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ON CONSTANT MEAN CURVATURE SURFACES WITH
PERIODIC METRIC

J. Dorfmeister and G. Haak

We investigate CMC-surfaces with periodic metric in a
dressing orbit of the cylinder. It is shown, that such surfaces
are always of finite type. Using the periodicity conditions
for the extended frame of a CMC-surface, we develop an al-
ternative approach to the classification of CMC-tori given by
Pinkall and Sterling.

1. Introduction.

In recent years two independent approaches to the construction of CMC-
immersions in R3 were developed. One of them, using finite type solutions of
the sinh-Gordon equation, leads to the classification of CMC-tori by Pinkall
and Sterling [20].

While this approach allowed A. Bobenko [1] to describe CMC-tori explic-
itly in terms of theta functions, it turned out not to be easily adaptable to
the more general situation of CMC-surfaces with umbilics.

The class of CMC-surfaces with umbilics contains the CMC-surfaces of
higher genus, whose existence was proved by N. Kapouleas for arbitrary
genus [17, 16]. Therefore, it proved to be necessary to find a more general
description of CMC-immersions.

Another approach to CMC-surfaces was developed by F. Pedit, H. Wu
and one of the authors (J.D.). It is commonly called the DPW method.
It gives a description of all immersed CMC-surfaces in R3 with or without
umbilics. More specifically, it allows the construction of CMC-immersions
from a meromorphic and a holomorphic function, for which reason it can
be called a Weierstraß type representation of CMC-immersions. These func-
tions, one of which is the coefficient of the Hopf differential of the surface to
be constructed, are only subject to some simple restrictions [3].

The main problem with the DPW method as opposed to the Weierstraß
representation for minimal surfaces is the fact, that in spite of the simplicity
of the initial data, it is not easy to extract further geometric information
out of these data. For one point, it turns out to be very hard to impose
restrictions on the symmetries of the surface in R3 or on the Fuchsian or
elementary group of the underlying Riemann surface. One of the cases where
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this would be necessary is the case of compact surfaces. In fact, it was
not even clear how to reproduce the results of Pinkall, Sterling [20] and
Bobenko [1] with the DPW method.

In this paper we will solve this problem and reproduce the classification
of CMC-tori using extended frames without referring to the metric, i.e., the
sinh-Gordon equation, explicitly. This result will be proved in a more general
framework, which was developed in [4] by the authors for the investigation
of CMC-surfaces with symmetries in R3. Here we will actually derive a
classification of all finite type surfaces with periodic metric, i.e., surfaces
whose metric is a finite type solution of the sinh-Gordon equation which is
invariant under a group of translations in C. This classification is of course
also implicit in [20].

But first, let us define more precisely, what we mean by a CMC-surface
with periodic metric. Here we follow [4].

1.2. Let Ψ : C→ R3 be a conformal CMC-immersion of the complex plane
into R3. We further set OAff(R3) to be the group of proper (i.e., orientation
preserving) Euclidean motions in R3.

Definition. Let Ψ : C → R3 be defined as above. Then we define the
following subset Sym(Ψ) of C: A complex constant q is in Sym(Ψ), iff there
exists a proper Euclidean motion Tq ∈ OAff(R3), s.t.

Ψ(z + q) = Tq(Ψ(z)) for all z ∈ C.(1.2.1)

If Sym(Ψ) 6= {0}, then we say that Ψ is a surface with periodic metric.
We further define the subset Per(Ψ) of Sym(Ψ) by

Per(Ψ) = {q ∈ C|Ψ(z + q) = Ψ(z), for all z ∈ C}.(1.2.2)

If Per(Ψ) 6= {0}, then we say that Ψ is a periodic surface.
From time to time we will also identify the elements of Sym(Ψ) and Per(Ψ)

with the corresponding translations, i.e., we will identify Sym(Ψ) and Per(Ψ)
with subgroups of AutC, the set of biholomorphic automorphisms of C.

For the investigation of translational symmetries, it is of course enough
to consider only those Riemannian surfaces whose universal cover is the
whole complex plane. Therefore, we will not introduce the more complex
notation of [4]. We collect here some facts about the groups Sym(Ψ) and
Per(Ψ) which follow from results in [4]. For details and the definition of the
associated family in this context see [4, Sect. 2.5].

Theorem. Let (C,Ψ) be a conformal CMC-immersion. Then the following
holds:
(1) If Sym(Ψ) is nondiscrete, then Ψ(C) is in the associated family of a

Delaunay surface.
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(2) If Sym(Ψ) is discrete and has a nonzero element, then its elements
form a lattice in C with one or two generators.

(3) Per(Ψ) is always discrete and, if nontrivial, forms a lattice in C with
one or two generators.

(4) If Per(Ψ) 6= {0}, then there exists a Riemannian surface M with uni-
versal cover π : C → M and a CMC-immersion Φ : M → R3, s.t.
Γ = Per(Ψ) is the elementary group of M and Ψ = Φ ◦ π.

(5) In particular, if Per(Ψ) forms a lattice with two generators, then Ψ(C)
is a CMC-torus.

The paper starts in Section 2 with a short description of the DPW method
for later comparison with other formulations. We will also give the trans-
formation properties of an extended frame under a translation in Sym(Ψ)
as they were derived in [4, Sec. 3.4]. In this section we will work with loop
groups on arbitrary circles Cr, 0 < r < 1, which allows for a more general
definition of the dressing action (see also [2, 5]).

In Chapter 3 we consider surfaces obtained by r-dressing [7, 2] from the
standard cylinder:

h+(λ)e(λ−1z−λz)A = F (z, z, λ)p+(z, z, λ).

Here A =

(
0 1
1 0

)
and F is the (unitary) frame of the surface, while p+ and

h+, in a Fourier expansion, does not ontain any negative powers of λ. By a
result of [7] (see also [2]) all CMC-tori can be obtained this way. The main
result of this chapter considers translations z 7→ z+q and gives necessary and
sufficient conditions on h+ such that the frame F at z+ q is a z-independent
rotation of F at z for all z ∈ C (Theorem 3.7, Theorem 3.8). This is
equivalent with the metric of the surface being periodic with period q. As
a consequence, in Theorem 3.9 we give necessary and sufficient conditions,
that a CMC-surface, obtained by r-dressing of the standard cylinder by h+,
admits the translation z 7→ z + q in its fundamental group. This describes
all topological cylinders obtained by r-dressing the standard cylinder.

The results of Chapter 3 are phrased in terms of certain even rational func-
tions a2(λ2), b2(λ2), c2(λ2) and meromorphic functions α, β2 on C \ {0}. In
Chapter 4 we consider the hyperelliptic surface C with branchpoints exactly
at the zeroes and poles of odd order of a2 and a natural two-fold covering
C′ of C. It turns out that all functions involved in the r-dressing, and a
priori only defined on the disk of radius r around λ = 0, can be extended
holomorphically to the hyperelliptic surface C or at least to the hyperellip-
tic surface C′. As an application of this extension we show (Theorem 4.9),
that every CMC-surface with periodic metric in the r-dressing orbit of the
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standard cylinder is of finite type (for a definition of “finite type” in this
framework see [2, 7, 20]).

In Chapter 5 we start from a hyperelliptic surface C and define α, β2, a2, b2,
c2 in a natural way, thus producing a2 with only simple poles. In this case,
which is generic for CMC-tori, we reproduce the dressing matrix and thus
are able to describe (generically) all CMC-tori in the r-dressing orbit of the
cylinder (Section 5.8). If g is the genus of C, then our construction yields for
every CMC-torus in the r-dressing orbit of the cylinder naturally a g − 1-
parameter family of tori. This fits well to the purely algebro-geometric
construction of such families of tori as given in [1, 9, 15].

It would be interesting to expand our construction in Chapter 5 to the
“non-generic” case, i.e., to the case where a2 does not only have simple poles
and zeroes of odd order.

2. The DPW method.

Let us recall for the reader’s convenience the cornerstones of the DPW
method. For a more detailed reference the reader should consult [6, 5] and
the appendix of [3]. In this section we will follow the conventions of [3]. By
a CMC-immersion we will always understand a conformal immersion of con-
stant mean curvature. For a justification of this restriction, see [4, Section 2].

2.1. Let Ψ : D → R3 be a CMC-immersion. Here, D ⊂ C is the open
unit disk or the whole complex plane. We take Ψ as a conformal chart and
the metric to be d s2 = eu(dx2 + d y2), u : D → R. Then

U = (e−
u
2 Ψx, e

−u2 Ψy, N) : D −→ SO(3)(2.1.1)

is an orthonormal frame which we normalize by

U(x = 0, y = 0) = I.(2.1.2)

In complex coordinates z = x+ iy, z = x− iy, we have

〈Ψz,Ψz〉 = 〈Ψz,Ψz〉 = 0, 〈Ψz,Ψz〉 =
1
2
eu.(2.1.3)

Using the definitions

E = 〈Ψzz, N〉, H = 2e−u〈Ψzz, N〉(2.1.4)

we get for the second fundamental form

II =
1
2

(
(E + E) +Heu i(E − E)

i(E −E) −(E + E) +Heu

)
.(2.1.5)
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Thus, H is the mean curvature and therefore constant. The Gauß-Codazzi
equations take the form

uzz +
1
2
euH2 − 2e−u|E|2 = 0,(2.1.6)

Ez =
1
2
euHz = 0,(2.1.7)

from the second of which it follows, that E d z2 is a holomorphic differential,
the Hopf differential. For |E| = 1 and H = 2 the first equation becomes the
sinh-Gordon equation.

By using the spinor representation J : r 7→ − i
2
rσσ, where σσ is the vector,

whose components are the Pauli matrices, we identify vectors in R3 with
matrices in su(2). This induces an identification of orthonormal frames
with matrices in SU(2) (see [3]) which is unique up to the multiplication
with −I in SU(2). If we identify the frame U in this way with a map

P : D → SU(2),(2.1.8)

then the initial condition (2.1.2) is compatible with

P (0) = I,(2.1.9)

which fixes the lift P uniquely. If we define

U = P−1Pz =

(
− 1

4
uz Ee−

u
2

− 1
2
e
u
2H 1

4
uz

)
,(2.1.10)

V = P−1Pz =

(
1
4
uz

1
2
He

u
2

−Ee−u2 − 1
4
uz

)
,(2.1.11)

then the integrability condition

Uz − Vz − [U, V ] = 0(2.1.12)

is equivalent to the Gauß-Codazzi equations (2.1.6) and (2.1.7).
By the substitution E → λ−2E, λ ∈ S1, which doesn’t change the Gauß-

Codazzi equations, we introduce the so called spectral parameter λ. After a
simple re-gauging of the frames (for details see the appendix of [3]) we get
the following form of the now λ-dependent matrices U(λ) and V (λ):

U(λ) =

(
1
4
uz − 1

2
λ−1He

u
2

λ−1Ee−
u
2 − 1

4
uz

)
,(2.1.13)

V (λ) =

(
− 1

4
uz −λEe−u2

1
2
λHe

u
2 1

4
uz

)
.(2.1.14)
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By integration, i.e., solving

F−1Fz = U,(2.1.15)

F−1Fz = V,(2.1.16)

using the initial condition

F (0, λ) = I, for all λ ∈ S1,(2.1.17)

we get a λ-dependent frame F (z, z, λ), which coincides at λ = 1 with the old
frame P (z, z). We call this map from D × S1 to SU(2) the extended frame
of the immersion Ψ. It should be noted, that by Eq. (2.1.13) and (2.1.14)
the differential of F has the form

α(z, z, λ) = λ−1α−1(z, z) d z + α0(z, z) + λα1(z, z) d z,
(2.1.18)

α1(z, z) = −α−1(z, z)
>
.

This map is now interpreted as taking values in a certain loop algebra
Λrsu(2)σ.

2.2. For each real constant r, 0 < r < 1, let ΛrSL(2,C)σ denote the
group of smooth maps g(λ) from Cr, the circle of radius r, to SL(2,C), which
satisfy the twisting condition

g(−λ) = σ(g(λ)),(2.2.1)

where σ : SL(2,C)→ SL(2,C) is the group automorphism of order 2, which
is given by conjugation with the Pauli matrix

σ3 =

(
1 0
0 −1

)
.(2.2.2)

The Lie algebras of these groups, which we denote by Λrsl(2,C)σ, consist
of maps x : Cr → sl(2,C), which satisfy a similar twisting condition as the
group elements

x(−λ) = σ3x(λ)σ3.(2.2.3)

In order to make these loop groups complex Banach Lie groups, we equip
them, as in [6], with some Hs-topology for s > 1

2
. Elements of these twisted

loop groups are matrices with off-diagonal entries which are odd functions,
and diagonal entries which are even functions in the parameter λ. All entries
are in the Banach algebra Ar of Hs-smooth functions on Cr.
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Furthermore, we will use the following subgroups of ΛrSL(2,C)σ: Let
B be a subgroup of SL(2,C) and Λ+

r,BSL(2,C)σ be the group of maps in
ΛrSL(2,C)σ, which can be extended to holomorphic maps on

I(r) = {λ ∈ C; |λ| < r},(2.2.4)

the interior of the circle Cr, and take values in B at λ = 0. Analogously, let
Λ−r,BSL(2,C)σ be the group of maps in ΛrSL(2,C)σ, which can be extended
to the exterior

E(r) = {λ ∈ CP1; |λ| > r}(2.2.5)

of Cr and take values in B at λ = ∞. If B = {I} (based loops) we write
the subscript ∗ instead of B, if B = SL(2,C) we omit the subscript for Λ
entirely.

Also, by an abuse of notation, we will denote by ΛrSU(2)σ the subgroup
of maps in ΛrSL(2,C)σ, which can be extended holomorphically to the open
annulus

A(r) =
{
λ ∈ C; r < |λ| < 1

r

}
(2.2.6)

and take values in SU(2) on the unit circle.
Corresponding to these subgroups, we analogously define Lie subalgebras

of Λrsl(2,C)σ.
We quote the following results from [18] and [6]:

(i) For each solvable subgroup B of SL(2,C), which satisfies SU(2) · B =
SL(2,C) and SU(2) ∩B = {I}, multiplication

ΛrSU(2)σ × Λ+
r,BSL(2,C)σ −→ ΛrSL(2,C)σ

is a diffeomorphism onto. The associated splitting

g = Fg+(2.2.7)

of an element g of ΛrSL(2,C)σ, s.t. F ∈ ΛrSU(2)σ and g+ ∈ Λ+
r,BSL(2,C)σ

will be called Iwasawa decomposition. In the following, we will fix the group
B as the group of upper triangular 2× 2-matrices with real positive entries
on the diagonal.

(ii) Multiplication

Λ−r,∗SL(2,C)σ × Λ+
r SL(2,C)σ −→ ΛrSL(2,C)σ(2.2.8)
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is a diffeomorphism onto the open and dense subset Λ−r,∗SL(2,C)σ·
Λ+
r SL(2,C)σ of ΛrSL(2,C)σ, called the “big cell” [21]. The associated split-

ting

g = g−g+(2.2.9)

of an element g of the big cell, where g− ∈ Λ−r,∗SL(2,C)σ and g+ ∈
Λ+
r SL(2,C)σ, will be called Birkhoff factorization.

Clearly, for arbitrary 0 < r < 1, the matrices U(λ) and V (λ) defined above
take values in Λrsu(2)σ, and so does α.

We also get:

Lemma. The extended frame F (z, z, λ) of a CMC-immersion can be ex-
tended holomorphically in λ to C∗ = C \ {0}.
Proof. For n ∈ N define Kn = {λ ∈ C; 1

n
≤ |λ| ≤ n}. Then {Kn}n∈N is

a sequence of compact subsets of C∗, which exhaust C∗. For each n ∈ N,
α(z, z, λ), defined by (2.1.18), takes values in the Banach algebra C(Kn)
of bounded functions on Kn, which are holomorphic in the interior of Kn.
Since also the initial condition (2.1.17) for F is in C(Kn), we get that for
each n ∈ N, the solution F (z, z, λ) of the differential equation F−1 dF = α
takes values in C(Kn). Therefore, F can be continued holomorphically in
the λ-plane to the open set ⋃

n∈N
Kn = C∗.(2.2.10)

Using the initial condition F (0, λ) = I we thus see, that, for each ra-
dius r, the extended frame F is, by restriction to Cr, a map from D to
ΛrSU(2)σ. We will use this fact to identify the extended frames with ele-
ments of ΛrSU(2)σ.

