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BOUNDARY BEHAVIOUR OF Hp FUNCTIONS ON CONVEX
DOMAINS OF FINITE TYPE IN Cn

Fausto Di Biase and Bert Fischer

We describe the optimal approach regions for a theorem of
Fatou type for Hp functions on convex domains of finite type
in Cn. Moreover we show that the Nagel-Stein phenomenon
also holds in this context.

1. Introduction.

Holomorphic functions of the Hp classes on a pseudoconvex domain of finite
type in C2 have a boundary limit for almost every point in the boundary
of the domain, provided the limit is taken inside certain approach regions,
whose shape, in the complex tangential direction, reflects the order of contact
with tangential complex hypersurfaces, and therefore changes near weakly
pseudoconvex points [N, S, W81], [N, S, W85], [K72], [Ko69], [S72].

The major difficulties met in the study of pseudoconvex domains of finite
type in Cn are the following: The behavior is different in the various complex
tangential directions and the different directions interact. In the context of
convex domains of finite type in Cn, one can restrict the attention to the
order of contact with complex lines [Mc92], and exploit certain coordinate
systems and polydiscs obtained by extremizing the distance along complex
lines, as in [Mc92], [Mc94], [Mc, S94], [Mc, S96], which also give some
control over the intermediate directions.

In this paper we describe the natural approach regions for convex domains
of finite type in Cn, and prove the corresponding theorem of Fatou type
for Hp functions. The shape of the natural approach regions depends on
the particular complex tangential direction which is being considered; in
particular, it reflects the order of contact of the boundary with the complex
line in that direction (see the example at the end of Section 3). A suitable
regularization of the polydiscs studied in [Mc92] is used.

The natural approach regions for the unit disc are the nontangential cones
[F06]. In fact, no rotation invariant family of tangential curves is a region of
convergence for Hp holomorphic functions [L27]. In 1984, A. Nagel and E.M.
Stein showed that almost everywhere convergence does indeed hold, for Hp

functions, along certain approach regions containing tangential sequences—
as opposed to tangential curves [N, S84]. In particular, the exotic approach
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regions constructed in [N, S84] are not contained in any of the natural
approach regions, near the boundary.

We show that the natural approach regions defined here for convex do-
mains of finite type in Cn also admit exotic approach regions of convergence.
Recall that, for the unit disc and Euclidean half spaces, one first constructs
an exotic approach region at one point, and then one translates it to nearby
points. The same approach works when the boundary is acted upon by a
group, or by a pseudogroup of diffeomorphisms, which preserve the relevant
family of balls in the boundary [Su86], [A, C92]. These ingredients are
lacking for a convex domain of finite type in Cn, since the shape of the balls
changes near weakly pseudoconvex points.

We would like to thank J.D. McNeal for all the insights he shared with
us.

2. Geometry.

Let D ⊂⊂ Cn be a smoothly bounded, convex domain of finite type M
defined by D = {r < 0}. Without loss of generality we may assume that
Dε := {r < ε} is also convex if |ε| < ε0 for some fixed small positive constant
ε0. Let S2n−1 := {γ ∈ Cn : |γ| = 1}. By distγ(q, A) we denote the distance
from the point q to a set A along the complex line {q+ ζγ : ζ ∈ C}. We also
use the notation δγ(q, ε) := distγ(q, bDr(q)+ε). For each point q with |r(q)| <
ε0/2 and each positive number ε < ε0/2 McNeal [Mc94] constructed special
coordinates zqεi centered at q which are related to the standard coordinates
in Cn by a unitary transformation. Moreover he defined certain numbers
τi(q, ε) (see Proposition 2.1 for more details) and the polydiscs

P (q, ε) := {z : |zqεi | < τi(q, ε) for all i}.
Using these polydiscs one can define the quasi-distance %(q, p) := inf{ε : p ∈
P (q, ε)}. For each direction γ one may consider the Taylor expansion of r
about q in the direction defined by γ

r(q + zγ) = r(q) +
M∑

µ+ν=1

aγµν(q)z
µz̄ν +O(|z|M+1).

