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ESTIMATES ON SCATTERED WAVES

Michael E. Taylor

We derive estimates on solutions u(k, x) to a scattering
problem with variable index of refraction in three space di-
mensions. To be precise, suppose n(x) ∈ C∞(R3) is positive
and n(x) = 1 for |x| ≥ R. We want to estimate solutions u(k, x)
to

(0.1)
(
∆ + k2n(x)2

)
u = 0, u = eikx·ω + us,

where us satisfies the radiation condition. Here, k ∈ R de-
notes the frequency. There are two mechanisms that can make
u(k, x) large. One is the presence of trapped rays. In this work
we assume there are no trapped rays. The other mechanism
is the focusing of waves, i.e., the formation of caustics. Our
primary goal here is to estimate the effect of this mechanism,
without making any hypothesis on the geometrical nature of
whatever caustics might arise. We show that

(0.2) ‖u(k, ·)‖L∞(R3) ≤ C〈k〉,
where 〈k〉 = (1 + k2)1/2.

Introduction.

First we derive local L2-estimates in §1. Then in §2 we show how a dilation
argument and elliptic regularity yield an L∞-estimate which is weaker than
(0.2), in that the right side is replaced by C〈k〉3/2. An effort to sharpen
this suggests a look at some Morrey space estimates for solutions to wave
equations, in §3. Then in §4 we use these estimates together with some
consequences of the global theory of Fourier integral operators to obtain
the estimate (0.2). This estimate cannot be improved in general, as simple
examples involving perfect focus caustics show. For simplicity we restrict
attention to scattering on R3. Under analogous hypotheses for Rn, we would
replace the right side of (0.2) by C〈k〉(n−1)/2. The proof is quite similar,
for n odd, with a few more details required for n even. Also, one could
consider other perturbations of the free-space wave equation. We leave such
extensions to the interested reader.

I thank Margaret Cheney for bringing this sort of problem to my attention,
and Jeffrey Rauch for some useful comments on tackling caustics.
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1. L2 estimates on scattered waves.

In this section we establish local L2-estimates for solutions to (0.1). We will
assume there are no trapped rays and obtain estimates for all k ∈ R.

To begin, choose ϕ ∈ C∞(R3) such that

(1.1) ϕ(x) = 0 for |x| ≤ R, ϕ(x) = 1 for |x| ≥ 2R.

Thus n(x) = 1 on supp ϕ. We write

(1.2) u = ϕ(x)eikx·ω + v,

where v = v(k, x) satisfies the radiation condition and solves

(1.3)
(
∆ + k2n(x)2

)
v = −Ψk(x),

with

(1.4) Ψk(x) = (∆ + k2)(ϕeikx·ω) = (2ikω · ∇ϕ+ ∆ϕ)eikx·ω.

Note that there are no terms containing k2.
We can relate v(k, x) to the solution to the wave equation:

(1.5)
(
n(x)2∂2

t −∆
)
wk(t, x) = ψk(t)Ψk(x), wk(t, x) = 0 for t < 0,

where we pick ψ ∈ C∞0 ((0, 1)) and set ψk(t) = e−iktψ(t). In fact,

(1.6) ŵk(k, x) = ψ̂(0)v(k, x).

Let us arrange that ψ̂(0) = 1. Thus, sufficiently good estimates on wk(t, x)
can lead to estimates on v(k, x). Using (1.4), we have

(1.7) ψk(t)Ψk(x) = (2ikω · ∇ϕ+ ∆ϕ)eik(x·ω−t)ψ(t).

Two properties are apparent:

(1.8) supp ψk(t)Ψk(x) ⊂ [0, 1]×B2R,

where BR = {x : |x| ≤ R}, and

(1.9) {ψk(t)Ψk(x) : k ∈ R} bounded in H−1(R× R3).

We deduce that, for any T <∞,
(1.10) ‖wk‖L2([0,T ]×B3R) ≤ C(T ),

the right side being independent of k.
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Now, under the hypothesis that there are no trapped rays, known results
on local exponential energy decay (cf. [M]) apply to solutions to (1.5). It
follows that there exists T0 <∞ such that, for all s <∞,

(1.11) ‖wk(t, ·)‖Hs(B3R) ≤ Ce−At, for t ≥ T0.

