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RIGGED NON-TANGENTIAL MAXIMAL FUNCTION
ASSOCIATED

WITH TOEPLITZ OPERATORS AND HANKEL OPERATORS

Jingbo Xia

We give a sufficient condition for the boundedness of prod-
ucts of Toeplitz operators and Hankel operators in terms of a
distributional inequality for the symbol functions.

Let T denote the unit circle and dm the normalized Lebesgue measure
on T . For 1 ≤ p ≤ ∞, Lp stands for Lp(T, dm). As usual, Hp is the
Hardy subspace of Lp. Let P : L2 → H2 be the orthogonal projection. For
f ∈ L2, the Toeplitz operator Tf and the Hankel operator Hf are defined by
the formulas Tfϕ = Pfϕ and Hfϕ = (1 − P )fϕ, ϕ ∈ H2, whenever these
expressions make sense. Thus the domains of Tf and Hf contain at least
H∞.

Let D be the open disc {z ∈ C : |z| < 1}. We denote the Poisson kernel
associated with z ∈ D by Pz. That is, Pz(τ) = (1−|z|2)/|1− τ̄ z|2. We write
f(z) =

∫
T fPzdm, z ∈ D, for f ∈ L1. In particular, for any measurable set

E ⊂ T , χE(z) =
∫
E Pzdm is the value of the harmonic extension of χE at

z. The well-known probabilistic interpretation of χE(z) may help put the
results stated below in perspective: χE(z) is the probability that a Brownian
walker starting at the point z will exit D through E.

In this note we will address a question raised by Sarason in [5, 6], namely
when is the product TgTf a bounded operator on H2? This problem, which
is non-trivial only if at least one symbol function is unbounded, arose from
Sarason’s study of exposed points in the unit ball of H1. He showed that,
for outer functions f, g ∈ H2, a necessary condition for TgTf̄ to be bounded
is that

sup
|z|<1

∫
T

|g|2Pzdm
∫
T

|f |2Pzdm <∞.

An argument due to Treil (see [6]) further shows that this condition is nec-
essary for the boundedness of TgTf̄ whenever f, g ∈ H2. Sarason observed
that a related (but strictly more general) problem is the boundedness of the
product of Hankel operators H∗gHf .

Using the ideas of Axler, Chang and Sarason [1], mainly the area-integral
function technique, Zheng showed in [10] that for f , g ∈ L2, if there is an
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ε > 0 such that

(1) N1 = sup
|z|<1

∫
T

|f − f(z)|2+εPzdm

∫
T

|g − g(z)|2+εPzdm <∞,

then H∗gHf is bounded. He also showed that for f , g ∈ H2, if there is an
ε > 0 such that

(2) N2 = sup
|z|<1

∫
T

|f |2+εPzdm

∫
T

|g|2+εPzdm <∞,

then TgTf̄ is bounded. Recall that the theorem of Marcinkiewicz and Zyg-
mund [4] asserts that Lusin’s area-integral operator S is bounded on Hp for
all 0 < p <∞. Because of the properties of the Hilbert transform, it follows
immediately that S is bounded on Lp when p > 1. This is the key fact on
which [10] relied.

This result was generalized by Treil, Volberg and Zheng to the setting of
Orlicz spaces and Lorentz spaces [9]. In both [10] and [9], Hölder’s inequal-
ity was used in an essential way in their estimates for the boundedness of the
operators in question. It is well known that estimates relying on Hölder’s
inequality are usually less than optimal because of the nature of that in-
equality. In this paper we show that there are ways to get around Hölder’s
inequality, thereby obtaining sharper results.

The starting point of our investigation is Stein’s result that S also has
weak-type (1,1) [7]. This suggests to us that the area-integral technique in
[1, 9, 10] can be further exploited. Note that, by Hölder’s inequality, (1)
and (2) respectively imply that for any z ∈ D and for any measurable sets
A, B ⊂ T,

(1′)
∫
A

|f−f(z)|Pzdm
∫
B

|g−g(z)|Pzdm ≤ N 1/(2+ε)
1 (χA(z)χB(z))(1+ε)/(2+ε),

(2′)
∫
A

|f |Pzdm
∫
B

|g|Pzdm ≤ N 1/(2+ε)
2 (χA(z)χB(z))(1+ε)/(2+ε).