Using the quantities

Aγk(q) := max{|aγµν(q)| : µ+ ν = k}

we define

sγ(q, ε) := min{(ε/Akγ(q))1/k : 1 ≤ k ≤M}.
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The following statements are proven in [Mc94] and [Mc, S96].

Proposition 2.1. Using the notation given above we have:
(i) τ1(q, ε) = dist(q, bDr(q)+ε) and the point where this distance is realized

lies on the positive xqε1 -axis where zqε1 = xqε + iyqε1 .

(ii) For 2 ≤ i ≤ n, τi(q, ε) = distγi(q, bDr(q)+ε), where γi is the direction
given by the zqεi -coordinate.

(iii) There exists a constant c0 independent of q and ε such that

c0P (q, ε) ⊂ Dr(q)+ε.

(iv) (Vitali-type engulfing property.) There exists a constant C1 independent
of p, q and ε such that if P (p, ε) ∩ P (q, ε) 6= ∅ then

P (q, ε) ⊂ C1P (p, ε).

(v) (Doubling property.) There exists a constant C2 independent of q and
ε such that

P (q, 2ε) ⊂ C2P (q, ε).

(vi) The quasi-distance satisfies

%(p, q) ≈ %(q, p) and %(p, q)<∼ %(p, r) + %(r, q).

(vii) Let γi be the direction given by the zqεi -coordinate and write γ =
∑
aiγi

with ai ∈ C. Then we have

δγ(q, ε) ≈
(∑ |ai|

τi(q, ε)

)−1

.

(viii) If p ∈ P (q, ε) then

τi(p, ε) ≈ τi(q, ε) for i = 1, ..., n.

(ix) If σ is the surface measure on bD then

σ (P (w, ε) ∩ bD) ≈ ε−1Πn
ν=1τν(w, ε)

2.

Note that statement (vii) means that even in the intermediate directions
the distance to the boundary of the domain can be controlled by the distance
to the boundary of the polydisc in the γi directions. This fact holds because
of the convexity of the domain. Together with part (iii) it implies us that
these polydiscs are the largest ones that fit inside the domain.

The following lemma is also implicit in [Mc94]. Since it is one of the
basic ingredients in most of the other estimates, we will give the proof here.

Lemma 2.2. We have
δγ(q, ε) ≈ sγ(q, ε).
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Proof. Consider the following Taylor expansion

r(q + zγ) = r(q) +
M∑

µ+ν=1

aµνz
µz̄ν +O(|z|M+1) =: r(q) + f(z).

Now δγ(q, ε) is the supremum of all positive real numbers c such that f(c eiθ)
< ε for all θ. If we set c = (2M(M + 1))−1sγ(q, ε) then we have

f((2M(M + 1))−1sγ(q, ε)eiθ) ≤ (1/2)ε+O(ε
M+1
M ) ≤ ε,

for ε ≤ ε0 (after perhaps shrinking ε0). Therefore sγ(q, ε)<∼ δγ(q, ε).
To prove the other inequality we first have to observe that

Aγk(q) ≤ (M + 1) max
θ

∣∣∣∣∣∣
∑

µ+ν=k

aµν(q)eiθ(µ−ν)

∣∣∣∣∣∣ .
Now let c = (2(M + 1)/cM)sγ(q, ε), where cM is the constant that appears
in Lemma 2.1 in [B, N, W88] and only depends on M . Then

f((2(M + 1)/cM)sγ(q, ε)eiθ)

= (a10e
iθ + a01e

−iθ)(2(M + 1)/cM)sγ(q, ε)

+
M∑
k=2

 ∑
µ+ν=k

aµνe
iθ(µ−ν)

 ((2(M + 1)/cM)sγ(q, ε))k +O(|sγ(q, ε)|M+1).

Using Lemma 2.1 from [B, N, W88] we get

f((2(M + 1)/cM)sγ(q, ε)eiθ)

≥ 2 Re (a10e
iθ)(2(M + 1)/cM)sγ(q, ε)

+ cM

M∑
k=2

∣∣∣∣∣∣
∑

µ+ν=k

aµνe
iθ(µ−ν)

∣∣∣∣∣∣
· (((2(M + 1)/cM)sγ(q, ε))k) +O(|sγ(q, ε)|M+1).

