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ON QUASICONFORMAL HARMONIC MAPS

Luen-Fai Tam and Tom Y.-H. Wan

It was proved by the authors that given a quasiconformal
harmonic diffeomorphism F on H2, there is a neighborhood N
of the class F represented by F in the universal Teichmüller
space such that if H ∈ N , then the boundary map of H can
be extended to a quasiconformal harmonic diffeomorphism on
H2, i.e. the class H can be represented by a quasiconformal
harmonic diffeomorphism. More precisely, it was proved that
if F is a quasiconformal harmonic diffeomorphism on H2, and
if G is a quasiconformal map on H2 such that the dilatation of
G is small enough, then there exists quasiconformal harmonic
diffeormophisms with the same boundary data with F ◦G and
G ◦ F . The purposes of this paper is to study the higher di-
mensional generalization to this result and related problems.

0. Introduction.

In [W], the second author showed that quasiconformal harmonic diffeomor-
phisms on H2 can be parametrized by bounded holomorphic quadratic dif-
ferentials on H2. This gives a map from the space of bounded holomorphic
quadratic differentials on H2 into the universal Teichmüller space. It was
conjectured by Schoen [S] that the map is a bijection. The conjecture of
Schoen can be rephrased as follow: Every quasi-symmetric map on S1 can
be extended uniquely to a quasiconformal harmonic diffeomorphism on the
two dimensional real hyperbolic space H2. Here a quasi-symmetric map on
S1 can be defined as the boundary map on the unit disk in C of a quasicon-
formal homeomorphism, see [B-A]. The uniqueness part of the conjecture
was proved by Li and the first author [L-T 3]. As for existence, the problem
is still open. However, there are many partial results. For example, it was
proved by Li and the first author in [L-T 3] that existence part of Schoen’s
conjecture is true for C1 diffeomorphisms on S1. For more partial results,
see [C-T, L-Wg, Wg] for example.

There is one important fact for harmonic map in two dimensions which
is very likely not be true in higher dimensions. Namely, if a harmonic map
on H2 is such that the boundary map is a homeomorphism on S1, then the
harmonic map is itself a diffeomorphism. In a recent paper, Li and Wang
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[L-Wg] study a larger class of harmonic maps which seems more natural
in the higher dimensions. Before we go further, let us introducing some
definitions.
Definition 0.1. Let u be a map from a metric space M to another metric
space N :
• u is said to be a rough-isometry if there exists positive constants a and

b such that for all x, y ∈M

(0.1) a−1dM(x, y)− b ≤ dN(u(x), u(y)) ≤ adM(x, y) + b.

• u is said to be a pseudo-isometry if there exists positive constants a
and b such that for all x, y ∈M

(0.2) a−1dM(x, y)− b ≤ dN(u(x), u(y)) ≤ adM(x, y).

• u is said to be a quasi-isometry if u is a homeomorphism and there
exists positive constant a > 0 such that for all x, y ∈M

(0.3) a−1dM(x, y) ≤ dN(u(x), u(y)) ≤ adM(x, y).

It is obvious that a quasi-isometry is a pseudo-isometry and a pseudo-
isometry is a rough isometry. Pseudo-isometries have been used by Mostow
[M] in the proof of strong rigidity of locally symmetric spaces. Note that
while a pseudo-isometry is Lipschitz continuous, a rough-isometry may not
even be continuous. On the other hand, if u is a rough-isometric harmonic
map on Hn, satisfying (0.1), then u(Bx(r)) ⊂ Bu(x)(ar+ b). By the estimate
of energy density for harmonic maps by Cheng [C], u has bounded energy
density and hence u is a pseudo-isometry. By [M], u is then surjective.
By the results of [M] again, u can be extended to a quasiconformal map
on Sn−1 which is identified with the geometric boundary of Hn. Rough-
isometric harmonic maps have been studied in a recent paper [L-Wg] of Li
and Wang. They generalize the conjecture of Schoen to the following: Every
quasiconformal map on the geometric boundary of a rank-1 symmetric space
of noncompact type can be extended uniquely to a harmonic rough-isometry.
In [L-Wg], the uniqueness part of the conjecture is proved.

In this paper, we will discuss quasiconformal harmonic maps on Hn for
n ≥ 3. A quasiconfomal map on Hn is a rough-isometry, see [P]. Hence
our results will be related to Li-Wang conjecture on hyperbolic space of
dimension greater than two. We will prove that given a quasiconformal
harmonic diffeomorphism F on Hn, there is a K0 > 1 such that if G is a
K0-quasiconformal map on Sn−1, then there is a pseudo-isometric harmonic
map on Hn with the same boundary data as G ◦ F . If, in addition, F is a
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quasi-isometry, the same conclusion is true for boundary data F ◦G. These
results can be considered as generalizations of the results in [T-W] for H2

to higher dimensions. As mentioned before, in [L-T 3], it was proved that
any C1 diffeomorphism on Sn−1 can be extended to a harmonic map F on
Hn which is C1 up to the geometric boundary. Such a map may not be a
diffeomorphism, and in particular, may not be quasiconformal. However, we
will prove that such a harmonic map is a pseudo-isometry and in fact it is
a quasi-isometry near infinity (see Definition 3.1). We will also prove that
one can find pseudo-isometric harmonic maps with the same boundary data
as F ◦G and G ◦F respectively, for any K0-quasiconformal map G on Sn−1,
provided K0 > 1 is small enough. Note that in this case, K0 does not depend
on F , while in the previous case of quasiconformal harmonic diffeomorphism,
the number K0 depends on the map F .

One can get more information on those harmonic maps. In [W], the sec-
ond author proved that a harmonic diffeomorphism on H2 is quasiconformal
if and only if it has uniformly bounded energy density. In this case, the
harmonic map is actually a quasi-isometry. In high dimensions, the situa-
tion is more complicated. However, we will prove that the harmonic maps
constructed above are actually quasi-isometries, provided K0 > 1 is even
smaller, and the given map F is a quasi-isometry to begin with. In the case
of harmonic maps which are C1 up to the boundary, the ‘nearby’ harmonic
maps are also quasi-isometries near infinity.

