)dλ(z)

≤ C1 + C2 <∞,

which contradicts (4.6).

Case 1. There exists at least one point a ∈ Ē(0, r0) so that Ip(f, a) = ∞.
That means

A = {a ∈ Ē(0, r0) : Ip(f, a) =∞} 6= φ.

Let t = sup{|a| : a ∈ A}, then t ≤ r0 obviously.
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(1) When t = r0, for any given ε > 0, there exists a ∈ A so that |a| ≥ r0−ε.
Therefore we can take a0 ∈ A and a small positive number s, satisfying
s < 1

3
and 2

3
s + r0 ≤ r1 < 1, so that E(a0,

1
2
s)
⋂

[B\Ē(0, r0)] 6= φ. Let
a1 ∈ E(a0,

1
2
s)
⋂

[B\Ē(0, r0)], then

Ip(f, a1) ≤ 1.

Since |ϕa1(a0)| = |ϕa0(a1)|, a0 ∈ E(a1,
1
2
s), then by Lemma 4.2,∫

B\E(a1,s)

|∇̃f(z)|2Gp(z, a0)dλ(z)

≤ [C(s)]p
∫
B\E(a1,s)

|∇̃f(z)|2Gp(z, a1)dλ(z)

≤ [C(s)]pIp(f, a1) <∞.(4.9)

On the other hand, let M1 = sup
z∈Ē(a1,s)

|∇̃f(z)|2. Since 3
2
s + r0 ≤ r1 leads to

Ē(a1, s) ⊂ Ē(0, r1), thus M1 <∞. By Proposition 2.1,∫
E(a1,s)

|∇̃f(z)|2Gp(z, a0)dλ(z) ≤M1

∫
E(a0,

3
2 s)

Gp(z, a0)dλ(z)

≤ CM1

∫
|z|≤ 1

2

(1− |z|2)np−n−1

|z|2(n−1)p
dv(z).

Repeating the argument from (4.7) to (4.8), we get

(4.10)
∫
E(a1,s)

|∇̃f(z)|2Gp(z, a0) <∞.

By (4.9) and (4.10),

Ip(f, a0) =

(∫
B\E(a1,s)

+
∫
E(a1,s)

)
|∇̃f(z)|2Gp(z, a0)dλ(z) <∞,

which contradicts a0 ∈ A.
(2) When t < r0, Ip(f, a) <∞ for all a ∈ B\Ē(0, t). Substituting r0 in (1)

by t, taking a0 ∈ A, s < 1
3

and 3
2
s+t ≤ r1 < 1, so that E(a0,

1
2
s)
⋂

[B\Ē(0, t)]
6= φ, repeating the argument in (1), we get

Ip(f, a0) <∞.

That also contradicts a0 ∈ A.
Summarizing Case 1 and Case 2, we see (ii) is true.



MÖBIUS INVARIANT Qp SPACES 89

Lemma 4.4. f(z) = z1 ∈ Qp,0 when n−1
n

< p < n
n−1

.

Proof. When n−1
n

< p < n
n−1

, by Proposition 2.1,

Ip(f, a) =
∫
B

|∇̃f(z)|2Gp(z, a)dλ(z)

=
∫
B

(1− |z|2)(1− |z1|2)Gp(z, a)dλ(z)

≤
∫
B

(1− |z|2)Gp(z, a)dλ(z)(4.11)

=
∫
B

(1− |ϕa(z)|2)Gp(z, 0)dλ(z)

≤ C
∫
B

1− |ϕa(z)|2
(1− |z|2)n+1−np|z|2(n−1)p

dv(z).

Fixed r0 ∈ (0, 1), when |z| ≤ r0, we have

1− |ϕa(z)|2 =
(1− |a|2)(1− |z|2)
|1− 〈z, a〉|2

≤ (1− |a|2)(1− |z|2)
(1− |z|)2

≤ 2(1− |a|2)
1− |z|

≤ 4
1− r2

0

(1− |a|2).

