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CELLULAR DECOMPOSITIONS FOR NESTED HILBERT
SCHEMES OF POINTS

Jan Cheah

In this paper, we study the smoothness, tangent spaces,
structure and homology groups of various “nested” Hilbert
schemes parametrizing nests Z1 ⊂ Z2 ⊂ . . . ⊂ Zm of zero-
dimensional subschemes on smooth quasiprojective varieties.

0.1. Basic notation.
Suppose that X is a quasiprojective scheme defined over the complex

numbers. We denote the Hilbert scheme parametrizing zero-dimensional
subschemes of length n (n ≥ 1) of X by HilbnX. A nested Hilbert scheme
is defined to be a scheme of the form

Zn(X) := {(Z1, Z2, ..., Zm) : Zi ∈ HilbniX

and Zi is a subscheme of Zj if i < j},
where the symbol n is used as a shorthand for the m-tuple (n1, n2, .., nm).
This shorthand will be used throughout the paper. There is, of course, no
loss of generality in assuming that n1 < n2 < ... < nm when we study
such a space. The construction of the spaces Zn(X) as schemes is a simple
modification of the construction of HilbnX found in [Gr], [Kol] and [Mum]
(see [Ch1] for details).

We also consider the reduced scheme parametrizing zero-dimensional sub-
schemes of length n (n ≥ 1) of a smooth variety X concentrated at some fixed
point P . If X has dimension r, this scheme can be identified with the reduced
scheme parametrizing zero-dimensional subschemes of length n of Ar con-
centrated at the origin and is hence denoted by Hilbn(Ar, 0). Alternatively,
Hilbn(Ar, 0) agrees with the reduced scheme of Hilbn(Spec (C[[x1, x2, . . . ,
xr]])), the Hilbert scheme parametrizing subschemes of length n of Spec
(C [[x1, x2, ..., xr]]). As before, one can consider nested Hilbert schemes of
the form

Zn(Ar, 0) := {(Z1, Z2, ..., Zm) : Zi ∈ Hilbni(Ar, 0)

and Zi is a subscheme of Zj if i < j}
and these nested Hilbert schemes are referred to as the “punctual” nested
Hilbert schemes.
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Except where otherwise stated, we restrict our investigations to the nested
Hilbert schemes on smooth connected quasiprojective varieties. (By a va-
riety, we mean a seperated reduced scheme of finite type over C.) The
assumption of smoothness is a real condition which is necessary for the ar-
guments we employ but connectedness is assumed only for convenience; there
is no loss of generality since the Hilbert scheme of points of a variety is the
product of the Hilbert schemes of points of its components.

0.2. Summary of results.
If C is a smooth curve, HilbnC is isomorphic to the nth symmetric product

of C, which is a smooth variety; in fact, any nested Hilbert scheme Zn(C)
is smooth because it is a product of symmetric products of C (see, for ex-
ample, [Ch1], Chapter IV, Corollary 2.3). If S is a smooth surface, all the
Hilbert schemes HilbnS are smooth [Fo], as are nested Hilbert schemes of
the form Zn−1,n(S), which are of much interest in Donaldson theory [Tik]. It
is also well-known that whenever X is smooth, the schemes Hilb2X, Hilb3X,
Z1,2(X) and Z2,3(X) are smooth [Elen-LeB].

In fact, we prove here that if X is a smooth quasiprojective r-dimensional
variety, the nested Hilbert scheme Zn(X) is smooth precisely when either
(0.2.1)

(a) r ≤ 1 or
(b) r = 2 and Zn(X) is equal to HilbnX or Zn−1,n(X) for some n or
(c) r ≥ 3 and Zn(X) is equal to one of the spaces
Hilb1X, Hilb2X, Hilb3X, Z1,2(X) or Z2,3(X).

In Chapter I, we show that a singular point can be constructed on any
nested Hilbert scheme not included in the list above. Ellingsrud and Strøm-
me’s C∗-action on HilbnP2 [E-S] can be generalized in an obvious way [§3.1]
to give a C∗-action with isolated fixed points on any nested Hilbert scheme
Zn(Pr) and we check in §3.2 that all of the fixed points on the nested Hilbert
schemes which satisfy (0.2.1) are smooth points.

By studying this C∗-action on HilbnP2 and applying a theorem of Bialyni-
cki-Birula, Ellingsrud and Strømme obtain cellular decompositions of the
spaces HilbnP2, HilbnA2 and Hilbn(A2, 0), enabling them to compute the
Borel-Moore homology groups of these spaces and to deduce that they co-
incide with the Chow groups; we may likewise obtain [§3.3] cellular decom-
positions and study the homology groups of all the smooth nested Hilbert
schemes on affine and projective space as well as of the corresponding punc-
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tual nested Hilbert schemes

Zn(A1, 0), Hilbn(A2, 0), Zn−1,n(A2, 0),
(0.2.2)

Hilb2(Ar, 0) (= Z1,2(Ar, 0)), Hilb3(Ar, 0) and Z2,3(Ar, 0).

Whereas Ellingsrud and Strømme count the dimension of the “positive part”
of the tangent space at each of the C∗-fixed points of HilbnP2 by the use of
some exact sequences, we actually write down [§2.5 and §2.6] an explicit
weight basis for the tangent space at each of the C∗-fixed points of HilbnP2

and Zn−1,n(P2).
Moreover, just as the C∗-action on Hilbn(P2) can be chosen [Gö1, Gö2]

so that the resulting cellular decomposition of Hilbn(A2, 0) is a union of cel-
lular decompositions of its Hilbert function strata, one can obtain [§3.4] cel-
lular decompositions of the “Hilbert function strata” of the punctual nested
Hilbert schemes listed in (0.2.2). Indeed, the geometry of these spaces closely
resembles that of the Hilbert function strata of Hilbn(A2, 0). For exam-
ple, each Hilbert function stratum of Zn−1,n(A2, 0) is [§3.4] an irreducible
smooth variety and its intersection with the closed subset of Zn−1,n(A2, 0)
parametrizing pairs of subschemes defined by homogeneous ideals is an irre-
ducible smooth projective variety.

With an appropriate interpretation of the word “homology”, all our results
apart from some in Section 3.4 remain valid over any algebraically closed
base field k. In the last part of Section 3.4.b (the part following Figure
10), we list some results from [Iar] about the Hilbert function strata of
Hilbn(A2, 0) which are proved for algebraically closed fields k of characteristic
zero (or for which char k ≥ n). These results are then used in Section 3.4.c
to study the Hilbert function strata of the punctual nested Hilbert schemes
Zn−1,n(A2, 0). While it is still true that each Hilbert function stratum of
Zn−1,n(A2, 0) has the cell decomposition described in Proposition 3.4.15.2
when the characteristic of k is finite, it does not follow from our argument
that it is a smooth space. We also do not know whether the associated space
of homogeneous ideals is smooth or if it has a cellular decomposition.

The cellular decompositions obtained here for the punctual nested Hilbert
schemes are used in the sequels to this paper [Ch2] and [Ch3] to calculate
the virtual Hodge polynomials of all the smooth nested Hilbert schemes on
X (and of related varieties such as the universal families over some of these
nested Hilbert schemes) in terms of the virtual Hodge polynomial of X for
any smooth quasiprojective variety X.

This paper is part of my thesis [Ch1] written under the guidance of Bill
Fulton. Thanks go also to the referee for his many helpful remarks.
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0.3. Description of contents.
In Chapter I, we prove that if X is a smooth r-dimensional quasiprojective

variety, the nested Hilbert scheme Zn(X) is singular unless it satisfies (0.2.1).
In Chapter II, we study certain C∗-actions on the nested Hilbert schemes

on Ar which satisfy (0.2.1). In particular, we construct explicit weight basis
for the tangent spaces to these schemes at the C∗-fixed points. The results
obtained in this chapter are needed in Chapter III. The cases HilbnA2 and
Zn−1,n(A2) are the most involved and take up the bulk of the chapter.

In Chapter III, the nested Hilbert schemes which satisfy (0.2.1) are shown
to be smooth. We look at C∗-actions on all the smooth nested Hilbert
schemes on Pr to obtain cellular decompositions for these spaces, for the
smooth nested Hilbert schemes on Ar and for the corresponding punctual
nested Hilbert schemes.

A consequence of the existence of cellular decompositions for these spaces
is that the cycle maps between their Chow groups and their Borel-Moore
homology groups are isomorphisms. In particular, there is no odd homology
and the homology groups are all free. The number of cells of each dimension
or, equivalently, the Betti numbers of the punctual nested Hilbert schemes
listed in (0.2.2) are computed in Section 3.3; the number of cells of each
dimension of the smooth nested Hilbert schemes on affine and projective
space can be read off from formulae which we obtain in [Ch2] and [Ch3].

Lastly, in Section 3.4, we study the “Hilbert function strata” of the punc-
tual nested Hilbert schemes listed in (0.2.2) and obtain cellular decomposi-
tions for these spaces.

0.4. Essential facts about Hilbert schemes.
Connectedness. In [Fo], Fogarty shows that Hilbn(Ar, 0) is connected
and deduces that HilbnX is connected when X is a connected quasiprojective
scheme. It is reasonably straightforward to adapt his proof to show that all
the spaces Zn(Ar, 0) and Zn(X) are likewise connected (details can be found
in [Ch1]).

Tangent spaces. If X = SpecR, there is a canonical isomorphism between
HomR(I,R/I) and the tangent space to the Hilbert scheme HilbnX at the
point representing the subscheme of X associated to the ideal I [Gr].

One checks easily that the tangent space to Zn1,n2(X) at the point corre-
sponding to the pair of ideals (I1, I2) is canonically isomorphic to Ker (φ−ψ),
where

φ : HomR(I1, R/I1)→ HomR(I2, R/I1) and

ψ : HomR(I2, R/I2)→ HomR(I2, R/I1)
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are the obvious maps and

(φ− ψ) : HomR(I1, R/I1)⊕HomR(I2, R/I2)→ HomR(I2, R/I1)

is defined by letting (φ− ψ)(f1, f2) = φ(f1)− ψ(f2).
Similarly, the tangent space to Zn(X) at the point corresponding to the

m-tuple of ideals (I1, I2, . . . , Im) is canonically isomorphic to ∩
i<j

Ker ((φi,j −
ψi,j) ◦ πi,j), where

πi,j :
m⊕
k=1

HomR(Ik, R/Ik)→ HomR(Ii, R/Ii)⊕HomR(Ij, R/Ij)

is the projection map, and where

φi,j : HomR(Ii, R/Ii)→ HomR(Ij, R/Ii) and

ψi,j : HomR(Ij, R/Ij)→ HomR(Ij, R/Ii)

are the obvious morphisms.

Chapter I. Towards the classification of the smooth nested
Hilbert schemes of points.

In this chapter, we prove the following:

Theorem. If X is a smooth r-dimensional quasiprojective variety, the
nested Hilbert scheme Zn(X) is singular unless it satisfies (0.2.1).

The converse is proved in Section 3.2.
We need only consider the case when X is Ar since any point of Zn(Ar) has

a neighbourhood in the classical topology which is analytically isomorphic
to a neighbourhood of some point of Zn(X). The theorem is, therefore, a
consequence of the four following lemmas.

Lemma 1.1. If r ≥ 2 and m ≥ 3, the nested Hilbert scheme Zn(Ar) is
singular.

Lemma 1.2. If r ≥ 2 and n2−n1 > 1, the nested Hilbert scheme Zn1,n2(Ar)
is singular.

Lemma 1.3. If r ≥ 3 and n ≥ 4, the nested Hilbert scheme Zn−1,n(Ar) is
singular.

Lemma 1.4. If r ≥ 3 and n ≥ 4, the Hilbert scheme Hilbn(Ar) is singular.