If F (z, z, λ) is the extended frame of a CMC-immersion Ψ, then Sym’s for-
mula

J(Ψ(z, z, λ)) = − 1
2H

(
∂F

∂θ
F−1 +

i

2
Fσ3F

−1

)
, λ = eiθ,(2.2.11)

gives a one parameter family of CMC-immersions in the spinor representa-
tion. The original CMC-immersion Ψ is reproduced by setting λ = 1. The
whole family Ψλ of CMC-immersions is usually called the associated family
of Ψ.
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2.3. The following result was proved in [6]:

Theorem. Let F : D → ΛrSU(2)σ, D ⊂ C, simply connected, and let
Ψλ : D → R3, λ ∈ S1, be defined by Sym’s formula (2.2.11). Then the
following are equivalent:
(1) For each λ ∈ S1 the map Ψλ : D → R3 is a CMC-immersion,
(2) The Λrsu(2)σ-valued 1-form α := F−1 dF is of the form (2.1.18).

The construction of such extended frames is the goal of the DPW method.
To get the so called meromorphic potential from the extended frame we

utilize the Birkhoff splitting: We define the map g− : D → Λ−r,∗SL(2,C)σ by

F (z, z, λ) = g−(z, z, λ)g+(z, z, λ)(2.3.1)

where g+ takes values in Λ+
r SL(2,C)σ.

The derivative

ξ = g−1
− d g−(2.3.2)

is a one form taking values in Λ−r,∗sl(2,C)σ. By a simple calculation using
the definitions (2.1.13), (2.1.14) of U(λ) and V (λ), it is easily shown, that
ξ(z, λ) is of the form

ξ(z, λ) = λ−1

(
0 f(z)

E(z)

f(z)
0

)
d z,(2.3.3)

where E(z) d z2 is the Hopf differential and f(z) is a scalar meromorphic
function. The meromorphic potential has poles in the set S ⊂ D which
consists of those points z ∈ D, for which F (z, z, λ) is not in the big cell. As
a function in λ it can be extended holomorphically to CP1 \{0}.
2.4. Conversely, given a meromorphic potential of the form (2.3.3) one
can use the Iwasawa decomposition

g−(z, z, λ) = F (z, z, λ)g+(z, z, λ)−1(2.4.1)

at every point in D to get back a map F from D to ΛrSU(2)σ.
A simple calculation then shows, that the 1-form α := F−1 dF is of the

form (2.1.18). Therefore, F (z, z, λ) defined by Eq. (2.4.1) is indeed an ex-
tended frame.

It should also be noted, that this construction does not depend on the
chosen radius r: Since the meromorphic potential, and therefore also g−(z, λ)
can be continued holomorphically (in λ) to CP1 \{0}, the extended frame
F (z, z, λ) can be continued holomorphically to C∗ = C \ {0}. Therefore, the
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Iwasawa decomposition of g− at Cr gives always the same F restricted to
the respective circle Cr. This shows that there is only one DPW-method,
not a whole family of “r-DPW methods”.

2.5. Another construction of interest here is the dressing method. It
allows to construct new CMC-immersions from old ones.

In the loop group formalism the dressing method has a very simple for-
mulation.

Given an extended frame F0, we take an arbitrary radius 0 < r < 1 and
an element h+ of Λ+

r SL(2,C)σ and compute the Iwasawa splitting of h+F0

at every point in D,

h+(λ)F0(z, z, λ) = F (z, z, λ)p+(z, z, λ),(2.5.1)

where F is a new map from D to ΛrSU(2)σ and p+ is a map from D to
Λ+
r SL(2,C)σ. Here we choose p+ such that F satisfies F (0, λ) = I for all

λ ∈ S1. Again, an elementary calculation shows, that F is the extended
frame of a (new) CMC-immersion.

If ξ0 = λ−1

(
0 f0
E0
f0

0

)
d z is the meromorphic potential for F0, then the new

meromorphic potential ξ for F is given by

ξ = λ−1

(
0 f
E
f

0

)
d z = p−1

+ ξ0p+ + p−1
+ d p+.(2.5.2)

From this it follows, that E = E0, i.e., the Hopf differential is invariant
under dressing.

As in the case of the DPW method it can be easily seen, that for given
h+ this construction does not depend on the chosen radius r, as long as
h+ is defined on Cr and can be extended holomorphically to I(r). Thus, if
we denote the dressing orbit of F 0 w.r.t. r by Or(F 0), we have a canonical
inclusion

Or(F 0) ⊂ Or′(F 0) for 0 < r′ < r < 1.(2.5.3)

2.6. Finally, we want to state the transformation properties of an
extended frame under a translation in Sym(Ψ) as they were derived in [4],
Section 3.1-3.3. From here on we will set D = C. For notational convenience
we will also from now on omit the z-dependency.

Theorem. Let Ψ(z) be a CMC-immersion with extended frame F (z, λ) and
associated family Ψλ(z), Ψ(z) = Ψ1(z).

If q ∈ Sym(Ψ) then F (z, λ) transforms under the translation by q as

F (z + q, λ) = χ(q, λ)F (z, λ)(2.6.1)
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where χ(q, λ) can be extended holomorphically to C∗. For arbitrary 0 <
r < 1, restriction to Cr gives a group homomorphism χ(·, λ) : Sym(Ψ) →
ΛrSU(2)σ, i.e.

χ(q1 + q2, λ) = χ(q1, λ)χ(q2, λ), q1, q2 ∈ Sym(Ψ).(2.6.2)

Proof. By Remark 1.2, Eqs. (2.6.1) and (2.6.2) follow for λ ∈ S1 immediately
from [4, Lemma 3.1, Theorem 3.3]. Since, by (2.1.17), χ(q, λ) = F (q, λ) we
get using Lemma 2.2, that χ(q, λ) can be extended holomorphically to C∗.
Therefore, restriction to Cr, 0 < r < 1, gives χ(q, λ) ∈ ΛrSU(2)σ and the
rest follows by uniqueness of analytic continuation.

As we did already for extended frames, we can, for arbitrary radius 0 < r < 1,
view χ(q, λ) as an element of ΛrSU(2)σ by restricting it to the circle Cr.

2.7. Using Sym’s formula (2.2.11), we can also easily compute the proper
Euclidean motion Tq in Eq. (1.2.1) from the map χ:

J(Ψ(z + q))

= − 1
2H

(
∂χ(q, λ)
∂θ

|θ=0 · χ(q, 1)−1 + χ
∂F (z, λ)
∂θ

|θ=0 · F (z, 1)−1χ(q, 1)−1

− i

2
χ(q, 1)F (z, 1)σ3F (z, 1)−1χ(q, 1)−1

)
= χ(q, 1)J(Ψ(z))χ(q, 1)−1 − 1

2H
∂χ(q, λ)
∂θ

∣∣∣∣
θ=0

· χ(q, 1)−1, λ = eiθ.

(2.7.1)

Thus, Tq is given by

J(Tq(z)) = J(Rq.z + tq)(2.7.2)

where the rotation Rq is in the spinor representation given by

J(Rq.z) = χ(q, 1)J(z)χ(q, 1)−1(2.7.3)

and the vector tq ∈ R3 is given by

J(tq) = − 1
2H

∂χ(q, λ)
∂θ

|θ=0 · χ(q, 1)−1.(2.7.4)

We get the following
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Theorem. Let Ψ : C → R3 be a CMC-immersion and let q ∈ Sym(Ψ).
Define, for 0 < r < 1, χ(q, λ) ∈ ΛrSU(2)σ as above, then q ∈ Per(Ψ) iff

χ(q, 1) = ±I and
∂χ(q, λ = eiθ)

∂θ
|θ=0 = 0.(2.7.5)

Proof. Follows from Eq. (2.7.1).

From (2.7.1) we immediately get the:

Corollary. Let Ψ : C→ R3, F (z, λ) and Ψλ, λ ∈ S1 be as in Theorem 2.6.
If F (z, λ) transforms under the translation by q ∈ C∗ as in (2.6.1), then
q ∈ Sym(Ψλ) for all λ ∈ S1.

Remark. It actually follows from [4, Prop. 3.4], that the group Sym(Ψλ)
of translational symmetries is the same for all elements of the associated
family. The group Per(Ψλ), however, depends crucially on λ as we will see
in Section 3.9.

2.8. For later use we will introduce the following antiholomorphic
involution:

τ(λ) = λ
−1
.(2.8.1)

Geometrically speaking, τ is the reflection at the unit circle. For a map g(λ)
from a subset of CP1 to SL(2,C) we define

g∗(λ) = g(τ(λ))
>
.(2.8.2)

Thus, if F ∈ ΛrSL(2,C)σ is defined and holomorphic on A(r), then F ∈
ΛrSU(2)σ is equivalent to

F ∗ = F−1.(2.8.3)

For a scalar function f(λ) we set

f∗(λ) = f(τ(λ)).(2.8.4)

If f is defined and holomorphic on a τ -invariant neighbourhood of S1, then
f is real on S1 iff f∗ = f .
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3. Translational symmetries.

In this chapter we will give necessary and sufficient conditions for a surface
to be invariant under a given translation z 7→ z + q, q ∈ C∗. The conditions
will be formulated in terms of certain functions that will be introduced in
the next sections.

The calculations here are similar to those in [4, Section 3.7], with the
exception, that we use here the r-loop formalism recalled in the previous
section from [7]. In [4] these calculations were used to prove, that there are
no translationally symmetric surfaces in the standard dressing orbit of the
cylinder. However, by the result of [7, Corollary 5.3] (see also [2]), every
CMC-torus is contained in the r-dressing orbit of the cylinder.

3.1. Let F (z, λ) be defined by the r-dressing action of h+ ∈ Λ+
r SL(2,C)σ

on the extended frame of the (standard) cylinder, i.e.,

(3.1.1) h+(λ)e(λ−1z−λz)A = F (z, λ) · p+(z, λ),

p+(z, λ) ∈ Λ+
r SL(2,C)σ, A =

(
0 1
1 0

)
.

We note that e(λ−1z−λz)A is the extended frame associated with the mero-
morphic potential

ξ = λ−1

(
0 1
1 0

)
d z(3.1.2)

and describes the (standard) cylinder. We also note that all functions of z
are defined on C.

The frame F (z, λ) transforms under the translation z 7→ z + q, q ∈ C∗, as

F (z + q, λ) = Q(q, λ)F (z, λ)r+(q, z, λ),(3.1.3)

where

Q(q, λ) = h+e
(λ−1q−λq)Ah−1

+(3.1.4)

and

r+(q, z, λ) = p+(z, λ)p+(z + q, λ)−1.(3.1.5)

3.2. By Theorem 2.6 and Corollary 2.7, we have that q ∈ Sym(Ψ), iff

Q(q, λ)F (z, λ)r+(q, z, λ) = χ(q, λ)F (z, λ),(3.2.1)
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where

χ(q, λ) = F (q, λ)(3.2.2)

is unitary on S1. From Section 2.8 we thus know

χ∗(q, λ) = χ(q, λ)−1 for λ ∈ C∗.(3.2.3)

We will derive further conditions on the matrix function χ.
The initial condition (2.1.17) together with Eq. (3.2.1) implies

χ = Q ·R+,(3.2.4)

with

R+(q, λ) = r+(q, 0, λ) ∈ Λ+
r SL(2,C)σ.(3.2.5)

Thus, F (z, λ) is invariant under the r-dressing transformation with R+,

R+(q, λ)F (z, λ) = F (z, λ)r+(q, z, λ).(3.2.6)

Substituting (3.1.1) into this equation and rearranging terms yields

e−λ
−1zAh−1

+ R+h+e
λ−1zA = e−λzAp−1

+ r+p+e
λzA.(3.2.7)

Abbreviating w+(λ) = h−1
+ R+h+ and V+(z, λ) = e−λzAp−1

+ r+p+e
λzA, this is

e−λ
−1zAw+(λ)eλ

−1zA = V+(z, λ).(3.2.8)

The l.h.s. of (3.2.8) is

Z = (exp(−λ−1z adA))w+(λ).(3.2.9)

Thus, (3.2.8) says that Z has a Fourier expansion, where only non-negative
powers of λ occur. Expanding w+(λ) = w0 + w1λ + w2λ

2 + . . . , altogether
we have

(3.2.10) (exp(−λ−1z adA))(w0 + w1λ+ w2λ
2 + . . . )

does not contain any negative powers of λ.

Expanding (3.2.10) as a function of z, a straightforward induction on the
power N of z shows

[A,w+(λ)] = 0.(3.2.11)
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This implies

V+(z, λ) = V+(0, λ) = w+(λ).(3.2.12)

By the definition of w+ we have

R+ = h+w+h
−1
+ .(3.2.13)

Substituting (3.2.13) into (3.2.4) finally gives

χ(q, λ) = h+(λ)e(λ−1q−λq)Aw+(λ)h−1
+ (λ).(3.2.14)

3.3. This section is a “digression on A”. We consider the matrix

D =
1√
2

(
1 1
−1 1

)
(3.3.1)

and verify

DAD−1 = σ3.(3.3.2)

Conjugating (3.2.7) by D yields

e−λ
−1zσ3w̃+e

λ−1zσ3 ∈ Λ+
r SL(2,C)σ,(3.3.3)

where w̃+ = Dw+D
−1. Thus, w̃+ and

e−λ
−1zσ3w̃+e

λ−1zσ3(3.3.4)

are defined at λ = 0. If we set

w̃+ =

(
w̃a w̃b
w̃c w̃d

)
,(3.3.5)

then the matrix in (3.3.4) has the form(
w̃a e−2λ−1zw̃b

e2λ−1zw̃c w̃d

)
.(3.3.6)

Therefore, if the off-diagonal entries of w̃+ do not vanish identically, then,
for all z ∈ D where w̃+ is defined, the off-diagonal entries of the matrix in
Eq. (3.3.4) have an essential singularity at λ = 0. Therefore, w̃b = w̃c =
0, whence w̃+ commutes with σ3 and w+ = D−1w̃+D commutes with A,
reproducing (3.2.11).
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The diagonalization (3.3.2) is also useful to represent w+ as an expo-
nential. To this end we note, that w̃+ = Dw+D

−1 is a diagonal matrix
w̃+ = diag(s+, s

−1
+ ), with s+(λ) ∈ C∗ for λ ∈ I(r). The map I(r) → C∗ can

be factored through the universal cover C of C∗ by standard topological rea-
sons [11, Satz 4.9], where the covering map C→ C∗ is µ 7→ eµ. Thus, s+ can
be written as s+ = exp(f+), where

f+ : Cr → C is odd and has a holomorphic extension to I(r).(3.3.7)

Undoing the diagonalization of w+ we obtain

w+ = ef+A.(3.3.8)

Finally, in preparation of applications in the rest of this paper, we discuss
the centralizer C(A) of A in ΛrSL(2,C)σ in some more detail. First we note

C(A) = {αI + βA;α, β ∈ Ar, α2 − β2 = 1}.(3.3.9)

Here Ar denotes the algebra of functions on Cr that defines the topology of
the various loop groups considered in this paper.

The identity (3.3.9) is equivalent with the obvious fact, that A is a regular
semisimple matrix.

Conjugation with D transforms A into σ3 and C(A) into the centralizer
of σ3, i.e., into diagonal matrices. Thus,

D(αI + βA)D−1 = diag(α+ β, α− β).(3.3.10)

This shows in particular that the eigenvalues of αI + βA ∈ C(A) are α+ β
and α−β, and also α−β = (α+β)−1, a trivial consequence of α2−β2 = 1.

3.4. Next we consider the matrix

H = e(λ−1q−λq)Aw+(3.4.1)

occuring in the description (3.2.14) of χ. From (3.2.11) it follows, that H
commutes with A, i.e. (3.3.9) implies

H = αI + βA,(3.4.2)

α2 − β2 = 1.(3.4.3)

This implies

H−1 = αI − βA.(3.4.4)
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Since q 6= 0, we get from (3.4.1), that H has an essential singularity at λ = 0.
From this it follows that

β 6≡ 0.(3.4.5)

By the twisting condition we also know, that

α is even in λ and β is odd in λ.(3.4.6)

Since

χ = h+Hh
−1
+(3.4.7)

is holomorphic for λ ∈ C∗, taking the trace of χ and χ2 yields

α and β2 have holomorphic extensions to C∗.(3.4.8)

We note, that (3.4.1) and (3.4.2) imply

β has a holomorphic extension to 0 < |λ| < r.(3.4.9)

Remark. In general, β will not have a holomorphic extension to C∗. How-
ever, if β does have a holomorphic extension to C∗, then H is also defined
on C∗.

Finally, we know from (3.3.8) that w+ = exp(f+A). As a consequence,
altogether we have

H = epA, p = λ−1q − λq + f+.(3.4.10)

In particular, with f+ also p is odd in λ.

