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ABSTRACT PARABOLIC SYSTEMS AND REGULARIZED
SEMIGROUPS

Quan Zheng and Yongsheng Li

The main purpose of this paper is to obtain the wellposed-
ness of abstract parabolic systems in the sense of Petrovsij and
Shilov under sharper conditions by using regularized semi-
groups. We also consider these systems with time-dependent
coefficients, and give the applications to the corresponding
parabolic systems on many function spaces.

1. Introduction.

Let iAj (1 ≤ j ≤ n) be commuting generators of bounded C0-groups on
a Banach space X, and write A = (A1, . . . , An) and Aµ = Aµ1

1 · · ·Aµnn for
µ = (µ1, . . . , µn) ∈ Nn

0 , where N0 = N∪{0}. In this paper, we consider the
system of differential equations

(1.1) ~u′(t) = (pjk(A))~u(t) (t > 0), ~u(0) = ~u0

on XN , where P (ξ) ≡ (pjk(ξ)) is an N×N matrix of polynomials of ξ ∈ Rn.
We also can write P (ξ) =

∑
|µ|≤m Pµξ

µ, where m ≡ max{degree of pjk} is
the degree of P (ξ), and Pµ ∈MN(C) (the ring of N ×N matrices over C).
Then P (A) ≡ ∑

|µ|≤m PµA
µ with maximal domain is closable on XN (cf.

[4, Theorem 14.1]).
By choosing A = D ≡ −i( ∂

∂x1
, . . . , ∂

∂xn
) one finds that (1.1), in fact, gives

an abstract form of the system of differential equations

(1.2) ~u′(t) = (pjk(D))~u(t) (t > 0), ~u(0) = ~u0

on many function spaces. It is well known that a classical method to treat the
wellposedness of (1.2) is to show P (D) as the generator of a C0-semigroup.
However, many P (D) do not generate a C0-semigroup. An important result
states that when the numerical range of P (ξ) is contained in a left half-
plane, P (D) generates a C0-semigroup on (Lp)N if and only if p = 2. In
particular, the Schrödinger operator i∆ on Lp generates a C0-semigroup if
and only if p = 2 [13]. Another simple example is that the wave equation
on Lp (p 6= 2 and n 6= 1), written as a system on (Lp)n+1, cannot be treated
by C0-semigroups [10].
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Starting from this situation, people recently paid attention to approaching
(1.1) and (1.2) by means of two important generalizations of C0-semigroups,
i.e., integrated and regularized semigroups [2, 3, 4, 10, 11, 12]. More
precisely, Hieber [10] first showed that some elliptic system (1.2) can be
treated by integrated semigroups. The application of integrated semigroups
to hyperbolic systems (1.2) appeared in [10, 11], while deLaubenfels [2] and
Hieber et al [12] applied regularized semigroups to Petrovskij correct sys-
tems (1.1) and (1.2), respectively. Moreover, a Petrovskij correct system
(1.2) with time-dependent coefficients was discussed by the simultaneous so-
lution space (see [3]). However, based on the discussion in [24], it is known
that the regularized semigroup is an appropriate tool for non-elliptic dif-
ferential operators, while the effectiveness of the integrated semigroup is
confined to the elliptic case. One of the reasons is that the resolvent set of
the generator of an integrated semigroup must be nonempty (cf. [15]. It is
known that this is often not the case for a matrix of differential operators,
even for a differential operator.

It is well known that an important subclass of (1.1) is the so-called
parabolic system in the sense of Shilov [9], while a special and degener-
ate case of that is the so-called parabolic and correct system in the sense
of Petrovskij [9], respectively. Corresponding to the parabolic system (1.1)
in the sense of Petrovskij we first show in §2 that P (A) generates an ana-
lytic semigroup. In §3 the parabolic system (1.1) in the sense of Shilov is
dealt with using regularized semigroups. For Petrovskij correct systems we
improve the corresponding results in [2]. The last section is concerned with
time-dependent (1.1). The applications of our results to (1.2) and some con-
crete examples are given at the end of every section. Moreover, our results
generalize the main results in [24] to the matrix case.

Throughout the paper, B(X) will be the space of bounded linear operators
on X, S (resp. C∞c ) the space of rapidly decreasing functions (resp. C∞-
functions with compact support) on Rn, and H(∆θ, X) the set of analytic
functions from ∆θ into X, where ∆θ = {λ ∈ C \ {0}; | arg λ| < θ} with
θ ∈ (0, π/2]. By D(B), R(B), ρ(B), and R(λ,B) (λ ∈ ρ(B)) we denote the
domain, range, resolvent set, and resolvent of the operator B, respectively.
We also denote by B the operator BIN on XN with domain (D(B))N , and
B(A∞) the Fréchet space {B: X → D(A∞) ≡ ∩µ∈Nn

0
D(Aµ); AµB ∈ B(X)

for µ ∈ Nn
0} with the family of seminorms ‖B‖µ ≡ ‖AµB‖.

We now introduce a functional calculus for iAj (1 ≤ j ≤ n). Let F denote
the Fourier transform. If u ∈ FL1, then there exists a unique L1-function
F−1u (i.e., the inverse Fourier transform of u in the distributional sense)
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such that u = F(F−1u). We define u(A) ∈ B(X) by

(1.3) u(A)x =
∫

Rn

(F−1u)(ξ)e−i(ξ,A)x dξ for x ∈ X.

Define MN(FL1) = {(ujk); ujk ∈ FL1}. Similarly, MN(Lp) and so on.
If u = (ujk) ∈ MN(FL1) then u(A) ≡ (ujk(A)) ∈ B(XN). It is known
that MN(FL1) is a (non-commutative) Banach algebra under matrix point-
wise multiplication and addition with norm ‖u‖FL1 ≡ ‖F−1u‖L1 , where
F−1u = (F−1ujk). Furthermore, u 7→ u(A) is an algebra homomorphism
from MN(FL1) into B(XN), and ‖u(A)‖ ≤ M‖u‖FL1 for all u ∈ MN(FL1)
and some M > 0.