We will replace the factor (χA(z)χB(z))(1+ε)/(2+ε) in the above by something
much larger and still obtain boundedness for H∗gHf and TgTf̄ .

To state our main results, we need to introduce a class of weight functions.
Let W denote the collection of functions w : (0, 1] → (0, 1] which are non-
decreasing and have the property that∫ 1

0

(
w(t)
t2

)2/3

dt <∞.
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Theorem 1. Suppose that f , g ∈ L2 have the following property: There
are u, v ∈ W and a positive number N such that for any z ∈ D and for any
measurable sets A, B ⊂ T of positive measure,∫

A

|f − f(z)|Pzdm
∫
B

|g − g(z)|Pzdm ≤ Nu(χA(z))v(χB(z)).

Then H∗gHf is bounded.

Theorem 2. Suppose that f , g ∈ L2 have the following property: There
are u, v ∈ W and a positive number N such that for any z ∈ D and for any
measurable sets A, B ⊂ T of positive measure,∫

A

|f |Pzdm
∫
B

|g|Pzdm ≤ Nu(χA(z))v(χB(z)).

Then TgTf is bounded.

The above-mentioned boundedness results of Zheng are recovered by ap-
plying these theorems to the case where u(t) = v(t) = t(1+ε)/(2+ε) = t1/2 ·
tε/(4+2ε). What original motivated our investigation were examples such as
u(t) = v(t) = t1/2 · (1− log t)−(3+ε)/2, ε > 0.

Our main technical innovation is the introduction of a rigged non-tangen-
tial maximal function. Section 1 contains an L1-boundedness result for this
maximal function. The proofs of Theorems 1 and 2 are given in Section 2
after further preparations.

1. Rigged non-tangential maximal function.

For each τ ∈ T , let Γτ = {z : |τ − z| < 2(1 − |z|), 3/4 < |z| < 1}. Suppose
that F , G are continuous maps from D into L2 with respect to the norm
topology. To avoid confusion with complex-valued functions we denote their
values at z ∈ D by Fz and Gz respectively. In other words, for each z ∈ D,
Fz and Gz are themselves functions on T . Given ϕ, ψ ∈ L2, we introduce
the rigged non-tangential maximal function

MF,G(ϕ,ψ)(τ) = sup
z∈Γτ

∫
T

|ϕFz|Pzdm
∫
T

|ψGz|Pzdm, τ ∈ T.

To simplify notation, the Lebesgue measure of a measurable set E ⊂ T
will be denoted by |E|. Also, for a real-valued function f on T and a λ ∈
R, the set {τ ∈ T : f(τ) > λ} will simply be denoted by {f > λ}. The sets
{f ≤ λ}, {λ1 ≤ f < λ2}, etc., are accordingly understood.

For each ϕ ∈ L1, denote its usual non-tagential maximal function by
Mnt(ϕ). That is,

Mnt(ϕ)(τ) = sup
z∈Γτ

|ϕ(z)|, τ ∈ T.
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Recall that there is an absolute constant C > 0 such that Mnt(ϕ) ≤ CM(ϕ),
where M(ϕ) is the Hardy-Littlewood maximal function of ϕ [3, page 24].
This means Mnt is of weak-type (1,1). In other words, there is an absolute
constant Cnt > 0 such that |{Mnt(ϕ) > λ}| ≤ Cnt‖ϕ‖1/λ for all ϕ ∈ L1 and
λ > 0. In particular, if E is a measurable set in T , then

(1.1) |{Mnt(χE) > 2−i}| ≤ Cnt2i|E|, i ∈ N.

Proposition 1.1. Suppose that F , G are continuous maps from D into L2

which have the following property: There exist an N > 0 and u, v ∈ W such
that for any z ∈ D and any measurable sets A, B ⊂ T with |A| > 0 and
|B| > 0,

(1.2)
∫
A

|Fz|Pzdm
∫
B

|Gz|Pzdm ≤ Nu(χA(z))v(χB(z)).