3.5. It will be convenient to consider the matrices

S = h+Ah
−1
+ =

(
a b
c d

)
,(3.5.1)

Ŝ = βS =

(
â b̂

ĉ d̂

)
.(3.5.2)

In view of (3.4.2) and (3.4.7) we thus have

χ = αI + βS = αI + Ŝ(3.5.3)

and (3.4.4) implies

χ−1 = αI − βS = αI − Ŝ.(3.5.4)
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Since, by Theorem 2.6, χ is holomorphic on C∗, we have

â, b̂, ĉ, d̂ are holomorphic on C∗.(3.5.5)

Clearly, we have trS = 0 and trŜ = 0, whence

d = −a, d̂ = −â.(3.5.6)

Also, in view of (3.4.6), the twisting condition for ΛrSL(2,C)σ implies

â, b, c are even in λ, a, b̂, ĉ are odd in λ.(3.5.7)

Two important conditions still need to be evaluated: S2 = I and χ|S1 uni-
tary. The first condition is in view of (3.5.6) equivalent with

a2 + bc = 1.(3.5.8)

Since Ŝ = βS, we also have

â2 + b̂ĉ = β2.(3.5.9)

The second condition is in view of Section 2.8 and (3.4.4) equivalent with

α is defined on C∗ and α = α∗,(3.5.10)

Ŝ is defined on C∗ and Ŝ∗ = −Ŝ.(3.5.11)

In particular, (3.5.11) is equivalent with

â∗ = −â, b̂∗ = −ĉ for λ ∈ C∗.(3.5.12)

Next we consider the squares of α, β, a, b, c and â, b̂, ĉ. First we note

α2 and β2 are holomorphic on C∗ and real on S1.(3.5.13)

This follows for α2 from (3.5.10) and for β2 from (3.4.3). Next, (3.5.12)
implies

â2 is holomorphic on C∗ and non-positive on S1.(3.5.14)

Substituting this and (3.5.12) into (3.5.9) gives

β2 is non-positive on S1.(3.5.15)
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Since â = βa, we know â2 = β2a2. In particular, a2 = â2

β2 is meromorphic
on C∗ and real on S1. Since a2 is by definition also holomorphic at λ = 0, it
follows that a2 is also finite at λ =∞. Thus

(3.5.16) a2 is a rational function, real and non-negative on S1

and finite at 0 and ∞.

For b2 and c2 one argues similarly. E.g. b2 = b̂2

β2 is clearly meromorphic on
C∗ and is also, by the definition of b, holomorphic at λ = 0. From (3.5.12)
we obtain that (b2)∗ = (b̂2)∗

β2 = ĉ2

β2 = c2 is also holomorphic at λ = 0. This
shows, that b2 is meromorphic on CP1 and thus rational. Altogether we
have shown

b2 and c2 are rational and finite at 0 and ∞.(3.5.17)

Moreover,

(b2)∗ = c2.(3.5.18)

Next, from (3.5.1) we see that a(λ = 0) = 0 and b(λ = 0) = c(λ = 0)−1.
Since a is odd in λ, we obtain

a2 has a zero of order 2(2n− 1) for some n > 0 at λ = 0,(3.5.19)

b(λ = 0)c(λ = 0) = 1.(3.5.20)

We also note that the relations

â2 = β2a2, b̂2 = β2b2, ĉ2 = β2c2(3.5.21)

show that a2, b2, and c2 can have poles only where β2 has a zero.
Finally, from (3.5.11) we obtain (βb)∗ = −(βc). Hence (3.5.8) implies

β2 = β2a2 + βb · βc = β2a2 − (βb)(βb)∗.(3.5.22)

Therefore, on S1 we obtain β2(a2 − 1) = |βb|2. Since β2 is non-positive on
S1 by (3.5.15), and β2 6≡ 0 by (3.4.5), we have a2 − 1 ≤ 0. Thus,

0 ≤ a2(λ) ≤ 1 for λ ∈ S1.(3.5.23)

3.6. In the last section we considered the matrix S = h+Ah
−1
+ =(

a b
c d

)
and we listed properties of a, b, c, d. In the rest of this paper we
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will characterize q ∈ Sym(Ψ) in terms of a, b, c, d. Let us denote by A+
r ,

0 < r < 1, the subalgebra of those functions in Ar which can be extended
holomorphically to I(r). Then a, b, c, d ∈ A+

r . To make sure, that there is also
an h+ satisfying (3.5.1), producing F —and thus Ψ— for which q ∈ Sym(Ψ),
we prove:

Theorem. Let a, b, c, d ∈ A+
R, 0 < R < 1, where a, d are odd and b, c are

even. Then S =

(
a b
c d

)
is of the form S = h+Ah

−1
+ for some 0 < r ≤ R and

h+ ∈ Λ+
r SL(2,C)σ iff

d = −a,(3.6.1)

a2 + bc = 1,(3.6.2)

b(λ = 0) 6= 0.(3.6.3)

Proof. “⇒” This direction was already proved in the last section.
“⇐” Using the matrix D introduced in (3.3.1), we obtain

S = h+Ah+ = h+D
−1σ3Dh

−1
+ = Y σ3Y

−1(3.6.4)

where

Y = h+D
−1.(3.6.5)

A straightforward formal calculation shows, that

Y =
i√
2

( √
b
√
b

1−a√
b
− 1+a√

b

)
·
(
x(λ) 0

0 x(λ)−1

)
.(3.6.6)

Clearly, Y is (formally) a matrix of eigenvectors of S. We get for h+ = Y D
again formally

h+ =
i

2
√
b

(
(x− x−1)b (x+ x−1)b

(x+ x−1)− (x− x−1)a (x− x−1)− (x+ x−1)a

)
.(3.6.7)

For this matrix to be defined in our setup we need that the diagonal entries
are even in λ and the off-diagonal entries are odd in λ and that everything
is defined for all 0 ≤ |λ| ≤ r, where 0 < r ≤ R is chosen appropriately.

Since b is even and b(λ = 0) 6= 0,
√
b is defined in a sufficiently small

neighbourhood of λ = 0 and is even there. So what we need to achieve is
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that (x − x−1)
√
b is even, (x + x−1)

√
b is odd, (x+x−1)−(x−x−1)a√

b
is odd, and

(x−x−1)−(x+x−1)a√
b

is even, and all these functions are defined on a sufficiently
small neighbourhood of λ = 0. This is equivalent with: x − x−1 is even
and x + x−1 is odd and x is invertible in a neighbourhood of λ = 0. It is
straightforward to verify, that x = −i

√
1+a
1−a satisfies these conditions. In this

case

h+ =
1√
c

(
1 a
0 c

)
(3.6.8)

and r is determined by
√
c.

3.7. Let us collect the necessary conditions we have derived in Sec-
tions 3.2–3.5:

Theorem. Let Ψ : C → R3 be a CMC-immersion with extended frame
F (z, λ), s.t. F (z, λ) is given by dressing the cylinder under the r-dressing
(2.5.1) with some h+ ∈ Λ+

r SL(2,C)σ. Assume also, that for q ∈ C, q 6= 0,

F (z + q, λ) = χ(λ)F (z, λ), i.e., q ∈ Sym(Ψ). Define h+Ah
−1
+ =

(
a b
c d

)
.

Then d = −a and the functions a(λ), b(λ), and c(λ) are in A+
r and satisfy

the following conditions:
a) a2, b2, c2 are rational,
b) a is odd in λ, b and c are even in λ,
c) a2 + bc = 1.
d) a2 is real on S1 and 0 ≤ a2 ≤ 1 on S1,
e) c2 = (b2)∗.
Furthermore, there exists an odd function f+ in A+

r , s.t. with α = cosh(p),
β = sinh(p), p = λ−1q − λq + f+, we have:
a′) α and β2 are defined on C∗,
b′) α and β2 are real on S1,
c′) β2 is non-positive on S1,
d′) the functions βa, βb, and βc extend holomorphically to C∗.
The matrix function χ(λ) is given by χ = αI + βh+Ah

−1
+ .

Proof. By the results of the last sections we know for the functions a, b, c, d,

defined by S = h+Ah
−1
+ =

(
a b
c d

)
:

• d = −a: (3.5.6),
• a2, b2, c2 are rational functions: (3.5.16), (3.5.17),
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• a is odd, b and c are even in λ: (3.5.7),
• a2 + bc = 1: (3.5.8),
• a2 is real on S1 and 0 ≤ a2 ≤ 1 on S1: (3.5.16), (3.5.23),
• c2 = (b2)∗: (3.5.18).

Since q ∈ Sym(Ψ) we have F (z + q, λ) = χ(λ)F (z, λ) by Theorem 2.6.
Moreover, χ(λ) = h+e

pAh−1
+ , where p = λ−1q−λq+f+ by (3.4.7) and (3.4.10).

Thus χ = αI + βS, where α = cosh(p), β = sinh(p) and
• α and β2 are defined on C∗: (3.4.8),
• α and β2 are real on S1: (3.5.10), (3.5.13),
• β2 is non-positive on S1: (3.5.15).

Finally, â = βa, b̂ = βb, and ĉ = βc extend holomorphically to C∗ by (3.5.5).

3.8. We have seen in Section 3.6 under what conditions on a, b, c, and d

we can find an h+ ∈ Λ+
r SL(2,C)σ, s.t.

(
a b
c d

)
= h+Ah

−1
+ . This then defines

a CMC-immersion Ψ via dressing of the trivial solution with h+. In this
section we characterize those a, b, c, d, α, β such that a given q ∈ C∗ is in
Sym(Ψ).

Theorem. Let there be given three even rational functions a2(λ), b2(λ),
and c2(λ), which satisfy the following conditions:
a) a2 is real on S1 and 0 ≤ a2 ≤ 1 on S1,
b) c2 = (b2)∗.
c) There exists an 0 < r < 1, s.t. the restrictions of a2, b2, and c2 to Cr

are the squares of functions a, b, c in A+
r ,

d) a is odd, b and c are even in λ,
e) a2 + bc = 1.
In addition, with r as in c), we assume that there exists an odd function
f+ in A+

r′, 0 < r′ ≤ r, such that for p = λ−1q − λq + f+, α = cosh(p),
β = sinh(p), q ∈ C∗, we have:
a′) α and β2 are defined and holomorphic on C∗,
b′) α and β2 are real on S1,
c′) β2 is non-positive on S1.
d′) The functions βa, βb, and βc extend holomorphically to C∗.
Then there exists 0 < r′′ ≤ r′ and h+ ∈ Λ+

r′′SL(2,C)σ, such that h+Ah
−1
+ =(

a b
c −a

)
. Moreover, for the extended frame F (z, λ) defined by h+e

(λ−1z−λz)A

= F (z, λ)p+(z, λ), |λ| = r′′, we have F (z + q, λ) = χ(λ)F (z, λ), where χ =
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αI + βh+Ah
−1
+ is holomorphic on C∗ and takes values in SU(2) on S1. In

particular, q ∈ Sym(Ψ) for the CMC-immersion Ψ associated with F (z, λ)
via Sym’s formula.

Proof. Assume, that we have functions a2, b2, c2 and f+, p, α, β, such that
a)–e), a’)–d’) are satisfied. We first want to apply Theorem 3.6. We set
d = −a and know (3.6.2) by e). Since a, b, c are defined at λ = 0 and
since a is odd we have a(0) = 0, whence b(0) 6= 0. Thus, by Theorem 3.6,
there exists some 0 < r′′ ≤ r′ < 1 and some h+ ∈ Λ+

r′′SL(2,C)σ, s.t. S =

h+Ah
−1
+ =

(
a b
c −a

)
. Next we consider the extended frame defined by the

r-dressing h+e
(λ−1z−λz)A = F (z, λ)p+(z, λ) of the cylinder. Recall that we

use in this paper the unique Iwasawa splitting discussed in Section 2.2. We
also set χ = h+e

pAh−1
+ = αI + βS. From a’) and d’) it follows, that χ is

defined and holomorphic on C∗. Since with f+ also p is an odd function in
λ, pA ∈ Λr′′sl(2,C)σ, whence χ ∈ Λr′′SL(2,C)σ. As outlined in Section 3.5,
χ is unitary on S1, iff (3.5.10) and (3.5.11) are satisfied. But (3.5.10) follows
from a’), b’), and the first part of (3.5.11) is just d’). The second condition
is (βa)∗ = −(βa) and (βc)∗ = −(βb). To verify this condition we square βa,
βb, and βc and obtain ((βa)2)∗ = (βa)2 and ((βc)2)∗ = (βb)2, since β2 and a2

are real by b’), and (c2)∗ = b2 by b). Hence (βa)∗ = ±βa and (βc)∗ = ±βb.
If (βa)∗ = βa, then βa is real on S1 and β2a2 = (βa)2 is non-negative on S1.
But a) and c’) imply that β2a2 is non-positive on S1. The only possibility
for both conditions to hold is βa = 0 on S1. But in this case, of course, also
(βa)∗ = −βa as desired. For the remaining case we consider e) and obtain
β2 = β2a2 + (βb)(βc). If (βc)∗ = +βb, then β2 = β2a2 + |βc|2 on S1. Hence
|βc|2 = β2(1−a2) implies β2 ≡ 0 or 1−a2 ≤ 0. The first case is not possible
in view of the form of p. The second case yields in view of a), that a2 ≡ 1 on
S1. Hence a = ±1 on C, a contradiction, since a(0) = 0. Thus (βc)∗ = −βb
as required.

Finally, we show q ∈ Sym(Ψ). To this end we multiply χ = h+(αI +
βA)h−1

+ from the right with h+e
(λ−1z−λz)A and obtain

χh+e
(λ−1z−λz)A = h+e

(λ−1(z+q)−λ(z+q))Aef+ .(3.8.1)

Using the definition of F+(z, λ) thus gives

χ(λ)F (z, λ)p+(z, λ) = F (z + q, λ)p+(z + q, λ)ef+ .(3.8.2)

This shows,

F (z + q, λ) = χ(λ)F (z, λ)(3.8.3)
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since the Iwasawa splitting chosen is unique and χ is unitary.

3.9. It remains to state the closing conditions Eq. (2.7.5) in terms of the
functions used in Theorem 3.8. These turn out to be of a very simple form.

Theorem. Let Ψ : C → R3 be a CMC-immersion in the r-dressing orbit
of the cylinder with associated family {Ψλ, λ ∈ S1}. Let q ∈ Sym(Ψ) =
Sym(Ψλ), q 6= 0, and χ(λ) and β2(λ) as in Theorem 3.7. Restrict λ to S1

and denote by (·)′ differentiation w.r.t. θ, where λ = eiθ. Then for λ0 ∈ S1

we have:
a) χ(λ0) = ±I iff β2 vanishes at λ0.
b) χ(λ0) = ±I and χ′(λ0) = 0 iff β2 vanishes at least to fourth order at

λ0.

Proof. Let us first prove a): Let us define a, b, c and f+, p, α, β as in Theo-

rem 3.7. Then χ = αI + β

(
a b
c −a

)
. By c) in Theorem 3.7, we have detχ =

α2 − β2 = 1. Therefore, χ(λ0) = ±I implies α(λ0) = 1
2
tr(χ(λ0)) = ±1 and

β2(λ0) = 0.
Conversely, assume β2(λ0) = 0 for λ0 ∈ S1. Then α(λ0) = ±1. By

d) in Theorem 3.7 we have that a2 has no poles on S1. By c) and e) in
Theorem 3.7, also b2 and c2 are defined everywhere on S1. This shows, that

β2(λ0)a2(λ0) = β2(λ0)b2(λ0) = β2(λ0)c2(λ0) = 0.(3.9.1)

This together with α(λ0) = ±1 implies χ(λ0) = ±I.
Now we prove b). Let us assume, that χ(λ0) = ±I and χ′(λ0) = 0. By

Theorem 3.7 we have

χ′ =

(
α′ + (βa)′ (βb)′

(βc)′ α′ − (βa)′

)
.(3.9.2)

Therefore, and by the proof of part a), (βa)2 = β2a2, (βb)2 = β2b2, and
(βc)2 = β2c2 vanish at least to fourth order at λ0. By c), d), and e) in
Theorem 3.7 we know, that on S1 b2, c2, and a2 = 1− |b2|2 are defined and
cannot vanish simultaneously. Therefore, β2 vanishes at least to fourth order
at λ0.

Conversely, assume β2 vanishes at least to fourth order at λ0. Then we
have already shown, that χ(λ0) = ±I, α(λ0) = ±1. By differentiating
α2 − β2 = 1, we get α′(λ0) = ±β(λ0)β′(λ0) = 0. Also, a2, b2, and c2 are
holomorphic on S1. Therefore, β2a2, β2b2, β2c2 all vanish at least to fourth
order at λ0. This shows, that βa, βb, βc vanish at least to second order at
λ0. From this and (3.9.2), the claim follows.
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Corollary. Let Ψ and Ψλ be defined as in the theorem above and let q ∈
Sym(Ψ), q 6= 0. Then the set Ωq = {λ ∈ S1|q ∈ Per(Ψλ)} is discrete.

