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THE HEAT FLOW AND HARMONIC MAPS
ON A CLASS OF MANIFOLDS

Xiao Zhang

We study the heat flow for harmonic maps from a complete
noncompact manifold M which satisfies conditions (a) and (b)
in §1. We show that if the target manifold N is complete,
the C2 initial map has bounded image in N and has bounded
energy density and bounded tension field, then the short-time
solution of (1.1) in §1 exists and is unique. Additional, if the
sectional curvature of N is bounded from above, either the
long-time solution of (1.1) exists or the energy density of heat
flow blows up at a finite time. Moreover, if N has nonpositive
sectional curvature and (1.1) has a long-time solution u(·, t)
whose energy density increases logarithmically, and there is a
point p ∈M and a sequence tν →∞ such that u(·, tν) converges
uniformly on compact subsets of M to a harmonic map u∞ by
passing to a subsequence.

For this class of manifolds which satisfy (a) and (b), we
also get Lp (p > 0) mean-value inequalities for subsolutions of
heat equations and gradient estimates for solutions of heat
equations.

1. Introduction.

Let Mm and Nn be two complete Riemannian manifolds with their metrics
given locally by ds2

M = gijdx
idxj and ds2

N = hαβdu
αduβ respectively. For

any differentiable map u from M to N , the energy density of u at x ∈M is
defined by

e(u)(x) = gij
∂uα

∂xi
∂uβ

∂xj
hαβ(u)(x),

where (gij) = (gij)−1. The total energy of u is given by

E(u)(x) =
∫
M

e(u)(x)dx.

The map u is called a harmonic map if it is a classical solution of the Eular-
Lagrange equation of the total energy functional, which can be written as

τ(u)(x) = 0,
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τα(u)(x) = 4uα(x) + gij
∂uβ

∂xi
∂uγ

∂xj
Γαβγ(u)(x),

for α = 1, · · · , n, where 4 is the Laplace-Beltrami operator on M , Γαβγ are
the Christoffel symbols on N . τ(u) is called the tension field of u. The
corresponding parabolic system defined on M × [0,∞) with initial data h is
given by

∂u

∂t
= τ(u), u(x, 0) = h(x),(1.1)

which is called the heat equation for harmonic maps and solution u is called
a heat flow.

When M and N are compact Riemannian manifolds without boundary
and N has nonpositive sectional curvature, Eells and Sampson [E-S] proved
that any C1 map from M into N can be deformed to a harmonic map by
solving (1.1). The analogous version for compact manifolds with boundary
was proved by Hamilton [H]. If M is complete noncompact and N is com-
pact with nonpositive sectional curvature, Schoen and Yau [S-Y1] proved
that any C1 map from M into N with finite total energy can be deformed
on any subsets of M to a harmonic map with finite total energy. Their
method based on the Hamilton’s results. Later Liao and Tam [Lo-T] re-
covered their results by studying the heat flow directly. Li and Tam [L-T]
considered the case when both M and N are complete noncompact Rieman-
nian manifolds and developed general method to study harmonic maps on
noncompact manifold via heat flow. One of their main results is: Let M ,
N be complete noncompact Riemannian manifolds, RicciM ≥ −K(K > 0).
Let h ∈ C1(M,N) with bounded energy density such that h(M) is also
bounded. Then there exists T0 > 0 and a unique map u which satisfies (1.1)
on M × [0, T0). If, in addition, RiemN ≤ 0, then (1.1) has a unique solution
u on M × [0,∞) which satisfies that for all T > 0, u(M × [0, T ]) is bounded,
and supM×[0,T ] e(u) < ∞. Furthermore, if there exists a point p ∈ M and
a sequence tv → ∞ such that u(p, tv) converges in N , then by passing to a
subsequence, u(·, tv) converges uniformly on compact subsets together with
their first and second derivatives to a harmonic map u∞.

The Bochner formula plays a role for proving the above theorems, but it
depends on the lower bound of the Ricci curvature on the domain manifold
extremely. Thus, when the domain manifold is only assumed to be complete
noncompact without boundary and satisfy the following two conditions:
(a) There exists a constant A > 1 such that for any x ∈ M and for all

R > 0
Vx(2R) ≤ AVx(R);
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(b) There exist constants N > 1, a > 0 such that for any function f ∈
C∞(Bx(NR)),

a

R2
inf
α∈R

∫
Bx(R)

(f − α)2 ≤
∫
Bx(NR)

|∇f |2,

we will lose many importment estimates obtained via the Bochner formula.
This class of manifolds were introduced and studied by Grigor’yan [G]. Ob-
viously, (a), (b) are quasi-isometric invariant (with possibly different A, a
and N). It is known that if M has nonnegative Ricci curvature, then M
satisfies (a), (b), see [G]. Hence this class of manifolds includes noncompact
manifolds which are quasi-isometric to manifolds with nonnegative Ricci cur-
vature. By using the distance function of target manifold and the well-known
fact that the composition of a convex function in the target with a harmonic
map is a subharmonic function of the domain, Tam [T1], [T2] has got some
results which assert that any harmonic map that has a bounded image in
target manifold or has a bounded total energy from this class of manifolds
to simply connected, nonpositive sectional curvature manifolds must be con-
stant map. These generalized the theorems of Cheng [C] and Schoen-Yau
[S-Y1]. In this paper, we will prove the following theorem:

Main Theorem. Let M be a complete noncompact manifold without bound-
ary and satisfy the conditions (a) and (b), N be an arbitrary complete man-
ifold.

(i) Given h ∈ C2(M,N) such that h(M) is bounded in N , the energy
density e(h) and the tension field τ(h) are also bounded on M . Then there
exists T0 > 0 such that (1.1) has a unique solution u(x, t) on M × [0, T0). If,
in addition, RiemN ≤ k (k ≥ 0), let T ∗ be the supremum of those T such that
(1.1) has a unique solution u(x, t) on M × [0, T ) and supM×[0,T ) e(u) < ∞,
then eithor T ∗ =∞ or T ∗ <∞ and limT→T∗ supM×[0,T ) e(u) =∞.