Now assume that sγ(q, ε) is realized by the term (ε/Aγk0
(q))1/k0 with k0 >

1 and that the maximum of {|∑µ+ν=k0
aµν(q)eiθ(µ−ν)|} is reached at θ =

θ0. Note that then θ0 + π also gives this term. So we may assume that
2 Re (a10e

iθ) is nonnegative. Now we get

f((2(M + 1)/cM)sγ(q, ε)eiθ0)

≥ cM
∣∣∣∣∣∣
∑

µ+ν=k0

aµνe
iθ0(µ−ν)

∣∣∣∣∣∣ (((2(M + 1)/cM)sγ(q, ε))k0) +O(|sγ(q, ε)|M+1)
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≥ cM
∣∣∣∣∣∣
∑

µ+ν=k0

aµνe
iθ0(µ−ν)

∣∣∣∣∣∣
· ((2(M + 1)/cM)(ε/Aγk0

(q))1/k0)k0 +O(εM+1/M)

≥ 2ε+O(εM+1/M) ≥ ε

for all ε ≤ ε0 (after perhaps shrinking ε0). If k0 = 1 we only have to
estimate the first term, that can be treated in the same way. Finally we
have sγ(q, ε)>∼ δγ(q, ε).

Together with the numbers τi(q, ε) defined by McNeal we will also consider
the quantities τγ(q, ε) := distγ(q, bP (q, ε)). Note that

P (q, ε) = {p : |p− q| < τγ(q, ε) for γ = (p− q)/|p− q|}.

It turns out that neither the τi(q, ε) nor the τγ(q, ε) are monotonous in the
parameter ε. But instead there is some quasi-monotonicity described in the
following lemma:

Lemma 2.3. There exists a constant C4 independent of q, ε and γ such
that
(i) τγ(q, ε) ≈ sγ(q, ε).
(ii) For all C and C ′ with C ′ ≥ C4 max{CM , C} we have Cτγ(q, ε) ≤

τγ(q, C ′ε).
The inequality in (ii) is strict if ε > 0.

Proof. Writing γ =
∑
aiγi, where γi is the direction given by the zqεi -

coordinate, we see that

τγ(q, ε) = min
{
τi(q, ε)
|ai|

}
=
(

max
{ |ai|
τi(q, ε)

})−1

≈
(∑{ |ai|

τi(q, ε)

})−1

.

Part (i) now follows from Proposition 2.1 (vii) and Lemma 2.2. Note that
in the above equation even the ai depend on ε because the coordinates
zqεi do. In the definition of sγ(q, ε) the terms Aγk(w) do not depend on ε.
Therefore this gives us fairly explicit expression in ε. Part (ii) is then a
simple application of (i).

The polydiscs P (q, ε) need not be continuous neither in q nor with respect
to ε. We would like to use them to define the approach regions but in this
case these regions would not be open. Moreover it will be important, in the
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proof of Theorem 4.1, that the sets {w : z ∈ Aα(w)} are open. Therefore we
use the following two regularizations. Let us define

P ′(q, ε) :=
⋃
ε′<ε

P (q, ε′)

and

P ′′(q, ε) :=
⋃

P ′(p,ε)3q
P ′(p, ε).

Note that these sets are no longer polydiscs but they are related to the
P (q, ε) polydiscs by the following lemma:

Lemma 2.4
(i) There exist constants c5 and C5 independent of q and ε such that

P (q, c5ε) ⊂ P ′(q, ε) ⊂ P (q, C5ε).

(ii) There exist constants c6 and C6 independent of q and ε such that

P ′(q, c6ε) ⊂ P ′′(q, ε) ⊂ P ′(q, C6ε).

(iii) %′′(q, p) := inf{ε : p ∈ P ′′(q, ε)} is a quasi-distance equivalent to %(q, p).