In particular, if we choose the given map to be an isometry, we can con-
clude that if G is a K0-quasiconformal with K0 > 1 small enough, then G can
be extended to a quasi-isometric harmonic diffeomorphism on Hn. By the
uniqueness theorem in [L-Wg], we see that every quasiconformal harmonic
map on Hn with small quasiconformal constant must be a quasi-isometry.
This is a partial generalization of the result in H2 by the second author [W].
In fact, using other method, we will give an explicit estimate for the quasi-
conformal constant K0 so that every K0-quasiconformal harmonic map on
Hn is a quasi-isometry. We should made precise the meaning of the quasi-
conformal constant K0 here since there are several equivalent definitions for
quasiconformal mappings with slightly different meaning of the quasiconfor-
mal constant (i.e. the maximal dilatation). Note that all other results in
this paper do not depends on the specific choice of the definition of K0. We
choose the following:
Definition 0.2. A smooth positively oriented homeomorphism F from the
unit ball Bn in Rn onto itself is said to be a K-quasiconformal map, if for
all x ∈ Bn, ||dF ||n(x) ≤ KJ(x) and J(x) ≤ K {`(dF )(x)}n, where

||dF ||(x) = max
|~v|=1
|dF (x)(~v)|,
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and
`(dF )(x) = min

|~v|=1
|dF (x)(~v)|.

The paper is organized as follows: In §1, we will study some basic prop-
erties of the Douady-Earle extensions [D-E] on the unit ball in Rn of qua-
siconformal map on Sn−1 which will be useful in later sections. In §2, and
§3, we will construct pseudo-isometric harmonic maps with boundary data
which are near some given harmonic maps. Finally, in §4, we will discuss
the properties of the harmonic maps constructed in the previous two sections
and study some properties of general quasiconformal harmonic maps.

Added in proof: The first part of Theorem 2.6 for quasi-isometric harmonic
maps is also obtained by Hardt and Wolf [H-W]. The case of isometries is
obtained by D. Yang [Y] independently too.

1. Estimates on Douady-Earle extension.

In this section, we will give estimates on the derivatives of Douady-Earle
extension [D-E] of quasiconformal self maps on Sn−1. We first fix our no-
tation. Let θi, 1 ≤ i ≤ m, be a local orthonormal coframe of Hm and
θij, 1 ≤ i, j ≤ m, be the connection forms. Similarly, let ωα and ωαβ,
1 ≤ α, β ≤ n, be local orthonormal coframe and the corresponding connec-
tion forms of Hn. For a smooth map F : Hm → Hn, one define the energy
density of F by

e(F ) =
∑
i,α

(fαi )2,

where fαi is given by F ∗(ωα) =
∑
i f

α
i θi. The Hessian of the map F , denoted

by fαij, is defined by

(1.1)
∑
j

fαijθj = dfαi −
∑
j

fαj θij +
∑
β

fβi F
∗(ωβα),

and we write |∇2F |2 =
∑
i,j,α(fαij)

2 for its norm. Finally, the components of
the tension field of F is defined by τα(F ) =

∑
i f

α
ii , 1 ≤ α ≤ n, and its norm

by |τ(F )| = (
∑
α(τα)2)1/2.

The Douady-Earle extension [D-E] is a conformally natural extension for
homeomorphisms from unit sphere onto itself. The construction is as follows.
First, they define the barycenter B(µ) of a probability measure µ on Sn−1

with no atoms as the unique zero of the hyperbolic gradient of

hµ(x) =
1
2

∫
Sn−1

log
1− |x|2
|x− u|2 dµ(u), x ∈ Bn,
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where Bn is the open unit ball in Rn. Then they define the extension E(ϕ)
of ϕ : Sn−1 → Sn−1 to B̄n by

E(ϕ)(x) = B(ϕ∗(ηx)), x ∈ Bn.

In the formula, ϕ∗(ηx)(E) = ηx(ϕ−1E), for all Borel subset E ⊂ Sn−1, and
ηx is the hyperbolic harmonic measure on Sn−1 given by

ηx(E) =
1

ωn−1

∫
E

(
1− |x|2
|x− u|2

)n−1

dω(u),

where dω and ωn−1 are the standard measure and volume on Sn−1.
The main results concerning the high dimensional (≥ 3) case are collected

in the following:

Theorem 1.1 (Douady-Earle [D-E]). Let H(Sn−1) (n ≥ 3) be the set of
homeomorphisms from Sn−1 onto itself. Then E is a mapping from H(Sn−1)
into C∞(Bn,Rn) ∩ C(B̄n,Rn) satisfying:
(i) For any ϕ ∈ H(Sn−1), E(ϕ)|Sn−1 = ϕ.

(ii) Let Isom(Hn) be the isometry group of Bn with respect to the Poincaré
metric, then E is equivariant under Isom(Hn), i.e. for all γ, σ ∈
Isom(Hn),

E(γ ◦ ϕ ◦ σ) = γ ◦ E(ϕ) ◦ σ.
(iii) The mapping E : H(Sn−1) → C∞(Bn,Rn) ∩ C(B̄n,Rn) is continuous,

where H(Sn−1) and C(B̄n,Rn) have the uniform topology, C∞(Bn,Rn)
has the C∞ topology, and C∞(Bn,Rn)∩C(B̄n,Rn) has the induced topol-
ogy regarded as the diagonal of the product space with product topology.

Proof. Please refer to the final section of [D-E] for the proof.

In order to apply the Douady-Earle extension to the existence of harmonic
maps, we need estimates on the gradients and the Hessian of E(ϕ) when ϕ
closes to conformal, namely, ϕ is a K-quasiconformal mapping with K closes
to 1. More precisely, we have:

Proposition 1.2. Let
(
E(ϕ)ij

)
and |∇2E(ϕ)| be the Jacobian matrix and

the norm of the Hessian of E(ϕ) with respect to orthonormal frames of the
Poincaré metric respectively. Then for any ε > 0, there exists K > 1 de-
pending only on ε and n such that if ϕ is K-quasiconformal, then
(i) (Tukia) E(ϕ) : B̄n → B̄n is a quasiconformal homeomorphism and

(1 + ε)−1d(x, y) ≤ d(E(ϕ)(x), E(ϕ)(y)) ≤ (1 + ε)d(x, y)

for all x, y ∈ Bn,

where d is the Poincaré distance in Bn.
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(ii) √√√√∑
j,k

(∑
i

E(ϕ)jiE(ϕ)ki − δjk
)2

< ε,

and
(iii)

|∇2E(ϕ)| < ε.

Proof. (i) is proved in [D-E] by Tukia. Actually the proof works for (i)-(iii).
To be precise, let

α(ϕ)(x) = inf
u∈Sn−1

(1− |x|2)|d E(ϕ)(x)u|
1− |E(ϕ)(x)|2 ,

β(ϕ)(x) = sup
u∈Sn−1

(1− |x|2)|d E(ϕ)(x)u|
1− |E(ϕ)(x)|2 ,

and

Λ(ϕ) =

√√√√∑
j,k

(∑
i

E(ϕ)jiE(ϕ)ki − δjk
)2

.