(ii) Suppose RiemN ≤ 0 and (1.1) has a long-time solution u(x, t) on
M × [0,∞). If s(t) = supM×[0,t) e(u)(x, t) = O(log t), and there exists a
point p ∈M and a sequence tν →∞ such that sequence u(p, tν) converges in
N , then u(·, tν) converges uniformly on compact subsets of M to a harmonic
map u∞ by passing to a subsequence.

Here, we need some stronger assumptions on the initial data (C2, bounded
energy density and tension field) in order to get some key estimates without
using the Bochner formula (Theorem 3.4(iv), etc.). Perhaps, good estimates
on the heat kernel for 1-form on this class of manifolds might weaken our
assumptions on the initial data.

This paper is arranged as follows:
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In the second section, we will give some known results which were proved
by Grigor’yan in [G], and generalize a mean-value inequality of Grigor’yan’s
about the subsolution of the heat equation on this class of manifolds.

In the third section, we will derive estimates for solutions of the homoge-
neous and inhomogenous heat equations on these manifolds.

In the fourth and fifth sections, we will consider the questions of both
the short-time and the long-time existences of solutions for (1.1). And the
convergence to a harmonic map as time tends to infinity. We will prove the
Main Theorem in these two sections.
Acknowledgements. This work was done while the author was a graduate
student in the Department of Mathematics, The Chinese University of Hong
Kong. The author would like to thank Prof. S.Y. Cheng and Prof. S.T. Yau
for their encouragement, Prof. L.F. Tam for suggesting this problem and his
helpful discussions, and Dr. Tom Y.H. Wan for his interest in this work and
valuable discussions.

The author would also like to thank Prof. W.Y. Ding and Prof. H.D.
Chao for pointing out some errors in the early version.

2. Mean-value inequalities.

In this section, we will first give some known theorems about the volume
comparison for balls, the Harnack inequality for the positive solution of heat
equation, and the heat kernel estimates which were proven in [G] on a class
of complete noncompact Riemannian manifolds satisfying (a) and (b), we
will also prove some mean-value inequalites for the subsolution of the heat
equation on these manifolds and generalize the result of Grigor’yan’s (see
[G], Theorem 3.1).

Theorem 2.1. Let M be a complete noncompact manifold which satisfies
(a) and (b), then

(i) (Volume comparison). For all x ∈M and all R ≥ r > 0,

(1 +A3)−1

(
R

r

)α
≤ Vx(R)

Vx(r)
≤ A3

(
R

r

)β
,

where α = log3 (1 +A−3), β = log2A.
(ii) (Harnack inequality). For any positive solution u(x, t) of heat equation,

on M × [0,∞), for any x, y in M and T > t > 0,

u(x, t) ≤ u(y, T ) exp
(
C1

(
T

t
+
r(x, y)2

T − t
))

,

where r(x, y) is the distance function between x and y, and C1 is a constant
depending only on A, a,and N .
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(iii) (Heat kernel estimates). Let H(x, y, t) = limR→∞HR(x, y, t) be the
fundamental solution of the heat equation obtained by compact exhaustion,
where HR(x, y, t) is the heat kernel of Bp(R) with Dirichlet boundary value,
p is a fixed point in M . Then

C2

Vx(
√
t)

exp
(
−C3r(x, y)2

t

)
≤ H(x, y, t) ≤ 1

C2Vx(
√
t)

exp
(
−C4r(x, y)2

t

)
,

where C4 <
1
4

is a constant, C3 > 0 is a constant depending only on A, a,
and N , C2 > 0 is a constant depending only on A, a,N and C4.

Proof. See [G].

We have known (see [G], Theorem 1.4) that if complete noncompact man-
ifold M satisfies (a) and (b), then in each ball Bx(R) there is an isoperimetric
inequality

λ1(Ω) ≥ Λ(Vol(Ω))

with function

Λ(v) =
b

R2

(
Vx(R)
v

)2/β

,(2.1)

where Ω is the domain in M , λ1(Ω) is the first eigenvalue of Ω and b > 0 is
a constant depending only on A, a and N .

The function v
Λ(v)

is obviously strictly monotonically increasing on (0,∞)
with range (0,∞). It therefore has an inverse function on (0,∞), which
we denote by ω. We define functions V (t) and W (r)(t > 0, r > 0) by the
equations

C5t =
∫ V (t)

0

dξ

ω(ξ)
, C6r =

∫ W (r)

0

dξ√
ξω(ξ)

,(2.2)

where C5, C6 > 0 are constants which will be determined in the proof. Ev-
erywhere below we assume that the integrals in (2.2) converge to zero as
t, r → 0.

It is easy to derive from (2.1) that

V (t) = C7

Vx(R)
Rβ

t1+β/2, W (r) = C8

Vx(R)
Rβ

r2+β,(2.3)

where β = log2A, C7, C8 > 0 are constants depending only on C5, C6, A, a
and N .
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Theorem 2.2. Let M be a complete noncompact Riemannian mani-
fold without boundary and satisfy (a) and (b). Suppose the function u ∈
C∞(Bx(R)× [0, T ]) satisfies (

4− ∂

∂t

)
u ≥ 0.(2.4)

(i) For any 0 < δ < 1, 0 < τ ≤ T and p > 0, there exists a constant C > 0
depending only on p,A, a, and N such that

sup
Bx((1−δ)R)×[τ,T ]

up+ ≤
C

σ1+β/2

Rβ

Vx(R)

∫ T

0

∫
Bx(R)

up+.(2.5)

Where σ = min (τ, δ2R2), β = log2A, and u+ is the positive part of u.
(ii) Let u = u− supBx(R) |u(y, 0)|, then there exists C > 0 depending only

on p,A, a and N such that

sup
Bx((1−δ)R)×[0,T ]

up+ ≤
C

δ2+βR2Vx(R)

∫ T

0

∫
Bx(R)

up+.(2.6)

In particular, if p ≥ 1, then

sup
Bx((1−δ)R)×[0,T ]

up+ ≤
2p−1C

δ2+βR2Vx(R)

∫ T

0

∫
Bx(R)

up+ + 2p−1 sup
Bx(R)

|u(y, 0)|p.
(2.7)

Before proving it, we will prove some lemmas.