Let Hilbn6=Ar denote the open subset of HilbnAr consisting of n distinct
points and let pm denote the projection from Zn(Ar) to HilbnmAr. Then, the
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nested Hilbert scheme Zn(Ar) is a connected scheme with an open subset
p−1
m (Hilbn6=Ar) of dimension rnm. Thus, to show that a given nested Hilbert

scheme Zn(Ar) is singular, we need only show that it has a point at which
the dimension of the Zariski tangent space is larger than rnm.

1.1. Proof of Lemma 1.1.
First of all, we show that Z1,2,3(Ar) (r ≥ 2) is singular by constructing a

point Q1 = (Z1, Z2, Z3) on Z1,2,3(Ar) at which the tangent space has dimen-
sion greater than 3r. Let Z1, Z2 and Z3 be the subschemes of Ar associated to
the ideals of C [x1, x2, . . . , xr], I1 = 〈x1, x2, . . . , xr〉, I2 = 〈x1

2, x2, x3, . . . , xr〉
and I3 = 〈x1

2, x1x2, x2
2, x3, . . . , xr〉.

We call the generators of Ii given above its canonical generators. If α is
a canonical generator of Ii and β is an element of R/Ii, there exists at most
one R-module homomorphism from Ii to R/Ii which takes α to β and all the
other canonical generators of Ii to zero; when such a homomorphism exists,
we denote it by (α 7→ β).

The (3r + 1) elements of HomR(I1, R/I1) ⊕ HomR(I2, R/I2) ⊕ HomR(I3,
R/I3),

( xk 7→ 1, xk 7→ 1, xk 7→ 1 ) for 3 ≤ k ≤ r, ( x2 7→ 1, x2 7→ 1, x1x2 7→ x1 ),
( 0, xk 7→ x1, xk 7→ x1 ) for 3 ≤ k ≤ r, ( 0, 0, x1x2 7→ x2 ),
( 0, 0, xk 7→ x2 ) for 3 ≤ k ≤ r, ( 0, 0, x2

2 7→ x2 ),
( 0, x1

2 7→ x1, x1
2 7→ x1 ), ( 0, x2 7→ x1, 0 ),

( 0, 0, x1
2 7→ x2 ), ( x1 7→ 1, 0, 0 ),

are, by direct calculation, linearly independent elements of the tangent space
to Z1,2,3(Ar) at Q1 = (Z1, Z2, Z3).

Next, we show that given any nested Hilbert scheme Zn(Ar) with r ≥ 2
and m ≥ 3, we may construct a point Q2 on it at which the tangent space
has dimension greater than rnm. Let P1, P2, . . . , Pnm−3 be distinct points

of Ar r {0}. For 1 ≤ i ≤ 3, let ki = ni − i and let Z ′i = Zi ∪
(
ki∪
j=1
Pi

)
while

for 3 ≤ i ≤ m, let ki = ni − 3 and let Z ′i = Z3 ∪
(
ki∪
j=1
Pi

)
. We check that

Q2 = (Z1, Z2, ..., Zm) is a point of Zn(Ar). Denoting the tangent space to X

at the point P by TP,X , we have TQ2,Zn(Ar) w TQ1,Z1,2,3(Ar) ⊕
(
km⊕
j=1
TPj ,Ar

)
, so

the dimension of TQ2,Zn(Ar) is greater than rnm as required.

1.2. Proof of Lemma 1.2.
We retain the notation of the previous section and start by showing that

when r ≥ 2, the tangent space to Z1,3(Ar) at the point Q3 = (Z1, Z3) has
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dimension greater than 3r. We do so by checking that the 3r + 2 elements
of HomR(I1, R/I1)⊕HomR(I3, R/I3),

( 0, xk 7→ x1 ) for 3 ≤ k ≤ r, ( 0, x1x2 7→ x2 ),
( 0, xk 7→ x2 ) for 3 ≤ k ≤ r, ( 0, x2

2 7→ x1 ),
( xk 7→ 1, xk 7→ 1 ) for 3 ≤ k ≤ r, ( 0, x2

2 7→ x2 ),
( 0, x1

2 7→ x1 ), ( x1 7→ 1, 0 ),
( 0, x1

2 7→ x2 ), ( x2 7→ 1, 0 ) and
( 0, x1x2 7→ x1 ),

are, in fact, linearly independent elements of the tangent space to Z1,3(Ar)
at Q3 = (Z1, Z3).

Then, we show that given any nested Hilbert scheme Zn1,n2(Ar) with r ≥ 2
and n2 − n1 > 1, we may construct a point Q4 on it at which the tangent
space has dimension greater than rn2. Let P1, P2, . . . , Pn2−3 be distinct

points on Arr{0}, let Z̃1 = Z1 ∪
n1−1∪
j=1

Pj and let Z̃2 = Z3 ∪
n2−3∪
j=1

Pj. Then,

Q4 = (Z̃1, Z̃2) is a point of Zn1,n2(Ar) and TQ4,Zn1,n2 (Ar) is isomorphic to

TQ3,Z1,3(Ar) ⊕
(
n2−3⊕
j=1

TPj ,Ar

)
, so the dimension of TQ4,Zn1,n2 (Ar) is greater than

rn2 as required.

1.3. Proof of Lemma 1.3.
First, we show that Z3,4(Ar) (r ≥ 3) is singular by constructing a point

(Y1, Y2) on Z3,4(Ar) at which the tangent space has dimension greater than
4r. Let Y1 and Y2 be the subschemes of Ar associated to the ideals J1 =
〈x1

2, x2
2, x1x2, x3, . . . , xr〉 and J2 = 〈x1

2, x2
2, x3

2, x1x2, x1x3, x2x3, x4, x5,
. . . , xr〉 of C [x1, x2, . . . , xr]. We call the generators of Ji given above its
canonical generators. Then, with the notation of Section 1.1, the elements
of HomR(J1, R/J1)⊕HomR(J2, R/J2),

( xi 7→ 1, xi 7→ 1 ) for 4 ≤ i ≤ r, ( x2
2 7→ x1, x2

2 7→ x1 ),
( xi 7→ x1, xi 7→ x1 ) for 4 ≤ i ≤ r, ( 0, x1x3 7→ x3 ),
( xi 7→ x2, xi 7→ x2 ) for 4 ≤ i ≤ r, ( 0, x2x3 7→ x3 ),
( 0, xi 7→ x3 ) for 4 ≤ i ≤ r, ( 0, x3

2 7→ x3 ),
( x1x2 7→ x1, x1x2 7→ x1 ), ( x3 7→ x1, 0 ),
( x1x2 7→ x2, x1x2 7→ x2 ), ( x3 7→ x2, 0 ),
( x1

2 7→ x1, x1
2 7→ x1 ), ( 0, x1

2 7→ x3 ),
( x2

2 7→ x2, x2
2 7→ x2 ), ( 0, x2

2 7→ x3 ) and
( x1

2 7→ x2, x1
2 7→ x2 ),

are 4r+ 1 linearly independent elements of the tangent space to Z3,4(Ar) at
(Y1, Y2).
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If P1, P2,..., Pn−4 are n − 4 distinct points on Arr {0}, then
((
Y1 ∪

n−4∪
j=1

Pi
)
,
(
Y2 ∪

n−4∪
j=1

Pi
))

is a point of Zn−1,n(Ar) at which the tangent space

has dimension greater than nr.

1.4. Proof of Lemma 1.4.
We start by showing that for r ≥ 3, the tangent space to Hilb4Ar at Y2

has dimension greater than 4r. In fact, with the notation of the previous
sections, the homomorphisms

(xi 7→ 1) for 4 ≤ i ≤ r, (xi 7→ x3) for 4 ≤ i ≤ r,
(xi 7→ x1) for 4 ≤ i ≤ r, (xi2 7→ xj) for 1 ≤ i, j ≤ 3,

(xi 7→ x2) for 4 ≤ i ≤ r, (xixj 7→ xi) for 1 ≤ i 6= j ≤ 3,

are 4r + 3 independent elements of HomR(J2, R/J2).
It remains to show that whenever r ≥ 3 and n ≥ 4, the Hilbert scheme

HilbnAr has a point at which the tangent space has dimension greater than

nr. If P1, P2,..., Pn−4 are distinct points of Arr{0}, then
(
Y2 ∪

n−4∪
j=1

Pj
)

is

such a point of HilbnAr.

Chapter II. The tangent spaces at the fixed points of various
nested Hilbert schemes on affine space under certain actions of

the one-dimensional torus.

The action of C∗ on R = C [x1, x2, ..., xr] given by

(2.0.1) t.x = tµixi for 1 ≤ i ≤ r
induces an action of C∗ on HilbnAr, and hence on Zn(Ar), as C∗ permutes
the ideals of R of colength n. We restrict our attention to C∗-actions with
(µ1, µ2, ..., µr) ∈ Zr lying outside the hyperplanes m1µ1 +m2µ2 +...+mrµr =
0 for which (m1,m2, ...,mr) is an r-tuple of integers between (−2n− 1) and
(2n+ 1) and for which not all the mis are zero.

A fixed point of HilbnAr is a C∗-invariant ideal I of R of colength n while
a fixed point of Zn−1,n(Ar) is a pair of invariant ideals (I1, I2) such that I1

contains I2, the colength of I1 is n − 1 and the colength of I2 is n. An
invariant ideal I of colength n is generated by monomials in the xjs; there
are exactly n monomials in the xjs which are not in I and they form a basis
of R/I over C.

Most of this chapter is concerned with investigating the action of C∗ on the
tangent space T at a fixed point I of HilbnAr and on the tangent space T ′ at a
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fixed point (I1, I2) of Zn−1,n(Ar). Again, we use the canonical representations
T = HomR(I,R/I) and T ′ = Ker(φ− ψ).

If C∗ acts on a vector space V , we denote by V + the part of V where the
weights of C∗ are positive. Here, we calculate
(1) the dimensions of the tangent spaces at the C∗-fixed points of various

nested Hilbert schemes, and
(2) the dimensions of their positive parts when the action of C∗ on R

defined in (2.0.1) satisfies 0 < µ1 < µ2 < · · · < µr and µj/µi � 0
whenever j > i.

In Chapter III, (1) is used to demonstrate the smoothness of these spaces
while (2) is used to obtain cellular decompositions for the associated punctual
nested Hilbert schemes.

2.1. The tangent spaces at the fixed points of Hilb2Ar.
Let Ii be the ideal of R generated by xi2 and the xks for which 1 ≤ k ≤ r

and k 6= i. There are exactly r fixed points on Hilb2Ar corresponding to the
ideals I1, I2, . . . , Ir, these being the only ideals of colength 2 generated by
monomials. We will call the r generators of Ii described above its canonical
generators.

We wish to describe 2r elements f1, f2, . . . , fr, g1, g2, . . . , gr of HomR(Ii,
R/Ii) which take all but one of the canonical generators of Ii to zero. If
k 6= i, let fk take xk to 1 and let gk take xk to xi; let fi take xi2 to 1 and let
gi take xi2 to xi. It is easy to check that:

Proposition 2.1.1. The tangent space HomR(Ii, R/Ii) to Hilb2Ar at the
fixed point Ii has dimension 2r, having the set {fk, gk : 1 ≤ k ≤ r} as a
weight basis.

Proposition 2.1.2. If the action of C∗ on R defined in (2.0.1) is such
that 0 < µ1 < µ2 < · · · < µr and µj

µi
� 0 whenever j > i, then the part of

HomR(Ii, R/Ii) where the weights of C∗ are positive has dimension i− 1.

Proof. We have only to count the number of basis elements of HomR(Ii, R/Ii)
described in Proposition 2.1.1 where the weights of C∗ are positive. In fact,
the weight of C∗ is positive exactly at the gks for which k ≤ i− 1.

2.2. The tangent spaces at the fixed points of Hilb3Ar.
For 1 ≤ i ≤ r, let Ĩi be the ideal of R generated by xi3 and the xks such

that 1 ≤ k ≤ r and k 6= i; for 1 ≤ i < j ≤ r, let Îi,j be the ideal generated by
xi

2, xj
2, xixj and the xks such that 1 ≤ k ≤ r, k 6= i and k 6= j. The Ĩis and
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the Îi,js are exactly the fixed points of Hilb3Ar and as before, we will refer
to the generators described above for each of these ideals as its canonical
generators.