Since p < n
n−1

, 2n− 1− 2(n− 1)p > −1, let M = max{(1− r2
0)−(n+1−np), 1},

we get ∫
|z|≤r0

1− |ϕa(z)|2
(1− |z|2)n+1−np|z|2(n−1)p

dv(z)

≤ 4(1− |a|2)
(1− r2

0)
M

∫
|z|≤r0

dv(z)
|z|2(n−1)p

(4.12)

=
8n(1− |a|2)

1− r2
0

M

∫ r0

0

r2n−1−2(n−1)pdr

= M1(1− |a|2) <∞.

When n ≥ 2, p > n−1
n

, np− n > −1 and 1− np < 0, and

∫
B

1− |ϕa(z)|2
(1− |z|2)n+1−npdv(z)

=
∫
B

(1− |z|2)np−n(1− |a|2)
|1− 〈a, z〉|2 dv(z)
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= (1− |a|2)
∫
B

(1− |z|2)np−n

|1− 〈a, z〉|n+1+(np−n)+(1−np)dv(z),

thus by Proposition 1.4.10 of [13],

(4.13)
∫
B

1− |ϕa(z)|2
(1− |z|2)n+1−npdv(z) ≤ (1− |a|2)M2,

where M2 is a positive constant.
By (4.11), (4.12) and (4.13)

Ip(f, a) ≤ C
(∫
|z|≤r0

+
∫
|z|>r0

)
1− |ϕa(z)|2

(1− |z|2)n+1−np|z|2(n−1)p
dv(z)

≤ CM1(1− |a|2) + C

∫
|z|>r0

1− |ϕa(z)|2
(1− |z|2)n+1−np|z|2(n−1)p

dv(z)(4.14)

≤ CM1(1− |a|2) +
C

r
2(n−1)p
0

∫
B

(1− |ϕa(z)|2)
(1− |z|2)n+1−npdv(z)

≤ C(M1 +M2)(1− |a|2).

Let |a| → 1 in (4.14), then we can get the conclusion.

Lemma 4.5 (Lemma 3 of [18]). Suppose X is a linear space of holomor-
phic functions in B with a complete seminorm ‖ · ‖. Assume that X satisfies
the following conditions:
(1) X contains a nonconstant function;
(2) f ◦ϕ ∈ X and ‖f ◦ϕ‖ = ‖f‖ whenever f ∈ X and ϕ ∈ Aut(B), where

Aut(B) is the group of biholomorphic mappings of B;
(3) (θ1, . . . , θn) 7→ f(z1e

iθ1 , . . . , zne
iθn) : [0, 2π]n → X is continuous for

each f in X.
Then X contains all polynomials.

Proposition 4.6. About B0, the following are equivalent:
(i) f ∈ B0;

(ii) f ∈ Qp,0, for 1 < p < n
n−1

;
(iii) lim

|a|→1
Jp(f, a) = 0, for 1 < p <∞;

(iv) lim
|z|→1

|∇̃f(z)| = 0.

Proof. By Proposition 2.1 of [9]

Qf(z) =
1
2

√
4̃|f |2(z).
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Noting 4̃|f |2(z) = 4|∇̃f(z)|2 and checking the statement in Definition 3.1
of [9],

f ∈ B0 ⇔ lim
|z|→1

Qf(z) = 0,

we get (i) ⇔ (iv).
(i) ⇔ (ii). In order to utilize Lemma 4.5, let X = Qp,0, ‖ · ‖ = ‖ · ‖Qp .

By Theorem 3.3, it is easy to see that ‖ · ‖Qp is a M-invariant seminorm on
Qp,0. Let us come to prove the completeness as follows.

Supposing {fn} ⊂ Qp,0 and {fn} is a Cauchy sequence in ‖ · ‖Qp , Theorem
3.3 asserts that there exists f ∈ Qp so that

(4.15) lim
n→∞ ‖f − fn‖Qp = 0.