The following lemma (cf. [15, 19, 24]) will play an important role in our
proofs.

Lemma 1.1.
(a) Let E = {φ(A)x; φ ∈ S and x ∈ X}. Then E ⊂ D(A∞), E = X,

P (A)|EN = P (A), and φ(A)P (A) ⊆ P (A)φ(A) = (Pφ)(A) for φ ∈ S.
(b) (Bernstein) If n/2 < j ∈ N, then Hj(Rn) ⊂ FL1 and there exists

M > 0 such that

‖u‖FL1 ≤M‖u‖1−n/2jL2

∑
|µ|=j
‖Dµu‖n/2jL2 for u ∈ Hj(Rn).

(c) Let ut ∈ C∞ for t ≥ 0. If there exist constants M , L, a > 0 and
b ≤ 2a

n
− 1 such that |Dkut(ξ)| ≤M(1 + t|k|)|ξ|b|k|−a for |ξ| ≥ L, t ≥ 0,

and k ∈ Nn
0 (|k| ≤ [n

2
] + 1), then there exist M ′ > 0 and ψ ∈ C∞c such

that ut(1− ψ) ∈ FL1 and ‖ut(1− ψ)‖FL1 ≤M ′(1 + tn/2) for t ≥ 0.

Finally, let |A|2 =
∑n
j=1A

2
j and Cα = (1 + |A|2)−α/2 (α ∈ R) as fractional

powers. Then Cα = (1 + | · |2)−α/2(A) ∈ B(X) for α > 0 (see [5]), and
(R(Cα))N ⊆ D(P (A)) for α > m (cf. [15, 24]). Relating to P (A) as the
generator of a Cα-regularized semigroup (see §3 below), we have the following
result of wellposedness of (1.1) (cf. [4, 24]).

Lemma 1.2. Let a ≥ 0, and Mα, ωα be suitable constants depending on α.
(a) If P (A) generates an (exponentially bounded) Cα-regularized semigroup

for every α > a, then for every α > a and ~u0 ∈ (R(Cα+m))N , (1.1) has
a unique solution ~u(t) (i.e., ~u ∈ C([0,∞), XN)∩C1((0,∞), XN)) with
‖~u(t)‖ ≤Mαe

ωαt‖C−α~u0‖ for t ≥ 0.
(b) If P (A) generates an (exponentially bounded) differentiable Cα-regular-

ized semigroup for some α > a, then for every ~u0 ∈ (R(Cα))N , (1.1)
has a unique solution ~u(t) with ‖~u(t)‖ ≤Mαe

ωαt‖C−α~u0‖ for t ≥ 0.
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2. Parabolic P (ξ) in the sense of Petrovskij.

In the sequel, we set Pm(ξ) =
∑
|µ|=m Pµξ

µ (the principal part of P (ξ))
and Λ(P (ξ)) = sup1≤j≤N Reλj(ξ) (the spectral bound of P (ξ)), where λj(ξ)
(1 ≤ j ≤ N) are the eigenvalues of P (ξ). From Friedman [8, p. 171], there
exists a constant M > 0 such that
(2.1)
etΛ(P (ξ)) ≤ ‖etP (ξ)‖ ≤M(1 + t+ t|ξ|m)N−1etΛ(P (ξ)) for ξ ∈ Rn and t ≥ 0.

If Λ(Pm(ξ)) < 0 for ξ ∈ Rn \ {0} then P (ξ) is said to be parabolic
in the sense of Petrovskij [9]. It is known that m is always even for a
parabolic system P (ξ) in the sense of Petrovskij. In particular, the following
characterizations hold.

Lemma 2.1. Let θ = arctan α
β

, where α = − sup|ξ|=1 Λ(Pm(ξ)) and β =
sup|ξ|=1 |Λ(iPm(ξ))|. Then the following statements are equivalent.
(a) P (ξ) is parabolic in the sense of Petrovskij.
(b) There exist constants ω > 0 and ω′ ∈ R such that Λ(P (ξ)) ≤ −ω|ξ|m+

ω′ for ξ ∈ Rn.
(c) There exist constants ω, M > 0 such that ‖eP (ξ)‖ ≤ M exp(−ω|ξ|m)

for ξ ∈ Rn.
(d) For every ε ∈ (0, θ), there exist constants ωε, Mε, Lε > 0 such that

‖etP (ξ)‖ ≤ Mεexp(−ωε|ξ|m Re t) for |ξ| ≥ Lε and t ∈ ∆θ−ε.

Proof. The equivalence of (a) and (b) follows from [8, p. 191]. (d)⇒(c) is
obvious. (c)⇒(b) follows easily from the first inequality in (2.1). It remains
to show (a)⇒(d).

For any ε ∈ (0, θ), choose ωε = (α− β tan(θ − ε))/3. Then ωε > 0. Since
the eigenvalues of Pm(ξ) are all homogeneous, the parabolicity of P (ξ) in the
sense of Petrovskij implies that Λ(Pm(ξ)) ≤ −α|ξ|m and |Λ(iPm(ξ))| ≤ β|ξ|m
for ξ ∈ Rn. It thus follows from the second inequality in (2.1) that

‖ exp(tPm(ξ))‖ ≤ ‖ exp(Pm(ξ) Re t)‖ · ‖ exp(iPm(ξ) Im t)‖
≤M(1 + Re t+ Re t|ξ|m)N−1exp(Λ(Pm(ξ)) Re t)

· (1 + | Im t|+ | Im t||ξ|m)N−1exp(|Λ(iPm(ξ))|| Im t|)
≤M ′

ε(1 + Re t+ Re t|ξ|m)N−1exp(−3ωε|ξ|m Re t)

for ξ ∈ Rn and t ∈ ∆θ−ε. Also, there exists a constant ω > 0 such that

‖tP (ξ)− tPm(ξ)‖ ≤ ω|t||ξ|m−1 ≤ ωε|ξ|m Re t for |ξ| ≥ Lε and t ∈ ∆θ−ε,
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where Lε = ω sec(θ − ε)/ωε. Combining these two estimates yields

‖etP (ξ)‖ ≤ ‖ exp(tPm(ξ))‖ · ‖ exp(tP (ξ)− tPm(ξ))‖
≤M ′

ε(1 + Re t+ Re t|ξ|m)N−1exp(−2ωε|ξ|m Re t)

≤Mε exp(−ωε|ξ|m Re t) for |ξ| ≥ Lε and t ∈ ∆θ−ε.