Lemma 2.3. Suppose, under the conditions of Theorem 2.2, that v =
(u − θ)+, where θ ≥ 0 is an arbitrary number. Let η(y, t) be a Lipschitz
function in M × [0,∞) such that supp(η(y, t)) ⊂⊂ Bx(R) for t ≥ 0. Then
for p > 1, there exists C > 0 depending only on p such that∫

Bx(R)

(vpη2)(y, t) +
p− 1
p

∫ t

0

∫
Bx(R)

|∇(v
p
2 η)|2

≤ C
∫ t

0

∫
Bx(R)

vp(|∇η|2 + ηηt) +
∫
Bx(R)

(vpη2)(y, 0).(2.8)

Proof. ∫
Bx(R)

vp−1vtη
2 ≤

∫
{u>θ}

vp−14uη2
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=
∫
{u=θ}

∂u

∂ν
vp−1η2 −

∫
{u>θ}

∇u∇(vp−1η2)

= −
∫
Bx(R)

∇v∇(vp−1η2).

Integrating the above inequality from 0 to t, we get∫ t

0

∫
Bx(R)

vp−1vtη
2 ≤ −(p− 1)

∫ t

0

∫
Bx(R)

vp−2η2|∇v|2

− 2
∫ t

0

∫
Bx(R)

vp−1η∇v∇η.(2.9)

Since

vp−1η∇v∇η ≤ p

4
vp−2η2|∇v|2 +

1
p
vp|∇η|2,

then

|∇(v
p
2 η)|2 ≤ p2

2
vp−2η2|∇v|2 + 2vp|∇η|2,

therefore

vp−2η2|∇v|2 ≥ 2
p2

∣∣∣∣∇(v p2

2 η

)∣∣∣∣2 − 4
p2
vp|∇η|2.(2.10)

On the other hand,

−2vp−1η∇u∇η ≤ p− 1
2

vp−2η2|∇v|2 +
2

p− 1
vp|∇η|2.(2.11)

Substituting (2.10), (2.11) into (2.9),∫ t

0

∫
Bx(R)

vp−1vtη
2

≤ −p− 1
p

∫ t

0

∫
Bx(R)

|∇(v
p
2 η)|2 +

(
4
p2

+
2

p− 1

)∫ t

0

∫
Bx(R)

vp|∇η|2.

Since∫ t

0

∫
Bx(R)

vp−1vtη
2 =

1
p

∫
Bx(R)

((vpη2)(y, t)− (vpη2)(y, 0))− 2
p

∫ t

0

∫
Bx(R)

vpηηt.

Hence we get (2.8), here, C = 4
p

+ 2p
p−1

.
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Lemma 2.4. Suppose, under the conditions of Theorem 2.2, that p > 1,
for any θ > 0, let

H =
∫ T

0

∫
Bx(R)

up+, H =
∫ T

τ

∫
Bx((1−δ)R)

(u− θ)p+,

then there exists C > 0 depending only on p such that

H ≤ CH

σΛ(Cσ−1θ−pH)
.(2.12)

Proof. In (2.8) we set
η(y, t) = η1(y)η2(t),

where η1 is 1 inside Bx((1 − δ
2
)R), zero outside Bx(R) and linear between

Bx((1− δ
2
)R) and Bx(R); and η2 is 1 when t ≥ τ , zero when t = 0 and linear

between 0 and τ . We also set v = u+. For any t ∈ [τ, T ], since

|∇η|2 ≤ 4
σ
, |ηηt| ≤ 1

σ
,

then ∫
Bx((1− δ2 )R)

up+(y, t) ≤ C
∫ t

0

∫
Bx(R)

up+(|∇η|2 + ηηt) ≤ 5CH
σ

.(2.13)

By setting η1 is 1 inside Bx((1− δ)R), zero outside Bx((1− δ
2
)R) and linear

between Bx((1− δ)R) and Bx((1− δ
2
)R); and η2 as before, we have∫ T

0

∫
Bx(R)

|∇((u− θ)
p
2
+η)|2 ≤ 5pC

(p− 1)σ

∫ T

0

∫
Bx(R)

(u− θ)p+.(2.14)

Since for each t ∈ [0, T ],

supp
(
(u− θ)

p
2
+η
)
⊂ Dt,

where
Dt =

{
y ∈ Bx

((
1− δ

2

)
R

)
: u(y, t) > θ

}
,

then ∫
Bx(R)

∣∣∣∇ ((u− θ)
p
2
+η
)∣∣∣2 ≥ λ1(Dt)

∫
Bx(R)

(u− θ)p+η2.(2.15)

For t ∈ [τ, T ], it follows from (2.13) that

mes(Dt) ≤ θ−p
∫
Bx((1− δ2 )R)

up+ ≤ 5Cσ−1θ−pH.(2.16)
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By (2.1), (2.14), (2.15) and (2.16), we have

5pC
p− 1

σ−1H ≥ Λ(5Cσ−1θ−pH)H ≥ Λ
(

5pC
p− 1

σ−1θ−pH
)
H.

This is (2.12).

Lemma 2.5. Suppose, under the conditions of Theorem 2.2, that p > 1,
for any θ > 0, let

H∗ =
∫ T

0

∫
Bx(R)

up+, H∗ =
∫ T

0

∫
Bx((1−δ)R)

(u− θ)p+,

then there exists C > 0 depending only on p such that, for ρ = δ2R2.

H∗ ≤ CH∗

ρΛ(Cρ−1θ−pH∗)
.(2.17)

Proof. Clearly, u(y, t) is also a subsolution of the heat equation and u+(y, 0) =
0 on Bx(R), by setting η2(t) ≡ 1 as t ≥ 0 in the proof of Lemma 2.4, we can
get, in a similar way, that

4pC
p− 1

ρ−1H∗ ≥ Λ(4Cρ−1θ−pH∗)H
∗ ≥ Λ

(
4pC
p− 1

ρ−1θ−pH∗
)
H
∗
.

Thus, the lemma is proved.

Proof of the Theorem 2.2.
Case (i). p > 1.

For k = 0, 1, 2, . . . , set

t0 = 0 < t1 < t2 < . . . ≤ τ, R = r0 > r1 > r2 > . . . ≥ (1− δ)R,
(2.18)

moreover,
(rk − rk+1)2 = tk+1 − tk ≡ σk.