Here, A > 0, C <∞; A and C may depend on s, but not on k. Let us pick
ζ ∈ C∞0 (R) so that ζ(t) = 1 for |t| ≤ T0, ζ(t) = 0 for |t| ≥ T0 + 1, and use
(1.6) to write

(1.12) v(k, x) = v0(k, x) + v1(k, x),

with

v0(k, x) =
∫
wk(t, x)eiktζ(t) dt,

v1(k, x) =
∫ ∞
T0

wk(t, x)eikt[1− ζ(t)] dt.(1.13)

Then the estimates (1.10)–(1.11) imply

(1.14) ‖v(k, ·)‖L2(B3R) ≤ B,

a bound independent of k. In subsequent sections, we will derive other esti-
mates, using the facts that (by (1.11))

(1.15) ‖v1(k, ·)‖Hs(B3R) ≤ Cs,N〈k〉−N ,

while v0(k, x) is accessible to methods of geometrical optics and other tools
of microlocal analysis.

Once we have (1.14), since v solves the free space Helmholtz equation for
|x| ≥ 2R, well-known results on Hankel functions (see Exercise 4 in Chapter
9, §9 of [T1] or §5 of [T2]) imply

(1.16) ‖v(k, ·)‖L2(AN ) ≤ B, ∀ N,

where

(1.17) AN = {x ∈ R3 : NR ≤ |x| ≤ N(R+ 1)}.

In fact, the following more precise result follows from these Hankel function
estimates. For all S ∈ [3R,∞),

(1.18)
∫
|x|=S

|v(k, x)|2 dS(x) ≤ B,
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with B independent of both k and S. This estimate will be useful in the last
part of the argument in §4.

We remark that, if instead of taking k ∈ R, we let k run over C+ = {k ∈
C : Im k ≥ 0}, then the considerations above apply, with (1.9) replaced by

(1.19) e−a Im k ψk(t)Ψk(x) bounded in H−1(R× R3),

for some a ∈ (0,∞). Thus we get, in place of (1.14),

(1.20) ‖v(k, ·)‖L2(B3R) ≤ Bea Im k.

2. First L∞ estimates on scattered waves.

In this section we first show that elliptic estimates plus a dilation argument
yields from the L2-estimates of §1 some L∞-estimates on the scattered waves.
One of the most interesting features of the problem of estimating these waves
is that, while this argument is quite natural, the estimate it yields is not
sharp. We then begin to set up steps that will be taken in subsequent
sections to obtain a sharp estimate.

Let us retain the hypotheses made in §1. We then have L2 bounds on
solutions to (0.1) which imply, in particular,

(2.1) ‖u(k, ·)‖L2(B1(p)) ≤ C,
for all p ∈ R3, where C is independent of k and of p. Let us dilate u(k, x);
set

(2.2) uk(x) = u(k, x/k).

This solves the PDE

(2.3)
(
∆ + n(x/k)2

)
uk = 0,

and (2.1) implies

(2.4) ‖uk‖L2(B1(q)) ≤ Ck3/2,

for all q ∈ R3, k ≥ 1. Note that, for k ≥ 1, n(x/k)
∣∣
B1(q)

is bounded in
C∞

(
B1(q)

)
. Hence elliptic estimates yield

(2.5) ‖uk‖L∞(B1/2(q)) ≤ Ck3/2,

or simply ‖uk‖L∞(R3) ≤ Ck3/2, for k ≥ 1. Estimates on u(k, x) for 0 ≤ k ≤ 1
are easy. We thus have

(2.6) ‖u(k, ·)‖L∞(R3) ≤ C〈k〉3/2.
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As mentioned above, the estimate (2.6) is not sharp. In §4 we will show
that

(2.7) ‖u(k, ·)‖L∞(R3) ≤ C〈k〉.

We can prove (2.7), provided we show that

(2.8) ‖u(k, ·)‖L2(B1/k(p)) ≤ C〈k〉−1/2.

Indeed, once we establish (2.8), we can improve (2.4) to

(2.9) ‖uk‖L2(B1(q)) ≤ Ck,

for k ≥ 1, hence improve (2.5), and attain (2.7). In view of the estimates of
§1, the estimate (2.8) will follow if we can show that the solution wk to (1.5)
satisfies

(2.10) ‖wk(t, ·)‖L2(B1/k(p)) ≤ C〈k〉−1/2, 0 ≤ t ≤ T0.