First, let us look at the tangent space HomR(Ĩi, R/Ĩi) to Hilb3Ar at the
fixed point Ĩi. We can describe 3r elements f̃1, f̃2, . . . , f̃r, g̃1, g̃2, . . . , g̃r, h̃1,
h̃2, . . . , h̃r of HomR(Ĩi, R/Ĩi) which take all but one of the canonical gener-
ators of Ĩi to zero. If k 6= i, let f̃k take xk to 1, let g̃k take xk to xi and let
h̃k take xk to xi2; let f̃i take xi3 to 1, let g̃i take xi3 to xi and let h̃i take xi3

to xi2. Again, we check that:

Proposition 2.2.1. The tangent space HomR(Ĩi, R/Ĩi) to Hilb3Ar at the
fixed point Ĩi has dimension 3r, having the set {f̃k, g̃k, h̃k : 1 ≤ k ≤ r} as a
weight basis.

Proposition 2.2.2. If the action of C∗ on R defined in (2.0.1) is such
that 0 < µ1 < µ2 < · · · < µr and µj

µi
� 0 whenever j > i, then the part of

HomR(Ĩi, R/Ĩi) where the weights of C∗ are positive has dimension 2(i− 1).

Proof. The weight of C∗ is positive exactly at the g̃ks for which k ≤ i − 1
and at the h̃ks for which k ≤ i− 1.

We now turn our attention to the tangent space HomR(Îi,j, R/Îi,j) to
Hilb3Ar at the fixed point Îi,j. As before, let us describe 3r elements
f̂1,f̂2, . . . , f̂r, ĝ1,ĝ2, . . . , ĝr, ĥ1,ĥ2, . . . , ĥr of HomR(Îi,j, R/Îi,j) which take all
but one of the canonical generators of Îi,j to zero. If 1 ≤ k ≤ r, k 6= i and
k 6= j, let f̂k take xk to 1, let ĝk take xk to xi and let ĥk take xk to xj; let
ĝi take xi2 to xi, let ĥi take xi2 to xj, let ĝj take xj2 to xi, let ĥj take xj2

to xj, let f̂i take xixj to xj and let f̂j take xixj to xi. Once more, we can
verify that:

Proposition 2.2.3. The tangent space HomR(Îi,j, R/Îi,j) to Hilb3Ar at
the fixed point Îi,j has dimension 3r, having the set {f̂k, ĝk, ĥk : 1 ≤ k ≤ r}
as a weight basis.

Proposition 2.2.4. If the action of C∗ on R defined in (2.0.1) is such
that 0 < µ1 < µ2 < · · · < µr and µj

µi
� 0 whenever j > i, then the part of

HomR(Îi,j, R/Îi,j) where the weights of C∗ are positive has dimension i+j−2.

Proof. The weight of C∗ is positive exactly at the ĝks for which k ≤ i − 1
and at the ĥks for which k ≤ j − 1.
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2.3. The tangent spaces at the fixed points of Z1,2(Ar).
Let M be the maximal ideal of R generated by all the xk’s for which

1 ≤ k ≤ r and let Ii be the ideal described in Section 2.1. There are exactly
r fixed points on Z1,2(Ar), the ith fixed point being the pair of ideals (M, Ii).

For 1 ≤ k ≤ r, let ˜̃
fk ∈ HomR(M,R/M) take xk to 1 and all the other

xjs to zero. Also, let fk and gk ∈ HomR(Ii, R/Ii) be the homomorphisms
described in Section 2.1. As usual, we check that:

Proposition 2.3.1. The tangent space to Z1,2(Ar) at the fixed point (M, Ii)

has dimension 2r, having the set {(0, gk) : 1 ≤ k ≤ r} ∪ {(˜̃
fk, fk) : 1 ≤ k ≤

r, k 6= i} ∪ {(˜̃
f i, 0)} as a weight basis.

Proposition 2.3.2. If the action of C∗ on R defined in (2.0.1) is such that
0 < µ1 < µ2 < · · · < µr and µj

µi
� 0 whenever j > i, then the part of the

tangent space to Z1,2(Ar) at the fixed point (M, Ii) where the weights of C∗
are positive has dimension i− 1.

Proof. The weight of C∗ is positive exactly at the (0, gk)s for which k ≤
i− 1.

2.4. The tangent spaces at the fixed points of Z2,3(Ar).
With the notation of Sections 2.1 and 2.2, the fixed points of Z2,3(Ar) are

the pairs of ideals (Ii, Ĩi) for which 1 ≤ i ≤ r, the pairs of ideals (Ii, Îi,j) for
which 1 ≤ i < j ≤ r and the pairs of ideals (Ij, Îi,j) for which 1 ≤ i < j ≤ r.
As always, it is tedious but straightforward enough to verify the following:

Proposition 2.4.1. The tangent space to Z2,3(Ar) at (Ii, Ĩi) has dimension
3r and is the subspace of HomR(Ii, R/Ii)⊕HomR(Ĩi, R/Ĩi) spanned by (fi, g̃i),
(gi, 0), the (fk, f̃k)s for which k 6= i, the (gk, g̃k)s for which k 6= i and all of
the (0, h̃k)s.

Proposition 2.4.2. If the action of C∗ on R defined in (2.0.1) is such that
0 < µ1 < µ2 < · · · < µr and µj

µi
� 0 whenever i < j, then the part of the

tangent space to Z2,3(Ar) at the fixed point (Ii, Ĩi) where the weights of C∗
are positive has dimension 2(i− 1).

Proof. The weight of C∗ is positive exactly at the (gk, g̃k)s for which k ≤ i−1
and at the (0, h̃k)s for which k ≤ i− 1.

One checks easily that:

Proposition 2.4.3. The tangent space to Z2,3(Ar) at (Ii, Îi,j) has dimen-
sion 3r and is the subspace of HomR(Ii, R/Ii) ⊕ HomR(Îi,j, R/Îi,j) spanned
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by (0, f̂i), (gj, 0), the (fk, f̂k)s for which k 6= i, the (gk, ĝk)s for which k 6= j
and all of the (0, ĥk)s; the tangent space to Z2,3(Ar) at (Ij, Îi,j) has dimen-
sion 3r and is the subspace of HomR(Ij, R/Ij)⊕ HomR(Îi,j, R/Îi,j) spanned
by (0, f̂j), (gi, 0), the (fk, f̂k)s for which k 6= j, the (gk, ĝk)s for which k 6= i
and all of the (0, ĥk)s.

Proposition 2.4.4. If the action of C∗ on R defined in (2.0.1) is such that
0 < µ1 < µ2 < · · · < µr and µj

µi
� 0 whenever i < j, then:

(1) The part of the tangent space to Z2,3(Ar) at the fixed point (Ii, Îi,j)
where the weights of C∗ are positive has dimension i+ j − 2.

(2) The part of the tangent space to Z2,3(Ar) at the fixed point (Ij, Îi,j)
where the weights of C∗ are positive has dimension i+ j − 2.

Proof. (1): The weight of C∗ is positive exactly at the (gk, ĝk)’s for which
k ≤ i− 1 and at the (0, ĥk)’s for which k ≤ j − 1.

(2): The weight of C∗ is positive exactly at (gi, 0), at the (0, ĥk)s for which
k ≤ i− 1 and at the (gk, ĝk)s for which k ≤ j − 1 and k 6= i.

2.5. The tangent spaces at the fixed points of HilbnA2.
In the next couple of sections, we will be dealing with the case r = 2. To

avoid a proliferation of subscripts, we denote x1 by x and x2 by y.
If the ideal I corresponds to a C∗-fixed point of HilbnA2, it is generated

by monomials and we can represent it by a Young diagram with n boxes
whose ith row has min{j : yixj ∈ I} boxes. In fact, this gives us a one-to-one
correspondence between the fixed points of HilbnA2 and the set of Young
diagrams with n boxes.

Example. The ideal I = 〈x5, yx4, y4x2, y6〉 is represented by the diagram

Figure 1.
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As in the example above, we can regard the boxes of our Young diagram
as a subset of the boxes representing N×N, with the box representing a pair
(i, j) ∈ N×N containing the monomial yixj, so that monomials outside the
Young diagram are in I and monomials in the Young diagram form a basis
of R/I over C.

If we look at the Young diagram of an invariant ideal I, the “corners” of
its complement, that is the shaded boxes in the picture above, represent the
unique minimal set of monomials that generate I and we will call them the
“canonical generators”.

To describe an R-homomorphism f : I → R/I, we need only specify the
elements to which f takes each of the canonical generators. Since C∗ acts on
HomR(I,R/I), it should be possible to find a weight basis of HomR(I,R/I).
For f ∈ HomR(I,R/I) to be an element of pure weight, f must take each
canonical generator to a scalar multiple of some monomial modulo I.

Let us first look at the subset S of HomR(I,R/I) consisting of elements of
pure weight which take canonical generators either to zero or to monomials
modulo I. If A denotes the set of canonical generators of I and B denotes
the set of monomials not in I, then every element f ∈ S is specified by a
map from A to B.

Figure 2.

In fact, since f ∈ S is required to have pure weight, it moves any two
canonical generators in A which it does not take to zero by the same hori-
zontal and the same vertical translations.

If α ∈ A and β ∈ B, let Sα,β = {f ∈ S : f(α) = β}. The set Sα,β
could well be empty since although every map from A to B can be extended
to a C-linear map from I to R/I, not every map specifies an R-module
homomorphism. For example, if I = 〈x3, y2x, y4〉, the set Sx3,y is empty.
When Sα,β is not empty, let fα,β be the unique homomorphism in Sα,β which
takes the largest number of canonical generators to zero.
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We wish to construct a basis of HomR(I,R/I) consisting of elements of
the form fα,β. First, we have to set up yet more notation.

Let us label the canonical generators α0, α1, α2, ..., αm as we go down the
picture and for 0 ≤ j ≤ m−1, let pj denote the vertical distance between αj
and αj+1 while for 1 ≤ j ≤ m, let qj denote the horizontal distance between
αj and αj−1.

Figure 3.

For any α = αt ∈ A, let Pα be the subset of B which consists of the
elements b satisfying
(1) b lies to the left of α,
(2) yptb ∈ I,
and let Qα be the subset of B which consists of the elements b satisfying
(1) b lies above α,
(2) xqtb ∈ I.

Example. For the ideal I = 〈x5, yx4, y4x2, y6〉, we have

Figure 4.
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Lemma 2.5.1. If β ∈ Pα or β ∈ Qα, then Sα,β 6= ∅.

Proof. In fact, let us explicitly construct the homomorphism fα,β defined
earlier.

Suppose first that β ∈ Pα. This means that β must lie q squares to the
left and p squares below α = αt for some natural numbers p and q, that is
to say β = α (y

p

xq
). If we let

l = max
{
i : 0 ≤ i ≤ t, αi

(
yp

xq

)
xqi ∈ I

}
,

then fα,β ∈ S is given by

fα,β(αi) =


0 if 0 ≤ i < l,

αi
(
yp

xq

)
if l ≤ i ≤ t,

β if i = t,

0 if t < i.

Next, suppose that β ∈ Qα. Then, β must lie q squares to the right and
p squares above α = αt for some natural numbers p and q or equivalently,
β = α(x

q

yp
). If we let

l = min
{
i : 0 ≤ i ≤ t, αi

(
xq

yp

)
ypi ∈ I

}
,

then fα,β ∈ S is given by

fα,β(αi) =


0 if 0 ≤ i < t

β if i = t,

αi
(
xq

yp

)
if t ≤ i ≤ l,

0 if l < i.

Lemma 2.5.2. If β ∈ Pα ∪ Qα and β′ ∈ Pα′ ∪ Qα′, fα,β = fα′,β′ implies
that (α, β) = (α′, β′).