Therefore the statement (d) holds.

We now can start with the main result of this section as follows.

Theorem 2.2. Let P (ξ) be parabolic in the sense of Petrovskij and θ be de-
fined in Lemma 2.1. Then P (A) generates an analytic semigroup (T (t))t∈∆θ

on XN , which satisfies the following statements.
(a) ‖T (t)‖ ≤ M(1 + tN−1+n/2)eωt for all t ≥ 0 and some M > 0, where

ω = supξ∈RnΛ(P (ξ)).

(b) D(P (A)) ⊆ (R(Cδ))N for δ ∈ (0,m).
(c) T (·) ∈ H(∆θ, (B(A∞))N).

Proof. By induction with respect to |k| (k ∈ Nn
0 ), we have that

(2.2)

Dk(P (ξ)letP (ξ)) =
|k|∑
j=j0

tjQj(ξ)etP (ξ) for ξ ∈ Rn, t ∈ C, and l ∈ N0,

where Qj(ξ) is an N ×N matrix of polynomials of degree≤ m(j + l)− |k|,
and j0 is the least nonnegative integer such that j0 ≥ |k|/m − l. For any
ε ∈ (0, θ), let t ∈ ∆θ−ε and l ∈ N0. Then, by (2.2) and Lemma 2.1(b), there
exists a constant ω′ε > 0 such that

‖Dk(P (ξ)letP (ξ))‖ ≤
{
Mε(Re t)|k|/m−l exp(−ω′ε|ξ|m Re t) for |ξ| ≥ Lε
Mε(Re t)|k|/m−l exp(ω′ε Re t) for |ξ| < Lε

where, and in the sequel, Mε denotes a generic constant depending on ε.
Consequently

‖Dk(P letP )‖L2 ≤Mε(Re t)|k|/m−l(exp(ω′ε Re t) + (Re t)−n/2m).

Thus, by Bernstein’s theorem, P letP ∈MN(FL1) and

(2.3) ‖P letP‖FL1 ≤Mε(Re t)−l exp(2ω′ε Re t) for t ∈ ∆θ−ε and l ∈ N0.

Define T (t) = (etP )(A) for t ∈ ∆θ and T (0) = IN . Then (2.3) (with
l = 0) implies that ‖T (t)‖ ≤ Mε exp(2ω′ε Re t) (t ∈ ∆θ−ε) and T (t + s) =
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T (t)T (s) (t, s ∈ ∆θ). Also, (2.3) (with l = 1) implies that t 7→ etP ∈
H(∆θ,MN(FL1)), and so T (·) ∈ H(∆θ, B(XN)). Since for φ ∈ S
‖T (t)φ(A)− φ(A)‖ ≤Mε|t| exp(2ω′εRe t)‖Pφ‖FL1 → 0 (∆θ−ε 3 t→ 0),

the strong continuity of T (t) (t ∈ ∆θ−ε ∪ {0}) follows from E = X and
the estimate of T (t) (t ∈ ∆θ−ε). Thus (T (t))t∈∆θ

is an analytic semi-
group. To show that P (A) is its generator, let Lλ for large λ be the Laplace
transform of (T (t))t≥0. Then from Lemma 1.1(a) one has P (A)T (t)φ(A) =
T (t)P (A)φ(A). Also, by Fubini’s theorem,

Lλ(λ− P (A))φ(A) =
(∫ ∞

0

e−λtetPdt(λ− P )φ
)

(A) = φ(A).

Thus Lemma 1.1(a) leads to Lλ = R(λ, P (A)) for large λ. The claim now
follows from [5, p. 627].

(a) Let ω1 < ω2 < ω. Then by Lemma 2.1(b) there exist constants
δ, L > 0 such that Λ(P (ξ)) ≤ −2δ|ξ|m +ω1 for |ξ| ≥ L. It thus follows from
(2.1) and (2.2) (with l = 0) that

(2.4) ‖DketP (ξ)‖ ≤
{
Mt|k|/m exp(−δ|ξ|mt+ ω2t) for |ξ| ≥ L and t ≥ 0
M(tj0 + t|k|)(1 + tN−1)eωt for |ξ| < L and t ≥ 0.

From this we obtain that

‖DketP‖L2 ≤M(tj0 + t|k|)(1 + tN−1)eωt +Mt(2|k|−n)/2meω0t for t > 0.

Thus, by Bernstein’s theorem, etP ∈ MN(FL1) and ‖etP‖FL1 ≤ M(1 +
tN−1+n/2)eωt for t > 0, and so (a) follows.

(b) Let w(ξ) = (1 + |ξ|2)δ/2(ω′ − P (ξ))−1 for some ω′ > ω. Since (2.4)
(with k = 0) and the Hille-Yosida theorem lead to ‖ω′ − P (ξ)‖ ≥M |ξ|m for
|ξ| ≥ L, it follows that ‖Dkw(ξ)‖ ≤ M |ξ|−|k|+δ−m for |ξ| ≥ L and ≤ M for
|ξ| < L. Hence w(A) ∈ B(XN). Noting that (a) implies ω′ ∈ ρ(P (A)), one
has D(P (A)) ⊆ (R(Cδ))N .