Proof. We define p = λ−1q − λq + f+, α = cosh(p) and β = sinh(p) as in
Theorem 3.7. By Theorem 3.9 we know, that β2 vanishes on the set Ωq.
Therefore, if Ωq has an accumulation point, then the holomorphic function
β2 vanishes everywhere on C∗, contradicting (3.4.5).

Remark. The corollary does not exclude the possibility that there are
surfaces in the generalized dressing orbit of the standard cylinder, whose
associated family consists entirely of periodic surfaces. The members of the
associated family of the standard cylinder itself, for example, are cylinders
for all λ ∈ S1. But the corollary implies, that the translations under which
the surfaces are periodic depend on the spectral parameter. In the case of
the cylinder this can easily be checked by a direct calculation.

4. Hyperelliptic curves.

Let Ψ : C→ R3 be a CMC-immersion in the r-dressing orbit of the cylinder
with associated family {Ψλ;λ ∈ S1}. I.e., if F (z, λ) is the extended frame
of Ψ, then there exists 0 < r < 1 and h+ ∈ Λ+

r SL(2,C)σ, such that F (z, λ)
is given by (3.1.1). In this chapter we also assume, that Ψ has a periodic
metric, i.e., that there exists q ∈ Sym(Ψ) = Sym(Ψλ), q 6= 0. As we have
seen in Theorem 3.7 and Theorem 3.8, we can formulate the periodicity
conditions for the metric of a CMC-immersion in terms of scalar functions

a, b, c given by h+Ah
−1
+ =

(
a b
c −a

)
. These functions are holomorphic in a

neighbourhood I(r) of λ = 0. In this section we will introduce a nonsingular
hyperelliptic curve, on which a, b and c can be viewed as meromorphic
functions. From now on, the symbols a, b, c, f+, p, α, β refer to the functions
introduced in Theorem 3.7.

4.1. First we define the new variable ν = λ2. The functions a2(λ),
b2(λ), and c2(λ) are by Theorem 3.7 rational and even. We will regard a2,
b2, and c2 as rational functions of ν. Since by b) in Theorem 3.7, a is an odd
function in λ, either a = 0 (which corresponds to the standard cylinder) or
a2(λ) has a zero of order 2(2n − 1), n > 0, at λ = 0. As a function in ν,
a2 has therefore a zero of odd order 2n − 1 at ν = 0. Let ν1, . . . , νk be the
points in the ν-plane where a2 has a pole of odd order, and let νk+1, . . . , νk+l

be the points in the ν-plane away from ν = 0 where a2 has a zero of odd
order.

Lemma. None of the points ν1, . . . , νk+l ∈ C∗ defined above lies on the unit
circle.
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Proof. We have to show, that a2(ν) has neither a pole nor a zero of odd
order on S1. In fact, it doesn’t matter here, if we view a2 as a function of
λ or ν. By d) in Theorem 3.7, we know, that a2 has no poles on S1. By c)
and e) in Theorem 3.7, we have (1 − a2)2 = |b2|2 on S1, which shows that
b2 and c2 = (b2)∗ are defined on S1 and also, that a2, b2, and c2 cannot
vanish simultaneously on S1. If a2 has a zero of odd order at λ0 ∈ S1,
then b2(λ0) 6= 0. By d’) of Theorem 3.7, (βa)2 and (βb)2 are squares of
holomorphic functions on C∗. Thus, the function β2 = (βa)2

a2 = (βb)2

b2
has

both a zero of odd order and of even order at λ0. This implies β ≡ 0,
contradicting (3.4.5).

Proposition. Let k, l and ν1, . . . , νk+l be defined as above. Then g =
1
2
(k + l) is an integer and we can order the points ν1, . . . , ν2g, such that

ν2n = τ(ν2n−1), |ν2n−1| < 1, n = 1, . . . , g.(4.1.1)

Proof. By Lemma 4.1, we have |ν2n−1| 6= 1 for n = 1, . . . , k + l. Since a2(ν)
is real on S1, we have using Section 2.8, that the set B = {ν1, . . . , νk+l} is
invariant under the antiholomorphic involution τ : ν → ν−1. Since τ has no
fixed points off the unit circle, we get that B consists of pairs (νn, τ(νn)).
This shows, that k + l is even, whence g = 1

2
(k + l) is an integer, and that

we can order {ν1, . . . , ν2g}, such that (4.1.1) holds.

In the following we will order the points ν1, . . . , ν2g always such that (4.1.1)
holds.

Consider the algebraic equation

µ2 = ν
2g∏
k=1

(ν − νk).(4.1.2)

Theorem. The plane affine curve C̃ defined by (4.1.2) can be uniquely
extended to a compact Riemann surface C of genus g. The meromorphic
function ν : C̃ → C extends to a holomorphic map π : C → CP1 of degree 2.
The branchpoints of π are the roots of µ2 and the point ∞.

Proof. The proof follows immediately from [19, Lemma III.1.7] since µ2 has
odd degree.

In other words, (4.1.2) is a (nonsingular) hyperelliptic curve, obtained by
compactifying the plane affine curve C̃ = C \{P∞}, where P∞ = π−1(∞) ∈ C
is a single point.
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Remark. 1. The rational functions a2, b2 and c2 in Theorem 3.7 are defined
in terms of the extended frame F (z, λ) of Ψ. I.e., they are defined for the
whole associated family, not only for Ψ. Therefore, also the hyperelliptic
curve C is associated to the whole family {Ψλ;λ ∈ S1}. This corresponds to
the fact that Sym(Ψ) = Sym(Ψλ).

2. In Proposition 4.4 it will be shown, that a(ν) =
√
a2(ν) can be lifted

to a nonconstant meromorphic function on C. It determines the complex
structure of C uniquely (see [10, I.1.6], [11, Satz 8.9]).

4.2. On C̃ = C \ {P∞}, ν and µ are holomorphic functions. Every point
P ∈ C \ {P∞} is determined uniquely by the values of ν and µ at P and
can thus be identified with the pair (ν(P ), µ(P )). Formally, we will also
write P∞ = (∞,∞). In this notation we get π(ν, µ) = ν. Let us define the
hyperelliptic involution I on C by

I(ν, µ) = (ν,−µ).(4.2.1)

A point on C is a branchpoint iff it is mapped by π to a branchpoint on
CP1. Clearly, the branchpoints of C are precisely the fixed points of I, i.e.,
the points (νk, 0), k = 1, . . . , 2g, P0 = (0, 0) and P∞.

Using the representation of C given in [19, Chapter III] it is easy to see
that the functions µ and µν−(g+1) are local coordinates on C at P0 and P∞,
respectively. It will also be convenient to use the coordinate λ = λ(ν, µ) on

C at P0 given by λ(ν, µ) = µ/
(∏2g

j=1(ν − νj)
) 1

2
. In view of the definition of

C we clearly have the relation λ2 = ν near P0. In particular, since ν ◦ I = ν
we obtain λ ◦ I = ±λ. The fact that λ is injective finally implies λ ◦ I = −λ.

Using the change of coordinates (ν, µ)→ (ν−1, µν−(g+1)) and the defining
relation for C we can define similarly a coordinate λ−1 near P∞ such that
(λ−1)2 = ν−1 and λ−1 ◦ I = −λ−1.

Let us investigate the set of meromorphic functions on C. By [19], Propo-
sition 1.10, every meromorphic function on C can be uniquely written as

f(ν, µ) = f1(ν) + f2(ν)µ,(4.2.2)

with two rational functions f1, f2.

Remark. It is clear from the representation (4.2.2) of meromorphic func-
tions on C, that each rational function f1(ν) can be lifted to a meromorphic
function on C by setting f(ν, µ) = f1(ν). Clearly, then f ◦ I = f for such a
function.

Conversely, if f : C → C is meromorphic, then it can be identified with a
rational function f1(ν) iff f2(ν) ≡ 0 in (4.2.2), i.e., iff it satisfies f ◦ I = f .
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We will frequently use this identification of rational functions in ν with I-
invariant meromorphic functions on C.
4.3. Let us define

S = π−1(S1) = {(ν, µ) ∈ C; ν ∈ S1}.(4.3.1)

The set S is connected if g is even, and has two connected components if
g is odd. Since S is contained in C̃, we can identify it with a subset of C2.
Using the antiholomorphic involution τ : ν → ν−1 defined in Section 2.8, we
define the map σ̃ : C̃ \ {P0} → C̃ \ {P0} by

σ̃ : (ν, µ) 7−→
1
ν
,

(
1
ν

)(g+1)
 2g∏
j=1

νj

 1
2

µ

 .(4.3.2)

We will choose the sign of the square root such that the points on S are
fixed by σ̃.

The following is well known (see e.g. [9, 15]):

Theorem. The map σ̃ defined by (4.3.2) can be extended to an antiholo-
morphic involution σ̂ on C, which preserves the points of S ⊂ C.

Furthermore, σ̂ commutes with the hyperelliptic involution and leaves in-
variant the set of branchpoints of C.

Proof. Using Theorem 4.1 it is easily checked, that σ̃ defines an antiholo-
morphic involution on C̃ \ {P0} By using the coordinates µ and µν−(g+1)

near P0 and P∞ respectively, we get σ̃(µ) = c0µ, c0 =
(∏2g

j=1 νj
) 1

2
, in lo-

cal coordinates, whence σ̃ extends to an antiholomorphic involution σ̂ on C,
which maps P0 to P∞. By the choice of the square root in (4.3.2), σ̂ fixes
the points on S. σ̂ clearly commutes with I. If P is a branchpoint of C,
then I(P ) = P . Therefore, I(σ̂(P )) = σ̂(I(P )) = σ̂(P ) and σ̂(P ) is also a
branchpoint. Thus, σ̂ leaves invariant the set of branchpoints of C.

For a scalar function on C we also define

f∗ = f ◦ σ̂.(4.3.3)

Since, by Proposition 4.3, σ̂ fixes the points of S, we get

Lemma. Let f be a meromorphic function defined on a σ̂-invariant subset
of C which contains S. Then f is real on S iff f∗ = f and f is purely
imaginary on S iff f∗ = −f .

4.4. Let us now investigate the properties of a2 w.r.t. C.
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Proposition. The rational function a2 defined in Theorem 3.7 is of the
form

a2(ν) = f(ν)2µ2(ν),(4.4.1)

where f is rational and defined at ν = 0. The function a = fµ is a mero-
morphic function on C, which satisfies

a ◦ I = −a(4.4.2)

and

a∗ = a.(4.4.3)

Proof. By the definition of µ2, the quotient a2

µ2 is rational and has only poles
and zeroes of even order. Therefore, it is the square of a rational function
f(ν). Since a2 has a zero of odd order at ν = 0, f(ν) is defined at ν = 0.
By (4.2.2), a = fµ is a meromorphic function on C. Since a2 is real and
non-negative on S1, the function a =

√
a2 takes real values over S1 on C,

whence, by Lemma 4.3, (4.4.3) holds. Furthermore, a ◦ I = −fµ = −a
and (4.4.2) holds.

Lemma. Let φ be a meromorphic function on C. Then φ is antisymmetric
w.r.t. the hyperelliptic involution I, i.e. φ ◦ I = −φ, iff φ(ν, µ) = f(ν)µ,
where f is a rational function. Furthermore, in this case the following holds:
1. Locally around P0, φ is an odd meromorphic function of the local coor-

dinate λ.
2. The product φa can be identified with a rational function of ν on CP1.

Proof. The equivalence statement follows immediately from the representa-
tion (4.2.2) of meromorphic functions on C. Now consider φ0 = φ ◦ λ(−1),
where λ(−1) denotes the inverse of the local coordinate map λ around P0.
Noting that 4.2 implies λ ◦ I ◦ λ(−1)(z) = −z, we obtain φ0(−z) = φ ◦ I ◦
λ(−1)(z) = −φ0(z), and therefore 1. holds.

Finally, by (4.4.2), we have that φa is invariant under I, whence, by
Remark 4.2, can be identified with a meromorphic function (φa)(ν) on
CP1.

4.5. Let us also define the Riemann surface C′ on which
√
a2(λ) is

meromorphic. To be precise (see [19, Lemma III.1.7]), let C′ be the hyperel-
liptic curve associated with the plane affine curve C̃′ defined by the algebraic
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equation

µ̃2 =
2g∏
i=1

(λ−√νi)(λ+
√
νi).(4.5.1)

The holomorphic function λ extends to a holomorphic map π′ : C′ → CP1

of degree 2.
As for C, we will identify the points of C′ which don’t lie over λ =∞ with

pairs (λ, µ̃). It should be noted, that C′ has no branchpoints over λ = 0 and
λ = ∞ since a2 has, as an even function of λ, a zero of even order at 0. In
particular, (π′)−1(∞) consists of two different points P (1)

∞ and P (2)
∞ . By P (1)

0

and P
(2)
0 we will denote the two covering points of λ = 0. Clearly, λ is a

local coordinate around P
(1)
0 and P

(2)
0 and λ−1 is a local coordinate around

P (1)
∞ and P (2)

∞ .
Every meromorphic function f̃ on C′ is of the form [19, Proposition 1.10]

f̃(λ, µ̃) = f̃1(λ) + f̃2(λ)µ̃(4.5.2)

with two rational functions f̃1 and f̃2.

Remark 1. Let I ′(λ, µ̃) = (λ,−µ̃) be the hyperelliptic involution on C′.
As in Remark 4.2, we will use the representation (4.5.2) to identify ratio-
nal functions of λ with I ′-invariant meromorphic functions on C′. For the
understanding of the rest of the paper it will be helpful to investigate the
relations between C and C′. In preparation of this we introduce the notation
Cν , Cν P1, C∗ν for the ν-plane, the projective ν-plane and C∗ν = Cν \ {0},
respectively. Similar notation will be used for the λ-plane. We define

ρ0 : Cλ P1 −→ Cν P1, ρ0(λ) = λ2.(4.5.3)

Remark 2. 1. For similarly defined functions on Cλ and C∗λ we will use
the same notation ρ0.

2. In the rest of the paper we will carefully state where functions, 1-forms
etc. are defined. Notation, like ρ0, will be used for several closely related
maps, 1-forms etc.

3. If g is a map defined on Cν , then “g on Cλ” means g ◦ ρ0. Similarly,
if δ is a 1-form on Cν , “δ on Cλ” means ρ∗0δ, the “pullback of δ relative to
ρ0”. Similar conventions will be applied to various other maps.

Before investigating the relation between C and C′ we introduce some more
notation

π : C → Cν P1(4.5.4)
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where π is the extension of (ν, µ) → ν as stated in Theorem 4.1. Similarly
we will use

π′ : C′ → Cλ P1 .(4.5.5)

Note that 0 and ∞ are branchpoints for π but not for π′.
Next we consider the map

ρ : Cλ × Cµ̃ → Cν × Cµ, ρ(λ, µ̃) = (λ2, λµ̃).(4.5.6)

Also recall the definition of the antiholomorphic involution σ̂ on C given
by (4.3.2). Similarly we have an antiholomorphic involution σ̂′ on C′ defined
on C̃′ \ {P (1)

0 , P
(2)
0 } by

σ̂′(λ, µ̃) =

λ−1
, λ
−2g

 2g∏
j=1

νj

 1
2

µ̃

 .(4.5.7)

Theorem. The map ρ, restricted to C̃′, extends to a surjective and holo-
morphic map ρ : C′ → C. Moreover, ρ ◦ σ̂′ = σ̂ ◦ ρ and ρ ◦ I ′ = I ◦ ρ
holds.

Proof. Let (λ, µ̃) ∈ C̃′. Then ρ(λ, µ̃) = (λ2, λµ̃) satisfies

(λµ̃)2 − λ2
2g∏
j=1

(λ2 − νj) = λ2

µ̃2 −
2g∏
j=1

(λ2 − νk)
 = 0.(4.5.8)

Conversely, if (ν, µ) ∈ C̃∗, then (
√
ν, 1√

νµ
) ∈ Cλ × Cµ̃ satisfies

(
1√
ν

)2

−
2g∏
j=1

(
√
ν −√nuj)(

√
ν +
√
νj) =

1
ν
µ2 −

2g∏
j=1

(ν − νj) = 0.