Let

θp =
H

min(V (τ),W (δR))
,(2.19)

set

θk = (2− 2−k)θ,
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and

Hk =
∫ T

tk

∫
Bx(rk)

(u− θk)p+.(2.20)

Obviously, Hk decreases monotonically, and by Lemma 2.4,

Hk+1 ≤ CHk

σkΛ(Cσ−1
k 2p(k+1)θ−pHk)

.(2.21)

Choose C5 = (4pC)−1, C6 = (2p
√
C)−1 in (2.2), by (2.19),∫ θ−pH

0

dξ

ω(ξ)
≤ τ

4pC
,

∫ θ−pH

0

dξ√
ξω(ξ)

≤ δR

2p
√
C
.

Let

σk =
4pC(2p(−k−1)θ−pH)
ω(2p(−k−1)θ−pH)

(2.22)

for k ≥ 0, since

0 ≤ tk =
k∑
i=0

σi ≤
m+1∑
i=1

4pC(2p(−i)θ−pH)
ω(2p(−i)θ−pH)

≤ 4pC
∫ ∞

0

2p(−z)θ−pH
ω(2p(−z)θ−pH)

dz = 4pC
∫ θ−pH

0

dξ

ω(ξ)
≤ τ,

and

0 ≤ r0 − rk =
k∑
i=0

√
σi ≤

m+1∑
i=1

2p
√
C
√

2p(−i)θ−pH√
ω(2p(−i)θ−pH)

≤ 2p
√
C

∫ ∞
0

√
2p(−z)θ−pH√

ω(2p(−z)θ−pH)
dz = 2p

√
C

∫ θ−pH

0

dξ√
ξω(ξ)

≤ δR,

where ξ = 2p(−z)θ−pH. Thus (2.18) is satisfied and σk is a suitable choice.
We will prove that for all k = 0, 1, 2, . . . ,

Hk ≤ 4−pkH.(2.23)

For k = 0, (2.23) is obviously satisfied. Suppose (2.23) is satisfied for
k ≤ m. By (2.22), we have

Cσ−1
m 2p(−m+1)θ−pH = ω(2p(−m−1)θ−pH),
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then

Cσ−1
m 2p(−m+1)θ−pH

Λ(Cσ−1
m 2p(−m+1)θ−pH)

= 2p(−m−1)θ−pH,

therefore

C

σmΛ(Cσ−1
m 2p(−m+1)θ−pH)

= 4−p.

Thus, by (2.21),

Hm+1 ≤ CHm

σmΛ(Cσ−1
m 2p(m+1)θ−p4−pmH)

= 4−pHm ≤ 4−p(m+1)H.

By induction, (2.23) is proved.
Let k →∞ in (2.23), we get∫ T

τ

∫
Bx((1−δ)R)

(u− 2θ)p+ = 0,

so that
sup

Bx((1−δ)R)×[τ,T ]

up+ ≤ 2pθp.

Substituting (2.3) into (2.19), we can choose C > 0 depending only on p,A, a,
and N such that (2.5) is satisfied.

Case (ii). 0 < p ≤ 1.
Let

δk =
δ

2k
, τk =

τ

3 · 4k , M(k) = sup
Bx((1−δk)R)×[τk,T ]

u2
+.

By Theorem 2.1(i),

Vx((1− δk+1)R)−1 ≤ A3(1− δk+1)−βVx(R)−1,

let 0 < λ = 1− p
2
< 1, then (2.5) implies,

M(k) ≤ C

(4−k−1σ)1+β/2

((1− δk+1)R)β

Vx((1− δk+1)R)
M(k + 1)λ

∫ T

τk+1

∫
Bx((1−δk+1)R)

up+

≤ A3C(22+β)k+1

σ1+β/2

Rβ

Vx(R)
M(k + 1)λ

∫ T

0

∫
Bx(R)

up+.

Denote

I =
A3C

σ1+β/2

Rβ

Vx(R)

∫ T

0

∫
Bx(R)

up+.
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Iterating the above inequality, we get

M(0) ≤ I1+λ+λ2+...(22+β)1+2λ+3λ2+...(M(∞))λ
∞

= (22+β)4/p2
I2/p.

It is easy to derive our result from this inequality.

For the inequality (2.6), Let

θp =
H∗

W (δR)
, θk = (2− 2−k)θ, ρk = (rk − rk+1)2

and

H∗k =
∫ T

0

∫
Bx(rk)

(u− θk)p+.

By Lemma 2.5 and the Moser’s iteration, (2.6) can be proved by the similar
argument.

Since (|a| + |b|)p ≤ 2p−1(|a|p + |b|p) for p ≥ 1 and
∫
Bx(R) u+ ≤

∫
Bx(R) u+,

(2.7) follows.

3. Gradient estimates.

In this section, we always denote M as a complete noncompact Rieman-
nian manifold without boundary which satisfies (a) and (b); and C as an
arbitrary positive constant. We will derive various estimates for solutions of
homogenous and inhomogenous heat equations on M .

Lemma 3.1. For the heat kernel H(x, y, t) of M , for any T > 0, 0 < t < T
and p, q ∈M , there exists C > 0 depending only on A, a and N such that∫

M

|H(p, y, t)−H(q, y, t)|dy ≤ C r(p, q)√
t
.

Proof. By the Harnack inequality (Theorem 2.1(ii)), for the fixed δ > 0,

I =
∫
M

|H(q, y, (1 + δ)t)−H(q, y, t)|dy

≤
∫
M

| exp(C1(1 + δ))H(q, y, (1 + δ)t)−H(q, y, t)|dy

+
∫
M

(exp(C1(1 + δ))− 1)H(q, y, (1 + δ)t)dy

≤ 2(exp(C1(1 + δ))− 1),
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II =
∫
M

|H(p, y, t)−H(q, y, (1 + δ)t)|dy

≤
∫
M

∣∣∣∣H(p, y, t)− exp
(
C1(1 + δ) +

r2(p, q)
δt

)
H(q, y, (1 + δ)t)

∣∣∣∣ dy
+
∫
M

(
exp

(
C1(1 + δ) +

r2(p, q)
δt

)
− 1

)
H(q, y, (1 + δ)t)dy

≤ 2
(

exp
(
C1(1 + δ) +

r2(p, q)
δt

)
− 1

)
.