Proof. Suppose that β ∈ Pα. Then, β must be situated to the left of α.
Also, if fα,β(α′) is not zero, its position relative to α′ is the same as the
position of β relative to α. Since fα,β = fα′,β′ , we know in our case that
fα,β(α′) = fα′,β′(α′) = β′, so β′ lies to the left of α′ and β′ must be in Pα′

rather than Qα′ .
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As β ∈ Pα and fα,β is not zero at α′, α′ cannot lie to the left of α. On
the other hand, as β′ ∈ Pα′ and fα′,β′ is not zero at α, α cannot lie to
the left of α′. The only possibility is that α and α′ are in fact one and
the same canonical generator. Moreover, β and β′ are also equal because
β = fα,β(α) = fα′,β′(α) = fα′,β′(α′) = β′.

An analogous argument works if we start by supposing that β ∈ Qα.

Lemma 2.5.3. The set {fα,β : α ∈ A and β ∈ Pα ∪Qα} has 2n elements.

Proof. Let ‖M‖ denote the cardinality of the set M. By Lemma 2.5.2, we
have

‖{fα,β : α ∈ A and β ∈ Pα ∪Qα}‖
= ‖{(α, β) : α ∈ A and β ∈ Pα ∪Qα}‖
=
∑
α∈A
‖{(α, β) : β ∈ Pα ∪Qα}‖

=
∑
α∈A
‖Pα ∪Qα‖.

Since Pα and Qα are clearly disjoint, ‖Pα ∪Qα‖ = ‖Pα‖+ ‖Qα‖ and hence,

‖{fα,β : α ∈ A and β ∈ Pα ∪Qα}‖ =
∑
α∈A
‖Pα‖+

∑
α∈A
‖Qα‖ = n+ n = 2n.

Proposition 2.5.4. The tangent space HomR(I,R/I) to HilbnA2 at the
fixed point I is of dimension 2n, having the set T = {fα,β : α ∈ A and β ∈
Pα ∪Qα} as a weight basis.

Comment. Though the first part of the proposition is well-known [Fo], we
give an independent proof here.
Proof. First, we show that the homomorphisms fα,β in the set T are linearly
independent. Assume for contradiction that there exists linearly dependent
elements in the set T . Then, there must exist linearly dependent elements
of the same weight and we can write

(2.5.1) fαi1 ,βi1 + λ2fαi2 ,βi2 + · · ·+ λrfαir ,βir = 0.

Either every βij is in Pαij or every βij is in Qαij
. Let us suppose that the first

case holds since the argument needed if the second case holds is, as always,
exactly analogous. We may also assume that i1 > i2 > · · · > ir. Because
fαij ,βij (αi1) = 0 for all j ≥ 2, Equation (2.5.1) implies that fαi1 ,βi1 (αi1) = 0
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but this is a contradiction since we know that fαi1 ,βi1 (αi1) = βi1 from the
definition of fαi1 ,βi1 .

It only remains to show that the set T indeed spans HomR(I,R/I). As
HomR(I,R/I) is spanned by homomorphisms of pure weight, we need only
show that any f ∈ HomR(I,R/I) of pure weight is in the span of T . We
argue by induction on the number n(f) of canonical generators not taken by
f to zero. The base step of the induction is trivial because if n(f) = 0, then
f is just the zero-homomorphism.

Now, suppose that we are given f ∈ HomR(I,R/I) of pure weight with
n(f) > 0 and that any g ∈ HomR(I,R/I) of pure weight with n(g) < n(f)
is known to be in the span of T . Since f is of pure weight, we know that
either
(1) r1 = max{i : f(αi) 6= 0} is less than m and a scalar multiple of f(αr1)

is represented by an element of B to the left of αr1 or
(2) r2 = min{i : f(αi) 6= 0} is greater than zero and a scalar multiple of

f(αr2) is represented by an element of B above αr2 .
In the first case, we may assume without loss of generality that f(αr1) is a

monomial and since f(αr1+1) = 0, we know that ypr1 f(αr1) ∈ I and f(αr1) ∈
Pαr1 . This means that fαr1 ,f(αr1 ) is in T . Moreover, since (f − fαr1 ,f(αr1 ))
is an element of pure weight satisfying n(f − fαr1 ,f(αr1 )) < n(f), it is in the
span of T and consequently, so too is f .

Not surprisingly, the second case where r2 is greater than zero and a scalar
multiple of f(αr2) lies above αr2 can be dealt with in a completely analogous
way.

Proposition 2.5.5 (Ellingsrud-Strømme). If the action of C∗ on R =
C [x, y] defined in (2.0.1) is such that 0 < µ1 < µ2 and µ2

µ1
� 0, the part of

the tangent space T to HilbnA2 at the fixed point I where the weights of C∗
are positive has dimension (n− d) where d = min{i : xi ∈ I}.

Proof. The weight of C∗ is positive at the fα,β for which β ∈ Pα and β lies
on a lower row than α. Thus, if we let Rα denote the subset of Pα consisting
of monomials lying on the same row as α, we have

dimT+ =
∑
α∈A
‖Pα‖ −

∑
α∈A
‖Rα‖ = n−

∑
α∈A
‖Rα‖

and it only remains to show that
∑
α∈A ‖Rα‖ = d. Since Rαi consists of the

qi+1 elements to the left of αi,
∑
α∈A ‖Rα‖ =

∑m
i=0 qi+1 = d as required. (See

picture below.)
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Figure 5.

2.6. The tangent spaces at the fixed points of Zn−1,n(A2).
Suppose (I1, I2) is a fixed point of Zn−1,n(A2), I1 is a fixed point of

Hilbn−1A2 and I2 is a fixed point of HilbnA2, so we obtain as in Section
2.5 a pair of Young diagrams, one sitting inside the other.

Figure 6.

Let B1 denote the set of monomials not in I1, let B2 denote the set of
monomials not in I2, let A1 = {α0, α1, . . . , αm} be the canonical generators
of I1 and let A2 = {α′0, α′1, . . . , α′s} be the canonical generators of I2. As
before, generators which involve higher powers of x come earlier in the list.
Since the ideal I1 has length n− 1 and the ideal I2 has length n, the Young
diagram of I2 consists of adding to the Young diagram of I1 one of the boxes
which represents a canonical generator of I1. Let us suppose that αk is this
monomial which is contained in I1 and not I2. There are essentially three
different cases:

Case 1. pk = 1 or qk = 1 but not both.
Here, s = m, α′k /∈ A1 and α′i = αi if 0 ≤ i ≤ s and i 6= k. In some of the
proofs to come, we have to subdivide this case into two cases, the Case 1a
where qk = 1 and the Case 1b where pk = 1.



CELLULAR DECOMPOSITIONS FOR NESTED HILBERT SCHEMES OF POINTS 57

Case 2. (k = 0, p0 > 1) or (k = m, qm > 1) or (0 < k < m, pk > 1, qk > 1 ).

Here, s = m+ 1, α′k and α′k+1 are not in A1, α′i = αi if 0 ≤ i ≤ k − 1 and
α′i = αi−1 if k + 2 ≤ i ≤ s.
Case 3. Both pk = 1 and qk = 1.

Here, s = m− 1, α′i = αi if 0 ≤ i ≤ k − 1 and α′i = αi+1 if k ≤ i ≤ s.
Recall from Section 0.4 that Ker(φ−ψ) is the tangent space to Zn−1,n(A2)

at (I1, I2). Each of the maps φ, ψ and (φ− ψ) preserves the action of C∗ on
the spaces involved.

Let W be the subset of HomR(I2, R/I1) consisting of the elements of
pure weight which take the canonical generators of I2 either to zero or to
monomials in B1. Then,

Lemma 2.6.1. The vector space HomR(I2, R/I1) is generated by the ele-
ments in W.

Proof. Since HomR(I2, R/I1) has a weight basis, it can be generated by ele-
ments of pure weight, so we need only show that any f ∈ HomR(I2, R/I1) of
pure weight is in the span of W. We know that f necessarily takes the gen-
erators of I2 to scalar multiples of the monomials in B1. As in Proposition
2.5.4, we argue by induction on the number n(f) of canonical generators in
A2 not taken by f to zero. The base step of the induction is trivial because
n(f) = 0 implies that f is just the zero-homomorphism.

Now, suppose that we are given f ∈ HomR(I2, R/I1) of pure weight with
n(f) > 0 and that any g ∈ HomR(I2, R/I1) of pure weight with n(g) < n(f)
is known to be in the span of W. If r1 = max{i : f(α′i) 6= 0} and r2 =
min{i : f(α′i) 6= 0}, one can check that either
(1) r1 < s and a scalar multiple of f(α′r1) is represented by an element of

B1 to the left of α′r1 or
(2) r2 > 0 and a scalar multiple of f(α′r2) is represented by an element of

B1 above α′r2 .
Let us consider just the first case since the other case can be dealt with in

exactly the same way. By multiplying f by a scalar if necessary, assume that
f(α′r1) is represented by a monomial in B1. Since f(α′r1+1) = 0, f(α′r1) ypr1
is in the ideal I1 and f(α′r1) does not lie in a higher row than α′r1 unless
k = r1 + 1, xα′r1+1 = yp

′
r1α′r1 , α′r1+1 = y αr1+1 and xy f(α′r1) = α′r1 . We can

easily check that the second situation cannot arise, so f(α′r1) = α′r1 (y
p

xq
) for

some natural numbers p and q.
Let l = max{i : 0 ≤ i ≤ r1, α′i (y

p

xq
) xqi ∈ I1} and define f̃ ∈
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HomR(I2, R/I1) by

f̃(α′i) =


0 if 0 ≤ i < l,

α′i
(
yp

xq

)
if l ≤ i ≤ r1,

f(α′r1) if i = r1,

0 if r1 < i ≤ s.

Clearly, f̃ is in the span of W and so too is (f − f̃) since it has pure weight
and satisfies n(f − f̃) < n(f). Therefore, f itself is in the span of W as
needed.

Lemma 2.6.2. The map

(φ− ψ) : HomR(I1, R/I1)⊕HomR(I2, R/I2)→ HomR(I2, R/I1)

is surjective.

Proof. As Imφ ⊂ Im(φ − ψ) and Imψ ⊂ Im(φ − ψ), we need only show
that Imφ and Imψ together generate all of HomR(I2, R/I1). Notice that the
elements f of W which are in Im ψ are characterized by the property that
for all i, f(α′i) is p′i− 1 units above αk if and only if f(α′i+1) is q′i+1− 1 units
to the left of αk.

Let Ui be the subset of W consisting of homomorphisms f with the prop-
erty that f(α′i+1) is q′i+1 − 1 units to the left of αk but f(α′i) is zero; let Vi
be the subset of W consisting of homomorphisms f with the property that
f(α′i) is p′i − 1 units above αk but f(α′i+1) is zero.

To complete the proof, we have to look at each of the Cases 1a, 1b, 2 and
3 separately.

Case 1a. Here, we have

Vi 6= ∅ if 0 ≤ i ≤ k − 2,

Ui 6= ∅ if k ≤ i ≤ s− 1 and

Vi = ∅ and Ui = ∅ if i = k − 1.

If 0 ≤ i ≤ k − 2, let Fi denote the unique member of Vi which takes the
largest number of canonical generators in A2 to zero while if k ≤ i ≤ s− 1,
let Fi denote the unique member of Ui which takes the largest number of
canonical generators in A2 to zero.

One sees easily that all the Fis defined above are linearly independent
since they have different weights and it is also not hard to check that any
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element of W can be generated by Imψ together with these Fis. Therefore,
we obtain

(2.6.1) HomR(I2, R/I1) = Imψ ⊕
 s−1⊕

i=0
i6=k−1

〈Fi〉
 .

Now, observe that if 0 ≤ i ≤ k − 2, Fi is equal to φ(fαi,β) for some β ∈ Pαi
and if k ≤ i ≤ s − 1, Fi is equal to φ(fαi+1,β) for some β ∈ Qαi+1 . Hence,
each of the Fis is in Imφ and HomR(I2, R/I1) is indeed generated by Im ψ
and Imφ.