We note that (i) follows from the statement that for any ε > 0, there
exists K > 1 depending only on ε and n such that

(1 + ε)−1 < α(ϕ) ≤ β(ϕ) < 1 + ε

provided that ϕ is K-quasiconformal. Hence all statements (i)-(iii) can be
regarded as estimates of the derivatives of E(ϕ).

Then we observe that for all γ and σ ∈ Isom(Hn),

α(γ ◦ ϕ ◦ σ) = α(ϕ) ◦ σ, β(γ ◦ ϕ ◦ σ) = β(ϕ) ◦ σ,

Λ(γ ◦ ϕ ◦ σ) = Λ(ϕ) ◦ σ,

and

|∇2E(γ ◦ ϕ ◦ σ)| = |∇2E(ϕ)| ◦ σ.

Therefore we only need to estimate these quantities at one point (for all
normalized boundary data) to obtain the uniform bounds. More precisely, we
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only need to show that there exists K > 1 such that, if ϕ is K-quasiconformal
and fixes the points e1, −e1, and en, then

(1 + ε)−1 < α(ϕ)(0) ≤ β(ϕ)(0) < 1 + ε,

Λ(ϕ)(0) < ε,

and

|∇2E(ϕ)|(0) < ε,

here {e1, . . . , en} is the standard ordered basis of Rn.
Suppose on the contrary that it is not true, then there exists a sequence

of ϕj of Kj-quasiconformal mappings from Sn−1 onto itself fixing e1, −e1,
and en with Kn → 1 such that

α(ϕj)(0) ≤ (1 + ε)−1 < 1,

β(ϕj)(0) ≥ 1 + ε > 1,

Λ(ϕj)(0) ≥ ε > 0,

or

|∇2E(ϕj)|(0) ≥ ε > 0.

Then by compactness, we have a subsequence ϕjk converges to an element
g ∈ Isom(Hn) in H(Sn−1). By Theorem 1.1 and that g is an isometry, we
have

1 > (1 + ε)−1 ≥ lim
k→∞

α(ϕjk)(0) = α(g)(0) = 1,

1 < 1 + ε ≤ lim
k→∞

β(ϕjk)(0) = β(g)(0) = 1,

0 < ε ≤ lim
k→∞

Λ(ϕjk)(0) = Λ(g)(0) = 0

or

0 < ε ≤ lim
k→∞

|∇2E(ϕjk)|(0) = |∇2E(g)|(0) = 0,

which are contradictions.

Remark 1.3. All the above results hold in two dimensions. In fact, if
n = 2, we have a stronger result that the extension E(ϕ) is quasi-isometric
with respect to the Poincaré metric, and hence quasiconformal, provided
ϕ is quasi-symmetric. No smallness assumption on the dilatation of the
boundary maps is needed.
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2. Construction of pseudo-isometric harmonic maps (I).

In this and the next section, we are going to use the results in §1 to construct
pseudo-isometric harmonic maps with certain given boundary data at the
geometric boundary of the hyperbolic space. We will generalize the results in
[T-W] for H2 to higher dimensional hyperbolic spaces. Our main purpose is
to prove the existence of harmonic extensions for quasiconformal maps on the
geometric boundary of Hm which are near (in certain sense) to those already
known to have harmonic extensions. In this section, we will consider those
boundary maps which are near to a boundary maps having diffeomorphic
quasiconformal harmonic extension. In the next section, we will consider
other kind of boundary maps which are near to a C1 boundary map with
nonvanishing energy density. First, we will give some crucial estimates for
the composition of maps. Since composition of maps is not commutative, we
have to consider two different cases. In fact, the results are slightly different
from each other.

Lemma 2.1. Let F be a harmonic map from Hm to Hn. Then for any
point x ∈ Hm and r > 0, there is a constant C depending only on m, n, r
and supBx(r) e(F ) such that |∇2F |2(x) ≤ C.

Proof. Since it is easy to see that F (Bx(r)) ⊂ BF (x)(ρ) with ρ =
r supBx(r)

√
e(F ) and F is harmonic, the lemma follows from the harmonic

map equations and the interior Schauder estimates.

Lemma 2.2. Let F be a harmonic map from Hm to Hn and G be a quasi-
isometry on Hm such that, for some ε > 0,

|τ(G)| < ε and

√√√√∑
j,k

(∑
i

gji g
k
i − δjk

)2

< ε,

where gji are components of dG with respect to some local orthonormal cofra-
mes. Then, for any x ∈ Hm and r > 0, there is a constant C1 depending
only on m, n, r and supBx(r) e(F ) such that

|τ(F ◦G)(x)| ≤ C1ε.

In particular, if F has bounded energy density, then

|τ(F ◦G)| ≤ C1ε,

with C1 now depends only on m, n and upper bound of the energy density of
F .

Proof. Let fαi be the components of dF with respect to some local orthonor-
mal coframe on the target and the same local orthonormal coframe on do-
main which gives gji . And also let τα be the corresponding components of
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the tension field of F ◦G. Then, by Lemma 2.1 and the assumption that F
is harmonic,

|τα| =
∣∣∣∣∣∣
∑
i,j

fαj g
j
ii +

∑
i,j,k

fαjkg
j
i g
k
i

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
j

fαj τ
j(G) +

∑
j,k

fαjk

(∑
i

gji g
k
i − δjk

)∣∣∣∣∣∣
≤ C1ε,

for some constant C1 depends only on m, n and the local upper bound of
the energy density of F .

Lemma 2.3. Let F be as in Lemma 2.2 and G be a quasi-isometry from
Hn to Hn such that

|∇2G| < ε

for some ε > 0. Then

|τ(G ◦ F )|(x) ≤ ε · e(F )(x), ∀x ∈ Hm.

Proof. Let fαi , gαβ , and gαβγ be the components of dF , dG and the compo-
nents of the Hessian of G with respect to some local orthonormal coframes
respectively. Then, since F is harmonic,

|τ(G ◦ F )|(x) =

√√√√√∑
α

∑
β,i

gαβf
β
ii +

∑
β,γ,i

gαβγf
β
i f

γ
i

2

=

√√√√√∑
α

∑
β,γ,i

gαβγf
β
i f

γ
i

2

≤ ε · e(F )(x).

Lemma 2.4. Let G be a map from Hm to itself such that for some ε > 0
(and in some orthonormal coframes),√√√√∑

j,k

(∑
i

gji g
k
i − δjk

)2

< ε.
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Then for any map F : Hm → Hn, we have

e(F ◦G)(x) ≥ (1− ε)e(F )(x), ∀x ∈ Hm.