(4.5.9)

If (ν, µ) ∈ C̃, ν = 0, then µ = 0 and ρ(0, µ̃0) = (0, 0), where µ̃0 is chosen
such that (0, µ̃0) ∈ C̃′. Since for every point of C̃ either ν or µ is a local
coordinate, it is easy to verify that ρ : C̃′ → C̃ is holomorphic. Finally, let
P = (λ(z), µ̃(z)) denote the points in a neighbourhood of one of the points
above ∞ on C′. Then, by [19, Chapter III], this point is described in C̃′ by
P = (λ(z)−1µ̃(z)λ(z)−g

′−1) where we have 4g = 2g′ + 2, thus g′ = 2g − 1.
Then ρ(P ) = (λ(z)−2, µ̃(z)λ(z)−g

′−2). In the chart around P∞ ∈ C this is

(λ(z)2, µ̃(z)λ(z)−g
′−2(λ(z)−2)−(g+1)) = (λ(z)2, µ̃(z)λ(z)).(4.5.10)
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This shows, that ρ extends to a surjective holomorphic map from C′ to C.
The last statement is a straightforward computation.

Corollary 1. The following diagram of surjective holomorphic maps is
commutative.

C′ ρ−−−→ C
π′
y yπ

Cλ P1
ρ0−−−→ Cν P1

(4.5.11)

As a consequene of the Theorem above we can lift every function on C to a
function on C′ via composition with ρ. This applies in particular to mero-
morphic functions. Denoting byM(C) andM(C′) the fields of meromorphic
functions on C and C′ respectively, we obtain the:

Proposition. a) The map ρ̂ :M(C)→M(C′), ρ̂(f) = f ◦ ρ is an injective
homomorphism of fields.

b) A function f ′ ∈M(C′) is in the image of ρ̂ iff

f ′(−λ, µ̃) = f ′(λ,−µ̃).(4.5.12)

Proof. a) Straightforward.
b) If f ′ is in the image of ρ̂, then

f ′(λ, µ̃) = (f ◦ ρ)(λ, µ̃) = f(λ2, λµ̃) = f1(λ2) + f2(λ2)λµ̃,(4.5.13)

where we have used (4.2.2). A comparison with (4.5.2) now shows

f ′1(λ) = f1(λ2)(4.5.14)

f ′2(λ) = f2(λ2)λ,(4.5.15)

from which (4.5.12) follows. Conversely, assume that f ′(λ, µ̃) = f ′1(λ) +
f ′2(λ)µ̃ satisfies (4.5.12). Then f ′1 is even and f ′2 is odd in λ and we can find
functions f1 and f2 of ν = λ2 such that (4.5.14) and (4.5.15) hold. Obviously,
f ′ = f ◦ ρ for f = f1 + f2µ ∈M(C).

Corollary 2. The function a2(λ) on Cλ is the square of a meromorphic
function on C′.
Proof. By Proposition 4.4, a2(ν) is the square of a meromorphic function on
C. By the proposition above, we know that ǎ = a ◦ ρ is meromorphic on
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C′. Moreover, ǎ ◦ I ′ = a ◦ ρ ◦ I ′ = a ◦ I ◦ ρ = −a ◦ ρ = −ǎ, where we have
used (4.4.2). This implies that (ǎ)2 descends to the meromorphic function
(ǎ)2(λ) = a2(λ2) on Cλ by Remark 4.2.

Remark 3. 1. The diagram 4.5.11 naturally induces also diagrams, where
the projective spaces are replaced by Cλ and Cν or by C∗λ and C∗ν .

2. Each of the surjective maps of any of the above diagrams induces an
injective map on the level of meromorphic functions via composition.

4.6. Let us define the non-compact Riemann surfaces

C∗ = C \ {P0, P∞} and C′∗ = C′ \ {P (1)
0 , P

(2)
0 , P (1)

∞ , P (2)
∞ }.

We already know, that a is meromorphic on C′ and C, and therefore also on
C∗. Now we prove the following important result:

Theorem. The functions α and β are holomorphic on C∗. The functions
b =
√
b2 and c =

√
c2 are meromorphic on C′ without poles over 0 and ∞.

Proof. We know by a′) and d′) in Theorem 3.7, that βa, α, and β2 are
even functions in λ, which are defined and holomorphic on C∗. Therefore,
after replacing λ2 by ν Remark 4.2 applies and the functions above can
be identified with I-invariant holomorphic functions on C∗. Since also a is
meromorphic on C, we have that β = βa

a
is a meromorphic function on C∗.

Since the square β2(ν) is holomorphic on C∗, β has no poles on C∗, which
shows that β is holomorphic on C∗.

Applying (4.5.11) we pull back β from C∗ to a holomorphic function (also
denoted by β) on C′∗. Furthermore, βb and βc are odd functions of λ, which
are defined and holomorphic on C∗. Thus, βb, βc, b = βb

β
and c = βc

β
are

meromorphic on C′∗. Since, by Theorem 3.7, b(λ) and c(λ) are in A+
r , they

can be continued holomorphically to λ = 0 on CP1. By e) in Theorem 3.7,
the same holds for b and c around λ = ∞. Since λ is a local coordinate
around P (1)

0 and P (2)
0 and λ−1 is a local coordinate around P (1)

∞ and P (2)
∞ , the

functions b and c can be extended holomorphically to these points, which
finishes the proof.

Proposition. With (·)∗ defined in Section 4.3, we have

α∗ = α, β∗ = −β on C∗ and on C′∗,(4.6.1)

b∗ = c on C′,(4.6.2)

α ◦ I = α and β ◦ I = −β on C∗,(4.6.3)
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α ◦ I ′ = α and β ◦ I ′ = −β on C′∗,(4.6.4)

b ◦ I = −b and c ◦ I = −c on C′.(4.6.5)

Proof. By b’) in Theorem 3.7, as functions on C∗, α and β2 are real on S1,
i.e., if we identify α and β2 with holomorphic functions on C∗, then they
are real on S defined in (4.3.1). Thus, by Lemma 4.3, α∗ = α holds. By
c’) in Theorem 3.7, β2 is non-positive on S1. Therefore, the holomorphic
function β on C∗ is on S the square root of a non-positive real function.
Hence, β is purely imaginary on S. This implies β∗ = −β, by Lemma 4.3.
The statement on C′∗ follows from this since ρ intertwines σ̂ with σ̂′ by
Theorem 4.5. To verify (4.6.2) we use again the representation b = βb

β
on

C′∗ and (3.5.12) and obtain b∗ = (βb)∗

β∗ = βc
β

= c. The first relation in (4.6.3)
is clear, since α is defined on C∗ν . For the second we use β = βa

a
and

obtain β ◦ I = (βa)◦I
a◦I = −βa

a
= −β, since βa is defined on C∗ν and (4.4.2)

holds. (4.6.4) follows from (4.6.3) since ρ intertwines I with I ′. Finally,
b ◦ I = (βb)◦I

β◦I = −βb
β

= −b. and similarly c ◦ I = −c.

4.7. Let us pause to collect some of the implications of Theorem 4.6.

By (3.3.2), the matrix S = h+Ah
−1
+ =

(
a b
c −a

)
can be written as

S = h+D
−1

(
1 0
0 −1

)
Dh−1

+ .(4.7.1)

The entries of S are all meromorphic functions on C′. By linear algebra
over the fieldM(C′) of meromorphic functions on C′, we get that there exist
nonzero elements x± ofM(C′)2, written as column vectors, such that Sx± =
±x±. These vectors are unique up to multiplication by elements of M(C′).
They define a two-dimensional vector-bundle over C′, the “eigenbundle” of
S over C′. If we fix them by requiring that

(x+(λ), x−(λ)) = h+(λ)D−1 for |λ| ≤ r,(4.7.2)

then they define a lift of h+ to a matrix function with entries meromorphic
on C′.

Since, by (3.4.7) and (3.3.10), the matrix χ = αI + βh+Ah
−1
+ can be

written in the form

χ = h+D
−1

(
α+ β 0

0 α− β

)
Dh−1

+ ,(4.7.3)
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we see, that the branchpoints of C′ are points, where the eigenvalues of χ
coincide, i.e., where χ fails to be regular semisimple.

4.8. The next two sections are a digression on finite type surfaces.
Let Ψ : C→ R3 be a CMC-immersion with extended frame F (z, λ) which

is generated by r-dressing the cylinder with h+ ∈ Λ+
r SL(2,C)σ. Let Z be

the abelian Lie-subalgebra of all ζ ∈ Λrsl(2,C)σ, such that
• [ζ(λ), A] = 0 for all λ ∈ Cr and
• ζ can be extended to a meromorphic function on I(r) which has pre-

cisely one pole at λ = 0.

Remark 1. By the discussion in Section 3.3 and the tracelessness of the
elements of Λrsl(2,C)σ, we can write each ζ ∈ Z uniquely as

ζ(λ) = φ(λ)A,(4.8.1)

where φ ∈ Ar is odd in λ, and has precisely one pole at λ = 0.

Let F : C → ΛrSU(2)σ be an extended frame in the r-dressing orbit of the
cylinder. Thus, there is h+ ∈ Λ+

r SL(2,C)σ and p+ : C→ Λ+
r SL(2,C)σ, such

that

F = h+e
(λ−1z−λz)Ap+(z, λ)−1.(4.8.2)

For each ζ ∈ Z we define

h+#ζ = U−1h+e
ζ(λ),(4.8.3)

where U ∈ ΛrSU(2)σ is determined by the Iwasawa decomposition (2.2.7),
such that h+#ζ ∈ Λ+

r SL(2,C)σ. The action of ζ on h+ descends via (3.1.1)
to an action on the frame F :

F#ζ = (h+#ζ)e(λ−1z−λz)Ap̃+(z, λ)−1 = U−1h+e
(λ−1z−λz)A+ζ(λ)p̃+(z, λ)−1,

(4.8.4)

where p̃+ : C → Λ+
r SL(2,C)σ is chosen such that F#ζ ∈ ΛrSU(2)σ and

(F#ζ)(0, λ) = I.
Our definition of Z and the associated action on the r-dressing orbit of

the standard cylinder are obtained from the definitions in [2, Section 4] for
the special case of harmonic maps into SU(2)/U(1). By [2, Prop. 4.1], we
have:

Lemma. 1. Eqs. (4.8.3) and (4.8.4) define an action of Z on the r-dressing
orbit of the cylinder which is compatible with the linear structure of Z. In
particular for ζ, ζ ′ ∈ Z,

F#(ζ + ζ ′) = (F#ζ)#ζ ′ = (F#ζ ′)#ζ.(4.8.5)
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2. If ζ, ζ ′ ∈ Z, such that ζ − ζ ′ can be extended holomorphically to I(r),
then F#ζ = F#ζ ′.

In other words, each ζ ∈ Z generates a “higher flow” on the set of CMC-
immersions in the r-dressing orbit of the cylinder by

F (z, t, λ) = F (z, λ)#(tζ), t ∈ R.(4.8.6)

For each t ∈ R, Sym’s formula gives a new associated family of CMC-
immersions with extended frame F (z, t, λ). These higher flows commute
by (4.8.5).

Remark 2. 1. The extended frames F#ζ and F (z, t, λ) all satisfy the
normalization condition (2.1.17).

2. Using (2.1.13)-(2.1.16) and the equivalence of (2.1.12) and (2.1.6),
(2.1.7), we see, that (4.8.3), (4.8.4) and (4.8.6) also defines an action on the
set of real valued solutions u(z, z) of (2.1.6). Since E ≡ 1 for all surfaces
in the r-dressing orbit of the cylinder, we get by setting H = −2, that
this defines a hierarchy of commuting flows of the integrable sinh-Gordon
equation.

4.9. We say, that the flow defined by ζ ∈ Z acts trivial on an extended
frame F in the dressing orbit of the cylinder, iff

F (z, t, λ) = U0(t)F (z, λ)U0(t)−1 for all t ∈ R,(4.9.1)

where U0(t) ∈ U(1) is a λ-independent unitary matrix. By [4], Corollary 4.1,
this is equivalent to the fact that the associated families Ψ(z, t, λ) and Ψ(z, λ)
defined by F (z, t, λ) and F (z, λ) = F (z, 0, λ), differ only by a proper Eu-
clidean motion in R3. Clearly, the set Z ′ ⊂ Z of elements which generate
trivial flows, is a linear subspace of Z.

Definition. A CMC-surface in the r-dressing orbit of the cylinder is of
finite type iff the subspace Z ′ of trivial flows has finite codimension in Z.

Let ζ ∈ Z ′. Then, by [4, Corollary 2.6], all surfaces generated by the ζ-flow
have the same metric. Therefore, using Remark 2 in Section 4.8, we see, that
ζ generates a trivial flow of the sinh-Gordon equation, i.e., u(z, z, t) = u(z, z)
for all t ∈ R. In [2, Theorem 4.2] it was shown, that the conformal factor
u(z, z) associated to a CMC-immersion Ψ is a finite type solution of the
sinh-Gordon-equation (for a definition see [20] or [7]) iff Ψ is of finite type
in the sense of Definition 4.9.

In [20] it was shown, that for a surface with doubly periodic metric, in
particular for CMC-tori, the conformal factor u is a finite type solution of the
sinh-Gordon equation. For more general CMC-surfaces with periodic metric,
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e.g., for CMC-surfaces which are topological cylinders, this is in general not
true. However, for surfaces in the r-dressing orbit of the cylinder, we have
the remarkable:

Theorem. Every CMC-surface with periodic metric in the r-dressing orbit
of the cylinder is of finite type.

Proof. Consider a CMC-surface Ψ : C→ R3 with periodic metric defined by
r-dressing the cylinder with h+ ∈ Λ+

r SL(2,C)σ and the hyperelliptic curve
C defined in Section 4.1. Then, by Proposition 4.4, the diagonal entries of
S = h+Ah

−1
+ are meromorphic on C.

For arbitrary ζ ∈ Z we write ζ = φ̂(λ)A, where φ̂ is odd and meromorphic
on I(r) with a pole only at λ = 0. If φ̂(λ) and φ̂′(λ) have the same principal
part at λ = 0, then for ζ = φ̂(λ)A and ζ ′ = φ̂′(λ)A, ζ − ζ ′ is holomorphic on
I(r). Therefore, by Lemma 4.8, ζ and ζ ′ generate the same flow. Thus, to
show that Ψ is of finite type, it is enough to construct a trivial flow for all
but a finite dimensional space of principal parts of φ̂.

If N ≥ g + 1, then the function

φ̃N(ν, µ) = ν−Nµ(4.9.2)

is by (4.2.2) meromorphic on C, has only a pole of order 2N − 1 at P0 and
is otherwise holomorphic. Obviously,

φ̃N ◦ I = −φ̃N .(4.9.3)

We define

φN = φ̃N − φ̃∗N ,(4.9.4)

where (·)∗ was defined in Section 4.3. Then φN is a meromorphic function
on C with a pole of order 2N − 1 at P0 and P∞, which is holomorphic on C∗
and satisfies

φN ◦ I = −φN ,(4.9.5)

and

φ∗N = −φN ,(4.9.6)

since (·)∗ is an involution which, by Proposition 4.3, commutes with I.
By (4.9.5) and Lemma 4.4,

(4.9.7) φNa is a rational function on Cν P1

and an even rational function on Cλ P1.
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By (4.9.6) and Proposition 4.4, φNa satisfies

(φNa)∗ = −φNa on Cν P1 and on Cλ P1.(4.9.8)

By the arguments above, Proposition 4.4 and Theorem 4.6, the functions
ΦN , a, b, c, α and β an all be considered being defined on C′∗. By writing
φNb = βb

βa
(φNa), φNc = βc

βa
(φNa), using (4.9.7) and b) and d’) of Theo-

rem 3.7, we get that φNb and φNc are odd meromorphic functions on C∗λ.
By writing φNb = b

a
(φNa), φNc = c

a
(φNa), we see that φNb and φNc can be

extended meromorphically to λ = 0. Furthermore, by (3.5.12), (4.9.8) and
Proposition 4.6 we have

(φNc)∗ =
(βc)∗

(βa)∗
(φNa)∗ = −−βb−βa(φNa) = −φNb.(4.9.9)

In particular, φNb and φNc can be extended meromorphically to λ = ∞,
whence

φNb and φNc are odd rational functions on Cλ P1.(4.9.10)

Since a2, b2 and c2 are rational functions of ν, we can choose a polynomial
ϕ̃(ν), ϕ̃(0) 6= 0, such that ϕ̃2a2, ϕ̃2b2 and ϕ̃2c2 are holomorphic on C∗ν . Then
ϕ̃∗ is a rational function with a pole only at ν = 0. If we define

ϕ = ϕ̃ϕ̃∗(4.9.11)

then the function ϕ(ν) is rational, real on S1 and ϕ, ϕ2a2, ϕ2b2 and ϕ2c2

have no poles on C∗ν . We set φ̂N = ϕφN on C∗. Then, since φN has no poles
on C∗, (4.9.7) and (4.9.10) yield

φ̂Na is an even rational function of λ, which is holomorphic on C∗,
(4.9.12)

φ̂Nb and φ̂Nc are odd rational functions of λ, which are holomorphic on C∗.
(4.9.13)

Furthermore, since ϕ is real on S1, (4.9.8) and (4.9.9) give

(φ̂Na)∗ = −φ̂Na, φ̂Nc = −(φ̂Nb)∗ on C∗ν and on C∗λ.
(4.9.14)

By (4.9.12) and (4.9.13), the matrix function

(φ̂NS)(λ) =

(
φ̂Na φ̂Nb

φ̂Nc −φ̂Na

)
,(4.9.15)
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is rational and holomorphic on C∗λ and satisfies the twisting condition (2.2.1).
In addition, by (4.9.14), (φ̂S)∗ = −φ̂S, i.e.,

φ̂NS is in the Lie algebra Λrsu(2)σ and extends holomorphically to C∗.
(4.9.16)

The functions ϕ̃ and ϕ constructed above are independent of N . As in
Remark 4.2, we identify ϕ with an I-invariant meromorphic function on C.
Let κ ∈ N be the degree of the polynomial ϕ̃(ν). Then, since ϕ(0) 6= 0, ϕ
has a pole of even order 2κ, at P0. We can choose the polynomial ϕ̃ such
that κ is minimal.