(c) We first show by induction that D(P (A)
j(µ)

) ⊆ (D(Aµ))N for µ =
(µ1, · · · , µn) ∈ Nn

0 , where j(µ) = [ |µ|
m

] + 1. Let vµ(ξ) = ξµ(ω′ − P (ξ))−j(µ)

for ξ ∈ Rn. As seen above, we have vµ(A) ∈ B(XN). If |µ| = 0, then the
statement is obvious. Let µ̃ = (µ1, · · · , µj + 1, · · · , µn) and, for any x ∈ XN ,
choose EN 3 xk → x. Then, by Lemma 1.1(a), AjAµR(ω′, P (A))j(µ̃)xk →
vµ̃(A)x, Since Aj is closed, the induction assumption yields
AµR(ω′, P (A))j(µ̃)x ∈ (D(Aj))N , and thus the claim follows. Now we de-
duce from the properties of analytic semigroups that

AµT (t) = vµ(A)
j(µ)∑
k=0

(
j(µ)
k

)
(ω′)j(µ)−k(−1)kT (k)(t) for µ ∈ Nn

0 and t ∈ ∆θ
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and therefore (c) is proved.

Let X be some function space on which translations are uniformly bounded
and strongly continuous. Then the above result can be applied to P (D) (i.e.,
take A = D) on X, immediately. In the sequel, we assume that all partial dif-
ferential operators (PDOs) have the maximal domains in the distributional
sense, and so they are closed and densely defined on X. X can be chosen
as, for example, Lp (1 ≤ p <∞), {f ∈ C(Rn); f is bounded and uniformly
continuous}, {f ∈ C(Rn); lim|x|→∞ f(x) = 0}, {f ∈ C(Rn); f(x) exists
as |x| → ∞}, {f ∈ C(Rn); f is 1-periodic}, or {f ∈ C(Rn); f is almost
periodic} with sup-norms. Moreover, let Wα,X (α ≥ 0) be the completion
of S under the norm

‖u‖α,X ≡ ‖u‖X + ‖F−1((1 + | · |2)α/2Fu)‖X for u ∈ S.
When X = Lp (1 < p <∞) and α ∈ N0, Wα,p ≡Wα,X is the usual Sobolev
space.

Corollary 2.3. Let P (ξ) be parabolic in the sense of Petrovskij and θ be de-
fined in Lemma 2.1. Then P (D) generates an analytic semigroup (T (t))t∈∆θ

on XN , which satisfies Theorem 2.2(a) and (Wm+δ,X)N ⊆ D(P (D)) ⊆
(Wm−δ,X)N for any δ ∈ (0,m).

We remark that by Mihlin’s multiplier theorem (see, e.g., [20, p. 96])
D(P (D)) = (Wm,p)N if X = Lp (1 < p < ∞). We also remark that
Theorem 2.2 can be applied to some PDOs with space-dependent coefficients
and defined on bounded domains, such as on Lp([0, 1]n) (1 ≤ p < ∞),
{f ∈ C([0, 1]n); f |xj=0 = f |xj=1 = 0}, or {f ∈ C([0, 1]n); f |xj=0 = f |xj=1}.
For details we refer to [15, 24].

Example 2.4. Consider the following equation

(2.5) utt − 2a∆ut − b∆u+ c∆2u = 0

where a, b, c are positive constants. Then we can reduce it into the first
order system associated with the matrix of polynomials

P (ξ) =

(
0 −|ξ|2

b+ c|ξ|2 −2a|ξ|2
)
.

Since its principal part, i.e., P2(ξ) has eigenvalues (−a±√a2 − c)|ξ|2, it fol-
lows from Corollary 2.3 that P (D) generates an analytic semigroup (T (t))t∈∆θ

on X2, where

θ =

{
π/2 for a2 ≥ c
arcsin(a/

√
c) for a2 < c.
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Moreover, noting that −a|ξ|2 ±√a2|ξ|4 − b|ξ|2 − c|ξ|4 are the eigenvalues of
P (ξ) one has that ‖T (t)‖ ≤M(1 + t1+nX ) for t ≥ 0.

3. Parabolic P (ξ) in the sense of Shilov.

This section is concerned with the parabolic P (A) generating a regularized
semigroup. Let r ∈ (0,m], P (ξ) is said to be r-parabolic in the sense of Shilov
[9] if there exist constants ω > 0 and ω′ ∈ R such that Λ(P (ξ)) ≤ −ω|ξ|r+ω′
for ξ ∈ Rn. In particular, P (ξ) is said to be Petrovskij correct [9] if r = 0,
i.e., supξ∈Rn Λ(P (ξ)) <∞. By Lemma 2.1, P (ξ) is parabolic in the sense of
Petrovskij if and only if it is m-parabolic in the sense of Shilov.

The definitions of (exponentially bounded) regularized semigroups can be
given by using Laplace transforms [4, 23]. Let C ∈ B(X) be injective. An
exponentially bounded and strongly continuous family (T (t))t≥0 ⊆ B(X)
is called a C-regularized semigroup generated by a linear operator B if
C−1BC = B, λ − B is injective (for large λ ∈ R), R(C) ⊆ R(λ − B),
and (λ − B)−1C is the Laplace transform of (T (t))t≥0. If, in addition,
T (·) ∈ C([0,∞), B(X)) ∩ C∞((0,∞), B(X)) then (T (t))t≥0 is said to be
differentiable.

Theorem 3.1. Let P (ξ) be r-parabolic in the sense of Shilov for some
r ∈ (0,m), and α > (m − r)(N − 1 + n/2). Then P (A) generates a dif-
ferentiable Cα-regularized semigroup (T (t))t≥0 on XN , which satisfies the
following statements.
(a) ‖T (l)(t)‖ ≤ MM l

0((l!t−l)m/r + tN−1+n/2)eωt for t ≥ 0 and l ∈ N0,
where M and M0 are constants independent of t and l, and ω =
supξ∈Rn Λ(P (ξ)).