Proof. Observe that P ′(q, ε) contains P (q, c5ε) for every c5 < 1. We know
from Lemma 2.3 (ii) that there is a constant C4 such that P (q, ε) ⊂ P (q, Cε)
for all C ≥ C4. Choosing C5 ≥ C4 we see that P (q, C5ε) contains all P (q, ε′)
with ε′ < ε and therefore also P ′(q, ε). This proves (i). Since P ′(q, ε) con-
tains q we have P ′(q, c6ε) ⊂ P ′′(q, ε) for c6 = 1. Using part (i), Proposition
2.1 (iv) and Lemma 2.3 (ii) we see that every P ′(p, ε) which contains q is a
subset of P ′(q, C6ε) for C6 = C4C

M
1 C5/c5. Therefore P ′′(q, ε) is also a subset

of P ′(q, C6ε). The third part is a consequence of (i) and (ii).

Now we can use the balls P ′′(q, ε) to define the family of admissible ap-
proach regions. For every positive number α and every point w ∈ bD we
set

Aα(w) := {z ∈ D : π(z) ∈ P ′′(w,α|r(z)|)},
where π is the projection which maps every point in a neighborhood of the
boundary to the nearest boundary point. Observe that Aα(w) is a subset of
Aα′(w) for α < α′.

The set Aα(w) is open. The proof of this fact is based on the following
property of the balls P ′′(w, r): If z ∈ P ′′(w, r), then, for r′ close enough to
r, the ball P ′′(w, r′) contains a small neighborhood of z.
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For the proof of our results we need some more lemmas where the following
set plays an important role. For z ∈ D and a small positive constant k define

Dk(z) := P ′′(z, k|r(z)|).

Lemma 2.5. If k is small enough then

|r(ζ)| ≈ |r(z)|
for all ζ ∈ Dk(z).

Proof. It follows from Lemma 2.4 (i) and (ii), Lemma 2.3 (ii) and Proposition
2.1 (iii) that Dk(z)⊂P (z, C5C6k|r(z)|)⊂c0P (z, (1/2)|r(z)|)⊂Dr(z)+(1/2)|r(z)|
if k is small enough. This means that r(ζ) < r(z) + (1/2)|r(z)| or |r(ζ)| >
(1/2)|r(z)| for all ζ ∈ Dk(z). To prove the other estimate we first have to
observe that Dk(z) ⊂ D ∩ P (z, |r(z)|). If k is small enough this follows as
above. Now we make use of the special coordinates constructed by McNeal
for p = z and ε = |r(z)|. According to Proposition 2.1 (i) we know that the
plane x1 = τ1(z, |r(z)|) is a tangential plane. It follows from the convexity
of the domain that x1(u) < τ1(z, |r(z)|) for every u ∈ bD ∩ P (z, |r(z)|). For
every ζ ∈ D ∩ P (z, |r(z)|) we know that −τ1(z, |r(z)|) < x1(ζ) < x1(π̃(ζ))
where π̃ is the projection to the boundary along the x1-direction. Using the
well known fact that τ1(ζ, |r(ζ)|) = dist(ζ, bD) ≈ |r(ζ)| we now get

|r(ζ)|<∼ dist(ζ, bD) ≤ x1(π̃(ζ))− x1(ζ) ≤ 2τ1(z, |r(z)|)<∼ |r(z)|
which proves the lemma.

Lemma 2.6. If k is small enough then:
(i) Dk(z) is a subset of P (ζ, |r(ζ)|) for every ζ ∈ Dk(z). For every η ∈

π(Dk(z)) the one dimensional measure of π−1(η) ∩ Dk(z) is bounded
by C7|r(z)|, where C7 is independent of k, η and z.

(ii) There exists a constant K independent of z such that π(Dk(z)) ⊂
P ′′(π(z),K|r(z)|) for all z with |r(z)| < ε0/2.

(iii) For every α there exists an α′ such that z ∈ Aα(w) and ζ ∈ Dk(z)
implies ζ ∈ Aα′(w). The parameter α′ does not depend on w.