For any given ε > 0, there exists a positive integer N so that when n ≥ N,
have

Ip(fn − f, a) < ε,

for all a ∈ B. By the triangle inequality in the proof of Theorem 3.3,

[Ip(f, a)]1/2 ≤ [Ip(fN , a)]1/2 + [Ip(f − fN , a)]1/2

< [Ip(fN , a)]1/2 + ε1/2.

Since fN ∈ Qp,0, lim
|a|→1

Ip(fN , a) = 0, i.e. for the above ε > 0, there is a r < 1,

such that when |a| ≥ r, have Ip(fN , a) < ε. Therefore when |a| > r,

[Ip(f, a)]1/2 ≤ ε1/2 + ε1/2 = 2ε1/2.

Since ε is arbitrary, we get lim
|a|→1

Ip(f, a) = 0, and so f ∈ Qp,0. Hence ‖ · ‖Qp
is a complete seminorm on Qp,0.

Condition (1) in Lemma 4.5 is given by Lemma 4.4, and Condition (2) is
easy to verify. Now let us verify Condition (3). Let

Uθf = f(z1e
iθ1 , . . . , zne

iθn).

First we prove that for f ∈ B0, sup
z∈B

(1− |z|2)|∇z(Uθf − f)| → 0 when θ → 0.

For any given ε > 0, since f ∈ B0, there exists r0 ∈ (0, 1), such that

(4.16) (1− |z|2)|∇zf | < ε,

when |z| > r0. Denoting zθ = (z1e
iθ1 , · · · , zneiθn) = (zθ1 , · · · , zθn), since

∂

∂zj
Uθf(z) = eiθj

∂f

∂zθj
,
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hence
|∇z(Uθf)| = |∇zθf |.

For all θ ∈ [0, 2π]n, |zθ| = |z|, therefore

(4.17) (1− |z|2)|∇z(Uθf)| = (1− |zθ|2)|∇zθf | < ε,

for |z| > r0. By (4.16) and (4.17),

sup
|z|>r0

(1− |z|2)|∇z(Uθf − f)|

≤ sup
|z|>r0

(1− |z|2)(|∇z(Uθf)|+ |∇zf |)(4.18)

< 2ε, ∀θ ∈ [0, 2π]n.

When |z| ≤ r0, Uθf − f uniformly converges to 0 (when θ → 0), and so
|∇z(Uθf − f)| uniformly converges to 0 (when θ → 0), which means that for
any given ε > 0, there exists δ > 0 so that when |θj| < δ, we have

(4.19) |∇z(Uθf − f)| < ε, ∀z ∈ Ē(0, r0).

Therefore when |θj| < δ, by (4.18) and (4.19),

sup
z∈B

(1− |z|2)|∇z(Uθf − f)| < 2ε,

which leads to
lim
θ→0

sup
z∈B

(1− |z|2)|∇z(Uθf − f)| = 0.

Proposition 3.6 asserts that when 1 < p < n
n−1

, ‖f‖Qp is equivalent to sup
z∈B

(1−
|z|2)|∇zf |, thus

lim
θ→0
‖Uθf − f‖Qp = 0.

It means that Condition (3) in Lemma 4.5 is satisfied.
By Lemma 4.4 and Lemma 4.5, Qp,0 contains all polynomials. From the

completeness of ‖ · ‖Qp on Qp,0 we know that Qp,0 contains the closure of
polynomials in ‖ · ‖Qp . In [16], It was proved that B0 is just the closure of
polynomials in ‖ · ‖B. Because of the equivalence of ‖ · ‖B and ‖ · ‖Qp (when
1 < p < n

n−1
), we get Qp,0 ⊃ B0, which shows (i) ⇒ (ii).

By Lemma 3.1, (ii) ⇒ (iv). By (i) ⇔ (iv), we get (i) ⇔ (ii). Using the
same method it can be proved that (i) ⇔ (iii).

Lemma 4.7.
(i) f ∈ VMOA⇔ lim

|a|→1
J1(f, a) = 0;
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(ii) Q1,0 = VMOA .