(b) D(P (A)) ⊆ (R(Cδ))N , where δ = 0 if r ≤ nm
n+2

and 0 < δ < r − n(m−
r)/2 if r > nm

n+2
.

(c) T (·) ∈ C∞((0,∞), (B(A∞))N).

Proof. By our assumption on P (ξ), for ω′′ < ω there exist constants ω′,
L > 0 such that

(3.1) Λ(P (ξ)) ≤ −2ω′|ξ|r + ω′′ for |ξ| ≥ L.

Let |k| ≤ [n/2] + 1. Then, by induction, there exists a constant M1 ≥ 0 such
that

(3.2) ‖DkP (ξ)l‖ ≤M l
1|ξ|ml−|k| for |ξ| ≥ L and l ∈ N.
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From (2.1) and (3.1) we have that

‖DketP (ξ)‖ ≤M
|k|∑
j=0

tj|ξ|mj−|k|(1 + t+ t|ξ|m)N−1 exp(−2ω′|ξ|rt+ ω′′t)

≤M |ξ|(m−r−1)|k|+(m−r)(N−1) exp(−ω′|ξ|rt+ ωt)(3.3)

for |ξ| ≥ L and t ≥ 0, where, and in the sequel, M denotes a generic constant
independent of l, t and ξ. Set ut = (1+ | · |2)−α/2etP for t ≥ 0. It then follows
from (3.2), (3.3), and Leibniz’s formula that

‖Dk(P (ξ)lut(ξ))‖ ≤MM l
1|ξ|(m−r−1)|k|+(m−r)(N−1)+lm−α exp(−ω′|ξ|rt+ ωt)

≤MM l
2(l!t−l)m/r|ξ|(m−r−1)|k|+(m−r)(N−1)−αeωt

for |ξ| ≥ L, t > 0 and l ∈ N0, where M2 = M1(rω′/m)−m/r. Write P lut =
(ul,tij ), then we obtain by Lemma 1.1(c) that ul,tij (1 − ψij) ∈ FL1 for some
ψij ∈ C∞c , and

(3.4) ‖ul,tij (1− ψij)‖FL1 ≤MM l
2(l!t−l)m/reωt for t > 0 and l ∈ N0.

On the other hand, let K > 0 such that suppψij ⊂ {ξ ∈ Rn; |ξ| ≤ K} for
1 ≤ i, j ≤ N . Since an induction implies that

(3.5) ‖DkP (ξ)l‖ ≤M l
3 for |ξ| ≤ K and l ∈ N,

it follows from (2.2) and (2.1) that

‖Dk(P (ξ)lut(ξ))‖ ≤MM l
3(1 + tN−1+|k|)eωt for |ξ| ≤ K, t ≥ 0 and l ∈ N0.

Thus Leibniz’s formula and Bernstein’s theorem lead to ul,tij ψij ∈ FL1 and

(3.6) ‖ul,tij ψij‖FL1 ≤MM l
3(1 + tN−1+|k|)eωt for t ≥ 0 and l ∈ N0.

Combining (3.4) and (3.6) one finds that P lut ∈MN(FL1) and

(3.7) ‖P lut‖FL1 ≤MM l
0((l!t−l)m/r + tN−1+n/2)eωt for t > 0 and l ∈ N0,

where M0 = 2 max(M2,M3).
Define T (t) = ut(A) for t ≥ 0. Here we note that when l = 0, (3.4) is

yet true for t = 0. Furthermore, observing carefully the proof of (3.7) and
using Lebesgue’s dominated convergence theorem, one finds that ut (t ≥ 0)
is continuous in the norm ‖·‖FL1 , and so T (·) ∈ C([0,∞), B(X)). Obviously,
(3.7) implies (a) and T (·) ∈ C∞((0,∞), B(X)), while C−1

α P (A)Cα = P (A)
can be deduced from Lemma 1.1(a). The remainder of the proof may be
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carried out by modifying the corresponding parts of the proof of Theorem
2.2.

We now turn to a stronger condition on P (ξ). To this end, put

Λ̃(P ) = sup{Re(Py, y); y ∈ RN and ‖y‖ = 1} for P ∈MN(C),

where (·, ·) is the inner product in CN and ‖y‖ = (y, y)1/2. Note that we also
can write Λ̃(P ) = sup{Re z; z ∈ n. r.(P )}, where n.r.(P ) is the numerical
range of P .

Theorem 3.2. Assume there exist constants r ∈ (0,m), ω′ > 0 and ω′′ ∈ R
such that

(3.8) Λ̃(P (ξ)) ≤ −ω′|ξ|r + ω′′ for ξ ∈ Rn.

Let α > n(m − r)/2. Then P (A) generates a differentiable Cα-regularized
semigroup (T (t))t≥0 on XN satisfying

‖T (l)(t)‖ ≤MM l
0((l!t−l)m/r + tn/2)eωt for t ≥ 0 and l ∈ N0,

where M and M0 are constants independent of t and l, and ω =
supξ∈Rn Λ̃(P (ξ)).

Proof. By (3.8) there exist constants δ, L > 0 such that Λ̃(P (ξ)) ≤ −δ|ξ|r+ω
for |ξ| ≥ L. Thus the Lumer-Phillips theorem implies that

(3.9) ‖etP (ξ)‖ ≤
{

exp{−2ω1|ξ|rt+ ωt} for |ξ| ≥ L and t ≥ 0
eωt for |ξ| ≤ K and t ≥ 0,

where K > 0 is chosen as in the proof of Theorem 3.1. Set ut = (1+
| · |2)−α/2etP for t ≥ 0. Then combining (2.2), (3.2), (3.5) and (3.9) yields
that

‖Dk(P (ξ)lut(ξ))‖ ≤
{
MM l

2(l!t−l)m/r|ξ|(m−r−1)|k|−αeωt for |ξ| ≥ L
MM l

3(1 + t|k|)eωt for |ξ| ≤ K,
where t > 0 and l ∈ N0. Now, the remainder of the proof may be copied
from that of the proof of Theorem 3.1.