Then there is a K > 0 such that for any ϕ, ψ ∈ L2,

‖MF,G(ϕ,ψ)‖1 ≤ K‖ϕ‖2‖ψ‖2.

Proof. Without loss of generality, we may assume that u(1) = v(1) = 1. Set
ui = 2i/3(u(2−i))2/3 and vi = 2i/3(v(2−i))2/3, i ∈ Z+. It follows from the
monotonicity of u and v that

U =
∞∑
i=0

ui ≤ 1 +
21/3

log 2

∞∑
i=0

∫ 2−i

2−i−1
(u2(t)/t)1/3dt

t

= 1 +
21/3

log 2

∫ 1

0

(
u(t)
t2

)2/3

dt <∞,

V =
∞∑
i=0

vi ≤ 1 +
21/3

log 2

∞∑
i=0

∫ 2−i

2−i−1
(v2(t)/t)1/3dt

t

= 1 +
21/3

log 2

∫ 1

0

(
v(t)
t2

)2/3

dt <∞.

It suffices to consider non-negative ϕ, ψ ∈ L2 with ‖ϕ‖2 = ‖ψ‖2 = 1.
Define

Ak,0 = {ϕ2 ≤ 2k}, Bk,0 = {ψ2 ≤ 2k},
Ak,i = {2k+i−1/ui−1 ≤ ϕ2 < 2k+i/ui},
Bk,i = {2k+i−1/vi−1 ≤ ψ2 < 2k+i/vi},

k, i ∈ N. (Recall that u and v do not vanish on (0,1].) For such a pair of k
and i, let

Xk,i = {Mnt(χAk,i) > 2−i}, Yk,i = {Mnt(χBk,i) > 2−i}.
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It follows from (1.2) that

∫
T

|Fzϕ|Pzdm
∫
T

|Gzψ|Pzdm

≤
∞∑

i,j=0

(
22k+i+j

uivj

)1/2 ∫
Ak,i

|Fz|Pzdm
∫
Bk,j

|Gz|Pzdm

≤ N2k
∞∑

i,j=0

(
2i+j

uivj

)1/2

u(χAk,i(z))v(χBk,j (z))

= N2k
∞∑
i=0

√
2i

ui
u(χAk,i(z))

∞∑
j=0

√
2j

vj
v(χBk,j (z)).(1.3)

Now if τ0 ∈ T\ ∪∞i=1 (Xk,i ∪ Yk,i), then χAk,i(z) ≤ 2−i and χBk,j (z) ≤ 2−j

for any z ∈ Γτ0 and i, j ∈ N. The monotonicity of u then implies that
u

3/2
i = 2i/2u(2−i) ≥ 2i/2u(χAk,i(z)). That is, (2i/ui)1/2u(χAk,i(z)) ≤ ui.

Similarly (2j/vj)1/2v(χAk,j (z)) ≤ vj. Therefore it follows from (1.3) that

∫
T

|Fzϕ|Pzdm
∫
T

|Gzψ|Pzdm ≤ NUV 2k

if τ0 ∈ T\ ∪∞i=1 (Xk,i ∪ Yk,i) and z ∈ Γτ0 . This implies that

{MF,G(ϕ,ψ) > NUV 2k} ⊂
∞⋃
i=1

(Xk,i ∪ Yk,i).

By (1.1), |Xk,i| ≤ Cnt2i|Ak,i|, |Yk,i| ≤ Cnt2i|Bk,i|. Thus

|{MF,G(ϕ,ψ)/NUV > 2k}| ≤ Cnt

∞∑
i=1

2i(|Ak,i|+ |Bk,i|).