Proof. (i) Theorem 5.1 of [4] asserts that for f ∈ H2, f ∈ VMOA⇔ µf is a
vanishing Carleson measure. And Theorem 2.1 of [4] asserts that

µf is a vanishing Carleson measure ⇔ lim
|a|→1

M(µf , a) = 0,

where

M(µf , a) =
∫
B

(1− |a|2)n

|1− 〈a, z〉|2n (|∇f(z)|2 − |Rf(z)|2)dv(z)

=
∫
B

|∇̃f(z)|2(1− |ϕa(z)|2)ndλ(z).

Therefore

f ∈ VMOA⇔ lim
|a|→1

∫
B

|∇̃f(z)|2(1− |ϕa(z)|2)ndλ(z) = 0.

(ii) By Theorem A of [5], we know that for f ∈ H2

4
n+ 1

∫
B

|∇̃f(z)|2G(z, 0)dλ(z) =
∫
S

|f − f(0)|2dσ.

By Lemma 4.3 of [5], for f ∈ H2, there exist positive C1 and C2, so that

C1‖f‖2LP ≤
∫
S

|f − f(0)|2dσ ≤ C2‖f‖2LP ,

where ‖f‖2LP = 4
n+1

∫
B

|∇̃f(z)|2(1− |z|2)ndλ(z). Hence

C1

∫
B

|∇̃f(z)|2(1− |z|2)ndλ(z) ≤
∫
B

|∇̃f(z)|2G(z, 0)dλ(z)

≤ C2

∫
B

|∇̃f(z)|2(1− |z|2)ndλ(z).

Substituting f in the above by f ◦ϕa, and using theM-invariance of |∇̃f(z)|2
and dλ, we get

C1J1(f, a) ≤ I1(f, a) ≤ C2J1(f, a).

By (i),
f ∈ VMOA⇔ lim

|a|→1
I1(f, a) = 0.

That is Q1,0=VMOA.
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Proposition 4.8. For 0 < p ≤ 1, f ∈ Qp,0 ⇔ lim
|a|→1

Jp(f, a) = 0.

Proof. By Lemma 3.1,
Jp(f, a) ≤ CIp(f, a),

thus
f ∈ Qp,0 ⇒ lim

|a|→1
Ip(f, a) = 0⇒ lim

|a|→1
Jp(f, a) = 0.

On the other hand, suppose lim
|a|→1

Jp(f, a) = 0, then

1− |ϕa(z)|2 < 1 and 0 < p ≤ 1⇒ J1(f, a) ≤ Jp(f, a),

thus
lim
|a|→1

Jp(f, a) = 0⇒ lim
|a|→1

J1(f, a) = 0.

By Lemma 4.7,

(4.20) lim
|a|→1

I1(f, a) = 0.

By the property of G(z, a), there exists δ ∈ (0, 1) so that G(z, a) ≥ 1 for
|ϕa(z)| < δ, and G(z, a) ≤ C(δ)(1− |ϕa(z)|2)n for |ϕa(z)| ≥ δ. Therefore for
0 < p ≤ 1, we have

Ip(f, a) =
∫
B

|∇̃f(z)|2Gp(z, a)dλ(z)

=
∫
|ϕa(z)|<δ

|∇̃f(z)|2Gp(z, a)dλ(z)

+
∫
|ϕa(z)|≥δ

|∇̃f(z)|2Gp(z, a)dλ(z)

≤
∫
|ϕa(z)|<δ

|∇̃f(z)|2G(z, a)dλ(z)

+ C(δ)
∫
|ϕa(z)|≥δ

|∇̃f(z)|2(1− |ϕa(z)|2)npdλ(z)

≤ I1(f, a) + C(δ)Jp(f, a).

By (4.20) and the hypothesis, we get

lim
|a|→1

Ip(f, a) = 0.

The conclusions about Qp,0 are summarized as follows:

Theorem 4.9. Qp,0 have the following properties:
(i) When 0 < p ≤ n−1

n
or p ≥ n

n−1
, Qp,0 are trivial. When n−1

n
< p <

n
n−1

, Qp,0 are nontrivial (containing at least one nonconstant function).
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(ii) Qp1,0 ⊆ Qp2,0 for 0 < p1 ≤ p2 ≤ 1.
(iii) Q1,0 = VMOA .