The function φ̂Na is rational and even in λ and has no poles on C∗. Since,
by Proposition 4.4 and Lemma 4.4, a(λ) ∈ A+

r is odd, we get that φ̂N(λ) =
φ̂Na
a

is an odd meromorphic function on I(r), which, since φN is holomorphic
on C′∗, has only a pole at λ = 0. Therefore, by Remark 1 in Section 4.8,
ζ = φ̂NA ∈ Z defines a higher flow acting on the periodic surface Ψ. The
pole of φ̂N(λ) at λ = 0 is of degree 2(κ+N)−1. Since κ <∞ is independent
of N and since N can take all but a finite number of integer values, it only
remains to show, that each of the φ̂N generates a trivial flow.

We have

h+e
tφ̂NA = h+e

tφ̂NAh−1
+ h+ = etφ̂NSh+.(4.9.17)

By (4.9.16), for all t ∈ R, the matrix U(t, λ) = etφ̂NS is in the twisted loop
group ΛrSU(2)σ and can be extended holomorphically to λ ∈ C∗. This yields
h+#(tφ̂NA) = U0(t)h+ with some unitary λ-independent matrix U0(t), by
the uniqueness of the Iwasawa decomposition. Thus, by (4.8.4) and (2.1.17),
F (z, t, λ) = U0(t)F (z, λ)U0(t)−1, and the flow generated by ζN = φ̂NA is
trivial. This shows, that Z ′ has at most codimension κ+g <∞ in Z. Thus,
Ψ is a finite type surface.

Remark. Theorem 4.9 can also be obtained from more general results for
integrable systems. We want to outline, how this works:
By Gr, 0 < r < 1, we denote the group of maps from Cr to SL(2,C) which
satisfy (2.2.1) and can be continued to holomorphic functions on I(r) \ {0}.
For 0 < r′ ≤ r < 1, let ρrr′ : Gr 7→ Gr′ be the restriction of maps. Using
these homomorphisms of Lie groups, define G0 as the direct limit of the
groups Gr for r → 0. Let G+

0 ⊂ G0 be the subgroup of maps which extend
holomorphically to λ = 0 and let G−0 be the subgroup of maps which can
be continued holomorphically to λ = ∞ and take the value I ∈ SL(2,C)
there. Clearly, G+

0 ∩ G−0 = {I}. As was proved in [14, Section 2.2], the
multiplication map defines a diffeomorphism of G−0 ×G+

0 onto an open, dense
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subset of G0. By arguments similar to those in [18] one can show, that G0

admits a second splitting: Let Gr0 ⊂ G0 be the subgroup of maps which can
be continued holomorphically to C∗ and take values in SU(2) on S1. Then
multiplication Gr0 × G+

0 → G0 is a diffeomorphism onto. Since the extended
frames are, by Lemma 2.2, all in Gr0 and since the dressing action depends
only on the equivalence class of h+ in G+

0 , we can use the group G0 with the
splittings above, instead of ΛrSL(2,C)σ, 0 < r < 1, to construct all CMC-
immersions in the r-dressing orbit of the cylinder. Also, the generators ζ of
the higher flows in Section 4.8 can, by the second statement in Lemma 4.8,
w.l.o.g. be chosen such that etζ ∈ G−0 for all t ∈ R. Finally, to merge both
splittings into one, we can use the classical double construction presented
in [13, Kapitel 4.2] (compare also the analogous construction for the groups
ΛrSL(2,C)σ presented in [7, 18, 2, 5]). From this, the group G0 can be
recovered by a real reduction similar to the one used in [7] and [2]. With these
settings, our description of solutions of the sinh-Gordon equation fits into the
framework of [14] and Theorem 4.9 can be obtained from [14, Theorem 4.16].

However, for the reader’s convenience, we have presented above a direct
proof of Theorem 4.9.

5. Algebro-geometric description of surfaces with periodic metric.

For a CMC-immersion with periodic metric, we defined in Section 4.1 a
nonsingular hyperelliptic curve C. In this section, we will show, that C
allows us to express the periodicity conditions for CMC-immersions stated
in Theorem 3.7 and Theorem 3.8 in terms of algebro-geometric data.

If the CMC-immersion Ψ under consideration does not only have a peri-
odic or doubly periodic metric, but even a compact image in R3, i.e., if Ψ is
a CMC-torus, then we will reproduce the classification of CMC-tori in terms
of algebro-geometric data as given in [20] and [1].

We would like to point out that this classification refers to the generic
case. As mentioned in the introduction, a discussion of the singular tori
would be very interesting.

5.1. We will first reformulate the statement of Theorem 3.7 in terms
of algebro-geometric data. We start with the same assumptions as in Sec-
tion 4: Let Ψ : C → R3 be a CMC-immersion, such that Sym(Ψ) contains
a nontrivial element q ∈ C∗. Then we define the hyperelliptic curve C as in
Section 4.1.

We introduce a standard homotopy basis for C which is adapted to the
σ̂-symmetry of C stated in Proposition 4.3. Let a1, . . . , ag, b1, . . . , bg, g the
genus of C, be a canonical basis of H1(C,Z), such that the intersection num-
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bers are given by

aiaj = 0, bibj = 0, aibj = δij, i, j = 1, . . . , g.(5.1.1)

For the cycles ak we choose (see [10, VII.1.1], where aj ↔ bj compared to
our conventions)

ak = γk − I ◦ γk,(5.1.2)

where γk is a curve joining the branchpoints over ν2k−1 and ν2k, which sat-
isfies σ̂ ◦ γ = −γ. Then

I ◦ ak = −ak(5.1.3)

and

σ̂ ◦ ak = −ak,(5.1.4)

since σ̂ and I commute. I.e., the cycles ak are up to orientation invariant
under σ̂ and I. In addition, we can choose bk such that

σ̂ ◦ bk = bk − ak +
g∑
j=1

aj.(5.1.5)

5.2. Now we investigate the function p ∈ Ar defined in (3.4.10). It is an
odd meromorphic function on I(r) ⊂ Cλ. In general, p cannot be continued
to a meromorphic function on C∗. However, the differential d p = p′ dλ can.
For this we note that α = cosh(p) and β = sinh(p) on I(r) \ {0} ⊂ Cλ by
Theorem 3.7. Then, since α2 − β2 = 1, d p = α dβ − β dα.

Let α and β be the holomorphic functions on C∗ defined in Theorem 4.6.
Then we define the 1-form

ω = α dβ − β dα on C∗.(5.2.1)

Clearly,

ω is a holomorphic 1-form on C∗.(5.2.2)

Lemma. a) In the local coordinate λ = λ(ν, µ) around P0 we have ω =
p′(λ) dλ.

b) ρ∗ dλ = π′∗ d p, where d p is defined on C∗λ.

Proof. a) The local coordinate λ(ν, µ) around P0 ∈ C is the inverse map of

λ→ (λ, µ̃(λ))→ (λ2, λµ̃(λ)),(5.2.3)
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where µ̃(λ) =
(∏2g

j=1(λ−√νj)(λ+√νj)
) 1

2
. Therefore, a) follows from b).

But ρ∗ω = α(λ) d(β ◦ ρ)− (β ◦ ρ) dα(λ) and β ◦ ρ = (βa)◦ρ
a◦ρ = (βa)(λ)

a(λ)
, where

we have used the definition of β in Theorem 4.6. For small λ, however,
(βa)(λ) = β(λ)a(λ), whence β ◦ ρ = β(λ) and ρ∗ω = p′(λ) dλ follows. Since
in the coordinates under consideration, π′(λ, µ̃) = λ, (π′)∗ d p = d p(λ) =
p′(λ) dλ.

Theorem. The differential ω is a meromorphic Abelian differential of the
second kind on C which is holomorphic on C∗. It has poles of second order
at P0 and P∞. In local coordinates around P0 and P∞ it is of the form

ω = −qλ−2 dλ+ s+(λ), s+ locally holomorphic around P0,(5.2.4)

ω = q(λ−1)−2 d(λ−1) + s−(λ), s− locally holomorphic around P∞.
(5.2.5)

Furthermore, ∫
ak

ω = 0, k = 1, . . . , g.(5.2.6)

The differential ω is uniquely determined by these properties. In addition,
we have

σ̂∗ω = −ω.(5.2.7)

Proof. From (5.2.2) we know that ω is a holomorphic 1-form on C∗. The
local description of ω at P0 shows that ω has a meromorphic extension to
P0.

By Proposition 4.6 and (4.3.3), α ◦ σ̂ = α and β ◦ σ̂ = −β. This yields
σ̂∗ dα = dα, σ̂∗ dβ = −dβ. Equation (5.2.7) now follows from (5.2.1). Since
ω is meromorphic around P0 it can by (5.2.7) also be continued meromor-
phically to P∞ = σ̂(P0). This shows, that ω can be extended to an Abelian
differential on C.

Locally around P0, λ is a local coordinate on C. We have, by (3.4.10),
that

ω(λ) =
dp(λ)
dλ

dλ =
(
−λ−2q − q +

df+(λ)
dλ

)
dλ,(5.2.8)
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where f+ and therefore also s+ = (−q+ df+(λ)

dλ
) dλ is defined and holomorphic

around λ = 0. This proves (5.2.4). Locally around P∞, (5.2.4) and (5.2.7)
yield

ω = −σ̂∗ω = −σ̂∗(−qλ−2 dλ+ s+) = qλ2 d(λ−1) + s−(5.2.9)

where s− = −σ̂∗s+ is locally defined and holomorphic around P∞. This
proves (5.2.5). Since λ−1 is a local coordinate around P∞ on C, this also
shows, that ω has poles of second order at P∞ and P0, and that the residue
of ω vanishes at either singularity, whence it is an Abelian differential of
the second kind. As such, it is by [10, Prop. III.3.3] uniquely determined
by (5.2.4)–(5.2.6).

To finish the proof, it therefore suffices to verify (5.2.6). To this end we
rewrite (5.2.1) using α2 − β2 = 1 as

ω =
d(α+ β)
α+ β

= d(ln(α+ β)) on C∗.(5.2.10)

Since α+ β is a holomorphic function without zeroes on C∗, we thus obtain
that the integral of ω over a closed cycle on C∗ is always an integer multiple of
2πi. In particular, each such integral is purely imaginary or zero. By (5.1.4)
and (5.2.7), we have∫

ak

ω = −
∫
σ̂∗ak

ω = −
∫
ak

σ̂∗ω =
∫
ak

ω =
∫
ak

ω.(5.2.11)

Thus, the integral over ak is real. This is only possible if the integral van-
ishes.

Let Ω1 be an Abelian differential of the second kind on C which is in local
coordinates around P∞ given by

Ω1 = −(λ−1)−2 d(λ−1) + a locally holomorphic differential around P∞

(5.2.12)

and is holomorphic on C \ {P∞}. Such a differential exists by [10], Theo-
rem II.5.1]. It is unique up to addition of a holomorphic differential on C.
Thus, see [10, Corollary III.3.4], if we normalize Ω1 by∫

ak

Ω1 = 0, k = 1, . . . , g,(5.2.13)

then Ω1 is determined uniquely by (5.2.12) and (5.2.13). By (5.1.3), the
differential

Ω2 = σ̂∗Ω1(5.2.14)
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has also vanishing a-periods and a single pole at P0. It is given in local
coordinates around P0 by

Ω2 = −λ−2 dλ+ a locally holomorphic differential around P0.
(5.2.15)

Since Abelian differentials are uniquely determined by their a-periods and
the principal parts at the singularities [10, Prop. III.3.3], we have

ω = −qΩ1 + qΩ2 = −qΩ1 + qσ̂∗Ω1.(5.2.16)

In addition I∗Ω1 and −Ω1 have the same pole divisors and both
satisfy (5.2.13) and (5.2.12). Therefore,

I∗Ω1 = −Ω1.(5.2.17)

Let us define

Uk =
∫
bk

Ω1, Vk =
∫
bk

Ω2.(5.2.18)

From (5.1.5) it follows, that

Vk =
∫
bk

Ω2 =
∫
bk

σ̂∗Ω1 =
∫
σ̂∗bk

Ω1 =
∫
bk

Ω1 = Uk.(5.2.19)

By collecting the results above, we get:

Proposition. The integrals Uk of Ω1 over the b-cycles satisfy

Im(qUk) = πmk, mk ∈ Z, k = 1, . . . g.(5.2.20)

Proof. By (5.2.16) and (5.2.19), we have∫
bk

ω = −qUk + qUk = 2iIm(qUk).(5.2.21)

As in the proof of Lemma 5.2, we use the fact that the integral of ω over
a closed cycle is an integer multiple of 2πi. This together with (5.2.21)
proves (5.2.20).

5.3. Next we investigate the closing conditions in Theorem 3.9. Since β2 is
an even function in λ, we can write it as a function of ν = λ2. By Lemma 4.1,
a2(ν) has no zero of odd order on S1. Therefore, by d’) in Theorem 3.7, also
β2 = (βa)2

a2 has no zeroes of odd order on S1. As a function of λ, β2 has a
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zero of order 2n, n > 0, at λ0 ∈ S1 iff as a function of ν it has a zero of
order 2n at ν0 = λ2

0. Since ν is a local coordinate around every point on S,
we have that β2 has a zero of order 2n at ν0 iff β has a zero of order n at
each of the two covering points of ν0 on C. We have proved the following:

Lemma. Let λ0 ∈ S1 and let P1 and P2 be the two points on C, such that
ν(P1) = ν(P2) = λ2

0. Then we have
a) β2(λ) vanishes at λ0 iff β vanishes at P0 and P1.
b) β2(λ) vanishes at least to fourth order at λ0 iff β vanishes at least to

second order at P0 and P1.

Since β(P0) = −β(P1), we have that in both statements of Lemma 5.3 we
can replace “and” by “or”. We can restate Theorem 3.9 in terms of ω:

Theorem. Let Ψ : C → R3 be a CMC-immersion in the r-dressing orbit
of the cylinder with associated family {Ψλ, λ ∈ S1}. Let q ∈ Sym(Ψ) =
Sym(Ψλ), q 6= 0, and let χ be defined as in Theorem 3.7. Let C be the
hyperelliptic curve defined in Section 4.1 and let ω be the Abelian differential
on C which is uniquely defined by Theorem 5.2. For λ0 ∈ S1 denote by
P1(λ0) and P2(λ0) the covering points of ν0 = λ2

0 on C. Then the following
are equivalent:
1. q ∈ Per(Ψλ0).
2. β vanishes at least to second order in P1(λ0) and P2(λ0).
3. The form ω has a zero at P1(λ0) or P2(λ0) and there exists a curve γ

on C∗ connecting P1(λ0) and P2(λ0) such that∫
γ

ω = 2πim, m ∈ Z.(5.3.1)

Proof. 1.⇔2. follows from Theorem 3.9 and Lemma 5.3.
2.⇒3. Using (5.2.10) we get for each curve on C∗ connecting P1 and

P2 = I(P1):∫
γ

ω = ln(α+ β)|P2
P1

= ln((α+ β)(P2))− ln((α+ β)(P1))(5.3.2)

where we have continued ln(α + β) analytically along γ. Since β(P1) =
β(P2) = 0, ∫

γ

ω = ln(α(P2))− ln(α(P1)),(5.3.3)

which by (4.6.3) is an integer multiple of 2πi. Thus, (5.3.1) holds. In addi-
tion, if β vanishes to second order at P1 and P2, then also dβ vanishes at
both points. Therefore, ω = α dβ − β dα has a zero at P1 and P2.
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3.⇒2. Let γ be a curve on C∗ connecting P1 and P2 for which (5.3.1)
holds. Then by (5.3.2) we get

(α− β)(P1) = (α+ β)(P1)(5.3.4)

from which with Proposition 4.6 β(P1) = −β(P2) = 0 follows. If in addition
ω(P1) = 0, then since β(P1) = 0, we get α(P1) = 1 and dβ(P1) = 0. Thus β
vanishes to second order at P1 and therefore also at P2.