Proof. The first part of (i) follows from the fact that the quasi-distance
between two points in Dk(z) can be estimated by a multiple of |r(z)| and
using Lemma 2.5 also by a multiple of |r(ζ)|. The second part is then
simply the fact that π−1(π(ζ)) is exactly the x1-axis in the coordinate system
constructed with respect to p = ζ and ε = |r(ζ)| using again Lemma 2.5. The
second statement follows from the triangle inequality of the quasi distance
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and the fact that %′′(π(ζ), ζ), %′′(ζ, z) and %′′(z, π(z)) can be estimated by
multiples of |r(z)|. The proof of (iii) is similar. After using the triangle
inequality we just have to observe that all of the quasi-distances %′′(w, π(z)),
%′′(π(z), z), %′′(z, ζ) and %′′(ζ, π(ζ)) can be estimated by multiples of |r(ζ)|.
This completes the proof.

3. The natural approach regions.

Let D and Dε be as in Section 2. We say that a function f belongs to Hp(D)
if f is holomorphic in D and satisfies

sup
−ε0<ε<0

∫
bDε

|f(ζ)|pdσε(ζ) <∞ for 0 < p <∞

sup
ζ∈D
|f(ζ)| <∞ for p =∞.

In this section we will prove that every f ∈ Hp(D) has limits along the
admissible approach regions defined in Section 2 for almost every boundary
point w.

First we have to give some definitions. If f ∈ L1(bD) then by Mf we
denote the maximal function of f with respect to Euclidean balls. By M ′′f
we denote the maximal function of f with respect to the balls P ′′(w, r)
defined in Section 2

M ′′f(w) := sup
r>0
|P ′′(w, r)|−1

∫
P ′′(w,r)

|f(z)|dσ(z).

Note that instead of the supremum over all balls centered at w one can also
take the supremum over all balls which contain w.

The following lemma contains the basic ingredient of the proof of the main
theorem (see [S72]).

Lemma 3.1. Let u ∈ C(D̄) be a nonnegative, plurisubharmonic function.
Define f := u

∣∣
bD. For each α > 0 there exists a constant Cα independent

of w ∈ bD such that

sup
z∈Aα(w)

u(z) ≤ CαM ′′(Mf)(w)

for all w ∈ bD.

Proof. First note that the subharmonicity of u implies u(z) ≤ Pf(z), where
Pf is the Poisson extension of f . Theorem 3 in [S72] shows that

u(z) ≤ Pf(z)<∼Mf(π(z)).
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Now we use the fact that the set Dk(z) is a subset of D (see Lemma 2.6
(iii)) and that there exists a polydisc P (z, c5c6k|r(z)|) which is a subset of
Dk(z). Let us denote this polydisc by dk(z). Since |u| is plurisubharmonic
on dk(z) the submean-value property leads to

|u(z)| ≤ |dk(z)|−1

∫
dk(z)

|u(ζ)|dV (ζ)

<∼
(
Πn
ν=1τν(z, c5c6k|r(z)|)2

)−1
∫
Dk(z)

Mf(π(ζ))dV (ζ).

Before we can proceed with this estimate we have to observe a couple of
things. First let us introduce the abbreviation ∆C(z) := P (π(z), C|r(z)|) ∩
bD. Lemma 2.6 (ii) and Lemma 2.4 (i), (ii) tell us that the projection of
Dk(z) belongs to ∆C5C6K(z). Since z ∈ Aα(w) we have

π(z) ∈ P (w,C5C6α|r(z)|).
Therefore there exists a constant C ′α > C4C5C6K only depending on α such
that w ∈ ∆C′α(z). By Proposition 2.1 (ix) the (surface) measure of ∆C′α(z)
can be estimated from below by the product c|r(z)|−1Πn

ν=1τν(π(z), C ′α|r(z)|)2

and by Lemma 2.6 (i) the (one dimensional) measure of π−1(π(ζ)) ∩Dk(z)
is bounded by C7|r(z)| for every ζ ∈ Dk(z). Moreover since z belongs to
P (π(z), C ′α|r(z)|) Proposition 2.1 (viii) and Lemma 2.3 tell us that