Let s =
√
C1r(p,q)√

δt
≥ 0, therefore, there exists C ′ > 0 depending only on C1, δ

such that∫
M

|H(p, y, t)−H(q, y, t)|dy ≤ I + II ≤ C ′(exp(s2)− 1).

If s ≤ 1, then
exp(s2)− 1 ≤ (e− 1)s2 ≤ (e− 1)s,

thus ∫
M

|H(p, y, t)−H(q, y, t)|dy ≤ C ′(e− 1)s = C
r(p, q)√

t
.

If s > 1, then∫
M

|H(p, y, t)−H(q, y, t)|dy ≤ 2 < 2s = C
r(p, q)√

t
.

Lemma 3.2. For any α > 0, T > 0 and 0 < t < T , there exists C > 0
depending only on α,A, a and N such that∫

M

H(x, y, t)rα(x, y)dy ≤ Ctα2 .

Proof. Let s = r√
t
, by Theorem 2.1(i), (iii),∫

M

H(x, y, t)rαdy =
∫
Bx(2

√
t)

H(x, y, t)rαdy +
∫
M\Bx(2

√
t)

H(x, y, t)rαdy

≤ (2
√
t)α +

1
C2Vx(2

√
t)

∫ ∞
2
√
t

exp
(
−C4r

2

t

)
rαdVx(r)

= (2
√
t)α +

1
C2Vx(2

√
t)

(
exp

(
−C4r

2

t

)
rαVx(r) |∞2√t

−
∫ ∞

2
√
t

(
exp

(
−C4r

2

t

)(
−2C4r

t

)
rα
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+ α exp
(
−C4r

2

t

)
rα−1

)
Vx(r)dr

)

≤
(

2α +
2C4

C2

∫ ∞
2

exp(−C4s
2)s1+αVx(s

√
t)

Vx(t)
ds

)
t
α
2

≤
(

2α +
2C4A

3

C2

∫ ∞
2

exp(−C4s
2)s1+α+βds

)
t
α
2 = Ct

α
2

since the integral of the right hand converges.

Theorem 3.3. Let f be a bounded function on M × [0, T ], and

u(x, t) = −
∫ t

0

∫
M

H(x, y, t− τ)f(y, τ)dydτ,

for any 0 < t < T , we have
(i)

sup
M×[0,t)

|u| ≤
(

sup
M×[0,t)

|f |
)
t.

(ii)

sup
M×[0,t)

|∇u| ≤ C
(

sup
M×[0,t]

|f |
)
t

1
2 .

Proof. (i) Obviously.
(ii). By Lemma 3.1,

|u(x, t)− u(z, t)| ≤
∫ t

0

∫
M

|H(x, y, t− τ)−H(z, y, t− τ)||f(y, τ)|dydτ

≤ C sup
M×[0,t)

|f |
∫ t

0

r(x, z)√
t− τ dτ ≤ C

(
sup

M×[0,t)

|f |
)
r(x, z)t

1
2 .

Theorem 3.4. Let h be a bounded function on M , and

u(x, t) =
∫
M

H(x, y, t)h(y)dy,

for any T > 0 and 0 < t < T , we have
(i)

|∇u(x, t)| ≤ C
(

sup
M
|h|
)
t−

1
2 .
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(ii) For 0 < α ≤ 1, and [h]α,M = supx6=y
|h(x)−h(y)|
rα(x,y)

<∞,

|u(x, t)− h(x)| ≤ C[h]α,M t
α
2 .

(iii) For 0 < t1 < t2 < T ,

|u(x, t2)− u(x, t1)| ≤ C
(

sup
M
|h|
)(

t2 − t1
t1

) 1
2

.

(iv) In addition, if h is C2, supM |∇h| <∞, and supM |4h| <∞, then

sup
M×[0,t)

|∇u| ≤ sup
M
|∇h|+ C

(
sup
M
|4h|

)
t

1
2 .

Proof. (i) By Lemma 3.1,

|u(x, t)− u(z, t)| ≤
∫
M

|H(x, y, t)−H(z, y, t)||h(y)|dy

≤ C
(

sup
M
|h|
)
r(x, z)t−

1
2 .

(ii) By Lemma 3.2,

|u(x, t)− h(x)| ≤
∫
M

H(x, y, t)|h(y)− h(x)|dy

≤ [h]α,M
∫
M

H(x, y, t)rαdy ≤ C[h]α,M t
α
2 .

(iii) Since

u(x, t2) =
∫
M

H(x, y, t2 − t1)u(y, t1)dy,

|u(y, t1)− u(x, t1)| ≤ C
(

sup
M
|h|
)
r(x, y)t−

1
2

1 ,

therefore,

|u(x, t2)− u(x, t1)| ≤ C ′ sup
M
|h|
∫
M

H(x, y, t2 − t1)r(x, y)t−
1
2

1 dy

≤ C
(

sup
M
|h|
)(

t2 − t1
t1

) 1
2

.

(iv) By using that M has polynomial volume growth and the estimate of
H(x, y, t), we can prove (see Appendix)

ut =
∫
M

H(x, y, t)4h(y)dy,
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and ut is continuous on t for t ≥ 0. Thus

u(x, t) = h(x) +
∫ t

0

uτdτ = h(x) +
∫ t

0

∫
M

H(x, y, τ)4h(y)dydτ ,

therefore

|u(x, t)− u(z, t)| ≤ |h(x)− h(z)|+
∫ t

0

∫
M

|H(x, y, τ)−H(z, y, τ)||4h|dydτ

≤ |h(x)− h(z)|+ C ′ sup
M
|4h|

∫ t

0

r(x, z)√
τ

dτ

≤ |h(x)− h(z)|+ C

(
sup
M
|4h|

)
r(x, z)t

1
2 .