Case 1b. Here, we have

Vi 6= ∅ if 0 ≤ i ≤ k − 1,

Ui 6= ∅ if k + 1 ≤ i ≤ s− 1 and

Vi = ∅ and Ui = ∅ if i = k.

With the Fis defined as before, we can again check that

(2.6.2) HomR(I2, R/I1) = Imψ ⊕
s−1⊕
i=0
i6=k
〈Fi〉


and that the Fis are in Imφ.

Case 2. Here, we have

Vi 6= ∅ if 0 ≤ i ≤ k − 1,

Ui 6= ∅ if k + 1 ≤ i ≤ s− 1 and

Vi = ∅ and Ui = ∅ if i = k.

Once more, we construct homomorphisms Fis in Imφ so that

(2.6.3) HomR(I2, R/I1) = Imψ ⊕
s−1⊕
i=0
i6=k
〈Fi〉

 .
Case 3. Here, we have

Vi 6= ∅ if 0 ≤ i ≤ k − 2,

Ui 6= ∅ if k ≤ i ≤ s− 1 and

Vi = ∅ and Ui = ∅ if i = k − 1.
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So, we repeat the process yet again to obtain homomorphisms Fis in Imφ
with

(2.6.4) HomR(I2, R/I1) = Imψ ⊕
 s−1⊕

i=0
i6=k−1

〈Fi〉
 .

Proposition 2.6.3. The tangent space Ker(φ − ψ) to Zn−1,n(A2) at the
fixed point (I1, I2) has dimension 2n.

Proof. Denoting the canonical generators of I2 by α′0, α
′
1, . . . , α

′
s as before,

we can define a homomorphism Gi ∈ HomR(I2, R/I2) (for 0 ≤ i ≤ s) which
takes α′i to αk and all the other canonical generators of I2 to zero. It is easy
to check that such Gis form a basis for Kerψ and thus, the dimension of
Kerψ is equal to s+ 1.

From the exact sequence

0→ Ker (φ− ψ)→ HomR(I1, R/I1)⊕HomR(I2, R/I2)

−−→
φ−ψ

HomR(I2, R/I1)→ 0,

we obtain
(2.6.5)
dim(Ker(φ− ψ)) = 2(n− 1) + dim(Im ψ) + (s+ 1)− dim(HomR(I2, R/I1))

and from (2.6.1), (2.6.2), (2.6.3) and (2.6.4), we observe that

(2.6.6) dim(HomR(I2, R/I1))− dim(Im ψ) = s− 1.

The required result is now immediate from Equations (2.6.5) and (2.6.6).

Proposition 2.6.4. If the action of C∗ on R = C [x, y] defined in (2.0.1)
is such that 0 < µ1 < µ2 and µ2

µ1
� 0, the part of the tangent space T ′ to

Zn−1,n(A2) at the fixed point (I1, I2) where the weights of C∗ are positive has
dimension n− d where d = min{i : xi ∈ I2}.
Proof. With the homomorphisms Fis in HomR(I2, R/I1) defined as in the
proof of Lemma 2.6.2 and the homomorphisms Gis in Ker ψ defined as in
the proof of Proposition 2.6.3, let F denote the number of Fis having positive
weight and let G denote the number of Gis having positive weight. Then,
from the exact sequence

0→ Ker (φ− ψ)→ HomR(I1, R/I1)⊕HomR(I2, R/I2)

−−→
φ−ψ

HomR(I2, R/I1)→ 0
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and the decompositions (2.6.1), (2.6.2), (2.6.3) and (2.6.4), one has

(2.6.7) dim(T ′)+ = dim(HomR(I1, R/I1))+ +G− F.
It is easy to check that if k = 0, the dimension of (HomR(I1, R/I1))+ is n−d
and G is equal to F while if k ≥ 0, the dimension of (HomR(I1, R/I1))+ is
n− d− 1 and G is equal to F + 1. In both cases, we obtain from Equation
(2.6.7) that (T ′)+ has dimension n− d.

2.7. The tangent spaces at the fixed points of Zn(A1).
For 1 ≤ i ≤ m, let Ii be the ideal of R = C [x] generated by xni . Then,

the m-tuple (I1, I2, ..., Im) is the unique fixed point of Zn(A1) under the C∗-
action described in (2.0.1). Recall that the tangent space Tn to the space
Zn(A1) at the point (I1, I2, . . . , Im) is canonically isomorphic to the subspace
∩
i<j

Ker ((φi,j − ψi,j) ◦ pi,j) of
m⊕
k=1

HomR(Ik, R/Ik).

Proposition 2.7.1. The tangent space Tn at the unique point of the space
Zn(A1) fixed by the C∗-action has dimension nm.

Proof. We use induction on m. The base step involves checking that the
tangent space HomR(〈xn〉, R/〈xn〉) to the Hilbert scheme HilbnA1 at the
point 〈xn〉 has dimension n. The inductive step involves checking that
(f1, f2, . . . , fm) is in Tn if and only if (f1, f2, . . . , fm−1) is in Tn1,n2,... ,nm−1

and fm(xnm) is equal to

a0x
nm−1 + a1x

nm−1+1 + · · ·+ anm−nm−1−1x
nm−1 + xnm−nm−1ζ,

where ζ satisfies ζ = fm−1(xnm−1) in R/Im−1 and the ai’s are complex num-
bers.

Similarly, we can verify that:

Proposition 2.7.2. If the action of C∗ on R = C [x] defined in (2.0.1) is
such that µ > 0, then (Tn)+ = 0.

Chapter III. Cellular decompositions for various nested Hilbert
schemes.

In [E-S], Ellingsrud and Strømme describe cellular decompositions for the
spaces HilbnP2, HilbnA2 and Hilbn(A2, 0) by applying the results of Bialyni-
cki-Birula [B1, B2] to a torus action to the natural action of a maximal
torus of SL(3) on HilbnP2.
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We wish to look similarly at cellular decompositions defined by a torus
action to the natural action of a maximal torus of SL(r+ 1) on the schemes
Zn(Pr), Zn(Ar) and Zn(Ar, 0) in all the cases where Zn(Pr) is smooth.

More precisely, we look at the torus actions on the schemes
(3.0.1)

Hilb2Pr, Hilb3Pr, Z1,2(Pr), Z2,3(Pr), HilbnP2, Zn−1,n(P2) and Zn(P1)

for arbitrary r and n. Whereas Ellingsrud and Strømme quote the smooth-
ness of Hilbn(P2), which is proved by Fogarty in [Fo], we start by proving
that each scheme Zn(Pr) in the list (3.0.1) is smooth by showing that the
tangent spaces to all of its fixed points under the torus action have the same
dimension rnm.

By the theorem of Chapter I, there are no smooth nested Hilbert schemes
on projective space except for Hilb1Pr and those listed in (3.0.1). Given
an arbitrary smooth r-dimensional quasiprojective variety X, we know that
any point on Zn(X) has an analytic neighbourhood which is isomorphic to
a neighbourhood of some point on Zn(Pr). Hence, in fact, we have:

Theorem 3.0.1. If X is a smooth r-dimensional quasiprojective variety,
then the nested Hilbert scheme Zn(X) is smooth if and only if it satisfies
(0.2.1).

Following Ellingsrud and Strømme, the cellular decompositions which we
obtain for the smooth nested Hilbert schemes on affine and projective space
as well as for the corresponding nested Hilbert schemes listed in (0.2.2) are
used to study the Borel-Moore homology groups and the Chow groups of
these spaces.

Before we begin, let us recall a result which is fundamental in this chapter.
Following Fulton ([Fu], Example 1.9.1), we say a scheme X has a cellular
decomposition if there is a filtration X = Xn ⊃ Xn−1 ⊃ . . . ⊃ X0 ⊃ X−1 =
∅ by closed subschemes with each XirXi−1 a disjoint union of schemes
Ui,j isomorphic to affine spaces Ani,j . The Ui,js are called the cells of the
decomposition.

Theorem 3.0.2 (Bialynicki-Birula, [B1, B2]). Let X be a smooth pro-
jective variety with an action of C∗. Suppose that the set of fixed points
{x1, . . . , xp} is finite and let Xi = {x ∈ X : limt→0 tx = xi}. Then,
(1) X has a cellular decomposition with cells Xi,
(2) TxiXi = (TxiX)+.

Remark. Let X be a smooth projective variety with an action of a torus
G, and suppose that the set of fixed points is finite. Then, G induces a linear
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action on the tangent space to each fixed point. Any linear representation of
G splits up in a direct sum of one-dimensional representations corresponding
to characters of G. Let {χ1, χ2, . . . , χq} be the set of all characters of G
occuring in the tangent spaces to the fixed points and let τ : C∗ → G be a
one-parameter subgroup. Then, the set of fixed points of the induced action
of C∗ is the same as the set of G-fixed points if and only if χj◦τ are non-trivial
characters of C∗ for all j = 1, 2, . . . , q. In particular, for “general” τ chosen
outside q given hyperplanes in the lattice of one-parameter subgroups, we
get an action of C∗ on X with the same set of fixed points as the action of
G on X.

3.1. An action of an r-dimensional torus on Zn(Pr).
From now on, we fix a system of coordinates Y0, Y1, . . . , Yr of Pr. Let

G ⊂ SL(r + 1,C) be the maximal torus consisting of all diagonal matrices.
We denote by λ0, λ1, . . . , λr the complex characters of G such that g =
diag(λ0(g), λ1(g), . . . , λr(g)) for all g ∈ G. Then, G acts on Pr via g.Yi =
λi(g)Yi and on points [a0 : a1 : ... : ar], this action is given by g[a0 : a1 : ... :
ar] = [λ0(g)−1

a0 : λ1(g)−1
a1 : ... : λr(g)−1

ar].
The fixed points are clearly P0 = [1 : 0 : 0 : ... : 0], P1 = [0 : 1 :

0 : ... : 0], . . . , Pr = [0 : 0 : ... : 0 : 1]. For 0 ≤ i ≤ r, let Fi =
〈P0, P1, . . . , Pi〉r〈P0, P1, . . . , Pi−1〉. Here, 〈P0, P1, . . . , Pi〉 denotes the linear
span of the points P0, P1, . . . , Pi. Then, Fi ∼ Ai and the Fis define a cellular
decomposition of Pr.

The one-parameter subgroups τ : C∗ → G inducing this cellular decom-
position are those of the type τ(t) = diag(tw0 , tw1 , . . . , twr) where w0 < w1 <
· · · < wr and w0 + w1 + w2 + · · ·+ wr = 0.

The action of G on Pr induces naturally an action of G on Zn(Pr).
For any (Z1, Z2, ..., Zm) in Zn(Pr), we can write each Zi uniquely as a

disjoint union

(3.1.1) Zi = Zi,0 ∪ Zi,1 ∪ ... ∪ Zi,r,
where Zi,j is a subscheme of Pr supported in Fj. Given any m × (r + 1)
matrix (ni,j)1≤i≤m

0≤j≤r
of non-negative integers with

∑r
j=0 ni,j = ni for 1 ≤

i ≤ m, we define S(ni,j) to be the subset of Zn(Pr) parametrizing m-tuples
(Z1, Z2, . . . , Zm) of subschemes of Pr such that length (OZi,j ) = ni,j. Clearly,
the nested Hilbert scheme Zn(Pr) is a disjoint union of such S(ni,j)s.

If the point (Z1, Z2, . . . , Zm) of Zn(Pr) corresponds to a fixed point of this
action, then each Zi is a subscheme of Pr whose support is contained in the
set of fixed points {P0, P1, . . . , Pr} of G. Hence, if Zi is written as a union
of subschemes as in Equation (3.1.1), the subscheme Zi,j is supported in Pj.
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For each j, (Z1,j, Z2,j, . . . , Zm,j) is an m-tuple of subschemes of Pr supported
at the point Pj and it corresponds to a G-fixed point of Zn1,j ,n2,j ,... ,nm,j (Pr),
where ni,j = length (OZi,j ).