(iv) Qp,0 = B0 for 1 < p < n
n−1

.

Proof. (i) can be obtained by Lemma 4.4, Proposition 4.3 and (i) of Theorem
3.8.

(ii) can be proved by Proposition 4.8.
(iii) is just Lemma 4.7.
(iv) follows from Proposition 4.6.

Corollary 4.10. For f ∈ H(B), 1 < p < n
n−1

, f ∈ Qp,0 if and only if Hf̄ is
compact.

Proof. It follows from Theorem D of [3] and (iv) of Theorem 4.9.

5. Appendix.

In the unit ball B, we define ρ(z, w) = |ϕz(w)| for z, w ∈ B, where ϕz ∈
Aut(B), cf. Section 2.2 of [13].

Property.
(1) ρ(ψ(z), ψ(w)) = ρ(z, w), whenever ψ ∈ Aut(B), and z, w ∈ B;
(2) ρ(z, w) is a metric in B.

Proof. (1) Supposing a = ψ−1(0), by Theorem 2.2.5 of [13] we know that
there exists a unitary matrix U so that ψ = Uϕa. Thus

1− [ρ(ψ(z), ψ(w))]2 = 1− |ϕψ(z)(ψ(w))|2

=
(1− |ψ(z)|2)(1− |ψ(w)|2)
|1− 〈ψ(z), ψ(w)〉|2 .

Since
1− 〈ϕa(z), ϕa(w)〉 =

(1− 〈a, a〉)(1− 〈z, w〉)
(1− 〈z, a〉)(1− 〈a,w〉) ,

thus

1− [ρ(ψ(z), ψ(w))]2

=
(1− |a|2)(1− |z|2)
|1− 〈z, a〉|2 · (1− |a|2)(1− |w|2)

|1− 〈w, a〉|2 · |1− 〈z, a〉|
2 · |1− 〈a,w〉|2

|1− 〈a, a〉|2 · |1− 〈z, w〉|2

=
(1− |z|2)(1− |w|2)
|1− 〈z, w〉|2 = 1− |ϕz(w)|2

= 1− [ρ(z, w)]2.
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Therefore

(5.1) ρ(ψ(z), ψ(w)) = ρ(z, w).

(2) By the definition of ϕz(w), we get |ϕz(w)| = |ϕw(z)|, then ρ(z, w) =
ρ(w, z). We can also get

|ϕz(w)| = 0⇔ ϕz(w) = 0⇔ z = w,

thus
ρ(z, w) = 0⇔ z = w.

It is clear that ρ(z, w) ≥ 0. From now on we are going to prove the triangle
inequality, which means

(5.2) ρ(x, y) ≤ ρ(x, z) + ρ(z, y)

whenever x, y, z ∈ B.
First we prove (5.2) for a special case: z = 0 and x = (r, 0, . . . , 0). Letting

|y| = t, y = (y1, . . . , yn), y1 = seiθ, then (5.2) becomes

(5.3) ρ(x, y) ≤ ρ(x, 0) + ρ(0, y) = |x|+ |y| = r + t.

(5.3) is equivalent to

1− [ρ(x, y)]2 =
(1− t2)(1− r2)
|1− rseiθ|2 ≥ 1− (r + t)2,

where
|1− rseiθ|2 = 1 + r2s2 − 2rs cos θ.

Then (5.3) is equivalent to

(5.4) rt2 + 2t+ rs2[(r + t)2 − 1]− 2s[(r + t)2 − 1] cos θ ≥ 0.

Denoting the left side of (5.4) as f(r, t, s, cos θ), then (5.3) is equivalent to

(5.5) f(r, t, s, cos θ) ≥ 0, ∀r, t ∈ [0, 1), s ∈ [0, t], cos θ ∈ [−1, 1].