4. Short time solutions.

Let M,N be two complete Riemannian manifolds with metrics gijdxidxj,
hαβdu

αduβ, respectively. Suppose h : M → N is a C1 map so that h(M)
is bounded in N , then there exists an open neighborhood N ′ of h(M) with
compact closure so that N ′ can be embedded into Rq isometrically for some
q. If necessary, by choosing a smaller neighborhood, we may assume that
there exists a bounded tubular neighborhood Ñ of N ′ in Rq.

Let Π : Ñ → N ′ be the nearest point projection denoted by Π =
(Π1, . . . ,Πq) = (ΠA)1≤A≤q. By choosing an even smaller N ′, we may as-
sume that Π can be extended smoothly to the whole Rq so that each ΠA is
compactly supported. Hence

ΠA, ΠA
B =

∂ΠA

∂zB
, ΠA

BC =
∂2ΠA

∂zB∂zC
, . . . ,

are bounded, where z = (zA) are the standard coordinates of Rq.

Consider:(
4− ∂

∂t

)
uA = ΠA

BC(u)
∂uB

∂xi
∂uC

∂xj
gij = ΠA

BC(u)∇uB∇uC ,(4.1)

u(x, 0) = h(x).(4.2)

Lemma 4.1. Suppose u(N) lies in N ′, then u satisfies the heat flow for
harmonic maps from M × [0,∞) → N if and only if u satisfies (4.1) and
(4.2).

Proof. See [E-S, p. 140].
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Lemma 4.2. Suppose that M satisfies (a), u is a solution of (4.1) and
(4.2) which is continuous on M × [0, T ) with u(x, 0) ∈ N ′ for all x ∈M . If
u(x, t) ∈ Ñ on M × [0, T ), then u(x, t) ∈ N ′ for all (x, t) ∈M × [0, T ).

Proof. Since M has polynomial volume growth, this lemma follows from
[L-T, Lemma 3.2].

In what follows, we will prove the short time existence for the initial value
problem of (4.1) and (4.2).

Theorem 4.3. Let M be a complete noncompact Riemannian manifold
without boundary and satisfy (a) and (b), N be an arbitrary complete man-
ifold. Given h ∈ C2(M,N) so that h(M) is bounded in N , supM e(h) < ∞
and supM |τ(h)| < ∞. Then there exists T0 > 0 such that (4.1) and (4.2)
has a unique solution on M × [0, T0).

Proof. Set
Λ = sup

Rq,A,B,C,D
(|ΠA

BC |, |ΠA
BCD|).

The hypotheses on h imply that for 1 ≤ A ≤ q,

sup
M
|hA| <∞, sup

M
|∇hA| <∞, sup

M
|4hA| <∞.

For ν = −1, 0, 1, 2, . . . , define

uν : M × [0, 1)→ Rq

as follows:

u−1,A(x, t) = 0;(4.3)

u0,A(x, t) =
∫
M

H(x, y, t)hA(y)dy;(4.4)

for ν ≥ 1,

uν,A(x, t) = −
∫ t

0

∫
M

H(x, y, t− τ)F ν−1,A(y, τ)dydτ + u0,A(x, t).(4.5)

Where, for ν ≥ −1, A = 1, . . . , q,

F ν,A = ΠA
BC(u)∇uν,B∇uν,C .

Obviously, F−1 = 0, u−1 and u0 are well-defined and smooth on M×(0, 1).
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For 0 < t < 1, let

pν(t) = sup
M×(0,t)

(∑
A

|∇uν,A|2
) 1

2

.(4.6)

Clearly, pν(t) is nondecreasing in t, and

sup
M×(0,t)

|F ν,A| ≤ C1(m, q,Λ)p2
ν(t).(4.7)

In order to prove that uν are well-defined, it suffices to show that pν(t) <
∞ for all ν and for all 0 < t < 1.

When ν = 0, by Theorem 3.4(iv),

p0(t) ≤ C2(q)

(
sup
M,A
|∇hA|+ C sup

M,A
|4hA|t 1

2

)
.(4.8)

Hence u1 is well-defined and is smooth on M × (0, 1). Suppose uν is defined,
pν−1(t) <∞ for 0 < t < 1, and uν is smooth on M × (0, 1). Theorem 3.3(ii)
implies that for 0 < t < 1,

sup
M×(0,t)

|∇uν,A| ≤ C3t
1
2 sup
M×(0,t)

|F ν−1,A|+ sup
M×(0,t)

|∇u0,A|

≤ C4t
1
2 p2

ν−1(t) + sup
M×(0,t)

|∇u0,A|.

Hence

pν(t) ≤ C5t
1
2 p2

ν−1(t) + p0(t).(4.9)

By induction hypothesis, we conclude that uν+1 is well-defined and is smooth
on M × (0, t).

Now choose 0 < T1 < 1 such that

C2C5T
1
2

1

(
sup
M,A
|∇hA|+ C sup

M,A
|4hA|

)
≤ 1

4
,(4.10)

then

C5T
1
2

1 p0(t) ≤ 1
4
.(4.11)

If
C5T

1
2

1 pν−1(t) ≤ 1
2
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on (0, T1), (4.9) implies that for 0 < t < T1,

C5T
1
2

1 pν(t) ≤ (C5T
1
2

1 pν−1(t))2 + C5T
1
2

1 p0(t) ≤ 1
2
.

Hence for all ν ≥ 1, on (0, T1),

C5T
1
2

1 pν(t) ≤
1
2
.(4.12)

Thus uν are uniformly bounded on M × (0, T1). Therefore the following
function Xν and Xν are well-defined,

Xν(t) = sup
M

∑
A

|uν,A − uν−1,A|+ sup
M

(∑
A

|∇uν,A −∇uν−1,A|2
) 1

2

,

(4.13)

and, for 0 < t < T1,

Xν(t) = sup
0<τ<t

Xν(τ).(4.14)

Now

F ν,A − F ν−1,A = ΠA
BC(uν)∇uν,B∇uν,C −ΠA

BC(uν−1)∇uν−1,B∇uν−1,C

= (ΠA
BC(uν)−ΠA

BC(uν−1))∇uν,B∇uν,C
+ ΠA

BC(uν−1)(∇uν,B −∇uν−1,B)∇uν,C
+ ΠA

BC(uν−1)∇uν−1,B(∇uν−1,C −∇uν−1,C).