Proof. By a straight forward calculation,

e(F ◦G)(x) =
∑

1≤α≤n
1≤i≤m

 m∑
j=1

fαj g
j
i

2

=
∑

1≤α≤n
1≤i,j,k≤m

fαj f
α
k g

j
i g
k
i

=
∑

1≤α≤n
1≤j,k≤m

fαj f
α
k

(
m∑
i=1

gji g
k
i − δjk

)
+

∑
1≤α≤n
1≤i≤m

(fαi )2

≥ (−ε+ 1)e(F )(x).

Similarly, the same calculation gives

Lemma 2.5. Let G be a map from Hn to itself such that for some ε > 0
(and in some orthonormal coframes),√√√√∑

β,γ

(∑
α

gαβg
α
γ − δβγ

)2

< ε.

Then for any map F : Hm → Hn, we have

e(G ◦ F )(x) ≥ (1− ε)e(F )(x), ∀x ∈ Hm.

Now we are going to prove that if a quasi-conformal map on Sn−1 has
a quasi-conformal harmonic extension to Hn, then ‘nearby’ quasiconformal
maps on Sn−1 also have harmonic extension which are pseudo-isometries.

Theorem 2.6. For any quasiconformal harmonic diffeomorphism F on
Hn, there exists a K0 > 1 such that if G is a K0-quasiconformal map on
Sn−1, then there is a pseudo-isometric harmonic map H from Hn onto Hn
such that H = G ◦ F on Sn−1. If in addition, F is a quasi-isometry, then
there is also a pseudo-isometric harmonic map H̃ from Hn to Hn such that
H̃ = F ◦G on Sn−1.

Remark 2.7. It is easy to see that if we put F equal to the identity map
of Hn, then we have the existence of pseudo-isometric harmonic extension to
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Hn for every quasiconformal map on Sn−1 with small enough dilatation. In
fact, we have a stronger result that the extension is quasi-isometric provided
that the dilatation is small enough (perhaps smaller than that of the previous
statement). We will prove this fact in Corollary 4.2.

Proof of Theorem 2.6. We use an argument as in [L-T 3]. By Proposition
1.2, given ε > 0 and with respect to any orthonormal coframes, there is
K0 > 1 such that if G is K0-quasiconformal map on Sn−1, then G has a
quasiconformal extension on Hn, also denoted by G, such that G is smooth
in Hn and

(2.2)


√∑

β,γ

(∑
α g

α
βg

α
γ − δβγ

)2

< ε;√∑
β,γ

(∑
α g

β
αg

γ
α − δβγ

)2

< ε,

and

(2.3) |∇2G| ≤ ε.
By Lemma 2.3, (2.2) and (2.3), we see that the norm of the tension field of
G ◦ F satisfies

(2.4) |τ(G ◦ F )|(x) ≤ ε · e(F )(x).

Fixing a point o ∈ Hn, we can find, for any R > 0, a unique harmonic
map HR on Bo(R) such that HR = G ◦ F on ∂Bo(R). We want to estimate
dR(x) = d(HR(x), G◦F (x)) for x ∈ Bo(R). In order to do so, we first choose,
for x ∈ Hn, an orthonormal frame {e1, . . . , en} near x. Then consider the
minimal geodesic γ(t) from HR(x) to G ◦ F (x) parametrized by arclength
and choose orthonormal frames {f1, . . . , fn} and {f̄1, . . . , f̄n} near HR(x)
and G ◦ F (x) respectively such that fn = −γ′(0) at HR(x) and f̄n = γ′(l)
at G ◦ F (x). We may assume that all orthonormal frames are positively
oriented. With these orthonormal frames, we write

(HR)∗(ei) =
n∑
α=1

uαi fα,

and

(G ◦ F )∗(ei) =
n∑
α=1

vαi f̄α,

for i = 1, . . . , n. Then as in [L-T 3], by results of [S-Y, J-K], we have

(2.5) ∆dR(x) ≥ −|τ(G ◦F )|(x) +
∑

1≤i≤n
1≤α≤n−1

(
(uαi )2(x) + (vαi )2(x)

)
tanh

dR(x)
2

,
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in distributional sense.
Since F and G are quasi-conformal, so is G ◦ F . The quasiconformal

constants of all those G are uniformly bounded by some constant provided
that we are willing to restrict ε small enough, say 0 < ε < 1/2. Hence there
is a constant K1 depending only on the quasiconformal constant of F such
that

e(G ◦ F )(x) ≤ K1J
2
n (x),

where J = det(vαi ) is the Jacobian of the map G◦F . Let V α
i be the cofactor

of vαi . For any η > 0, we have

e(G ◦ F ) ≤ K1J
2
n

≤ K1|vn1V n
1 + · · ·+ vnnV

n
n |

2
n

≤ CK1

(
|vn1V n

1 |
2
n + · · ·+ |vnnV n

n |
2
n

)
≤ CK1

(
η

n∑
i=1

(vni )2 + η−
1

n−1

n∑
i=1

|V n
i |

2
n−1

)
,

where C is a constant depending only on n. Take η > 0 so that ηCK1 ≤ 1
2
,

we have
e(G ◦ F )(x) ≤ C2

∑
1≤i≤n

1≤α≤n−1

(vαi )2(x),

for some constant C2 depending only on the quasiconformal constant of F
and n. By (2.5), Lemmas 2.3 and 2.4, we have

∆dR(x) ≥ −|τ(G ◦ F )|(x) +
1− ε
C2

e(F )(x) · tanh
dR(x)

2

≥ e(F )(x)
(
−ε+

1− ε
C2

· tanh
dR(x)

2

)
.(2.6)

Hence for 0 < ε < 1/2, by noting that e(F ) > 0, (2.6) and the maximum
principle imply that

dR(x) ≤ C3ε,

where C3 = 2C2 depends only on n and the quasiconformal constant of F . It
is then easy to see that, by passing to a subsequence, HR converges uniformly
on compact sets to a harmonic map H on Hn such that

(2.7) d(H(x), G ◦ F (x)) ≤ C3ε.

Since F is quasiconformal, F is a rough isometry by [P]. Hence H is also
a rough isometry by (2.7). Finally, by the estimate on the energy density
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of harmonic maps in [C], the energy density of H is uniformly bounded.
Therefore, H is a pseudo-isometry, which proves the first part of the theorem.