Let us make some additional comments on wk(t, x), which will be relevant
for §3. Suppose that actually n(x) = 1 for |x| ≥ R − 1. Then, for 0 ≤ t ≤
1, (1.5) is a free space wave equation on the support of wk, and a simple
asymptotic analysis gives

(2.11) wk(t, x) = a(t, x, k)eik(x·ω−t), ∂twk(t, x) = b(t, x, k)eik(x·ω−t),

for 0 ≤ t ≤ 1, where a(t, x, k), b(t, x, k) are supported in |x| ≤ 2R + 1 and,
as k →∞,

a(t, x, k) ∼ a0(t, x) + a−1(t, x)k−1 + · · · ,
b(t, x, k) ∼ b1(t, x)k + b0(t, x) + · · · .(2.12)

Now, for 1 ≤ t ≤ T0, wk(t, x) satisfies the homogeneous equation

(2.13)
(
n(x)2∂2

t −∆
)
wk = 0, t ≥ 1,

with Cauchy data

(2.14) wk(1, x) = a(1, x, k)eik(x·ω−1), ∂twk(1, x) = b(1, x, k)eik(x·ω−1).

To end this section, we indicate how to produce examples showing that
the estimate (2.7) is sharp. Such examples arise when perfect focus caustics
occur. One can produce a positive function n(x) ∈ C∞(R3), such that n(x) =
1 for |x| ≥ R, having the following properties. First, the simple progressing
wave expansion of geometrical optics for the solution to (2.11) is valid for
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(t, x) ∈ [0, T0]×R3. Second, there is a ball B = {x ∈ R3 : |x−z0| ≤ ρ} (with
ρ < R/2), contained in the region |x| > 2R, and an interval [T0− ε, T0] such
that, for (t, x) ∈ I ×B, this expansion has the form

(2.15) a(t, x, k)eik(α+|x−z0|−t),

for some constant α ∈ R, and a(t, x, k) of the form (2.12), vanishing on
all of B except for a small neighborhood of some boundary point, for t ∈
I. The perfect focus will occur at z0, for some t ∈ (T0, T0 + ρ], and the
simple geometrical optics expansion will break down. However, the Kirchhoff
formula for the solution to the free-space wave equation can be applied to
analyze the solution to (2.11) for (t, x) ∈ [T0, T0 + 2ρ]×B. One obtains

(2.16) wk(t, z0) ∼ [β1(t)k + β0(t) + · · · ]eik(α−T0), t ∈ J = [T0, T0 + 2ρ],

and β1 is typically not identically zero on J . In turn, this leads to examples of
solutions u(k, x) to (0.1) such that u(k, z0) ∼ Ckeik(α−T0), and C is typically
not zero.

3. L∞ and Morrey-space estimates on solutions to wave
equations.

Our purpose in this section is to discuss the following:

Property A. Let w(t, x) solve the Cauchy problem

(3.1)
(
n(x)2∂2

t −∆
)
w = 0, w(0) = f, wt(0) = g

on I × R3. Assume f, g ∈ L∞(R3). Then, for each t ∈ I, p ∈ R3, ρ ∈ (0, 1],

(3.2) ‖w(t, ·)‖L2(Bρ(p)) ≤ C‖f‖L∞ρ1/2 + C‖g‖L∞ρ3/2,

with C = C(t).

If this property holds, with I = R, then we can establish desirable es-
timates on wk(t, x), for t ∈ [1, T0], using (2.13)–(2.14). The Cauchy data
(2.14) satisfy

(3.3) ‖f‖L∞ ≤ C, ‖g‖L∞ ≤ C〈k〉,
and taking ρ = 1/k in (3.2) this yields, for k ≥ 1,

(3.4) ‖wk(t, ·)‖L2(B1/k(p)) ≤ Ck−1/2 + C〈k〉k−3/2 ≤ C ′k−1/2,

as desired in (2.10). Thus, when Property A holds, with I = R, we can
sharpen the estimate (2.6) on scattered waves to (2.7).
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We next show that Property A does hold, with I = R, if n(x) is identi-
cally 1. While this result is not applicable to the problem raised in §2, it is
intrinsically interesting, and also has a nontrivial application to a variant of
(2.13)–(2.14). We will establish two results; in fact both are quite simple.

Proposition 3.1. Let w(t, x) solve the Cauchy problem

(3.5) (∂2
t −∆)w = 0, w(0) = 0, wt(0) = g

on R× R3. If g ∈ L∞(R3), then

(3.6) ‖w(t, ·)‖L∞ ≤ C|t| · ‖g‖L∞ .

Proof. In fact, the Kirchhoff formula for the solution to (3.5) gives

(3.7) w(t, x) =
t

4π

∫
S2

g(x− tω) dS(ω),

so (3.6) is obvious.

Proposition 3.2. Let w(t, x) solve the Cauchy problem

(3.8) (∂2
t −∆)w = 0, w(0) = f, wt(0) = 0

on R× R3. If f ∈ L∞(R3), then, for p ∈ R3, ρ ∈ (0, 1],

(3.9) ‖w(t, ·)‖L2(Bρ(p)) ≤ C〈t〉‖f‖L∞ρ1/2.