Applying the mean-value theorem to

ΠA
BC(uν)−ΠA

BC(uν−1),

we have

sup
M×(0,t)

|F ν,A − F ν−1,A| ≤ C6Xν(t)(p2
ν(t) + pν(t) + pν−1(t)).

Inequality (4.12) asserts that for 0 < t < T1 < 1,

sup
M×(0,t)

|F ν,A − F ν−1,A| ≤ C7Xν(t).(4.15)

Since

uν+1,A(x, t)− uν,A(x, t) = −
∫ t

0

∫
M

H(x, y, t− τ)(F ν,A − F ν−1,A)dydτ,
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by Theorem 3.3, we have

|uν+1,A(x, t)− uν,A(x, t)| ≤ t sup
M×(0,t)

|F ν,A − F ν−1,A| ≤ C7tXν(t),
(4.16)

and

(4.17) |∇uν+1,A(x, t)−∇uν,A(x, t)|
≤ C8t

1
2 sup
M×(0,t)

|F ν,A − F ν−1,A| ≤ C9t
1
2Xν(t).

Thus

Xν+1(t) ≤ C10t
1
2Xν(t).(4.18)

Choose 0 < T0 < 1 such that C10T
1
2

0 < 1. If 0 < t < T0, by Theorem 3.4(iii),
we conclude that

Xν+1(t) ≤ (C10t
1
2 )νX0(t)

≤ C11(C10T
1
2

0 )ν
(

sup
M,A
|hA|+ sup

M,A
|∇hA|+ C sup

M,A
|4hA|

)
.(4.19)

Hence,
∑∞
ν=1Xν(t) converges uniformly on (0, T0). Thus uν,A and ∇uν,A

converges uniformly on M × (0, T0). Let, for A = 1, 2, . . . , q,

uA = lim
ν→∞u

ν,A.

Then ∇uA exists and ∇uν,A → ∇uA uniformly on M × (0, T0). Thus for all
A,

F ν,A → FA = ΠA
BC(u)∇uB∇uC

uniformly on M × (0, T0). Hence on M × (0, T0), we have

uA(x, t) = −
∫ t

0

∫
M

H(x, y, t− τ)FA(y, τ)dydτ

+
∫
M

H(x, y, t)hA(y)dy.(4.20)

Note that each uν is smooth on M × (0, T0) and satisfies, for A = 1, . . . , q,(
4− ∂

∂t

)
uν,A = F ν−1,A.

By (4.5), (4.7) and (4.12), it is easy to see that F ν and uν are uniformly
bounded on M×(0, T0). By [L-S-U, p. 211 Theorem 11.1], for any compact
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subset Ω ∈ M and 0 < t1 < t2 < T0, there exists C12 > 0 and 0 < µ < 1
independent of ν and A, such that

|∇uν,A(x, t)−∇uν,A(x′, t′)| ≤ C12(r(x, x′)µ + |t− t′|µ2 ),

for all x, x′ ∈ Ω and for all t1 < t, t′ < t2.

Letting ν →∞, we have

|∇uA(x, t)−∇uA(x′, t′)| ≤ C12(r(x, x′)µ + |t− t′|µ2 ).

Hence by (4.20) one can conclude that u(x, t) satisfies (4.1) in M × (0, T0),
and

lim
t→0

uA(x, t) = hA(x).

Obviously, T0 depends only on the geometries of M,N and a neighbor-
hood of h(M) and the bounds of e(h) and τ(h). Furthermore, the en-
ergy density and the image of the solution u is bounded on M × [0, T0)
by a constant depending only on the known quantities mentioned above.
limt→0 u(x, t) = h(x) is uniformly on M and limt→0 e(u)(x, t) = e(h) is uni-
formly on compact subsets.

Uniqueness follows from [L-T, Theorem 3.5] since M has polynomial vol-
ume growth.

5. Long time solutions, harmonic maps.

In this section, we will consider the long time solutions of the heat flow and
the convergence to harmonic maps via mean-value inequalities.

Theorem 5.1. Suppose, under the conditions of Theorem 4.3, RiemN ≤ k
(k ≥ 0). Let T ∗ be the supremum of these T such that (1.1) has a unique
solution u(x, t) on M× [0, T ) and supM×[0,T ) e(u) <∞. Then either T ∗ =∞
or T ∗ <∞ and limT→T∗ supM×[0,T ) e(u) =∞.

Proof. The proof of the Theorem 4.3 implies that T ∗ > 0. Suppose T ∗ <∞
and

sup
M×[0,T∗)

e(u) ≤ s <∞.

For the proof of the theorem, we need only show that the solution of (1.1)
can be extended from T ∗. By [H], we have, on M × [0, T ∗),(

4− ∂

∂t

)
|ut|2 ≥ −2ks|ut|2.
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Hence g(x, t) = exp(−2kst)|ut|2 is a positive subsolution of the heat equation
for functions on M . As in [Lo-T], there exists C1 > 0 depending only on
dimension of M such that for t2 > t1 ≥ 0

2
∫ t2

t1

∫
Bp(R)

|ut|2 ≤ Ep(t1, 2R) +
C1

R2

∫ t2

t1

Ep(τ, 2R),(5.1)

where Ep(τ,R) =
∫
Bp(R) e(u)(·, τ).

Let δ = 1
2

in Theorem 2.2. If T ∗ <∞, by (2.7), for T < T ∗,

sup
Bp(R2 )×[0,T ]

g ≤ 22+βC

R2Vp(R)

∫ T

0

∫
Bp(R)

g + sup
M
|g(·, 0)|.

Since Ep(τ,R) ≤ sVp(R) for τ ≥ 0, by (5.1),

sup
Bp(R2 )×[0,T ]

|ut|2 ≤ 22+βC exp(2ksT )
R2Vp(R)

∫ T

0

∫
Bp(R)

|ut|2 + sup
M
|τ(h)|2

≤ 21+βCs exp(2ksT ∗)
Vp(2R)
Vp(R)

(
1
R2

+
C1T

∗

R4

)
+ sup

M
|τ(h)|2,

≤ C ′(C, β, k, s, A, T ∗)
(

1
R2

+
C1T

∗

R4

)
+ sup

M
|τ(h)|2,

therefore

sup
M×[0,T ]

|ut| = lim
R→∞

sup
Bp(R2 )×[0,T ]

|ut| ≤ sup
M
|τ(h)| <∞.