If in addition F is a quasi-isometry, we use Lemma 2.2 to estimate the
tension field of F ◦G. Proceed as before, instead of (2.6), we have

∆dR(x) ≥ −|τ(F ◦G)|(x) +
1− ε
C2

e(F )(x) · tanh
dR(x)

2

≥ −C1ε+
1− ε
C2

e(F )(x) · tanh
dR(x)

2
,(2.8)

where C1 is a constant depending only on n and the upper bound of the
energy density of F as in Lemma 2.2. Since F is a quasi-isometry, e(F ) is
bounded below by a positive constant. Hence we still have a harmonic map
H satisfying (2.7) with a new constant C3 which depends only on n, the
upper bound and the positive lower bound of the energy density of e(F ).
This completes the proof of the theorem.

Remark 2.8. By (2.7), we see that for fixed F , d(H(x), G ◦ F (x)) → 0,
and d(H̃(x), G ◦ F (x)) → 0 uniformly, as ε → 0. It is unclear whether H
and H̃ are quasiconformal or not. We will discuss this problem in §4.

3. Construction of pseudo-isometric harmonic maps (II).

We will consider a situation different from that in §2. It was proved in
[L-T 1]-[L-T 3] that a smooth map from Sm−1 to Sn−1 with nowhere van-
ishing energy density can be extended to a proper harmonic map from Hm
to Hn. Moreover, the harmonic maps are Cm,α up to the boundary for some
0 < α < 1. Suppose m = n and the boundary data is a diffeomorphism,
then in view of Theorem 2.6, it is natural to ask whether the harmonic map
constructed is a quasiconformal diffeomorphism, or even just a diffeomor-
phism. Unless m = n = 2, the answer is unclear. Hence Theorem 2.6 cannot
be applied to this class of maps. However, from its proof, it is easy to see
that given a harmonic map F , one can construct ‘nearby’ harmonic map if
F behaves well near infinity. Hence we have a result similar to Theorem
2.6 for this case. Before giving the precise statement, we first introduce the
following:
Definition 3.1. Let F be a map from a complete noncompact manifold M
to itself. F is said to be a quasi-isometry near infinity if there is a compact
subset B ⊂⊂M and constant C > 1 such that

Cd(x, x̃) ≥ d(F (x), F (x̃)) ≥ C−1d(x, x̃), ∀x, x̃ ∈M \B.
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Note that if F is a quasi-isometry near infinity which is also continuous,
then it must be a rough isometry.

Proposition 3.1. Let F be a proper harmonic map from Hn to itself
which is C1 up to the boundary when considered as a map from the close
unit ball in Rn to itself. Suppose also that the boundary map of F is a
C1 diffeomorphism on Sn−1. Then F is a quasi-isometry near infinity. In
particular, it is a rough isometry.

Proof. Let us first show that F is a diffeomorphism locally near a boundary
point. For this purpose, it is simpler to do the calculation in the upper half
space model of Hn. We identify both the domain and target with the upper
half space of Rn endowed with the Poincaré metrics. If we use (x1, . . . , xn)
and (y1, . . . , yn) to denote the coordinates on the domain and target respec-
tively, then the metrics are given by

ds2
Hn =

(dx1)2 + · · ·+ (dxn)2

(xn)2
and ds2

Hn =
(dy1)2 + · · ·+ (dyn)2

(yn)2

respectively. Then, the components of dF is given by

f ij =
xn

yn
∂yi

∂xj

with respect to the orthonormal coframes dxi/xn and dyj/yn. The results
of [L-T 2] imply that

lim
xn→0

yn

xn
=

√
e(φ)
n− 1

> 0,

where φ is the boundary map, and hence

∂yn

∂xn
=

√
e(φ)
n− 1

> 0.

We also have

∂yi

∂xn
= 0, at xn = 0, i = 1, . . . , n− 1.

These imply that the Jacobian of F approaches a positive multiple of the
Jacobian of the boundary map φ as x tends to the boundary. Since φ is a
diffeomorphism, F is diffeomorphism near a boundary point.

To show that F is a diffeomorphism onto its image in a neighborhood of the
whole boundary, we use the unit ball model of Hn. Assume on the contrary
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that it is not true. Then, there exist two sequences {xk} and {x̃k} such that
xk 6= x̃k, ∀k, xk → θ1 ∈ Sn−1, x̃k → θ2 ∈ Sn−1, and F (xk) = F (x̃k) for all k.
Since F is a C1 near θ1 and θ2, we have φ(θ1) = φ(θ2), which implies that
θ1 = θ2. Hence, by the fact that F is a diffeomorphism near a boundary
point again, we see that xk = x̃k for k large, which is a contradiction.
Hence we have proved that F is a diffeomorphism near the whole boundary.
More precisely, for any point o ∈ Hn, there is R0 > 0 such that F is a
diffeomorphism from Hn \Bo(R0) onto its image.

Since F has bounded energy density by construction in [L-T 1]-[L-T 3]
and the Jacobian of F has a uniform positive lower bound outside Bo(R0)
by the above arguments, the energy density of F−1 is uniformly bounded on
F (Hn \Bo(R0)). Hence there is a positive constant a > 0, such that for any
x, y outside Bo(R0),

(3.1) d(F (x), F (y)) ≥ ad(x, y),

provided that the minimal geodesic joining F (x) and F (y) lies inside F (Hn \
Bo(R0)).

In general, if x, y ∈ Hn \ Bo(R0). Let γ(t), 0 ≤ t ≤ L be the minimal
geodesic joining x̃ = F (x) and ỹ = F (y). Let t1 be the first t such that
γ(t) ∈ F (Bo(R0)) and t2 be the last t such that γ(t) ∈ F (Bo(R0)). And let
x1 and y1 be the preimage of γ(t1) and γ(t2) respectively, i.e. F (x1) = γ(t1)
and F (y1) = γ(t2) with x1, y1 ∈ ∂Bo(R0). Then, by (3.1), we have

d(F (x), F (x1)) ≥ ad(x, x1) and d(F (y), F (y1)) ≥ ad(y, y1).

Therefore

d(F (x), F (y)) ≥ a (d(x, x1) + d(y, y1))

≥ ad(x, y)− 2aR0.(3.2)

Finally, to complete our proof, we assume on the contrary that F is not
quasi-isometric near infinity. Then, there is a sequence of numbers εi → 0
and sequences of points {xi} and {yi} → ∞ such that

d(F (xi), F (yi)) < εid(xi, yi).

Then by (3.1) and (3.2), we have

ad(xi, yi)− 2aR0 < εid(xi, yi).