Since ‖f‖1 ≤ 2|T |+∑∞k=1 2k+1|{2k < |f | ≤ 2k+1}| for every f ∈ L1, we have

(1.4) ‖MF,G(ϕ,ψ)/NUV ‖1 ≤ 2 + 2Cnt

∞∑
k=1

∞∑
i=1

2k+i(|Ak,i|+ |Bk,i|).
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Because u ≤ 1 on (0,1], 2k+i−1/ui−1 ≥ 22i/3 ≥ 1 for all k, i ∈ N. Therefore

∞∑
k,i=1

2k+i|Ak,i|

≤ 2
∞∑

k,i=1

2k+i−1|{ϕ2 ≥ 2k+i−1/ui−1}|

= 2
∞∑
`=0

∑
2`≤2k+i−1/ui−1<2`+1

(2k+i−1/ui−1)ui−1|{ϕ2 ≥ 2k+i−1/ui−1}|

≤ 2
∞∑
`=0

2`+1|{ϕ2 ≥ 2`}|
∑

2`≤2k+i−1/ui−1<2`+1

ui−1.

(1.5)

Note that for each pair of i ∈ N and ` ∈ Z+, there is at most one k ∈ N
for which the inequality 2` ≤ 2k+i−1/ui−1 < 2`+1 holds. This means that for
each fixed `, ∑

2`≤2k+i−1/ui−1<2`+1

ui−1 ≤
∞∑
i=1

ui−1 = U.

Also, since 1+2+ · · ·+2` < 2`+1,
∑∞
`=0 2`|{ϕ2 ≥ 2`}| ≤ 2‖ϕ2‖1 = 2‖ϕ‖22 = 2.

Hence it follows from (1.5) that

∞∑
k,i=1

2k+i|Ak,i| ≤ 8U.

By the same argument,

∞∑
k,i=1

2k+i|Bk,i| ≤ 8V.

Combining these with (1.4), we see that

‖MF,G(ϕ,ψ)‖1 ≤ NUV (2 + 16Cnt(U + V )).

This completes the proof.

2. Area-Integral.

For each z = |z|eiθz ∈ D, define the open arcs

Iz = {eiθ : |θ − θz| < (1− |z|)/2}, Jz = {eiθ : |θ − θz| < 3(1− |z|)/2}.
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Because of the normalization |T | = 1, we have |Iz| = (1− |z|)/2π. If τ = eiθ

is a point in Iz, then τ − z = eiθ(1−|z|) + z(ei(θ−θz)−1). Therefore |τ − z| ≤
(1− |z|) + (e− 1)|θ − θz| < 2(1− |z|). That is, if 3/4 < |z| < 1 and τ ∈ Iz,
then z ∈ Γτ .

Let dA(z) denote the area measure on D. Recall that for each ϕ ∈ L1,
Lusin’s area-integral function is defined by the formula

S(ϕ)(τ) =
(∫

Γτ

|∇ϕ(z)|2dA(z)
)1/2

.

Using the Calderón-Zygmund decomposition of L1-functions, Stein proved
that S is of weak-type (1,1) [7, Lemma 12]. (Stein’s proof was given for
half-spaces in Rn, but, with obvious modifications, the proof works in D as
well.) That is, there is an absolute constant CS > 0 such that

(2.1) |{S(ξ) > λ}| ≤ CS‖ξ‖1/λ
for all ξ ∈ L1 and λ > 0.

For each 0 < a < 1 and each τ ∈ T , let Γτ,a = Γτ ∩ {z : 1− a < |z| < 1}.
We set Γτ,0 = ∅. Define the truncated area-integral function

Sa(ϕ)(τ) =

(∫
Γτ,a

|∇ϕ(z)|2dA(z)

)1/2

.

Recall that ∂ = ((∂/∂x) − i(∂/∂y))/2 and ∂̄ = ((∂/∂x) + i(∂/∂y))/2 in
real variables. Thus |∇ϕ(z)|2 = 2(|∂ϕ(z)|2 + |∂̄ϕ(z)|2). For ϕ ∈ L2, we
have |∇((1 − P )ϕ)(z)|2 = 2|∂̄((1 − P )ϕ)(z)|2 = 2|∂̄ϕ(z)|2 ≤ |∇ϕ(z)|2 and
|∇(Pϕ)(z)|2 = 2|∂(Pϕ)(z)|2 = 2|∂ϕ(z)|2 ≤ |∇ϕ(z)|2. Hence for any given
ϕ ∈ L2,

(2.2) Sa((1− P )ϕ) ≤ Sa(ϕ), Sa(Pϕ) ≤ Sa(ϕ).