Remark. 1. It follows immediately from (3.1.1), that

F (z,−λ) = F (−z, λ),(5.3.5)

i.e., Ψλ and Ψ−λ differ only by a coordinate transformation. This explains,
why the conditions 2. and 3. in Theorem 5.3 are invariant under the substi-
tution λ0 → −λ0.

2. The proof of Theorem 5.3 shows, that in the third statement of the
theorem, “there exists a curve γ on C∗” can be replaced by “for all curves γ
on C∗”.

5.4. If Ψ is a periodic CMC-immersion with associated family {Ψλ;λ ∈
S1}. then by Remark 2.7, q ∈ Sym(Ψλ) for all λ ∈ S1. In Sections 4.1, 5.1
and 5.2 we have introduced a nonsingular hyperelliptic curve C, a canonical
homotopy basis a1, . . . , ag, b1, . . . , bg ∈ H1(C,Z) and an Abelian differential
Ω1 of the second kind on C. If q ∈ Sym(Ψ), then these data satisfy Proposi-
tion 5.2. If for some λ0 ∈ S1, q ∈ Per(Ψλ0), then in addition the statement
of Theorem 5.3 holds. In the special case that Ψλ0 is a CMC-torus, we get

Theorem. Let Ψ : C → R3 be a periodic CMC-immersion with associated
family {Ψλ;λ ∈ S1}. We define the nonsingular hyperelliptic curve C as
in Section 4.1. Assume, that Ψλ0 is a CMC-torus. Let qj = 1

2
Yj + i 1

2
Xj,

j = 1, 2, be the generators of Per(Ψλ0). We introduce a homotopy basis
a1, . . . , ag, b1, . . . bg, the Abelian differential Ω1 and Uk = αk + iβk as in
Sections 5.1 and 5.2. Then there exists a curve γ on C∗ connecting the points
P1(λ0) and P2(λ0) for which ν(Pi(λ0)) = λ2

0, such that for X1, Y1, X2, Y2,
αk, βk, k = 1, . . . , g, defined above and c1, c2 defined by

c1 + ic2 =
1
2

∫
γ

Ω1.(5.4.1)

1. The matrix

1
2π

(
X1 Y1

X2 Y2

)(
2c1 α1, . . . , αg
−2c2 −β1, . . . ,−βg

)
(5.4.2)

has integer entries and
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2. Ω1 vanishes at P1(λ0) (and therefore also at P2(λ0)).

Proof. Let Ψλ0 be a CMC-torus, such that q1 and q2 generate Per(Ψλ0). If
we define αk, βk, k = 1, . . . , g, as above then by Proposition 5.2 we have for
j = 1, 2:

πmk = Im(qjUk) =
1
2

(Xjαk − Yjβk),(5.4.3)

where mk ∈ Z. This shows, that the last g columns in the matrix product
of (5.4.2) have integer entries.

In addition, if we set V =
∫
γ Ω1, then by Theorem 5.3, we get for j = 1, 2:

2iIm(qjV )− qjV + qjV = 2i(Xjc1 − Yjc2) = 2πimj, mj ∈ Z.
(5.4.4)

This shows, that the first column of (5.4.2) has integer entries, proving the
first part of the statement.

Finally, by Theorem 5.3 and (5.2.16), we get that −q1Ω1 + q1Ω1 and
−q2Ω1 + q2Ω1 vanish at P1(λ0) or P2(λ0), and therefore, by (5.2.17), at both
points. Since q1 and q2 are linearly independent as vectors in R2, it follows
that Ω1 vanishes at P1(λ0).

Remark. This reproduces the conditions (6.13) and (6.14) of [1] for CMC-
tori.

5.5. In the last two sections we have reformulated the necessary con-
ditions of Theorem 3.7 for periodic surfaces in terms of algebro-geometric
data on C. For CMC-tori, the result is the same as in [1, Theorem 6.1], as
expected. It remains to construct periodic surfaces from algebro-geometric
data.

We start with the following data:
1. Let g ∈ N and let ν2k−1 ∈ C, k = 1, . . . , g, be mutually distinct, such

that 0 < |ν2k−1| < 1,
2. let q ∈ C∗.
Define the nonsingular hyperelliptic curve C by

µ2 = ν
2g∏
k=1

(ν − νk), ν2k = ν2k−1
−1, k = 1, . . . , g.(5.5.1)

Then g is the genus of C and C has no branchpoints over the unit circle.
For this surface, Theorem 4.1 holds. The surface C admits the involution
σ̂ defined in (4.3.2). As in Section 4.3, we define for a scalar function f on
C, f∗ = f ◦ σ̂. We denote by P0 and P∞ the branchpoints of C over ν = 0
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and ν =∞. We also define a standard homotopy basis a1, . . . , ag, b1, . . . , bg,
such that (5.1.4) and (5.1.5) hold. Let Ω1 be the uniquely defined Abelian
differential on C which is holomorphic except at P∞ and satisfies (5.2.13)
and (5.2.12). We also define Ω2 by (5.2.14). We denote the integral of Ω1

over the cycle bk by Uk.
We now assume, that with these definitions the equation

Im(qUk) = πmk, mk ∈ Z, k = 1, . . . g,(5.5.2)

is satisfied. From these data we will construct a family of CMC-immersions
which are periodic w.r.t. translation by q.

For later use we also introduce the hyperelliptic curve C′ defined by

µ̃2 =
2g∏
k=1

(λ−√νk)(λ+
√
νk).(5.5.3)

The discussion in Sections 4.2–4.5 applies to C and C′. In particular, we have
the local coordinate λ = λ(ν, µ) at P0 on C (see also the proof of Lemma 5.2).

5.6. Next we define the Abelian differential ω by (5.2.16). By the
definition of Ω1 and Ω2, it satisfies (5.2.7) and (5.2.6). It has poles at P0 and
P∞. Its behaviour at the singularities is given by (5.2.4), (5.2.5). Let I be
the hyperelliptic involution on C. Since −I∗ω also satisfies (5.2.4)–(5.2.6),
we have

I∗ω = −ω.(5.6.1)

We define the multi-valued holomorphic function p on C∗ = C \ {P0, P∞} by

p(ν, µ) =
∫
γ(ν,µ)

ω,(5.6.2)

where γ(ν, µ) is a curve connecting the branchpoint over ν1 with (ν, µ).
By (5.2.6), (5.5.2) and (5.2.21), p is at every point of C∗ defined up to an
integer multiple of 2πi. Moreover, every branch of p is locally meromorphic
at each point of C∗. The functions

α = cosh(p), β = sinh(p)(5.6.3)

are holomorphic and single-valued on C∗. Clearly, α2 − β2 = 1 on C∗.
By (5.6.1), we have modulo 2πiZ:

(p ◦ I)(ν, µ) =
∫
γ(ν,−µ)

ω =
∫
γ(ν,µ)

(I∗ω) = −p(ν, µ),(5.6.4)
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where we have chosen γ(ν, µ) = I ◦ γ(ν,−µ). By (5.2.7), we have modulo
2πiZ:

(p ◦ σ̂)(ν, µ) =
∫
γ(σ̂(ν,µ))

ω =
∫
γ(ν,µ)

(σ̂∗ω) = −
∫
γ(ν,µ)

ω = −p(ν, µ),

(5.6.5)

where we have chosen γ(ν, µ) = σ̂ ◦ γ(σ̂(ν, µ)). This shows, that p∗ = −p
modulo 2πiZ. Therefore, we get

α∗ = α, β∗ = −β(5.6.6)

and

α ◦ I = α, β ◦ I = −β.(5.6.7)

Thus, α and β2 project down to holomorphic functions α(ν), β2(ν) on C∗ν
which are real on S1. Pulling back ω, p, α and β from C∗ to C′∗ and from C∗ν
to C∗λ, respectively, yields holomorphic functions α(λ) and β2(λ), which are
real on S1 in view of (5.6.6). Moreover, (5.6.7) and (5.6.6) show, that α and
β2 are even on C∗λ and that β is non-positive over S1 by Lemma 4.3.

The function p on C′∗ can be written locally near one of the points on
C′ above λ = 0 in the form p(λ) = λ−1q − λq + f+, where f+ is locally
holomorphic at λ = 0 and, by (5.6.5), an odd function of λ.

We collect these results in the following:

Lemma. With the notation of Section 5.5 we have: Let 0 < r0 < 1 be such
that C′ has no branchpoints over I(r0). Define

p(ν, µ) =
∫
γ(ν,µ)

(−qΩ1 + qσ̂∗Ω1),(5.6.8)

where γ(ν, µ) is an arbitrary curve joining (ν1, 0) and (ν, µ) on C. Then p
is a multivalued function on C unbranched over ν ∈ I(r0). Every branch of p
can be identified with an odd meromorphic function on λ ∈ I(r0), which is of
the form

p(λ) = λ−1q − λq + f+(λ),(5.6.9)

where f+(λ) is odd in λ and holomorphic on I(r0), i.e., f+ ∈ A+
r0

. If we define
α(λ) = cosh(p(λ)), β(λ) = sinh(p(λ)), then α and β satisfy the conditions
a′)-c′) of Theorem 3.8. Furthermore, β vanishes at all branchpoints of C,

β(νk, 0) = 0, k = 1, . . . , 2g.(5.6.10)
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Proof. It only remains to prove (5.6.10). But this follows immediately
from (5.6.7) since the branchpoints are fixed points under the hyperellip-
tic involution I on C.

5.7. It remains to construct rational functions a2(λ), b2(λ), c2(λ), such
that the conditions a)–e) and d’) of Theorem 3.8 are met. We will first
construct a2(λ).

If the genus g of C is odd, we define

â2(ν) =

(
g∏
k=1

ν2k−1

)
νg

2g∏
k=1

(ν − νk)−1.(5.7.1)

If g is even, we choose an arbitrary ν0 ∈ S1 and define

â2(ν) = ν0

(
g∏
k=1

ν2k−1

)
νg−1(ν − ν0)2

2g∏
k=1

(ν − νk)−1.(5.7.2)

We note, that in both cases â2 is a rational function with a zero of odd order
at ν = 0 and simple poles precisely at the points νk, k = 1, . . . , 2g. A simple
calculation gives

(â2)∗(ν) = â2(ν−1) = â2(ν).(5.7.3)

In addition, â2 has no zeroes of odd order different from ν = 0. In particular,
since â2 is real on S1 with at most one zero on S1, it is either non-negative
or non-positive on S1. Therefore, there exists a real constant 0 < A < ∞,
such that 0 ≤ â2(ν) ≤ A or −A ≤ â2(ν) ≤ 0 for all ν ∈ S1. Let us define the
rational function

a2
0 = εâ2,(5.7.4)

where ε = ±1 is chosen such that a2
0 is non-negative on S1.

Proposition. Let C, C′, β and 0 < r0 < 1 be defined as in Lemma 5.6.
Then a2

0(ν) constructed above is a rational even function of λ, which is real
and non-negative on S1. Furthermore, a2

0(λ) restricts to the square of an
odd holomorphic function a0(λ) ∈ A+

r0
, such that (βa0)(λ) can be extended

holomorphically to an even function on C∗λ.

Proof. We have already shown, that a2
0 is rational in ν = λ2 and therefore

an even rational function of λ. From (5.7.3) and (5.7.4), it follows, that a2
0

is real and non-negative on S1. Since a2
0 has only a zero of odd order at

ν = 0 and only poles of odd order at νk, k = 1, . . . , 2g, its square root a0

is a meromorphic function on C, which satisfies a0 ◦ I = −a0. It has simple
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poles precisely at the branchpoints of C∗ and has zeroes of odd order at
P0 and P∞. Applying the usual identifications between functions on I(r0),
functions on a patch of C′ above I(r0) and functions in a neighbourhood of P0

on C, and also using Lemma 4.4 we conclude that a0 is an odd holomorphic
function of λ on I(r0), i.e., a0 ∈ A+

r0
. In addition, since β is holomorphic on

C∗ and, by (5.6.10), vanishes at the branchpoints of C∗, the function βa0 is
holomorphic on C∗ and, by (5.6.7) invariant under I. Therefore, βa0 projects
down to an even holomorphic function (βa0)(λ) on C∗.

In the following, for x ∈ R we denote by [x] the greatest integer less than or
equal to x.

Lemma. Let C, C′, β and 0 < r0 < 1 be defined as in Theorem 5.6. Let
f̃(ν) be a rational function which is holomorphic on C∗, real on S1, and has
a pole of order at most [ g−1

2
] at ν = 0. Let us define a2

0 as above and set
a2 = f̃2a2

0. For each such f̃ , a2 is an even rational function of λ which is real
and non-negative on S1. Furthermore, the restriction of a2 to Cr0, the circle
with radius r0 with center λ = 0, is the square of an odd function a ∈ A+

r0
.

In addition, βa extends to an even holomorphic function (βa)(λ) on C∗.

Proof. By Proposition 5.7, the functions f̃2, a2
0 and therefore also a2 are even

rational functions of λ, which are real and non-negative on S1. In addition,
the restriction of a2

0 to Cr0 is the square of an odd function a0(λ) ∈ A+
r0

.
Thus, since f̃ is even in λ, and since f̃2a2 has no poles on I(r0), the restriction
of a2 to Cr0 is the square of the odd function a(λ) = f̃(λ)a0(λ) ∈ A+

r0
.

Furthermore, f̃ , βa0 and therefore also βa = f̃ · (βa0) are even holomorphic
functions of λ on C∗.

Theorem. Let C, C′, β and 0 < r0 < 1 be defined as in Theorem 5.6.
Then there exists at least a real g-parameter family of even rational functions
a2(λ), such that
a) a2 is real on S1 and 0 ≤ a2(ν) < 1 for ν ∈ S1,
b) the restriction of a2 to Cr0 is the square of an odd function a(λ) ∈ A+

r0
,

c) (βa)(λ) can be extended to an even holomorphic function on C∗.

Proof. By Lemma 5.7, to each rational function f̃(ν) which is real on S1,
holomorphic on C∗, and has a pole of order at most [ g−1

2
] we can construct

an even rational function a2(λ) which satisfies b) and c), is real and non-
negative on S1 and has no poles on S1. Thus, we can always normalize a2

such that a2(ν) < 1 for all ν ∈ S1. Then also a) is satisfied.
Since f̃ is real on S1, we have, by Section 2.8, f̃∗ = f̃ . Therefore, f̃ has

the same pole order at ν = 0 and ν =∞. As a consequence, with m = [ g−1
2

],
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f̃ is of the form λ−m(r0 + r1λ+ . . .+ rm−1λ
m−1)+ t0 + t1λ+ . . .+ tmλ

m. This
implies that f̃ is defined by 2[ g−1

2
] + 1 complex parameters. After imposing

the reality condition there are still 2[g−1
2

]+1 real parameters left free, which
determine the chosen admissible function f̃ completely. If g is odd, then
2[ g−1

2
] = g−1. If g is even, then 2[ g−1

2
] = g−2. In the case that g is even we

have the additional freedom to choose a zero ν0 ∈ S1 of a2
0. Altogether, in

both cases this gives a real g-parameter family of functions a2, which satisfy
a)–c).

5.8. It remains to construct the even rational functions b2 and c2, such
that all conditions of Theorem 3.8 are satisfied.

Lemma. Let a2(λ) and 0 < r0 < 1 be as in Theorem 5.7. Then the equation

b2(b2)∗ = (1− a2)2,(5.8.1)

has a solution b2(λ) which is rational, even in λ, and its restriction to Cr0
is the square of an even function b(λ) ∈ A+

r0
. Furthermore, we can choose

b2 such that b2 and (b2)∗ both have either a simple zero or a simple pole at
each of the branchpoints ν1, . . . , ν2g of C and no other poles or zeroes of odd
order.

Proof. With a2 also 1− a2 is rational, even in λ, and defined and real on S1.
Furthermore, 1 − a2 has no zeroes on S1. By reordering the branchpoints
ν1, . . . , ν2g if necessary we can assume that a2 has simple poles at ν1, . . . , ν2K

and zeroes of odd order at ν2K+1, . . . , ν2g, where g − [ g−1
2

] ≤ K ≤ g. Here,
the lower bound for the number of poles of a2 follows from the maximum
number 2[ g−1

2
] of zeroes of the rational function f̃ in Lemma 5.7. We write

1− a2 = γ

∏n1
j=1

(
ν − ν(1)

j

)(
ν − ν(1)

j

−1
)

∏K
k=1(ν − ν2k−1)(ν − ν2k)

, γ ∈ R,(5.8.2)

where
{
ν

(1)
j , ν

(1)
j

−1
}

are the zeroes of 1 − a2. Since (1 − a2)(λ = 0) =

(1 − a2)∗(λ = ∞) = 1, we have n1 = K and ν
(1)
j 6= 0 for all j = 1, . . . , n1.