Proof. By the strong Huygens principle, the value of w(t, x) for x ∈ Bρ(p) is
unaffected if f is replaced by

(3.10) f#(x) =

{
f(x) if |t| − 2ρ ≤ |x− p| ≤ |t|+ 2ρ,
0 otherwise.

Clearly

(3.11) ‖f#‖L2(R3) ≤ C〈t〉ρ1/2‖f‖L∞ ,

so

(3.12) w#(t) = cos t
√−∆ f# =⇒ ‖w#(t)‖L2 ≤ C〈t〉ρ1/2‖f‖L∞ .

Since w(t, x) = w#(t, x) for x ∈ Bρ(p), we have (3.9).



108 MICHAEL E. TAYLOR

Note that Proposition 3.2 can be stated in terms of a Morrey space:

(3.13) cos t
√−∆ : L∞(R3) −→M3

2 (R3).

One simple consequence of Propositions 3.1–3.2 is the following:

Proposition 3.3. Let wk(t, x) solve the Cauchy problem

(3.14) (∂2
t −∆)wk = 0, wk(0, x) = a(x)eikθ(x), ∂twk(0, x) = kb(x)eikθ(x),

where a, b ∈ C∞0 (R3) and θ ∈ C∞(R3) is real valued. Then, for p ∈ R3, k ∈ R,
(3.15) ‖wk(t, ·)‖L2(B1/k(p)) ≤ C(t)〈k〉−1/2.

Proof. The argument is the same as the derivation of (3.4) from (3.2).

Note that in Proposition 3.3 we do not need to assume ∇θ 6= 0 on supp
a ∪ supp b.

We now show that Property A holds under our hypotheses on n(x) for
I = [−τ, τ ], when τ is sufficiently small. In fact, the solution to (3.1) can be
written

(3.16) w(t) = R′(t)f +R(t)g,

and, for |t| < τ,

(3.17) R(t) = R0(t) +B(t),

where R0(t) and B(t) have the following properties. First,

(3.18) R0(t)g(x) = t

∫
S2

a(t, x, ω)g
(
γx(tω)

)
dS(ω),

where a is smooth on (−τ, τ) × R3 × S2 and γx : R3 → R3 is the geodesic
flow from x, for the Riemannian metric

(3.19) gjk(x) = n(x)2δjk.

Furthermore, we can assume that γx maps {v : |v| < τ} diffeomorphically
onto an open set in R3. Next, for |t| < τ, B(t) is a family of Fourier integral
operators (FIOs) of order −2, and B′(t) is a family of FIOs of order −1,
having the mapping properties

(3.20) B(t) : Hs(R3)→ Hs+2(R3), B′(t) : Hs(R3)→ Hs+1(R3).
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The representation (3.16)–(3.18) is a special case of the Hadamard paramet-
rix construction; a derivation can be found in Proposition 17.4.3 of [H].

We can now prove the following extensions of Propositions 3.1–3.2.

Proposition 3.4. Let w(t, x) solve the Cauchy problem

(3.21)
(
n(x)2∂2

t −∆
)
w = 0, w(0) = 0, wt(0) = g

on R× R3. If g ∈ L∞(R3), then, for |t| < τ,

(3.22) ‖w(t, ·)‖L∞ ≤ C(t)‖g‖L∞ .

Proof. The fact that R0(t) : L∞(R3) → L∞(R3) for |t| < τ is clear from
(3.18). That B(t) : L∞(R3) → L∞(R3) follows from finite propagation
speed plus (3.20), plus the Sobolev imbedding result that H2(R3) ⊂ L∞(R3).

Proposition 3.5. Let w(t, x) solve the Cauchy problem

(3.23)
(
n(x)2∂2

t −∆
)
w = 0, w(0) = f, wt(0) = 0

on R× R3. If f ∈ L∞(R3), then, for |t| < τ, p ∈ R3, ρ ∈ (0, 1],

(3.24) ‖w(t, ·)‖L2(Bρ(p)) ≤ C(t)‖f‖L∞ · ρ1/2.

Proof. Defining f# as in (3.10), we see that

(3.25) R′0(t)f = R′0(t)f# for x ∈ Bρ(p),
and since R′0(t) : L2(R3)→ L2(R3), we obtain

(3.26) ‖R′0(t)f‖L2(Bρ(p)) ≤ C(t)‖f#‖L2 ≤ C(t)‖f‖L∞ρ1/2.