There is a C2.3 > 0 such that for any f ∈ L1, 3/4 < |z| < 1 and τ ∈ Iz,

(2.3) S2(1−|z|)(χT\Jzf)(τ) ≤ C2.3

∫
T

|f |Pzdm.

To verify this elementary claim, note that

|∂̄(χT\Jzf)(ζ)| =
∣∣∣∣∣ ddζ̄

∫
T\Jz

ζ̄γf(γ)
1− ζ̄γ dm(γ)

∣∣∣∣∣ ≤
∫
T\Jz

|f(γ)|
|1− ζγ̄|2dm(γ).

There is a C1 > 0 such that C1|γ − τ | ≥ |γ − z| when τ ∈ Iz and γ ∈ T\Jz.
Also, there is a C2 > 0 such that C2d(γ,Γτ ) ≥ |γ − τ | ≥ |γ − z|/C1 for such
z, τ , γ. That is, for ζ ∈ Γτ and γ ∈ T\Jz, C1C2|γ − ζ| ≥ |γ − z|. Hence

|∂̄(χT\Jzf)(ζ)| ≤ (C1C2)2

∫
T\Jz

|f(γ)|
|1− zγ̄|2dm(γ)
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for ζ ∈ Γτ . There is a C3 > 0 such that the area of Γτ,2(1−|z|) does not exceed
C3(1−|z|2)2. Squaring the above and integrating over Γτ,2(1−|z|), we see that∫

Γτ,2(1−|z|)
|∂̄(χT\Jzf)(ζ)|2dA(ζ) ≤ C3

(
(C1C2)2

∫
T

|f |Pzdm
)2

.

Repeating the above argument with ∂ in place of ∂̄, we see (2.3) holds with
C2.3 = 2C1/2

3 (C1C2)2.

Proposition 2.1. There is an absolute constant B2.1 > 0 such that for any
continuous maps F , G : D → L2, ϕ, ψ ∈ L2, and any 3/4 < |z| < 1,

|{S2(1−|z|)(Fzϕ)S2(1−|z|)(Gzψ) ≤ B2.1MF,G(ϕ,ψ)} ∩ Iz| ≥ |Iz|/2.

Proof. Since Fzϕ = FzϕχJz +FzϕχT\Jz , by the subadditivity of Sa and (2.3),{
S2(1−|z|)(Fzϕ) >

12CS
|Jz|

∫
Jz

|Fzϕ|dm+ 2C2.3

∫
T

|Fzϕ|Pzdm
}
∩ Iz

⊂
{
S2(1−|z|)(χJzFzϕ) >

12CS
|Jz|

∫
Jz

|Fzϕ|dm
}
∩ Iz

⊂
{
S(χJzFzϕ) >

12CS
|Jz|

∫
Jz

|Fzϕ|dm
}
∩ Iz.

If ‖χJzFzϕ‖1 = 0, then the above set is empty. If ‖χJzFzϕ‖1 6= 0, ap-
ply (2.1) to the case where ξ = χJzFzϕ and λ = 12CS

∫
Jz
|Fzϕ|dm/|Jz| =

12CS‖ξ‖1/3|Iz|. Therefore we have∣∣∣∣{S2(1−|z|)(Fzϕ) >
12CS
|Jz|

∫
Jz

|Fzϕ|dm+ 2C2.3

∫
T

|Fzϕ|Pzdm
}
∩ Iz

∣∣∣∣
≤
∣∣∣∣{S(χJzFzϕ) >

12CS
|Jz|

∫
Jz

|Fzϕ|dm
}∣∣∣∣ ≤ |Iz|/4

in any case. There is a C4 > 0 such that χJz/|Jz| ≤ C4Pz. Hence∣∣∣∣{S2(1−|z|)(Fzϕ) > (12C4CS + 2C2.3)
∫
T

|Fzϕ|Pzdm
}
∩ Iz

∣∣∣∣ ≤ |Iz|/4.
Applying the same argument with Gz, ψ in place of Fz, ϕ, we obtain∣∣∣∣{S2(1−|z|)(Gzψ) > (12C4CS + 2C2.3)