Since εi → 0, d(xi, yi) ≤ 3R0 for i large enough, and since F has bounded
energy density, d(F (xi), F (yi)) ≤ C for some constant C provided i large
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enough. Note that if o′ is a fixed point in Hn, then there is R1 > 0 such that
Hn \ Bo′(R1) is in the image of Hn \ Bo(R0). Since F is a proper map, and
since d(F (xi), F (yi)) ≤ C, for i large, the minimal geodesic joining F (xi)
and F (yi) is contained in F (Hn \Bo(R0)). So we can apply (3.1) and get

ad(xi, yi) < εid(xi, yi),

which is a contradiction.

Theorem 3.2. Let F be a proper harmonic map from Hm to Hn which
is C1 up to the boundary when considered as a map from the close unit ball
in Rm into the close unit ball of Rn. Suppose also that the boundary map
of F is a smooth map from Sm−1 to Sn−1 with nowhere vanishing energy
density. There exists an K0 > 1, which is independent of F , such that if
G is a K0-quasiconformal map on Sn−1 (respectively Sm−1), then there is
a harmonic map H from Hm into Hn such that H = G ◦ F (respectively
H = F ◦ G) on Sm−1 and that supx∈M d(H(x), G ◦ F (x)) < ∞ (respectively
supx∈M d(H(x), F ◦ G(x)) < ∞). Here G also denotes the Douady-Earle
extension of G. If in addition, m = n and the boundary map of F is a
diffeomorphism, then H is a pseudo-isometry.

Proof. The proof is similar to that of Theorem 2.6. However we need more
work especially in showing that K0 is independent of F . Let us first consider
G ◦ F . As in the proof of Theorem 2.6, for any R > 0, we can find uniquely
a harmonic map HR on Bo(R) with boundary value G ◦ F . We have the
same Bochner type formula for dR(x) = dHm(HR(x), G ◦ F (x)). That is, for
x ∈ Bo(R), we have (using the same notations as in Theorem 2.6)

(3.3) ∆dR(x) ≥ −|τ(G◦F )|(x)+
∑

1≤i≤m
1≤α≤n−1

(
(uαi )2(x)+(vαi )2(x)

) ·tanh
dR(x)

2
.

And as before, we want to estimate
∑m
i=1

∑n−1
α=1(vαi )2 from below near the

boundary. We will work locally at the origin of the upper half space model
of both the domain and target as in the proof of Proposition 3.1. Note that
the dimensions of the domain and target are m and n respectively which are
not assumed to be equal. Hence the orthonormal coframes which we choose
are now dxi/xm and dyα/yn. Therefore, the components of the differential of
F is given by fαi = xm

yn
∂yα

∂xi
. In these notations, since F is C1 up to boundary,

the results of [L-T 2], [L-T 3] imply that near the origin

(3.4) |fαm|+ |fni | ≤ C4x
m, for 1 ≤ α ≤ n− 1 and 1 ≤ i ≤ m− 1,

(3.5) |fnm − 1| ≤ C4x
m,
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and

(3.6)

∣∣∣∣∣∣∣
∑

1≤j≤m−1
1≤β≤n−1

(fβj )2 − (m− 1)

∣∣∣∣∣∣∣ ≤ C4x
m,

for some constant C4 depending only for F . Then

∑
1≤i≤m

1≤α≤n−1

(vαi )2 =
∑

1≤i≤m
1≤α≤n−1

 ∑
1≤β≤n

gαβf
β
i

2

= e(G ◦ F )−
m∑
i=1

 n∑
β=1

gnβf
β
i

2

= e(G ◦ F )−
m−1∑
i=1

 n∑
β=1

gnβf
β
i

2

−
 n∑
β=1

gnβf
β
m

2

.(3.7)

Here (gαβ ) is the matrix of dG with respect to the corresponding orthonormal
coframes. Then given any 1 > ε > 0, by Proposition 1.2, Lemma 2.3, and
2.5, there is a K0 > 1 such that for any K0-quasiconformal map G on Sn−1,
we have

|τ(G ◦ F )|(x) ≤ εe(F )(x),(3.8)

e(G ◦ F )(x) ≥ (1− ε)e(F )(x),(3.9)

and

(3.10)

√√√√∑
β,γ

(
n∑
α=1

gαβg
α
γ − δβγ

)2

≤ ε.

Recall that in these inequalities, G denotes the Douady-Earle extension of
the boundary homeomorphism. Hence by (3.4) and (3.6), if x is near the
origin in the upper space model for Hm, with xm < 1,

m−1∑
i=1

 n∑
β=1

gnβf
β
i

2

≤
m−1∑
i=1

n−1∑
β=1

∣∣∣gnβfβi ∣∣∣+ C5x
m

2

≤
m−1∑

i=1

n∑
β=1

(
fβi

)2

n−1∑
β=1

(gnβ )2

+ C6x
m

≤ (m− 1)
n∑
β=1

(gnβ )2 − (m− 1)(gnn)2 + C7x
m(3.11)
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where C5, C6, C7 are constants depending only on m, n, and the upper
bound of e(F ). By (3.4) and (3.5), we have, for xm < 1 n∑

β=1

gnβf
β
m

2

≤
n−1∑
β=1

|gnβfβm|+ |gnnfnm|
2

≤ (gnn)2 + C8x
m,(3.12)

where C8 is a constant depending only on m, n and the upper bound of e(F ).
From (3.4)-(3.6), it is easy to see that |e(F )−m| ≤ Cxm near the origin for
some constant depending on m, n and F . Hence together with (3.9), (3.11)
and (3.12), we have at x,

∑
1≤i≤m

1≤α≤n−1

(vαi )2 ≥ e(G ◦ F )− (m− 1)
n∑
β=1

(gnβ )2 + (m− 1)(gnn)2− (gnn)2− C9x
m

≥ (1− ε)e(F )− (m− 1)
n∑
β=1

(gnβ )2 − C9x
m

≥ m−mε− (m− 1)(1 + ε)− C10x
m

≥ 1− C10x
m − (2m− 1)ε,

where C9, C10 are constants depending only on m, n, and F . Combining
this with (3.3) and (3.8), we have the following: For any given η > 0,
there is R0 > 0 depending only on η and F such that if R > R0 and
x ∈ Bo(R) \Bo(R0), then

(3.13) ∆dR(x) ≥ −mε− C11η + (1− C10η − (2m− 1)ε) · tanh
dR
2
,

where C11 depends on m, n and F . Note that (3.3) and (3.8) also imply that
for x inside Bo(R0),

(3.14) ∆dR(x) ≥ −C12ε,

where C12 is a constant depending only on m, n, and the upper bound of
e(F ). It is easy to see that there are constants a, b > 0 such that

∆ exp(−a√r2 + 1) ≤ −b exp(−a√r2 + 1) on Hm,

where r(x) = d(o, x). If we take C13 = 2C12

b exp(−a
√
R2

0+1)
depending only on m,

n, η, and F . Then

(3.15) ∆
{
C13ε exp(−a√r2 + 1)

}
≤ −2C12ε,
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on Bo(R0). If we first choose ε small so that mε/(1− (2m− 1)ε) < 1/2, i.e.
ε < 1/(4m−1), and then choose η > 0 small so that 1−C10η−(2m−1)ε > 0
and (mε+ C11η)/(1− C10η − (2m− 1)ε) < 1/2, then the equation

tanh
z

2
=

mε+ C11η

1− C10η − (2m− 1)ε

has a unique positive solution

z = d(ε, η) = tanh−1

(
mε+ C11η

1− C10η − (2m− 1)ε

)
.