Lemma 3.1.1. The action of G on Zn(Pr) has only finitely many fixed
points.

Proof. A point (Z1, Z2, . . . , Zm) of Zn(Pr) is fixed if and only if each of the
Zis is a fixed point in HilbniPr. A point of HilbniPr is a fixed point if and
only if the corresponding ideal I in C [Y0, Y1, . . . , Yr] is invariant under G,
which is the case if and only if I is generated by monomials. These ideals
obviously form a finite family.

3.2. The smoothness of the nested Hilbert schemes listed in (3.0.1).
First, we prove a lemma which reduces the problem of showing that a given
nested Hilbert scheme Zn(Pr) is smooth to counting the dimensions of the
tangent spaces at its G-fixed points. As remarked earlier, these are the same
as the fixed points of Zn(Pr) under the action of C∗ induced by a sufficiently
general one-parameter subgroup τ : C∗ → G.

Lemma 3.2.1. If there is a C∗-action on Zn(Pr) with isolated fixed points
and the tangent space at each fixed point has dimension rnm, then Zn(Pr) is
a smooth irreducible variety of dimension rnm.

Proof. The dimension of the tangent space at any point of Zn(Pr) is less
than or equal to rnm because if there is a point P at which the tangent
space has dimension greater than rnm, t.P must approach a C∗-fixed point
whose tangent space has dimension greater than rnm as t→ 0, contradicting
the hypothesis of the lemma.

Let Hilbn6=Pr denote the open subset of HilbnPr parametrizing n distinct
points and let pm denote the projection from Zn(Pr) to HilbnmPr. Then, the
closure U of U = pm

−1(Hilbnm6= Pr) is a component of Zn(Pr) of dimension
rnm. It is clear that the tangent space at any point on the component U
has dimension rnm.

The nested Hilbert scheme Zn(Pr) has no other component since if it had
another component, this component would meet U by the connectedness of
Zn(Pr) and the tangent space at any point where these components met
would have dimension greater than rnm.

Consider a G-fixed point (Z1, Z2, . . . , Zm) on a nested Hilbert scheme
Zn(Pr). With the notation of (3.1.1), let Tj be the tangent space to
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Zn1,j ,n2,j ,... ,nm,j (Pr) at the G-fixed point corresponding to the m-tuple (Z1,j,
Z2,j, . . . , Zm,j) of subschemes of Pr concentrated at Pj. Then, the tangent
space to Zn(Pr) at (Z1, Z2, . . . , Zm) is isomorphic to the direct sum of the
Tjs.

Let s = (s1, s2, . . . , sk) and n = (n1, n2, . . . , nm) be two increasing se-
quences of non-negative integers. We say that s ≤ n if k ≤ m, n1 − s1 ≤
n2 − s2 ≤ ... ≤ nk − sk and for any 1 ≤ i ≤ k, si ≤ ni. To study the
tangent spaces at the G-fixed points of Zn(Pr), we need only look at the
nested Hilbert schemes Zs(Pr) for which s ≤ n and study the tangent spaces
at their G-fixed points which correspond to m-tuples (Z1, Z2, . . . , Zm) of
subschemes of Pr concentrated at a single point of Pr. For any such m-
tuple (Z1, Z2, . . . , Zm), the Zis are contained in a G-invariant affine space
Ar. Hence, to show that the tangent spaces at all the G-fixed points of
Zn(Pr) have dimension rnm, we only have to show that whenever s ≤ n,
the tangent spaces at all the G-fixed points of Zs(Ar) have dimension rsk.
In fact, the G-fixed points of Zs(Ar) are the same as the points of Zs(Ar)
fixed under the action of C∗ induced by a sufficiently general one-parameter
subgroup τ : C∗ → G and such a C∗-action on Zs(Ar) is described in the
first paragraph of Chapter II. Recall that for a sufficiently general C∗-action
of this type,
(1) The tangent space to Hilb2Ar at any C∗-fixed point has dimension 2r
[Prop. 2.1.1];
(2) The tangent space to Hilb3Ar at any C∗-fixed point has dimension 3r
[Prop. 2.2.1 and Prop. 2.2.3];
(3) The tangent space to Z1,2(Ar) at any C∗-fixed point has dimension 2r
[Prop. 2.3.1];
(4) The tangent space to Z2,3(Ar) at any C∗-fixed point has dimension 3r
[Prop. 2.4.1 and Prop. 2.4.3];
(5) The tangent space to HilbnA2 at any C∗-fixed point has dimension 2n
[Prop. 2.5.4];
(6) The tangent space to Zn−1,n(A2) at any C∗-fixed point has dimension 2n
[Prop. 2.6.3];
(7) The tangent space to Zn(A1) at any C∗-fixed point has dimension nm
[Prop. 2.7.1].

It follows that:
(1) The tangent space to Hilb2Pr at any G-fixed point has dimension 2r;
(2) The tangent space to Hilb3Pr at any G-fixed point has dimension 3r;
(3) The tangent space to Z1,2(Pr) at any G-fixed point has dimension 2r;
(4) The tangent space to Z2,3(Pr) at any G-fixed point has dimension 3r;
(5) The tangent space to HilbnP2 at any G-fixed point has dimension 2n;
(6) The tangent space to Zn−1,n(P2) at any G-fixed point has dimension 2n;
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(7) The tangent space to Zn(P1) at any G-fixed point has dimension nm.
Hence, we deduce from Lemma 3.2.1 that:

Theorem 3.2.2. If r and n are arbitrary non-negative integers and n is
an m-tuple of increasing non-negative integers, the schemes

Hilb2 Pr, Hilb3 Pr, Z1,2(Pr), Z2,3(Pr), Hilbn P2, Zn−1,n(P2) and Zn(P1)

are smooth.

3.3. Cellular decompositions for the smooth nested Hilbert sche-
mes on affine and projective space and for the corresponding punc-
tual nested Hilbert schemes; the homology groups of these spaces.

For any complex variety X, let H∗(X) be the Borel-Moore homology of
X (homology with locally finite supports). By the ith Betti number bi(X),
we shall mean the rank of the finitely-generated abelian group Hi(X) and
by the Poincaré polynomial P (X), we mean the polynomial

∑
k bk(X) zk.

As usual, A∗(X) is the Chow group of X and cl : A∗(X) → H∗(X) is the
cycle map. If X is compact, the Borel-Moore homology of X agrees with
the usual singular homology.

Proposition 3.3.1. Let X be one of the smooth nested Hilbert schemes on
affine or projective space or one of the corresponding punctual nested Hilbert
schemes listed in (0.2.2). Then, the cycle map cl : A∗(X) → H∗(X) is an
isomorphism and in particular, the odd homology vanishes. Furthermore,
both groups are free abelian groups and the rank of H2k(X) is equal to the
number of k-cells in the cellular decomposition of X.

To prove Proposition 3.3.1, we need the following proposition from Chap-
ter 19.1 of [Fu].

Proposition 3.3.2. Let X be a scheme with a cellular decomposition.
Then, for 0 ≤ i ≤ dim X,
(i) H2i+1(X) = 0,

(ii) H2i(X) is a Z-module freely generated by the classes of the closures of
the i-dimensional cells,

(iii) The cycle map cl : A∗(X)→ H∗(X) is an isomorphism.

Proof of Proposition 3.3.1. Let Zn(Pr) be a nested Hilbert scheme in the list
(3.0.1). Since Zn(Pr) is smooth and projective [Gr], we may apply Theorem
3.0.2 to the action of any sufficiently general one-parameter subgroup of G
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on Zn(Pr) so that Zn(Pr) has a cellular decomposition and we can apply
Proposition 3.3.2.

As described in Section 3.1, the nested Hilbert scheme Zn(Pr) is a disjoint
union of subsets of the form S(ni,j). Let τ be any one-parameter subgroup of
G respecting the cellular decomposition {F0, F1, . . . , Fr} of Pr. Then, as t→
0, τ(t)(Zi,j) approaches a subscheme supported in Pj. In other words, any
point in S(ni,j) approaches a fixed point in S(ni,j). Since the cell of Zn(Pr)
associated to the fixed point P is exactly the set {x ∈ P : limt→0 t.x = P},
S(ni,j) is the union of the cells of Zn(Pr) associated to the fixed points in
S(ni,j).

In particular, as Zn(Ar) is isomorphic to

S


0 0 . . . 0 n1

0 0 . . . 0 n2

...
...

...
...

...
0 0 . . . 0 nm

 ,

it has a cellular decomposition and Proposition 3.3.2 applies to it.
Similarly, since the punctual nested Hilbert scheme Zn(Ar, 0) is isomor-

phic to the set

S


n1 0 0 . . . 0
n2 0 0 . . . 0
...

...
...

...
...

nm 0 0 . . . 0

 ,
it too has a cellular decomposition and Proposition 3.3.2 again applies.

Next, we calculate the number of cells of each dimension and the Betti
numbers of the nested punctual Hilbert scheme listed in (0.2.2).

Theorem 3.3.3. If r and n are arbitrary non-negative integers and n is
an m-tuple of increasing non-negative integers,
(1)

∑
i(No. of i-cells in Hilb2(Ar, 0)) vi =

∑r−1
i=1 v

i,
(2)

∑
i(No. of i-cells in Hilb3(Ar, 0)) vi =

∑r−1
i=0 v

2i +
∑

0≤i<j≤r−1 v
i+j =∑

0≤i≤j≤r−1 v
i+j,

(3)
∑
i(No. of i-cells in Z2,3(Ar, 0)) vi =

∑r−1
i=0 v

2i + 2
∑

0≤i<j≤r−1 v
i+j =∑r−1

i=0

∑r−1
j=0 v

i+j,

(4)
∑∞
k=0

∑
i(No. of i-cells in Hilbk(A2, 0)) vitk =

∏∞
k=1

(
1

1−tkvk−1

)
[E-S],
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(5)
∑∞
k=1

∑
i(No. of i-cells in Zk−1,k(A2, 0)) vitk

=
(

t
1−tv

) (∏∞
k=1

(
1

1−tkvk−1

))
,

(6)
∑
i(No. of i-cells in Zn(A1, 0)) vi = 1.

Corollary. If r and n are arbitrary non-negative integers and n is an
m-tuple of increasing non-negative integers,
(1) P (Hilb2(Ar, 0)) =

∑r−1
i=0 z

2i,
(2) P (Hilb3(Ar, 0)) =

∑r−1
i=0 z

4i +
∑

0≤i<j≤r−1 z
2(i+j) =

∑
0≤i≤j≤r−1 z

2(i+j),

(3) P (Z2,3(Ar, 0)) =
∑r−1
i=0 z

4i + 2
∑

0≤i<j≤r−1 z
2(i+j) =

∑r−1
i=0

∑r−1
j=0 z

2(i+j),

(4)
∑∞
k=0 P (Hilbk(A2, 0)) tk =

∏∞
k=1

(
1

1−tkz2(k−1)

)
,

(5)
∑∞
k=1 P (Zk−1,k(A2, 0)) tk =

(
t

1−tz2

) (∏∞
k=1

(
1

1−tkz2(k−1)

))
,

(6) P (Zn(A1, 0)) = 1.

Proof of Theorem 3.3.3. All the subschemes of Pr corresponding to the
points in

S


n1 0 0 . . . 0
n2 0 0 . . . 0
...

...
...

...
...

nm 0 0 . . . 0


are contained in the affine space C[Y1/Y0, Y2/Y0, . . . , Yr/Y0]. We put xi =
Yi/Y0 for 1 ≤ i ≤ r. Define a one-parameter subgroup τ : C∗ → G by τ(t) =
diag(tw0 , tw1 , . . . , twr), where w0 < w1 < · · · < wr and w0 +w1 + · · ·+wr = 0.
In fact, we may assume that wj−w0

wi−w0
� 0 whenever r ≥ j > i ≥ 1. Pick a cell

U from the cellular decomposition of Zn(Pr) defined by τ contained in

S


n1 0 0 . . . 0
n2 0 0 . . . 0
...