Thus
lim
T→T∗

|τ(u)|(·, T ) = lim
T→T∗

|ut| ≤ sup
M
|τ(h)| <∞.

This estimate also implies that u(M × [0, T ∗)) is bounded in N , and by the
assumption

lim
T→T∗

e(u)(·, T ) <∞,
thus we can extend u as a unique solution of (1.1) because of Theorem
4.3 and [L-T, Theorem 3.5]. This contradicts the definition of T ∗ and the
theorem follows.

Theorem 5.2. Let M satisfy (a) and (b), RiemN ≤ 0. Suppose (1.1) has
a long-time solution u(x, t) on M × [0,∞). Moreover, suppose

s(t) = sup
M×[0,t)

e(u)(x, t) = O(log t).
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If there exists a point p ∈ M and a sequence tν → ∞ such that sequence
u(p, tν) converges in N , then u(·, tν) converges uniformly on compact subsets
of M to a harmonic map u∞ by passing to a subsequence.

Proof. Choose R2 = 4T , τ = T in (2.5), then σ = R2

4
. Since |ut|2 satisfies

(2.4) on M × [0,∞), by (2.5) and (5.1),

sup
Bp(
√
T )

|ut|2(·, T ) ≤ 22+βC

R2Vp(R)

∫ T

0

∫
Bp(R)

|ut|2

≤ 21+βC

(
1 +

C1

4

)
Vp(2R)s(T )
Vp(R)R2

≤ C ′(C,C1, β, A)
s(T )
T

,

therefore, let T →∞, if s(T ) = O(log T ), we have, on M ,

τ(u∞) = lim
T→∞

sup
M
|ut|(·, T ) = 0.

Hence, the theorem follows.

6. Appendix.

In this appendix, we will use the argument of [Li1], [Li2] to prove the
following proposition:

Proposition. Let M be complete noncompact manifold which satisfies (a)
and (b), f is a C2 function on M and

sup
M
|f | <∞, sup

M
|∇f | <∞, sup

M
|4f | <∞.

Suppose

u(x, t) =
∫
M

H(x, y, t)f(y)dy,

then, for t > 0,

ut(x, t) =
∫
M

H(x, y, t)4f(y)dy.

Proof. By the Green’s identity,∣∣∣∣∣
∫
Bx(R)

4yH(x, y, t)f(y)dy −
∫
Bx(R)

H(x, y, t)4f(y)dy

∣∣∣∣∣
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=

∣∣∣∣∣
∫
∂Bx(R)

∂H

∂νy
(x, y, t)f(y)dy −

∫
∂Bx(R)

H(x, y, t)
∂f

∂νy
(y)dy

∣∣∣∣∣
≤
∫
∂Bx(R)

|∇yH|(x, y, t)f(y)dy +
∫
∂Bx(R)

H(x, y, t)|∇f |(y)dy

≤ sup
M
|f |
∫
∂Bx(R)

|∇yH|(x, y, t)dy + sup
M
|∇f |

∫
∂Bx(R)

H(x, y, t)(y)dy.

(6.1)

For the heat kernel H(x, y, t) of any complete manifold M , we have (see
[C-L-Y], (4.18))∫

M\Bx( 3
4R)

|∇H|2

≤
(∫

M\Bx( 1
2R)

H2

) 1
2
[

64
R2

(∫
M

H2

) 1
2

+ 2
(∫

M

(4H)2

) 1
2
]
.

(6.2)

In terms of the argument of [C-L-Y, p. 1052-1055] and the upper estimate
of the heat kernel (Theorem 2.1(iii)), we can prove∫

M

H2(x, y, t)dy = H(x, x, 2t) ≤ 1
C2Vx(

√
2t)

,(6.3) ∫
M

(4H)2(x, y, t)dy ≤ 2
t2
H(x, x, t) ≤ 4

C2t2Vx(
√
t)
,(6.4)

and ∫
M\Bx( 1

2R)

H2(x, y, t)dy ≤ 1
C2Vx(

√
t)

exp
(
−C4R

2

4t

)
.(6.5)

Substituing (6.3), (6.4) and (6.5) into (6.2), since M has polynomial volume
growth (Theorem 2.1(i)), we can find constants C > 0, δ > 0 such that for
all t > 0,∫

Bx(R)\Bx( 3
4R)

|∇H|2(x, y, t)dy ≤ C2

(
1
R2

+
1
t

)
t−2δ exp

(
−C4R

2

8t

)
.

Then, the Holder’s inequality implies∫
∂Bx(R)

|∇H|(x, y, t)dy ≤
∫
Bx(R)\Bx( 3

4R)

|∇H|(x, y, t)dy

≤ C
(

1
R

+
1√
t

)
t−δV

1
2
x (R) exp

(
−C4R

2

16t

)
.(6.6)
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On the other hand, the upper estimate of the heat kernel implies∫
∂Bx(R)

H(x, y, t)dy ≤ Vx(R)
C2Vx(

√
t)

exp
(
−C4R

2

t

)
.(6.7)

Substituting (6.6), (6.7) into (6.1), thus, let R→∞, we have∣∣∣∣∫
M

4yH(x, y, t)f(y)dy −
∫
M

H(x, y, t)4f(y)dy
∣∣∣∣ = 0.(6.8)

Since∣∣∣∣∫
M

Ht(x, y, t)f(y)dy
∣∣∣∣ =

∣∣∣∣∫
M

4yH(x, y, t)f(y)dy
∣∣∣∣

=
∣∣∣∣∫
M

H(x, y, t)4f(y)dy
∣∣∣∣ ≤ sup

M
|4f | <∞,

therefore

ut =
∫
M

Ht(x, y, t)h(y)dy =
∫
M

4yH(x, y, t)h(y)dy =
∫
M

H(x, y, t)4h(y)dy.
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Note: The paper version derived (6.8) by substituting (6.7) and (6.8) (rather
than (6.6) and (6.7)) into (6.1).