From (3.13), (3.14), and (3.15), we conclude that

(3.16) dR(x)− C13ε exp
(
−a
√
r2(x) + 1

)
≤ d(ε, η).

Hence dR are uniformly bounded. By passing to a subsequence, HR converges
uniformly on compact subset to a harmonic map H with same boundary data
at infinity as G ◦ F such that

(3.17) d(H(x), G ◦ F (x)) ≤ C13ε exp
(
−a
√
r2(x) + 1

)
+ d(ε, η).

Since the smallness requirement for ε so that (3.17) holds does not depend
on F , the K0 we obtained is also independent of F . This proves the first
part of the theorem for the case G ◦ F .

If in addition, m = n and the boundary map of F is a diffeomorphism,
then F is a pseudo-isometry by Proposition 3.1. Hence using the result of
[C] and (3.17), H is also a pseudo-isometry.

The case for F ◦ G is similar, we leave the details of the proof to the
readers.

Remark 3.3. Note that from (3.17) and that C13 depends only on m, n,
η, and F , it is easy to see that

lim sup
x→∞

d(H(x), G ◦ F (x)) ≤ d(ε, η),

uniformly in G and H. Note also that d(ε, η) → 0 as ε and η both tend to
0. We will use these facts in §4.

4. Quasi-isometric harmonic maps.

By [Sa, S-Y, C], if n = 2, then the harmonic maps constructed in Theo-
rem 2.6 are harmonic diffeomorphism with bounded energy density, see also
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[T-W]. In fact, the harmonic maps are quasi-isometries by the result of
[W]. In particular, they are quasiconformal. On the other hand, it was
proved in [W] that any quasiconformal harmonic map from H2 onto H2 is a
quasi-isometry. However, it is unclear whether these results are still true in
higher dimensions. In this section we will discuss this kind of problems. The
first result in this section is to show that Theorem 2.6 can be sharpened in
some cases. More precisely, we have:

Theorem 4.1. Let F be a quasi-isometric harmonic diffeormorphism on
Hn. Then there exists K0 > 1 such that if G is a K0-quasiconformal map
on Sn−1, then there are quasi-isometric harmonic maps H and H̃ from Hn
onto Hn such that H = G ◦ F and H̃ = F ◦G on Sn−1.

Proof. We will prove the case for G◦F , the other case is similar. Suppose the
theorem is not true for this case, then there exists a sequence Ki > 1, Ki → 1,
and Ki-quasiconformal map Gi on Sn−1, such that each of the harmonic map
Hi constructed in Theorem 2.6 with the same boundary value as Gi ◦ F is
not a quasi-isometry for all i. We again denote the Douady-Earle extension
of Gi by the same symbol Gi as before. By the construction in Theorem
2.6, Remark 2.8 and the fact that F is a quasi-isometry, we can find positive
constants a and b such that

(4.1) a−1d(x, x̃)− b ≤ d(Hi(x), Hi(x̃)) ≤ ad(x, x̃)

for all x, x̃ ∈ Hn and for all i. Since Hi is not a quasi-isometry, there are
xi, x̃i such that

(4.2) d(Hi(xi), Hi(x̃i)) <
1
i
d(xi, x̃i).

From (4.1) and (4.2), we see that

(4.3) d(xi, x̃i) ≤ 2ab

if i is large enough.
Fix a point o ∈ Hn and let σi and τi be the isometries of Hn such that

τi(o) = xi and σi◦Hi(xi) = o. Consider two sequences of maps ui = σi◦Hi◦τi
and vi = σi◦(Gi◦F )◦τi. Since Hi are harmonic and σi and τi are isometries,
we see that ui are harmonic maps such that ui(o) = o and satisfying

(4.4) a−1d(x, x̃)− b ≤ d(ui(x), ui(x̃)) ≤ ad(x, x̃).

In particular, supi,x e(ui)(x) <∞ by the gradient estimate of [C]. Hence, a
subsequence of ui, which will also be denoted by ui, converges uniformly on
compact subsets of Hn to a harmonic map u.
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For the maps vi, we observe, from Proposition 1.2, that there is a constant
δ1 > 0 independent of i such that, for all i large enough,

d(Gi ◦ F (x), Gi ◦ F (x̃)) ≥ δ1d(x, x̃),

for all x, x̃ ∈ Hn. Therefore, from the definition of vi, we also have

(4.5) d(vi(x), vi(x̃)) ≥ δ1d(x, x̃).

Now by the construction in Theorem 2.6, see Remark 2.8, we have

lim
i→∞

sup
x∈Hn

d(Hi(x), Gi ◦ F (x)) = 0,

which implies that

lim
i→∞

d(ui(x), vi(x)) = 0, ∀x ∈ Hn.

Combining this with (4.5), we have for all x, x̃ ∈ Hn,

d(u(x), u(x̃)) = lim
i→∞

d(ui(x), ui(x̃))

≥ lim
i→∞

(d(vi(x), vi(x̃))− d(vi(x), ui(x))− d(vi(x̃), ui(x̃)))

≥ δ1d(x, x̃).(4.6)

So u is a quasi-isometry from (4.4) and (4.6). In particular, there is a positive
constant δ2 such that

J(u)(x) ≥ δ2

for all x ∈ Hn. Since ui converges to u in the C∞ norm uniformly on compact
subsets of Hn, for all x ∈ Bo(4ab) and i large enough,

(4.7) J(ui)(x) ≥ 1
2
δ2.