...
...

...
...

nm 0 0 . . . 0

 .

We want to compute its dimension. The cell U corresponds to a fixed point of
G on Zn(Pr) inside SpecC[Y1/Y0, Y2/Y0, . . . , Yr/Y0]=SpecC[x1, x2, . . . , xr],
hence to a nest of invariant ideals I1 ⊃ I2 ⊃ . . . ⊃ Im in C[x1, x2, . . . , xr].
According to Theorem 3.0.2, dimU = dim T+, where T is the tangent space
to Zn(Pr) at this fixed point.

Thus, we are reduced to calculating the positive parts of the tangent
spaces at the fixed points of Zn(Ar) under the action of C∗ described in the
first paragraph of Chapter II. The assumptions that w0 < w1 < · · · < wr
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and wj−w0

wi−w0
� 0 whenever r ≥ j > i ≥ 1 translate to the assumptions that

0 < µ1 < µ2 < · · · < µr and µj
µi
� 0 whenever r ≥ j > i ≥ 1.

Proof of (1). Recall from Section 2.1 that Hilb2(Ar) has r C∗-fixed points
I1, I2, . . . , Ir. By Proposition 2.1.2, the positive part of the tangent space to
Hilb2(Ar) at Ii has dimension (i− 1).

Proof of (2). Recall from Section 2.2 that the C∗-fixed points of Hilb3(Ar)
are Ĩi(1 ≤ i ≤ r) and Îi,j(1 ≤ i < j ≤ r). By Proposition 2.2.2, the positive
part of the tangent space to Hilb3(Ar) at Ĩi has dimension 2(i − 1) and by
Proposition 2.2.4, the positive part of the tangent space to Hilb3(Ar) at Îi,j
has dimension (i+ j − 2).

Proof of (3). Recall from Section 2.4 that the C∗-fixed points of Z2,3(Ar)
are (Ii, Ĩi)(1 ≤ i ≤ r), (Ii, Îi,j)(1 ≤ i < j ≤ r) and (Ij, Îi,j)(1 ≤ i < j ≤ r).
By Proposition 2.4.2, the positive part of the tangent space to Z2,3(Ar) at
(Ii, Ĩi) has dimension 2(i− 1) and by Proposition 2.4.4, the positive part of
the tangent space to Z2,3(Ar) at (Ii, Îi,j) or (Ij, Îi,j) has dimension (i+j−2).

Proof of (6). By Proposition 2.7.2, the positive part of the tangent space
to Zn(A1) at the unique C∗-fixed point has dimension 0.

Proof of (4). Recall from Section 2.5 that the C∗-fixed points of Hilbk(A2)
correspond to the partitions of k. By Proposition 2.5.5, the positive part
of the tangent space to Hilbk(A2) at a C∗-fixed point has dimension (k − d)
where d is the largest part of the corresponding partition. Let p(k, l) denote
the number of partitions of k whose largest part is l. Then,

∞∑
k=0

∞∑
i=0

(No. of i-cells in Hilbk(A2, 0)) vitk =
∞∑
k=0

∞∑
i=0

p(k, k − i) tkvi

=
∞∏
k=1

(
1

1− tkvk−1

)
.

Proof of (5). Recall from Section 2.6 that the C∗-fixed points of the space
Zk−1,k(A2) correspond to the partitions of k−1 “sitting inside” partitions of
k. By Proposition 2.6.4, the positive part of the tangent space to Zk−1,k(A2)
at a C∗-fixed point has dimension k − d, where d is the largest part of the
partition of k.

A partition of k consisting of si copies of i is said to be a partition with
m steps if the set {i ∈ N+ : si 6= 0} has m members. Clearly, there are
exactly m partitions of k − 1 which are subpartitions of any given partition
of k with m steps. Hence, if Akm,l denotes the number of partitions of k with
m steps whose largest part is equal to k − l, the cellular decomposition of
Zk−1,k(A2, 0) studied in this section has exactly (

∑
mmA

k
m,l) l-cells.
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From the discussion above, we need only show that

(3.3.1)
(

t

1− tv
)( ∞∏

k=1

1
1− tkvk−1

)
=
∑
k,l

(∑
m

mAkm,l

)
vltk.

A sequence of natural numbers s = (s0, s1, s2, ...) is said to satisfy condition
(∗)km,l if exactly m of its terms are non-zero,

∑∞
i=0 si = k− l and

∑∞
i=1 isi = l.

We can associate to any such s a partition of k with m steps whose largest
part has size k − l by adding a part of size k − l to the conjugate of the
partition of l consisting of si copies of i, as illustrated in the figure below.

Figure 7.

In fact, any partition of k whose largest part has size k − l arises in this
way so that there are exactly Akm,l sequences s satisfying condition (∗)km,l. If

p(u, t, x, y) =
∞∏
k=0

(
u

(
1

1− tk+1(xy)k
− 1

)
+ 1

)
,

it is not hard to check that the coefficient of umtk(xy)l in p(u, t, x, y) is the
number of ss satisfying condition (∗)km,l and hence,

p(u, t, x, y) =
∑
m,k,l

Akm,lu
m(xy)ltk.

Differentiating both sides with respect to u and setting u = 1, we obtain
Equation (3.3.1) as required.

3.4. Cellular decompositions for the Hilbert function strata of
various punctual Hilbert schemes.

In [Gö1] and [Gö2], cellular decompositions are obtained for the Hilbert
function strata of Hilbn(A2, 0). This section contains straightforward mod-
ifications of Göttsche’s arguments to obtain cellular decompositions for the
“Hilbert function strata” of the other punctual Hilbert schemes which we
have been studying. Let us first review some of the notation and results
established in [Gö1] and [Gö2].
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3.4.a. Background and some small cases.
Let A = C [[x1, x2, ..., xr]] be the ring of formal power series in r variables

and let M = 〈x1, x2, ..., xr〉 be the maximal ideal of A.

Definition. Let I ⊂ A be an ideal of colength n. The Hilbert function
of I is the sequence T (I) = (ti(I))i≥0 of non-negative integers given by
ti(I) = dimk(Mi/((I ∩ Mi) + Mi+1)). If T = (ti)i≥0 is a sequence of
non-negative integers, of which only finitely many do not vanish, we put
|T | = ∑

i ti. The initial degree d of T is the smallest i such that ti <
(r+i−1

i

)
.

Let Ai = Mi/Mi+1 and Ii = (Mi ∩ I)/(Mi+1 ∩ I). Then Ai is the
space of forms of degree i in A and Ii the space of initial forms of I (i.e.
the forms of minimal degree among elements of I) of degree i, and we have
ti(I) = dimk(Ai/Ii).

The Hilbert function gives us a stratification of Hilbn(A)red ∼ Hilbn(Ar, 0).

Definition. Let T = (ti)i≥0 be a sequence of non-negative integers with
|T | = n. Let MT ⊂ Hilbn(A)red be the locally closed subscheme (with
the reduced induced structure) parametrizing ideals I ⊂ A with Hilbert
function T . Let LT ⊂MT be the closed subscheme (with the reduced induced
structure) parametrizing homogeneous ideals I ⊂ A with Hilbert function T .
Let ρT : MT → LT be the morphism which maps an ideal I to the associated
homogeneous ideal (i.e. the ideal generated by the initial forms of elements
of I). The embedding LT ⊂MT is a natural section of ρT .

If T = (T1, T2, . . . , Tm) is an m-tuple of sequences of non-negative integers
satisfying |Ti| = ni, we may define

MT := Zn(Ar, 0) ∩ (MT1 ×MT2 × · · · ×MTm) and

LT := Zn(Ar, 0) ∩ (LT1 × LT2 × · · · × LTm).

Again, there is a morphism ρT : MT → LT for which the embedding LT ⊂
MT is a natural section. The MTs which are non-empty stratify Zn(Ar, 0)
and are called its Hilbert function strata.

Examples.
(1) Zn(A1, 0) = M(1) = L(1) = point.
(2) If r ≥ 1, Hilb2(Ar, 0) = M(1,1) = L(1,1) ∼ P((M/M2)∗).
(3) If r ≥ 2, Hilb3(Ar, 0) = M(1,2) ∪ M(1,1,1). Here, M(1,2) = L(1,2) is

isomorphic to the Grassmannian Grass(2,M/M2) parametrizing codi-
mension 2 vector subspaces ofM/M2, while M(1,1,1) is a locally trivial
Ar−1-bundle over L(1,1,1) ∼ P((M/M2)∗).

(4) If r ≥ 2, Z2,3(Ar, 0) = M(1,1),(1,2) ∪ M(1,1),(1,1,1). Here, M(1,1),(1,2) =
L(1,1),(1,2) is the flag variety in Grass(1,M/M2) × Grass(2,M/M2),
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while M(1,1),(1,1,1) is a locally trivial Ar−1-bundle over L(1,1),(1,1,1) ∼
P((M/M2)∗).

Suppose that Zn(Pr) is smooth. Then a general one-parameter subgroup
τ : C∗ → G; t 7→ diag (tw0 , tw1 , . . . , twr) for which w0 < w1 < · · · < wr and
w0 +w1 + · · ·+wr = 0 induces a cellular decomposition of Zn(Pr) where the
closed subset

Zn(Ar, 0) = {(Z1, Z2, . . . , Zm) ∈ Zn(Pr) : Zi is supported at the point P0}
is a union of cells. The next lemma asserts that if, in addition, the one-
parameter subgroup τ satisfies nm(wi − w0) > (nm − 1)(wj − w0) whenever
r ≥ j > i ≥ 1, then each of the Hilbert function strata of Zn(Ar, 0) is
itself a union of cells. An example of such a one-parameter subgroup can be
constructed by letting w0 = −rnm− 1

2
(r−1)r and by letting wj = nm+j−1

when 1 ≤ j ≤ r.
Lemma 3.4.1. Let Zn(Ar, 0) be one of the punctual nested Hilbert schemes
listed in (0.2.2). Let C∗ τ−→ G; t 7→ diag (tw0 , tw1 , . . . , twr) be a general one-
parameter subgroup of G satisfying w0 < w1 < · · · < wr, w0+w1+· · ·+wr = 0
and nm(wi − w0) > (nm − 1)(wj − w0) whenever r ≥ j > i ≥ 1. Let
T = (T1, T2, . . . , Tm) be an m-tuple of sequences of non-negative integers
satisfying |Ti| = ni. Then,
(1) MT is a union of cells of the cellular decomposition of Zn(Ar, 0) induced

by τ ,
(2) ρT : MT → LT is equivariant for the action of C∗.

Proof. The proof is a straightforward modification of Göttsche’s proof of
parts (a) and (b) of [Gö1, Lemma 2.3].

Moreover, if Zn(Ar, 0) is one of the punctual nested Hilbert schemes

Hilb2(Ar, 0), Hilb3(Ar, 0), Z2,3(Ar, 0) or Zn(A1, 0),

then we have already seen that any LT is itself a smooth projective va-
riety. It is clear that if (I1, I2, . . . , Im) is in LT, then for any t ∈ C∗,
(τ(t)I1, τ(t)I2, . . . , τ(t)Im) will also be in LT. So, C∗ acts on LT and we
can apply Theorem 3.0.2 to this action, yielding a cellular decomposition for
LT. Since the action of C∗ on LT is the restriction of the action of C∗ on
MT, the cells of LT are the intersection of the cells of MT with LT.