Πn
ν=1τν(π(z), C ′α|r(z)|)2 ≈ Πn

ν=1τν(z, C
′
α|r(z)|)2 ≈ C ′′αΠn

ν=1τν(z, c5c6k|r(z)|)2,

where C ′′α only depends on α.
Now we can continue the estimate as follows:(

n∏
ν=1

τν(z, c5c6k|r(z)|)2

)−1 ∫
Dk(z)

Mf(π(ζ))dV (ζ)

<∼
(

n∏
ν=1

τν(z, c5c6k|r(z)|)2

)−1

|r(z)|
∫

∆C′α (z)

Mf(t)dσ(t)

<∼Cα
(

n∏
ν=1

τν(π(z), C ′α|r(z)|)2

)−1

|r(z)|
∫

∆C′α (z)

Mf(t)dσ(t)

<∼Cα
1

|∆C′α(z)|
∫

∆C′α (z)

Mf(t)dσ(t) <∼ CαM
′′(Mf)(w)

which proves the lemma.

Theorem 3.2. Let 0 < p ≤ ∞, D and Aα(w) as in Section 2. If f ∈ Hp(D)
then for almost every w ∈ bD the limit

lim
Aα(w)3z→w

f(z)

exists.
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Proof. The outline of this proof is exactly the same as in the corresponding
statement for the admissible approach regions for strongly pseudoconvex
domains [S72, pp. 38-40]. The special geometry of the domain is involved
only in the previous lemma.

The approach regions Aα(w) are essentially the greatest natural family
of approach regions that can be obtained by this method, since they are
build using the biggest polydiscs that fit inside the domain. However it will
be shown in Section 4 that there are exotic approach regions which are not
contained in any of the approach regions Aα(w).

Let us give some more details about the admissible approach regions. In
particular we are interested in the shape of A1(w) near its vertex. Consider
a point w ∈ bD, a tangential direction γ, a small positive parameter b and
let zb be the point in the boundary for which the orthogonal projection to
the tangent space Tw(bD) is exactly w + bγ. Let h(b) be the distance of
A1(w) to the point zb along the normal direction at this point. Using the
comparability of P ′′(q, ε) and P (q, ε) and that of τγ(q, ε) and sγ(q, ε) we find
that

h(b) ≈ max
1≤k≤M

(
Aγk(w)bk

)
.

In other words the shape of the approach region reflects exactly the order of
contact of the boundary with the complex line in that direction.

If we consider the example r(z) = |z1|2 + |z2|4 + |z3|6 − 1 then we get at
the point w0 = (1, 0, 0)

h ≈ b4 for γ = (0, 1, 0),

h ≈ max(b4 cos4 t, b6 sin6 t) for γ = (0, cos t, sin t),

h ≈ b6 for γ = (0, 0, 1).

It is also interesting to see how the shape of the approach region changes
if the vertex moves, in particular if the vertex moves to a point with higher
order of contact. Let us consider the points wt := (

√
1− t6, 0, t). Along the

z2-direction all these points have order of contact 4 and indeed we get

h ≈ b4 for w = wt and γ = (0, 1, 0).

Now let γt be the complex tangent direction orthogonal to (0, 1, 0). The
order of contact along this direction is 2 for every wt with t > 0 and 6 for
w0. If we compute h then we get (modulo higher order terms in t)

h ≈ max
(
9t4b2, 9t3b3, 9t2b4, 3tb5, b6

)
for w = wt and γ = γt.

So whenever t > 0 the first term will be the maximum if b is small enough.
How small b must be depends on t and if t = 0 then the last terms will be
the maximum.
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4. The existence of exotic approach regions.

In this section we prove the following:

Theorem 4.1. Let D be a convex domain of finite type in Cn. Let Aα be the
admissible approach regions defined in the previous section. Then for each
w ∈ bD there exists a subset L(w) of D, containing w in its closure, such
that: (i) for almost every w ∈ bD, the set L(w) contains a sequence zn(w)
that converges to w and that, for every α > 0, contains a subsequence which
is not contained in Aα(w); (ii) for every function f ∈ Hp(D), the limit

lim
L(w)3z→w

f(z)

exists for almost every w ∈ bD. The approach region L(w) contains Aα0 for
a certain α0.