Note that the Hessian of ui are also uniformly bounded on compact sets,
(4.7) implies that there is r > 0 and positive constant δ3 such that for all
x ∈ Bo(r), wehave

(4.8) d(ui(o), ui(x)) ≥ δ3d(o, x),

for large i.
Now let us consider yi = τ−1

i (x̃i). By (4.3) and the definition of τi, we
have yi ∈ Bo(2ab). By (4.6) and the fact that ui → u uniformly on compact
subsets, if d(o, yi) ≥ r, then we have

(4.9) d(ui(o), ui(yi)) ≥ δ1

2
r,
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provided i is large enough. Otherwise, (4.8) implies that

(4.10) d(ui(o), ui(yi)) ≥ δ3d(o, yi).

In any case, we have contradiction since (4.2) and the definitions of ui to-
gether imply

d(ui(o), ui(yi)) <
1
i
d(o, yi).

Hence the first part of the theorem is proved. The second part of the theorem
can be proved similarly.

As we mentioned in Remark 2.7, if we take F to be the identity map, we
have:

Corollary 4.2. There exists K0 > 1 depending only on n such that if G is
a K0-quasiconformal map on Sn−1, then there is a harmonic quasi-isometry
diffeomorphism H on Hn such that H = G on Sn−1.

Using Theorem 3.2, and Remark 3.3, one can prove a result similar to
Theorem 4.1. We leave the details of the proof to the readers.

Theorem 4.3. Let F be a proper harmonic map from Hn to Hn which is
C1 up to the boundary when considered as a map from the close unit ball
in Rn into the close unit ball of Rn. Suppose also that the boundary map
of F is a diffeomorphism on Sn−1. There exists K0 > 1 such that if G is a
K0-quasiconformal map on Sn−1, then there are harmonic maps H and H̃
from Hn into Hn such that H = G ◦ F and H̃ = F ◦G. Moreover H and H̃
are quasi-isometries near infinity.

As mentioned before, if n ≥ 3, it is unknown whether a rough isometric
harmonic map, or even a quasiconformal harmonic diffeomorphism, on Hn
is a quasi-isometry. However, Theorem 4.1 and the uniqueness theorem in
[L-Wg] on rough isometric harmonic maps give the following:

Corollary 4.4. There exists K0 > 1 depending only on n such that if H
is a rough isometric harmonic map on Hn with K0-quasiconformal boundary
data on Sn−1, then H is a quasi-isometry. More generally, if F is a quasi-
isometric harmonic map on Hn, then there is a K0 > 1 such that if H is
a rough isometric harmonic map on Hn and H ◦ F−1 or F−1 ◦H is a K0-
quasiconformal map when restricted on the geometric boundary of Hn, then
H is a quasi-isometry.

The first part of Corollary 4.4 can be considered as a partial generalization
of the result in [W] for dimension two that a quasiconformal harmonic map is
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a quasi-isometry. On the other hand, if we assume thatH is a quasiconformal
map to begin with, then we can get a more explicit estimate of K0.

Lemma 4.5. Let F be a K-quasiconformal analytic map from Hn onto
itself. Then all critical points (if any) of F are isolated. Moreover, if o is a
critical point of F , then

e(F )(x) = O(dk(x, o)), as x→ o,

for some integer k satisfying

2 ≤ k ≤ 2(K
1

n−1 − 1).

In particular, F has no critical point if K < 2n−1.

Proof. It is an easy fact that critical points of analytic homeomorphisms
are isolated. To prove the second part, we first observe that e(F )(x) =
O(dk(x, o)) for some k since F is analytic. To estimate k, we note that
e(F ) ≥ 0 implies that if e(F )(o) = 0, then∇e(F )(o) = 0. Therefore, k ≥ 2.

For the other side of the inequality, we may assume, by composing an
isometry of Hn to F from the left, that F (o) = o. Then since F−1 is also
a quasiconformal map from Hn onto itself with the same quasiconformal
constant, we have by the Hölder estimate of quasiconformal maps by [F-V]
that

(4.11) d(x, o) ≤ C1 (d(F (x), o))K
1/(1−n)

,

for some constant C1 and for all x with d(x, o) ≤ 1. Now, from e(F )(x) =
O(dk(x, o)), we conclude that for d(x, o) ≤ 1,

d(F (x), o) ≤ C2d
1+ k

2 (x, o),

for some constant C2. Combining this with (4.11), we have

d(x, o) ≤ C3 (d(x, o))(1+ k
2 )K1/(1−n)

, as x→ o.

Therefore, we must have (
1 +

k

2

)
K1/(1−n) ≤ 1,

which is the desired inequality.
Finally, the last statement is a direct consequence of above.

Applying the Lemma 4.5 to quasiconformal harmonic maps, we have
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Proposition 4.6. Let F be a K-quasiconformal harmonic map on Hn.
Then all critical points (if any) of F are isolated. Moreover, if o is a critical
point of F , then

e(F )(x) = O(dk(x, o)), as x→ o,

for some integer k satisfying

2 ≤ k ≤ 2(K
1

n−1 − 1).

Suppose further that K < 2n−1, then F is a quasi-isometry.

Proof. Only the last statement need a proof since all others follows easily
from the analyticity of continuous harmonic maps and Lemma 4.5.

For the last statement, it is sufficient to prove that the energy density
is uniformly bounded below away from 0. In fact, if this is true, then the
Jacobian of F is also uniformly bounded below away from 0, because F
is quasiconformal. On the other hand, we have uniformly upper bounded
for the energy density of F from the assumption that F is quasiconformal.
Hence F is a pseudo-isometry. Again combining these two bounds, we see
that the energy density of F−1 is uniformly bounded from above and hence
F is a quasi-isometry.

We will prove that the energy density is uniformly bounded below away
from 0 by contradiction. Suppose not, then there exists a sequence of points
xi ∈ Hn, such that e(F )(xi)→ 0 as i→∞. Let o ∈ Hn be a fixed point and
σi and τi be isometries of Hn such that τi(o) = xi and σi(F (xi)) = o. Then
ui = σi ◦ F ◦ τi are harmonic maps such that ui(o) = o and e(ui)(o) → 0
as i → ∞. Moreover, each ui is a K-quasiconformal map. By [F-V] for
example, see also [V], a subsequence of ui, also denoted by ui, converges
uniformly to a K-quasiconformal map u on the close unit ball in Rn, if we
use the Poincaré disk model for Hn. It is easy to see that u is also harmonic
with u(o) = o and e(u)(o) = 0. This obviously contradicts the last statement
of Lemma 4.5. Hence the proof of the proposition is completed.
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Note: The reference on p. 361 to Definition 3.1 appeared in the paper version
as Definition 2.1. Also, the equation (1.1) was numbered (2.1) there.