Case 1. (r + t)2 ≥ 1. In this case, we get f ′cos θ ≤ 0. Then

(5.6) f(r, t, s, cos θ) ≥ f(r, t, s, 1),

where

f(r, t, s, 1) = rs2[(r + t)2 − 1]− 2s[(r + t)2 − 1] + rt2 + 2t.
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If r and t are regarded as parameters and s as a variable, then f(r, t, s, 1) is
a parabola opening upwards whose symmetric axes is −−2[(r+t)2−1]

2r[(r+t)2−1]
= 1

r
> 1.

Thus for s ∈ [0, t] ⊂ [0, 1], f(r, t, s, 1) is monotone decreasing in s, and this
fact means

f(r, t, s, 1) ≥ f(r, t, t, 1)

= t[4− 2(r + t)2 + rt(r + t)2].(5.7)

Let h(r, t) = 4− 2(r + t)2 + rt(r + t)2, then for r, t ∈ [0, 1), we have

h′r(r, t) = (r + t)(t2 + 3rt− 4) ≤ 0,

h′t(r, t) = (r + t)(r2 + 3rt− 4) ≤ 0.

Therefore
h(r, t) ≥ h(1, t) ≥ h(1, 1) = 0.

By the above expression, (5.7) and (5.6) we know (5.5) is true for (r+t)2 ≥ 1.

Case 2. (r + t)2 < 1. In this case, we can get f ′cos θ > 0. Then

(5.8) f(r, t, s, cos θ) > f(r, t, s,−1)

where

f(r, t, s,−1) = rs2[(r + t)2 − 1] + 2s[(r + t)2 − 1] + rt2 + 2t.

If r and t are regarded as parameters and s as a variable, then f(r, t, s,−1)
is a parabola opening downwards whose symmetric axes is − 2[(r+t)2−1]

2r[(r+t)2−1]
=

− 1
r
< 0. Thus for s ∈ [0, t] ⊂ [0, 1), f(r, t, s,−1) is monotone decreasing in s,

which leads to

f(r, t, s,−1) ≥ f(r, t, t,−1)

= rt2[(r + t)2 − 1] + 2t[(r + t)2 − 1] + rt2 + 2t(5.9)

= (rt2 + 2t)(r + t)2 > 0.

By (5.8) and (5.9) we know (5.5) is also true for (r + t)2 < 1.
Combining Case 1 and Case 2, (5.5) is always true, and so (5.3) is true

for x = (r, 0, · · · , 0). Given any x ∈ B, there exists a unitary matrix U so
that Ux = (r, 0, · · · , 0). By (5.1) and (5.3),

ρ(x, y) = ρ(Ux,Uy) = ρ((r, 0, · · · , 0), Uy)

≤ r + |Uy| = |x|+ |y|.
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For any z ∈ B, by the above expression and (5.1), we get

ρ(x, y) = ρ(ϕz(x), ϕz(y))

≤ |ϕz(x)|+ |ϕz(y)|
= ρ(x, z) + ρ(z, y).

Remark 5. The same conclusion in one complex variable may be found
in [8], but the method in [8] is difficult to extend to several variables. The
proof in this appendix utilizes efficiently the M-invariance of ρ.
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[9] K.T. Hahn and E.H. Youssfi, Möbius invariant Besov p-spaces and Hankel operators
in the Bergman space on the unit ball of Cn, Complex variables, 17 (1991), 89-104.

[10] M. Jévtic, Two Carleson measure theorems for Hardy spaces, Proc. of the koniklijke
Nederlandse Akademie van Wetenschappen, Ser. A, 92 (1989), 315-321.

[11] T.A. Metzger, Bounded mean oscillation and Riemann surfaces, in “BMO in Com-
plex Analysis,” Joensun, (1989), 79-99.

[12] C.H. Ouyang, W.S. Yang and R.H. Zhao, Characterizations of Bergman spaces and
Bloch space in the unit ball of Cn, Trans. Amer. Math. Soc., 347 (1995), 4301-
4313.

[13] W. Rudin, Function Theory in the Unit Ball of Cn, Springer-Verlag, New York,
1980.
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