The dual Aα∗ of Aα, defined by

Aα∗(z) := {w ∈ bD : z ∈ Aα(w)}, z ∈ D,

will play an important role in the following two lemmas.

Lemma 4.2. The sets Aα∗(z) ⊂ bD are open and, for every α > 0, there are
positive constants c8(α) and C8(α) such that for every z ∈ D close enough
to the boundary, there is a ball P ′′(wz, rz) ⊂ bD such that

P ′′(wz, c8(α) rz) ⊂ Aα∗(z) ⊂ P ′′(wz, C8(α) rz).

In fact, wz = π(z) and rz = |r(z)|.

Proof. The first assertion follows from the regularity properties of P ′ and
P ′′. As for the second, let C be the constant such that w ∈ P ′′(u, r) implies
that u ∈ P ′′(w,C r). Then

P ′′
(
π(z),

α

C
|r(z)|

)
⊂ {w ∈ bD : z ∈ Aα(w)} ⊂ P ′′(π(z), C α|r(z)|).

We now apply [Ch90, Theorem 11, p. 6-7], that yields a decomposition
of dyadic type of bD, i.e. a sequence of nested partitions of bD in open
sets {Qx}x that are uniformly comparable to balls {P ′′x }x of geometrically
decreasing radius. In particular, let T be the tree which encodes the in-
clusion relations between the open sets {Qx}x∈T of the decomposition, and
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let {P ′′x }x∈T be the corresponding family of balls P ′′x ⊂ bD. For x ∈ T let
|x| denote the generation to which x belongs. Then there is a constant h,
0 < h < 1 such that

P ′′x = P ′′(ϕ(x), h|x|) ,

for certain points ϕ(x) ∈ bD. Moreover, there are positive constants a0, a1,
a2, η such that

P ′′(ϕ(x), a0 h
|x|) ⊂ Qx ⊂ P ′′(ϕ(x), a1 h

|x|)

and

σ({w ∈ Qx : %′′(w, bD \Qx) ≤ t h|x|}) ≤ a2t
ησ(Qx) , t > 0 , x ∈ T.

Lemma 4.3. Fix a dyadic type decomposition of bD, as above. Then, for
x ∈ T with |x| large enough, there is a point zx ∈ D, such that for each
α > 0 there are constants c9(α) and C9(α), with the property that c9(1) = a1

and, for all x ∈ T and α > 0,

P ′′(ϕ(x), c9(α)h|x|) ⊂ Aα∗(zx) ⊂ P ′′(ϕ(x), C9(α)h|x|) .

Moreover, the point zx is close to the center of P ′′x , in the sense that the
Euclidean distance between zx and ϕ(x) tends to zero as |x| → ∞.

Proof. Let νw be the inner unit normal to bD at w ∈ bD. Recall that there
are constants c̄, C̄ such that c̄ R ≤ |r(w + Rνw)| ≤ C̄ R, for all w ∈ bD and
R > 0. Define, for |x| large enough,

zx := ϕ(x) +
a1 h

|x|

c̄ c8(1)
νϕ(x).

In particular, π(zx) = ϕ(x) and a1
c8(1)

h|x| < |r(zx)| < C̄a1
c̄ c8(1)

h|x|. Then, by
Lemma 4.2,

P ′′
(
ϕ(x),

c8(α) a1

c8(1)
h|x|

)
⊂ Aα∗(zx) ⊂ P ′′

(
ϕ(x),

C8(α) C̄ a1

c̄ c8(1)
h|x|

)
.
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Proof of Theorem 4.1. We can apply [DB95, Theorem 5.32], by Lemma 4.2
and Lemma 4.3. In fact, Lemma 4.2 says that the approach regions Aα form
a natural one parameter family of approach regions, while Lemma 4.3 says
that the embedding x ∈ T → zx ∈ D is admissible.
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