From the proof of Theorem 3.1 and 3.2 one finds that in the case r = 0
the following result holds, which sharpens Theorem 3.1 and 4.2 in [2].

Theorem 3.3.
(a) Let ω ≡ supξ∈RnΛ(P (ξ)) < ∞ and α > m(N − 1 + n/2). Then

P (A) generates a Cα-regularized semigroup (T (t))t≥0 on XN satisfy-
ing T (·) ∈ C([0,∞), (B(X))N) and ‖T (t)‖ ≤ M(1 + tN−1+n/2)eωt for
t ≥ 0.
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(b) Let ω ≡ supξ∈Rn Λ̃(P (ξ)) <∞ and α > nm/2. Then P (A) generates a
Cα-regularized semigroup (T (t))t≥0 on XN satisfying T (·) ∈ C([0,∞),
(B(X))N) and ‖T (t)‖ ≤M(1 + tn/2)eωt for t ≥ 0.

Let X be chosen as in the end of Section 2, and define

nX

{
= n| 1

2
− 1

p
| if X = Lp (1 < p <∞)

> n/2 if X = L1 or the space of continuous functions.

Then the following holds.

Corollary 3.4.
(a) Let P (ξ) be r-parabolic in the sense of Shilov for some r ∈ (0,m)

(resp. satisfy (3.8)). Then P (D) generates a differentiable R(1,∆)α-
regularized semigroup on XN , where α = (m−r)(N −1+nX)/2 (resp.
= nX(m− r)/2).

(b) Let ω < ∞, where ω is defined in Theorem 3.3(a) (resp. (b)). Then
P (D) generates a norm-continuous, R(1,∆)α-regularized semigroup on
XN , where α = m(N − 1 + nX)/2 (resp. = mnX/2). In particular,
when X = L2 we can choose α = m(N − 1)/2 (resp. = 0).

When X is a space of continuous functions or L1, Corollary 3.4 follows
from Theorem 3.1-3.3, immediately. When X = Lp (1 < p <∞), Corollary
3.4 can be deduced by modifying the proofs of Theorem 3.1-3.3. The main
points are using the Riesz-Thorin convexity theorem and Miyachi’s multiplier
theorem G in [17] and noting u(D)φ = F−1(uFφ) for u ∈ FL1 and φ ∈ S.
We refer to [11, 24] for the details. When X = L2, the result (with α =
m(N−1)/2) was shown in [12], while the result (with α = 0) can be shown by
modifying its proof (cf. the proof of Theorem 3.2). We remark that Corollary
3.4(b) is essentially due to [11, 12]. Moreover, when X = {f ∈ C(Rn); f is
bounded} or L∞, one can show that Corollary 3.4 is still true for nX > n/2
(cf. [16]).

Example 3.5. (a) Consider the following linear system (cf. [1])
ut = 2auxx + bvx − cvxxx
vt = ux

u(0) = u0, v(0) = v0

where a, b, c are positive constants. The corresponding matrix of polyno-
mials is

P (ξ) =

(
−2aξ2 ibξ + icξ3

iξ 0

)
.
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By Theorem 4.14(e) in [7] P (ξ) is not the generator of a strongly contin-
uous semigroup on (L1(R))2. Since the eigenvalues of P (ξ) are −aξ2 ±√
a2ξ4 − bξ2 − cξ4, P (ξ) is 2-parabolic in the sense of Shilov. It thus fol-

lows from Corollary 3.4(a) that P (D) generates a differentiable R(1,∆)α-
regularized semigroup on (L1(R))2, where α > 3/4.

(b) We now reduce (2.5) with c = 0 (cf. [2]) into the first order system
(1.2) with

P (ξ) =

(
0 1

−b|ξ|2 −2a|ξ|2
)
.

Since the eigenvalues of P (ξ) are −a|ξ|2±√a2|ξ|4 − b|ξ|2, P (ξ) is Petrovskij
correct and satisfies that Λ(P (ξ)) ≤ 0 for ξ ∈ Rn. Thus Corollary 3.4(b)
implies that P (D) generates a norm-continuous, R(1,∆)α-regularized semi-
group on X2, where α = 1+nX . Particularly, in the case n = 1 we can choose
α > 3/2, so that we obtain an improvement of the result in [2, Example 4.5],
in which α > 7/4 is required.

Example 3.6. Consider the higher order Cauchy problem

(3.10)

{
u(N)(t) =

∑N
k=1 pk(A)u(k−1)(t) for t > 0

u(k−1)(0) = uk for 1 ≤ k ≤ N

on X, where pk(ξ) (1 ≤ k ≤ N) are polynomials of ξ ∈ Rn. Let Λ(ξ) =
sup1≤j≤N Reλj(ξ), where λj(ξ) (1 ≤ j ≤ N) are the roots of the character-
istic equation λN =

∑N
k=1 pk(ξ)λ

k−1. Then (3.10) is said to be r-parabolic
in the sense of Shilov [7, p. 218] if there exist constants ω > 0 and ω′ ∈ R
such that Λ(ξ) ≤ −ω|ξ|r + ω′ for ξ ∈ Rn. Write (3.10) as the system (1.1),
in which

~u(0) =

 u1

...
uN

 and P (ξ) =



0 I 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . 0

0 · · · · · · 0 I
p1(ξ) · · · · · · · · · pN(ξ)


.