∫
T

|Gzψ|Pzdm
}
∩ Iz

∣∣∣∣ ≤ |Iz|/4.
Let B2.1 = (12C4CS + 2C2.3)2. Then the set E which consists of all τ ∈ Iz
such that

S2(1−|z|)(Fzϕ)(τ)S2(1−|z|)(Gzψ)(τ) ≤ B2.1

∫
T

|Fzϕ|Pzdm
∫
T

|Gzψ|Pzdm
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has measure at least |Iz|/2. Again, z ∈ Γτ if τ ∈ Iz. Hence the inequality

S2(1−|z|)(Fzϕ)(τ)S2(1−|z|)(Gzψ)(τ) ≤ B2.1MF,G(ϕ,ψ)(τ)

holds whenever τ ∈ E. This completes the proof.

It should be acknowledged that the idea of decomposing Fzϕ as FzϕχJz +
FzϕχT\Jz in the above proof can be traced back to [1].

Proposition 2.2. There is an absolute constant C2.2 > 0 such that the
following hold true:
(i) For any f , g ∈ L2, there is a C(f, g) > 0 such that for any ϕ, ψ ∈ H2

with the property that Hfϕ, Hgψ ∈ L2, we have

|〈Hfϕ,Hgψ〉| ≤ C2.2

∫
T

MF,G(ϕ,ψ)dm+ C(f, g)‖ϕ‖2‖ψ‖2,

where F , G : D → L2 are defined by the formulas Fz = f − f(z) and
Gz = g − g(z).

(ii) For any f , g ∈ L2, there is a B(f, g) > 0 such that for any ϕ, ψ ∈ H2

with the property that Tfϕ, Tgψ ∈ L2, we have

|〈Tfϕ, Tgψ〉| ≤ C2.2

∫
T

MF 0,G0(ϕ,ψ)dm+B(f, g)‖ϕ‖2‖ψ‖2,

where F 0, G0 : D → L2 are defined by the formulas F 0
z = f and

G0
z = g.

Proof. (i) The harmonic extensions of Hfϕ and Hgψ vanish at 0. Hence it
follows from the Littlewood-Paley formula that

|〈Hfϕ,Hgψ〉| ≤ 1
π

∫
7/8<|z|<1

|〈∇(Hfϕ)(z),∇(Hgψ)(z)〉C2 | log
1
|z|dA(z)

+
1
π

∫
|z|≤7/8

|〈∇(Hfϕ)(z),∇(Hgψ)(z)〉C2 | log
1
|z|dA(z).

It is elementary that there is a C(f, g) > 0 such that the second term above
is bounded by C(f, g)‖ϕ‖2‖ψ‖2. Thus it suffices to estimate the first term.

Mimicking the definition of ρ(w) on page 494 of [10], for each τ ∈ T , let
a(τ) be the largest a ∈ [0, 1/4] such that

Sa(Hfϕ)(τ)Sa(Hgψ)(τ) ≤ B2.1MF,G(ϕ,ψ)(τ).

(We set S0(ξ) = 0.) We claim that the function

τ 7→ Sa(τ)(Hfϕ)(τ)Sa(τ)(Hgψ)(τ)
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is measurable1 on T . In fact, for each fixed τ ∈ {S(Hfϕ) <∞}∩{S(Hgψ) <
∞}, since the function a 7→ Sa(Hfϕ)(τ)Sa(Hgψ)(τ) is non-decreasing and
continuous on [0, 1/4], we have

Sa(τ)(Hfϕ)(τ)Sa(τ)(Hgψ)(τ)

= sup
n

min{B2.1Mf,g(ϕ,ψ)(τ), San(Hfϕ)(τ)San(Hgψ)(τ)},

where {an} is any chosen sequence which is dense in [0, 1/4]. And {S(Hfϕ) =
∞} ∪ {S(Hgψ) =∞} is a null set. Similarly τ 7→ a(τ) is also measurable.