Define

b̃2 =
K∏
k=1

(
ν − ν(1)

k

)2

(ν − ν2k−1)(ν − ν2k)

g∏
j=K+1

ν − ν2j−1

ν − ν2j

,(5.8.3)

then a straightforward computation shows that there exists a positive real
constant δ, such that (1− a2)2 = δ(b̃2)(b̃2)∗. If we define b2 =

√
δb̃2 then b2
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is rational and satisfies (5.8.1). Also, b2 has a simple pole or a simple zero
at each of the points ν1, . . . , ν2g and no other poles or zeroes of odd order.
The function (b2)∗ is up to a complex constant given by

K∏
k=1

(
ν − ν(1)

k

−1
)2

(ν − ν2k−1)(ν − ν2k)

g∏
j=K+1

ν − ν2j

ν − ν2j−1

,(5.8.4)

and has therefore also simple poles or simple zeroes at ν1, . . . , ν2g and no
other poles or zeroes of odd order.

Since b2 has no poles and no zeroes of odd order in I(r0), its restriction to
Cr0 is the square of a function b(λ) ∈ A+

r0
. Since we have written b2 in terms

of ν, it is clear that b2 is an even function on Cλ. Thus, b(λ) is even or odd.
Since b2 does not vanish at λ = 0, we get that b(λ = 0) 6= 0 whence b(λ) is
even.

Proposition. Let C and q be defined as in Section 5.5. Define functions
f+ ∈ A+

r0
, 0 < r0 < 1, p = λ−1q − λq + f+, α = cosh(p), β = sinh(p) as in

Lemma 5.6. Furthermore, let a2(λ) be defined as in Theorem 5.7. Then there
exist two even rational functions b2(λ), c2(λ), such that all the conditions of
Theorem 3.8 are satisfied for some r′ = r = r0.

Proof. By Lemma 5.6, there exists 0 < r0 < 1, such that the functions f+,
p, α and β satisfy Conditions a’)–c’) of Theorem 3.8 for r′ = r0, where the
maximal radius r0 is determined by the surface C. By a),b) in Theorem 5.7,
each function a2 constructed in Theorem 5.7 satisfies Conditions a) and c)
of Theorem 3.8 for r = r0. Furthermore, by c) in Theorem 5.7, (βa)(λ) can
be extended holomorphically to C∗. We define the even rational function
b2(λ) as in (5.8.3) and use Condition b) of Theorem 3.8 to define c2. Clearly,
c2(λ) is an even rational function which has the same pole divisor as b2 and
a2 and only zeroes of even order. Since c2 has no pole and no zero of odd
order on I(r0), its restriction to Cr0 is a function c(λ) ∈ A+

r0
. This function is

even or odd in λ. Since b2 does not vanish at λ =∞, c2(λ = 0) 6= 0 and c is
an even function in λ. This shows, that Condition c) and d) of Theorem 3.8
are satisfied. By (5.8.1), b2c2 = (1− a2)2. We choose the sign of the square
roots b and c of b2 and c2, such that bc = 1− a2. Then also Condition e) of
Theorem 3.8 is satisfied.

By Lemma 5.8, b2 and c2 have either a simple pole or a simple zero at
each branchpoint ν1, . . . , ν2g. Since β2 is holomorphic on C∗ν and vanishes at
each of the points ν1, . . . , ν2g, β2b2 and β2c2 are holomorphic functions on
C∗ν . Furthermore, since by Theorem 5.7, β2a2 is the square of a holomorphic
function on C∗ν , the zero of β2 at each branchpoint is of odd order and β2
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can have no further zeroes of odd order on C∗ν . Thus, β2b2 and β2c2 have no
zeroes of odd order, whence are squares of holomorphic functions βb and βc
on C∗ν .

Theorem. Let C be defined as in Section 5.5. Choose a homotopy basis
a1, . . . , ag, b1, . . . , bg and the Abelian differential Ω1 as in Section 5.5, such
that (5.5.2) holds for some q ∈ C∗. Then there exists 0 < r0 < 1 and a real
g-parameter family SC of CMC-immersions, such that each such immersion
Ψ ∈ SC lies in the r0-dressing orbit of the cylinder, q ∈ Sym(Ψ), and the
hyperelliptic curve associated to Ψ in Section 4.1 is C. The family SC depends
only on C, not on the chosen solution of (5.5.2).

Proof. By Theorem 5.7 and Proposition 5.8, to each hyperelliptic curve C and
constant q, satisfying the conditions of Section 5.5, there exists 0 < r0 < 1,
functions f+ ∈ A+

r0
, p = λ−1q − λq + f+, α = cosh(p), β = sinh(p), a2, b2,

c2, such that all assumptions of Theorem 3.8 are satisfied for r′ = r = r0.
From Theorem 5.7 we know that there exists at least a g-parameter family of
such data. Therefore, by the statement of Theorem 3.8, there exists a real g-
parameter family SC of CMC-immersions, such that each Ψ ∈ SC is generated
by dressing the cylinder with some h+ ∈ Λ+

r′′SL(2,C)σ with 0 < r′′ ≤ r0 and

h+Ah
−1
+ =

(
a b
c −a

)
. Since all functions a2 constructed in Theorem 5.7 are

squares of a meromorphic function a on the same hyperelliptic curve C, they
all yield the surface C under the construction in Section 4.1.

The construction of a2, b2 and c2 in Sections 5.7 and 5.8, depends only
on C not on the constant q. I.e., if there are two constants q1, q2 ∈ C∗ both
satisfying (5.5.2), then for both constants we get the same 0 < r0 < 1 and
g-parameter family of matrices h+ ∈ Λ+

r′′SL(2,C)σ, r′′ ≤ r0. Therefore, the
family SC doesn’t depend on the chosen solution q of (5.5.2).

Corollary. Let C, Ω1, q ∈ C∗ and Ψ ∈ SC be given as in Theorem 5.8 and
define ω by (5.2.16). For λ0 ∈ S1 denote by P1(λ0) and P2(λ0) the covering
points of ν0 = λ2

0 on C. Then the following are equivalent:
1. q ∈ Per(Ψλ0),
2. ω has a zero at P1(λ0) or P2(λ0) and there exists a curve γ on C∗ con-

necting P1(λ0) and P2(λ0), such that
∫
γ ω = 2πim, m ∈ Z.

Proof. By Theorem 5.8, q ∈ Sym(Ψ) = Sym(Ψλ) for all λ ∈ S1, and the
curve defined for Ψ in Section 4.1 coincides with C. Thus, the equivalence
follows immediately from Theorem 5.3.

5.9. Theorem 5.8 together with Corollary 5.8 allows us to classify periodic
surfaces in terms of algebro-geometric data: If q ∈ Per(Ψλ0), q 6= 0, then
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Per(Ψλ0) 6= {0}, and, by Theorem 1.2, there exists a Riemann surface M
with universal cover π : C → M and elementary group Γ = Per(Ψλ0) such
that Ψλ0 = Φ ◦ π defines a CMC-immersion Φ : M → R3. In particular,
if Per(Ψλ0) is generated by only one translation, then M is topologically a
cylinder. If there exist two linearly independent translations in Per(Ψλ0),
then M is topologically a torus. By part 3. in Theorem 1.2, these are the
only possible cases. As a special case we get:

Theorem. Let C, Ω1 and Uk be defined as in Section 5.5. If there exists a
real constant φ ∈ [0, 2π), such that

Re(Uk) sin(φ)− Im(Uk) cos(φ) = 0, k = 1, . . . , g,(5.9.1)

then the associated family of each Ψ constructed in Theorem 5.8 contains a
Delaunay surface.

Conversely, if Ψ(C) is in the associated family of a Delaunay surface,
and if C and Uk are defined as in Sections 4.1 and 5.2, then there exists
φ ∈ [0, 2π), such that (5.9.1) is satisfied.

Proof. If Uk is real, then for all real q ∈ C, (5.5.2) is satisfied with mk = 0,
k = 1, . . . , g. Thus, Sym(Ψ) contains the one-parameter subgroup R ⊂ C.
By Theorem 1.2 this implies, that Ψ is in the associated family of a Delaunay
surface.

Conversely, if Ψ(C) is a Delaunay surface, then, by [4, Lemma 2.15],
Sym(Ψ) contains a one-parameter subgroup generated by some q0 ∈ C∗,
|q0| = 1. If we write q0 = eiφ then (5.5.2) holds for all q of the form q = reiφ,
r ∈ R. Thus, Im(eiφUk) = 0 for all k = 1, . . . , g, which gives (5.9.1).

5.10. Let us again consider the case of CMC-tori.

Theorem. Let C, Ω1, Uk, k = 1, . . . , g, and q1 = q ∈ C∗ be given as in
Theorem 5.8. Assume that there exists a second constant q2 ∈ C∗, linearly
independent of q1, such that also for q2 Equation (5.5.2) is satisfied. Let
λ0 ∈ S1 and choose an arbitrary curve γ in C∗ connecting the two points
P1(λ0) and P2(λ0), such that ν(Pi(λ0)) = λ2

0. Define X1, Y1, X2, Y2, αk, βk,
k = 1, . . . , g, c1, c2 as in Theorem 5.4. If 1. and 2. of Theorem 5.4 are
satisfied, then there exists 0 < r0 < 1 and a real g−1-parameter family TC of
CMC-tori in the r0-dressing orbit of the cylinder, such that for each Ψ ∈ TC,
q1, q2 ∈ Per(Ψ).

Proof. Using the calculations in Section 5.4, we see, that the last g columns
of (5.4.2) are integer iff (5.5.2) holds for q1 and for q2. Therefore, by Theo-
rem 5.8, there exists a real g-parameter family SC of CMC-immersions, such
that q1, q2 ∈ Sym(Ψ) = Sym(Ψλ) for all Ψ ∈ SC and all λ ∈ S1. Since all
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elements of the associated family of a CMC-immersion have the same sym-
metry group, there is at least a g−1-parameter family of associated families
{Ψλ;λ ∈ S1}, such that q1 and q2 are in Sym(Ψλ) for all λ ∈ S1. From Corol-
lary 5.8 we get that the first column of (5.4.2) is integer iff Condition 2. of
Corollary 5.8 is satisfied. By (5.2.17), we have Ω1(P2) = −Ω1(P1). Therefore,
Ω1 vanishes at P1 iff it vanishes at P2. Now we define ω1 and ω2 for q1 and
q2 by (5.2.16). If Ω1(P1) = 0, then also, by (5.2.16), ω1(P1) = ω2(P1) = 0.
This shows, that for both, q1 and q2, the conditions in Corollary 5.8 are
satisfied, i.e., q1, q2 ∈ Per(Ψλ0). I.e., there exists a g − 1-parameter family
TC = {Ψλ0 ; Ψ = Ψ1 ∈ SC}.

In [9], existence of such families of CMC-tori was proved for arbitrary even
genus g > 1. The result was extended to Riemann surfaces of odd genus
in [15].

Remark. 1. In the case g = 1, the differential Ω1 can be easily computed
explicitly: Since Ω1 has a pole of second order at P∞, we know Ω1 = aν+b

µ
d ν.

Writing this in the coordinate λ and comparing with (5.2.12), we see a = 1
2
.

The function b will be determined from the condition (5.2.13). For this we
represent the cycle a1 by the straight line connecting the points ν1 = reiφ

and ν2 = r−1eiφ. Then it is straightforward to compute∫
a1

Ω1 = ei
φ
2

2i√
r
E(
√

1− r2) + 4ib
√
re−i

φ
2K(
√

1− r2),(5.10.1)

where K and E denote the complete elliptic differentials of the first and
second kind (see e.g. [12]). Now

∫
a1

Ω1 = 0 yields

b = −e
iφ

2r
E(
√

1− r2)
K(
√

1− r2)
.(5.10.2)

If our choices would lead to a torus, then by Theorem 5.4 we would need to
have Ω1(λ0) = 0 for some point λ0 ∈ S1. But this equivalent with |b| = 1

2

which, in view of our formulas, is equivalent with

E(
√

1− r2)
rK(
√

1− r2)
= 1.(5.10.3)

But the left hand side is always > 1 for 0 < r < 1, producing a contradiction.
2. If we only want to produce Delaunay surfaces from hyperelliptic curves

of genus 1, then we start as above and consider Ω1. The coefficients a and b
are determined as above. However, we do not need to require Ω1(P1(λ0)) = 0
for some λ0 ∈ S1 as above, but only (5.9.1). Since g = 1, this is only one
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equation for U1. Obviously, this equation is solvable. Thus in the case
g = 1 our construction produces a family of Delaunay surfaces, indexed by
0 < r < 1 and the scale factor of a2 in our construction. For a thorough
investigation of the case g = 1 see [20, Chapter 8].

3. It is well known, that there are only two one-parameter families of
Delaunay surfaces, the unduloids and the nodoids [8]. Thus, the discussion
of Delaunay surfaces above also shows, that the g-parameter families con-
structed above can contain many congruent surfaces. It would certainly be
interesting to further investigate this question.

5.11. In Section 5 we have reproduced the algebro-geometric description
of CMC-tori [1, 20] using the r-dressing method. It is important to note,
that our starting point differs from the one in [20] and [1].

Pinkall and Sterling started with the observation, that the metric of a
CMC-torus is a finite type solution of the sinh-Gordon equation. Thus, as
follows from the Krichever construction of finite type solutions to integrable
systems, there is a hyperelliptic curve associated to each CMC-torus. How-
ever, the analytic construction of this surface from a finite type solution is
not unique. Actually, for each trivial flow of a given finite type solution, there
is a, possibly singular, hyperelliptic curve. The ambiguity of the definition of
the hyperelliptic curve introduces an additional level of complication in the
analytic description. While Pinkall and Sterling restricted their attention to
nonsingular hyperelliptic curves, Bobenko [1, Appendix] gave an argument
why CMC-tori belong generically to nonsingular curves.

Our approach is more geometric in the sense, that we start directly from
the periodicity conditions of the extended frame of a CMC-immersion. In
Section 4, we introduced a hyperelliptic curve C, which is directly derived
from the periodicity conditions on the extended frame of a CMC-immersion
with periodic metric. By Theorem 4.9, if the metric of a CMC-immersion
in the r-drssing orbit of the standard cylinder is periodic, then it is of finite
type, and our hyperelliptic curve C coincides with one of those used in the
Krichever construction. However, by definition, the hyperelliptic curve cho-
sen in this paper is always nonsingular. We thereby circumvent the problem
of dealing with singular curves.

Of course, there still remains the question, if the construction in Sec-
tions 5.5–5.8 gives all CMC-tori.

Let Ψ : C → R3 be a CMC-torus. Then, by [7, Corollary 5.3], Ψ is in
the r-dressing orbit of the standard cylinder for some 0 < r < 1. Hence,
by Theorem 3.7, there are rational functions a2, b2 and c2, satisfying certain
conditions, such that Ψ is obtained by r-dressing with h+ ∈ ΛrSL(2,C)σ,
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where h+Ah
−1
+ =

(
a b
c −a

)
. Moreover, by Theorem 5.4, there is a nonsingular

hyperelliptic curve C such that a2 is the square of a meromorphic function
on C.

Conversely, if we start from a hyperelliptic curve C as in Section 5.5, then
the construction in Section 5.7 and Section 5.8 gives only functions a2, b2

and c2 with simple poles. It is easy to check, that the construction gives in
fact all rational functions a2, b2, c2 with only simple poles, which have the
properties stated in Theorem 3.7.

The question, if this is enough to get all CMC-tori, leads to a statement
analogous to the one made in the appendix of [1]:

Conjecture. Let Ψ : C→ R3 be a CMC-immersion, which is obtained by
dressing the cylinder with h+ ∈ Λ+

r SL(2,C)σ for some 0 < r < 1. Define

h+Ah
−1
+ =

(
a b
c −a

)
. If Ψ(C) is a CMC-torus, then the function a2(λ) is

rational and has generically only poles of first order.

We would think that this is likely to be true. In this case, generically, to
each hyperelliptic curve C there would exist either no CMC-torus or, up to
finitely many choices, precisely the g − 1-parameter family of CMC-tori TC
constructed in Theorem 5.10.

We would expect that the understanding of singular tori —if they exist—
will provide the technical tools to answer these questions.
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