Noting that

det(λ− P (ξ)) = λN −
N∑
k=1

pk(ξ)λk−1,

the r-parabolicity of (3.10) in the sense of Shilov is equivalent to that of
P (ξ). If (3.10) is r-parabolic in the sense of Shilov, then Theorem 3.1 and
Lemma 1.2 imply that (3.10) has a unique solution u ∈ CN−1([0,∞), X) ∩
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CN((0,∞), X) for every ~u0 ∈ (R(Cα))N , where α > (m − r)(N − 1 + n/2)
and m = max{degree of pk}. From this (2.5) has a unique solution u ∈
C1([0,∞), X) ∩ C2((0,∞), X) for every initial value pair (u(0, ·), ut(0, ·)) ∈
(Wα,X)2, where α > 2 + n. For general higher order Cauchy problems, we
refer to, e.g., [18, 22].

4. Systems with time-dependent coefficients.

In this section we consider P (t, ξ) ≡ ∑
|µ|≤m Pµ(t)ξµ, where Pµ ∈

C([0, T ],MN(C)) for |µ| ≤ m. Let Σ, Σ̃ be some convex neighborhoods
of [0, T ] in C. Then we write T∆ = {(t, s) ∈ R2; 0 ≤ s < t ≤ T} and
Σθ = {(t, s) ∈ Σ2; t 6= s, | arg(t − s)| < θ}, where θ ∈ (0, π/2], and denote
by T∆ (resp. Σ) the closure of T∆ (resp. Σ). Moreover, Dt = ∂/∂t.

Let C ∈ B(X) be injective. A two parameter family U(t, s) ∈ B(X),
(t, s) ∈ T∆, is called a C-regularized evolution system if U(t, r)U(r, s) =
U(t, s)C for 0 ≤ s ≤ r ≤ t ≤ T , U(t, t) = C for 0 ≤ t ≤ T , and U(·, ·)x ∈
C(T∆, X) for x ∈ X. In particular, an I-regularized evolution system is
called an evolution system.

Theorem 4.1. Let P (t, ξ) be parabolic in the sense of Petrovskij for every
t ∈ [0, T ]. Then there exists a unique evolution system (U(t, s))(t,s)∈T∆

on
XN such that
(a) U(·, ·) ∈ C1(T∆, (B(A∞))N), DtU(t, s) = P (t, A)U(t, s) and

DsU(t, s) = −P (s,A)U(t, s) for (t, s) ∈ T∆.
(b) Pµ ∈Cj([0, T ],MN(C)) (|µ| ≤ m) for some j ∈ N implies U(·, ·) ∈

Cj+1(T∆, (B(A∞))N). In particular Pµ ∈C∞([0, T ],MN(C)) (|µ| ≤ m)
implies U(·, ·) ∈ C∞(T∆, (B(A∞))N).

(c) Pµ ∈H(Σ̃,MN(C)) (|µ| ≤m) for some Σ̃ implies U(·, ·)∈
H(Σθ, (B(A∞))N) for some Σθ.

Proof. Since our assumptions on P (t, ξ) imply that sup{Λ(P (t, ξ)); ξ ∈
Rn, t ∈ [0, T ]} < ∞ and that there exist constants δ, L > 0 such that
Λ(P (t, ξ)) ≤ −δ|ξ|m for |ξ| ≥ L and t ∈ [0, T ], the same argument as in the
proof of Theorem 2.2 leads to vµt,s ∈ FL1 and

(4.1) ‖vµt,s‖FL1 ≤M(t− s)−|µ|/m for (t, s) ∈ T∆,

where vµt,s(ξ) = ξµut,s(ξ) (µ ∈ Nn
0 ) and ut,s(ξ) = exp{∫ ts P (τ, ξ)dτ}. Define

U(t, s) = ut,s(A) for (t, s) ∈ T∆ and U(t, t) = I for t ∈ [0, T ]. It easily follows
from the properties of our functional calculus and (4.1) with |µ| = 0 that
(U(t, s))(t,s)∈T∆

is an evolution system on XN , while the uniqueness follows
from (a).
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(a) As shown in the proof of Theorem 2.2(b), one can deduce from (4.1)
that AµU(t, s) = vµt,s(A) ∈ C(T∆, B(XN)). Similarly, from Dtv

µ
t,s =

P (t, ·)vµt,s andDsv
µ
t,s = −P (s, ·)vµt,s for (t, s) ∈ T∆ one has thatDtA

µU(t, s) =
P (t, A)AµU(t, s) ∈ C(T∆, B(XN)) and DsA

µU(t, s) = −P (s,A)AµU(t, s) ∈
C(T∆, B(XN)), respectively. Therefore we have the claim.

(b) We will show (b) by induction on j ∈ N0. When j = 0, the statement
has been showed in (a). Assume the statement is true for k ≤ j. Then for
any j1, j2 ∈ N0 with j1 + j2 = j + 1, it follows from the first equation in (a)
and our assumptions that

Dj1+1
t Dj2

s U(t, s)

=
∑

k1+k2=j1

(
j1
k1

)
Dk1
t P (t, A)Dk2

t D
j2
s U(t, s) ∈ C(T∆, (B(A∞))N).

Similarly Dj1
t D

j2+1
s U(t, s) ∈ C(T∆, (B(A∞))N), and so U(·, ·) ∈

Cj+2(T∆, (B(A∞))N).
(c) By the assumptions on P (t, ξ) we have sup{Λ(P (t, ξ)); ξ ∈ Rn, t ∈

Σ} < ∞ for some Σ with Σ ⊆ Σ̃. Then it follows from Theorem 2.2 that
for every fixed s ∈ Σ, P (s,A) generates an analytic semigroup (T (t, s))t∈∆θ

satisfying

(4.2) ‖T (t, s)‖ ≤Meω|t| for t ∈ ∆θ and s ∈ Σ,

where constants ω and θ ∈ (0, π/2] can be chosen to be independent of s
(see the proof of Theorem 2.2).