Meanwhile, by finite propagation speed and (3.20) we have

(3.27) ‖B′(t)f‖H1(B1(p)) ≤ C(t)‖f‖L∞ ,
and (3.24) follows from (3.26)–(3.27), since

(3.28) H1
(
B1(p)

) ⊂ L6
(
B1(p)

) ⊂M3
2

(
B1(p)

)
.

More generally, we can replace R3 by Rn for any odd n, and obtain the
same result. Also, we can replace L∞ by Lp, 2 ≤ p ≤ ∞, obtaining

(3.29) ‖w(t, ·)‖L2(Bρ(p)) ≤ C(t)‖f‖Lpρ1/2−1/p,
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or, equivalently,

(3.30) ‖w(t)‖Mq
2
≤ C(t)‖f‖Lp , q =

2n
n− 1 + 2

p

.

In particular,

(3.31) ‖w(t)‖
M

2n/(n−1)
2

≤ C(t)‖f‖L∞ .

For related results, see [T3].

4. Sharper estimate on scattered waves.

Given x0 ∈ R3, t0 ∈ [0, T0], we want to estimate w(t, x) in a neighborhood
of (t0, x0), when w solves (2.13)–(2.14). Now w(t, x) is given by a simple
geometrical optics expansion away from a caustic set C ⊂ (1,∞) × R3. In
particular, as a consequence of the global theory of Fourier integral operators,
as presented in [D] or [H], such a geometrical optics expansion is even valid
in a region swept out by rays that have passed through C. Here, “rays” are
null geodesics in R× R3, with the Lorentz metric −dt2 + n(x)2

∑3
j=1 dx

2
j .

It is convenient to describe this in terms of the following Lagrangian mani-
fold Ω ⊂ T ∗(R×R3)\0. For t close to 1, Ω is the graph of the phase function
θ(t, x) = x · ω − t. For larger t, it is the flow-out of this graph under the
geodesic flow on the Lorentz manifold R×R3 described above. The orbits of
this flow are the lifts to T ∗(R×R3) of null geodesics, called null bicharacter-
istics. Note that Ω ⊂ T ∗(R×R3) \ 0. The caustic set C is the image of that
part Σ of Ω where the projection to R×R3 is singular. Over the complement
of C, Ω is a finite union of graphs of gradients of functions arising as phases
in the geometrical optics expansion of w(t, x).

If (t0, x0) /∈ C, then w(t, x) is bounded uniformly on a neighborhood of
(t0, x0). We now consider the case where (t0, x0) ∈ C. Let Γ(t0, x0) denote
the subset of Σ lying over (t0, x0); this is a compact subset of T ∗(R×R3)\0.

Take a point p0 ∈ Γ(t0, x0). Methods of the Morse theory of conjugate
points (cf. [C]) imply that the null bicharacteristic through p0 intersects Σ
in a discrete set. Using a covering argument and partitions of unity, we have
the following. (Here, τ is as in Proposition 3.4.)

Lemma 4.1. There exist σj ∈ (0, τ), 1 ≤ j ≤ N, and Cauchy data

(4.1) Wj(t0 − σj, x) = aj(x, k)eikθj(x), Wjt(t0 − σj, x) = bj(x, k)eikθj(x),

with

(4.2) aj(x, k) ∼ aj0(x)+aj1(x)k−1 +· · · , bj(x, k) ∼ bj1(x)k+bj0(x)+· · · ,
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such that

(4.3)
N∑
j=1

S(t, t0 − σj)(Wj,Wjt)

agrees with w(t, x), mod C∞, on a neighborhood of (t0, x0) where S(t, s) is
the solution operator to the wave equation (2.13), with Cauchy data at time
s.

Now, Propositions 3.4–3.5 apply to (4.3), so we have an estimate of the
form (3.4) at (t0, x0), i.e.,

(4.4) ‖w(t0, ·)‖L2(B1/k(x0)) ≤ Ck−1/2.

This estimate is seen to hold uniformly for t0 ∈ [1, T0], where T0 is as in
(1.11), and for x0 in any compact K ⊂ R3. Now we are ready to establish
our main result:

Theorem 4.2. Under the hypothesis of no trapped rays, the scattering
solution to (0.1) satisfies the estimate

(4.5) |u(k, x)| ≤ C〈k〉,

for all x ∈ R3.

Proof. From (4.4) and (1.12)–(1.13) we have the estimate

(4.6) ‖u(k, ·)‖L2(B1/k(p)) ≤ Ck−1/2,

valid uniformly for p in any compact set, e.g., for |p| ≤ 3R. On the other
hand, the estimate (1.18) implies that (4.6) holds uniformly for |p| ≥ 3R.
From here, the argument given in (2.8)–(2.10) establishes (4.5).
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