We claim that
∫
Iz
χΓτ,a(τ)(z)dm(τ) ≥ (1 − |z|)/4π when 7/8 < |z| < 1.

Indeed if

(2.4) S2(1−|z|)((f−f(z))ϕ)(γ)S2(1−|z|)((g−g(z))ψ)(γ) ≤ B2.1MF,G(ϕ,ψ)(γ),

then, because Hfϕ = Hf−f(z)ϕ, Hfϕ = Hf−f(z)ϕ, and because of (2.2), we
have

S2(1−|z|)(Hfϕ)(γ)S2(1−|z|)(Hgψ)(γ) ≤ B2.1MF,G(ϕ,ψ)(γ).

That is, if γ ∈ Iz is such that (2.4) holds, then a(γ) ≥ 2(1 − |z|) > 1 − |z|,
consequently |z| > 1− a(γ). This implies z ∈ Γγ,a(γ) since z ∈ Γγ whenever
γ ∈ Iz. But Proposition 2.1 tells us that the set of γ’s in Iz for which (2.4)
holds has measure at least |Iz|/2. In other words, when 7/8 < |z| < 1, the
function τ 7→ χΓτ,a(τ)(z) equals 1 on a subset of Iz with measure at least
|Iz|/2 = (1− |z|)/4π. This verifies our claim. Borrowing an idea from [10],
we have

1
π

∫
7/8<|z|<1

(1− |z|)|〈∇(Hfϕ)(z),∇(Hgψ)(z)〉|dA(z)

≤ 4
∫

7/8<|z|<1

(∫
Iz

χΓτ,a(τ)(z)dm(τ)
)
|〈∇(Hfϕ)(z),∇(Hgψ)(z)〉C2 |dA(z)

= 4
∫
T

∫
7/8<|z|<1

χΓτ,a(τ)(z)|〈∇(Hfϕ)(z),∇(Hgψ)(z)〉C2 |dA(z)dm(τ)

≤ 4
∫
T

Sa(τ)(Hfϕ)(τ)Sa(τ)(Hgψ)(τ)dm(τ) ≤ 4B2.1

∫
T

Mf,g(ϕ,ψ)dm.

But there is a C2.2.1 > 0 such that log(1/|z|) < C2.2.1(1 − |z|) whenever
7/8 < |z| < 1. Thus C2.2 = 4C2.2.1B2.1 satisfies our requirement.

(ii) Note that 〈Tfϕ, Tgψ〉 = 〈Pfϕ, gψ〉 = 〈P (fϕ−(fϕ)(0)), gψ−(gψ)(0)〉+
garbage. Now there is a C ′(f, g) > 0 such that C ′(f, g)‖ϕ‖2‖ψ‖2 dominates

1Note that a similar measurability issue was overlooked on page 494 of [10].
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the garbage term. Applying the Littlewood-Paley formula to the other term,

〈P (fϕ− (fϕ)(0)), gψ − (gψ)(0)〉
=

1
π

∫
D

〈∇(Pfϕ)(z),∇(gψ)(z)〉C2 log
1
|z|dA(z),

the rest of the proof proceeds as in (i) with the only modification that F 0
z = f

andG0
z = g now replace Fz = f−f(z) andGz = g−g(z) respectively.

With the foregoing preparation, we are now ready to prove our main
results.

Proof of Theorem 1 (resp. 2). By Proposition 2.2(i) (resp. 2.2(ii)), it suffices
to show that there is a K > 0 such that ‖MF,G(ϕ,ψ)‖1 ≤ K‖ϕ‖2‖ψ‖2 when
Fz = f − f(z) and Gz = g − g(z) (resp. Fz = f and Gz = g). But with this
notation, the assumption of the theorem now reads∫

A

|Fz|Pzdm
∫
B

|Gz|Pzdm ≤ Nu(χA(z))v(χB(z)).

Proposition 1.1 asserts that such a K exists under this condition.
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