On the other hand, set vµt (ξ) = ξµ(ω′−P (t, ξ))−j(µ) for t ∈ Σ and µ ∈ Nn
0 ,

where ω′ > ω and j(µ) = [ |µ|
m

] + 1. Then a direct computation yields that
t 7→ vµt ∈ H(Σ,MN(FL1)). Thus, as proved in Theorem 2.2(c), we have

(4.3) AµR(ω′, P (·, A))j(µ) ∈ H(Σ, B(XN)) for µ ∈ Nn
0 .

In particular, R(ω′, P (·, A)) ∈ H(Σ, B(XN)). It now follows from this,
(4.2), and [14, Theorem 1] (note also [21, Theorem 5.7.2]) that U(·, ·) ∈
H(Σθ, B(XN)). Combining (4.3) with this we find U(·, ·) ∈
H(Σθ, (B(A∞))N).

The subsequent theorem can be showed by combining the proofs of The-
orem 3.1, 3.2 and 4.1.

Theorem 4.2. Assume there exist constants δ > 0, ω ∈ R and r ∈ (0,m)
such that Λ(P (t, ξ)) (resp. Λ̃(P (t, ξ))) ≤ −δ|ξ|r+ω for ξ ∈ Rn and t ∈ [0, T ].
Let α > (m − r)(N − 1 + n/2) (resp. > n(m − r)/2). Then there exists a
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unique Cα-regularized evolution system (U(t, s))(t,s)∈T∆
on XN such that the

conclusions (a) and (b) of Theorem 4.1 are still true.

Corresponding to Theorem 3.3 we have the following theorem, in which
the numerical range part is related to an result in [4, Example 31.4].

Theorem 4.3. Let sup{Λ(P (t, ξ)) (resp. Λ̃(P (t, ξ))); ξ ∈ Rn and t ∈
[0, T ]} < ∞ and α > m(N − 1 + n/2) (resp. > nm/2). Then there exists
a unique Cα-regularized evolution system (U(t, s))(t,s)∈T∆

on XN such that
U(t, s) : (R(Cm))N → (R(Cβ))N for some β > m, U(·, ·)x ∈ C1(T∆, X

N),
DtU(t, s)x = P (t, A)U(t, s)x and DsU(t, s)x = −P (s,A)U(t, s)x for x ∈
(R(Cm))N and (t, s) ∈ T∆.

Proof. As seen in the proof of Theorem 3.1 (resp. 3.2), we have that

uαt,s ≡ (1 + | · |2)−α/2 exp
{∫ t

s

P (τ, ·)dτ
}
∈MN(FL1) for (t, s) ∈ T∆.

It then is easy to check that (U(t, s))(t,s)∈T∆
is a C-regularized evolution

system on XN , where U(t, s) = ut,s(A) for (t, s) ∈ T∆.
On the other hand, choose m < β < m + α −m(N − 1 + n/2) (resp. <

m+α−mn/2). Then δ ≡ m+α−β > m(N−1+n/2) (resp. > mn/2). It thus
follows from U(t, s)Cm = Cβu

δ
t,s(A) that U(t, s) : (R(Cm))N → (R(Cβ))N .

Also, noting R(Cγ) ⊂ D(Aµ) for |µ| < γ, one has that U(t, s) : (R(Cm))N →
D(P (t, A)) for (t, s) ∈ T∆. The desired equations now follow from this.
Finally, the uniqueness of (U(t, s))(t,s)∈T∆

can be proved by the standard
method (cf. the proof of [15, Corollary 5.4]).

We now may apply Theorem 4.1-4.2 to the time-dependent system

(4.4)

{
~ut(t, x) = P (t,D)~u(t, x) for x ∈ Rn and 0 < t ≤ T
~u(0, x) = ~u0(x) for x ∈ Rn,

on some function space X, for example, one of the spaces listed at the end
of Section 2.

Corollary 4.4. Assume there exist constants δ > 0, ω ∈ R and r ∈ [0,m]
such that Λ(P (t, ξ)) (resp. Λ̃(P (t, ξ))) ≤ −δ|ξ|r+ω for ξ ∈ Rn and t ∈ [0, T ].
Then (4.4) has a unique solution ~u(t, x) for every ~u0 ∈ (Wα,X)N , where

α =

{
(m− r)(N − 1 + nX) (resp. nX(m− r)) if r ∈ (0,m]
m(N + nX) (resp. m(1 + nX)) if r = 0.
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Here we note that Miklin’s multiplier theorem implies (Wm,p)N ⊆
D(P (t,D)) for t ∈ [0, T ] and 1 < p <∞.

Example 4.5. We consider the iterated evolution equation

(4.5)

{∏N
j=1(Dt −∆− ipj(t,D))u(t, x) = 0 for x ∈ Rn and 0 < t ≤ T

Dj−1
t u(0, x) = uj(x) for x ∈ Rn and 1 ≤ j ≤ N

on Lp (1 < p < ∞), where pj(t, ξ) =
∑
|µ|≤mj pjµ(t)ξµ and pjµ(·) ∈

C([0, T ],R) for 1 ≤ j ≤ N . Then the roots of the characteristic equa-
tion of (4.5) are λj(t, ξ) = −|ξ|2 + ipj(t, ξ), and so Reλj(t, ξ) = −|ξ|2
for t ∈ [0, T ], ξ ∈ Rn and 1 ≤ j ≤ N . The same way as in Exam-
ple 3.6 and Corollary 4.4 yield now that (4.5) has a unique solution u ∈
CN−1([0, T ], Lp) ∩ CN((0, T ], Lp) for every (u1, · · · , uN) ∈ (Wα,p)N , where
α = (N − 1 + n| 1

2
− 1

p
|)(∑N

j=1 max(2,mj)− 2).

By Corollary 4.4 we easily generalize Example 3.6 to the case that the
higher order Cauchy problem (3.10) has time-dependent cpefficients.
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