We wish to calculate the number of i-cells in each of these MTs and LTs.
Since Zn(A1, 0) = M(1) = L(1) = point and Hilb2(Ar, 0) = M(1,1) =
L(1,1), there is no work to be done in these cases. For the spaces Hilb3(Ar, 0)
and Z2,3(Ar, 0), it is not hard to check that, when r ≥ 2,
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Proposition 3.4.2. (1) The punctual Hilbert scheme Hilb3(Ar, 0) is a
disjoint union of the Hilbert function strata M(1,1,1) and M(1,2). If τ : C∗ → G
is a one-parameter subgroup of G satisfying the hypothesis of Lemma 3.4.1, it
induces cellular decompositions of M(1,1,1), M(1,2), L(1,1,1) and L(1,2) described
by

(a)
∑
i

(No. of i-cells in M(1,1,1)) vi = vr−1

(
r−1∑
i=0

vi
)
,

(b)
∑
i

(No. of i-cells in M(1,2)) vi =
∑

0≤i<j≤r−1

vi+j−1,

(c)
∑
i

(No. of i-cells in L(1,1,1)) vi =
r−1∑
i=0

vi and

(d)
∑
i

(No. of i-cells in L(1,2)) vi =
∑

0≤i<j≤r−1

vi+j−1.

(2) The punctual nested Hilbert scheme Z2,3(Ar, 0) is a disjoint union of the
Hilbert function strata M(1,1),(1,1,1) and M(1,1),(1,2). If τ : C∗ → G is a one-
parameter subgroup of G satisfying the hypothesis of Lemma 3.4.1, it induces
cellular decompositions of M(1,1),(1,1,1), M(1,1),(1,2), L(1,1),(1,1,1) and L(1,1),(1,2)

described by

(a)
∑
i

(No. of i-cells in M(1,1),(1,1,1)) vi = vr−1

(
r−1∑
i=0

vi
)
,

(b)
∑
i

(No. of i-cells in M(1,1),(1,2)) vi =
∑

0≤i<j≤r−1

(vi+j−1 + vi+j),

(c)
∑
i

(No. of i-cells in L(1,1),(1,1,1)) vi =
r−1∑
i=0

vi and

(d)
∑
i

(No. of i-cells in L(1,1),(1,2)) vi =
∑

0≤i<j≤r−1

(vi+j−1 + vi+j).

3.4.b. The Hilbert function strata of Hilbn(A2, 0).
In the case of Hilbn(A2, 0), many results about the varieties MT and LT

have been obtained in [Br], [Iar], [Gö1] and [Gö2]. Let us just list some of
these results here.

Proposition 3.4.3 ([Iar, Prop. 1.6, Thm. 2.11, Thm. 2.12, Thm. 3.13]).
(1) MT and LT are non-empty if and only if t0 = 1 and ti ≤ ti−1 for all

i ≥ d, where d is the initial degree of T .
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(2) MT and LT are smooth and irreducible. LT is projective of dimension

dim (LT ) =
∑
j≥d

(tj−1 − tj + 1)(tj − tj+1).

(3) ρT : MT → LT is a locally trivial fibre bundle in the Zariski topology,
whose fibre is an affine space An(T ) of dimension

n(T ) = n −
∑
j≥d

(tj−1 − tj + 1)
(

1
2
tj−1 +

1
2
tj − tj+1

)
.

Under a C∗-action on Hilbn(A2, 0) induced by one of the one-parameter
subgroups described in Lemma 3.4.1, LT is C∗-invariant. Since LT is smooth
and projective, one obtains by Theorem 3.0.2 a cellular decomposition for
LT and since the C∗-action on LT is a restriction to LT of the C∗-action on
MT [Lemma 3.4.1.2], the cells of LT are the intersections of LT with the cells
of MT in the cellular decomposition of MT described in Lemma 3.4.1.1. The
number of i-cells in both LT and MT can be expressed in terms of Young
diagrams.

Recall that to each partition of n, we may associate a Young diagram with
n boxes. Each box of the Young diagram can be represented by a pair of
non-negative integers as illustrated in the following picture:

Figure 8.

The diagonal sequence associated to the Young diagram Γ is T (Γ) =
(t0(Γ), t1(Γ), . . . ), where ti(Γ) := |{(l, k) ∈ Γ : l + k = i}|. So, it is the
sequence of numbers of points on the diagonals of Γ.

Example. For the Young diagram Γ in Figure 8, we have t0(Γ) = 1, t1(Γ) =
2, t2(Γ) = 2 and ti(Γ) = 0 for i ≥ 3.

Let (u, v) ∈ Γ. Then, the hook difference hu,v(Γ) is

hu,v(Γ) = |{(u, l) ∈ Γ : l > v}| − |{(k, v) ∈ Γ : k > u}|.
In other words, hu,v(Γ) is the difference between the number of points in Γ
in the same row to the right of (u, v) and the number of points in the same
column below (u, v).
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Example. For the Young diagram Γ below, the hook differences hu,v(Γ) are
given by

Figure 9.

Theorem 3.4.4 ([Gö2, Thm.2.2.7]). Let T = (ti)i≥0 be a sequence of non-
negative integers with |T | = n. Then, we have for X = LT and X = MT :-
(1) X has a cellular decomposition; the map A∗(X) → H∗(X) is an iso-

morphism and H∗(X) is free.
(2)

b2i(MT ) =
∣∣∣{Γ : T (Γ)=T ;

|{(u,v)∈Γ:hu,v(Γ)∈{0,1}}|=n−i
}∣∣∣ .

(3)
b2i(LT ) =

∣∣∣{Γ : T (Γ)=T ;
|{(u,v)∈Γ:hu,v(Γ)=−1}|= i

}∣∣∣ .
In particular, the Euler numbers are

χ(MT ) = χ(LT ) = |{Γ : T (Γ) = T}|.

In fact, Göttsche shows that if Γ is the Young diagram associated (see
Section 2.5) to the invariant ideal I of C [x, y] = [Y1/Y0, Y2/Y0] corresponding
to a C∗-fixed point of Hilbn(A2, 0) ⊂ Hilbn(A2) = Hilbn(SpecC [x, y]), then
I lies in LT (Γ) ⊂MT (Γ) and the dimension of the positive part of the tangent
space to Hilbn(A2) at I is equal to

(3.4.1) n− |{(u, v) ∈ Γ : hu,v(Γ) ∈ {0, 1}}|,

while the dimension of the positive part of the tangent space to LT (Γ) at I
is equal to

(3.4.2) |{(u, v) ∈ Γ : hu,v(Γ) = −1}|.

Göttsche points out that under the canonical isomorphism identifying the
tangent space to Hilbn(A2) at I with V = HomR(I,R/I), where R = C [x, y],
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the tangent space V1 to MT at I is identified with the homomorphisms which
preserve or increase degree and the tangent space V0 to LT at I is identified
with the homomorphisms which preserve degree. We have

V0
Tangent space to

LT at I
⊂ V1

Tangent space to
MT at I

⊂ V
Tangent space to

Hilbn(A2) at I

∪ ∪ ∪
Tangent space to

cell of LT
containing I at I

V0
+

⊂
Tangent space to

cell of MT

containing I at I

V1
+

=
Tangent space to

cell of Hilbn(A2)
containing I at I

V +

.

Let us rephrase the situation in the language of Section 2.5. Recall that
HomR(I,R/I) is generated by the subset S consisting of elements of pure
weight which take canonical generators of I either to zero or to monomials
modulo I. A homomorphism in S moves any two canonical generators not
taken to zero by the same horizontal and vertical translation.
Note 3.4.5.
(i) V1 is the subset of V generated by the homomorphisms f in S which

take any canonical generator α for which f(α) 6= 0 to a box in the
diagonal containing α or to a box in a larger diagonal.

(ii) V0 is the subset of V generated by the homomorphisms f in S which
take any canonical generator α for which f(α) 6= 0 to a box in the
diagonal containing α.

(iii) V1
+ is the subset of V generated by the homomorphisms f in S which

take any canonical generator α for which f(α) 6= 0 to a box in the
diagonal containing α lying in a lower row than α or to a box in a
larger diagonal.

(iv) V0
+ is the subset of V generated by the homomorphisms f in S which

take any canonical generator α for which f(α) 6= 0 to a box in the
diagonal containing α lying in a lower row than α.

Before turning to the case Zn−1,n(A2, 0), we also need to look more closely
at the work [Iar] of Iarrobino; we present here some of his methods and
results in the language of this paper. The only point that might lead to
confusion is the fact that Iarrobino uses the ordering of monomials 0 < 1 <
y < x < y2 < yx < x2 < .... whereas we use the ordering 0 < 1 < x < y <
x2 < xy < y2 < ... in keeping with the rest of our work. The reader will
have to swap the symbols x and y around when referring to [Iar].

Let ΓT be the unique Young diagram which has diagonal sequence T and
satisfies

j ≥ 1 and (i, j) ∈ ΓT ⇒ (i+ 1, j − 1) ∈ ΓT ;
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let IT be the C∗-fixed point in LT ⊂ MT corresponding to this Young di-
agram. If d is the initial degree of T , the ideal IT has d + 1 canonical
generators. For the rest of this chapter (unlike in Chapter II), we will label
the canonical generators α0, α1, . . . , αd from left to right, as in the picture
below.

Example. If T = (1, 2, 3, 2), IT is the ideal generated by

α0 = y4, α1 = xy3, α2 = x2y and α3 = x3.

ΓT is the diagram

Figure 10.

With respect to a fixed system (u = ax+ by, v = cx+ dy) of parameters,
let P((u, v), T ) be the set of monomials ujvi for which (i, j) ∈ ΓT . Let

MP((u,v),T ) :=
{
I ∈MT : I ∩

(
linear span

of P((u,v),T )

)
= {0}

}
and let

LP((u,v),T ) :=
{
I ∈ LT : I ∩

(
linear span

of P((u,v),T )

)
= {0}

}
.

With respect to our chosen system (x, y) = (Y1/Y0, Y2/Y0) of parameters,
the set MP((x,y),T ) (resp. LP((x,y),T )) is exactly the cell of MT (resp. LT )
associated to the C∗-fixed point IT .

Proposition 3.4.6 ([Iar, Prop.3.2]). Let N =
∑
tj(j + 1− tj). Then, any

ideal I ∈MT fails to be in MP((x,y−ax),T ) for at most N values of a.

Remark 3.4.7. ([Iar, 3.A]). It follows that given any N + 1 distinct
points a0, a1,...,aN in C, the set {MP((x,y−aix),T ) : 0 ≤ i ≤ N} is a finite open
cover of MT . This cover is connected because the C∗-fixed point IT lies in
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each of the open sets MP((x,y−aix),T ). Likewise, LT has a connected cover
consisting of finitely many open sets which are isomorphic to LP((x,y),T ).

From now on, fix our system of parameters to be (x, y) = (Y1/Y0, Y2/Y0)
and write P(T ) for P((x, y), T ).

The Young diagram ΓT is identified with the set of monomials not in IT
by letting the (i, j)th box correspond to the monomial xjyi. Recall (see the
definition preceeding Figure 4 in Chapter II) that there is a set of monomials
Pα in ΓT associated to each canonical generator α of IT . Let

Υs := {β ∈ Pαs : fαs,β preserves or increases degree},
Ξs := {β ∈ Pαs : fαs,β preserves degree},
∆s := {γ ∈ ΓT rΥs : degree γ ≥ degree αs} and

Λs := {γ ∈ ΓT r Ξs : degree γ = degree αs};

let
Υ = {(s, β) : β ∈ Υs}, Ξ = {(s, β) : β ∈ Ξs},
∆ = {(s, β) : β ∈ ∆s} and Λ = {(s, β) : β ∈ Λs}.

Since {fαs,β : (s, β) ∈ Υ} is a basis for the tangent space to MT at IT and
{fαs,β : (s, β) ∈ Ξ} is a basis for the tangent space to LT at IT , we know
that

dim MT = |Υ| and dim LT = |Ξ|.

Proposition 3.4.8 ([Iar, Lemma 2.4, Prop. 2.5, Lemma 2.7, Prop. 2.8]).
(1) For each point (as,β)(s,β)∈Υ in AdimMT , there is a unique sequence

(ds,β)(s,β)∈∆ so that the ideal generated by the polynomials

fs = αs +
∑
β∈Υs

as,ββ +
∑
β∈∆s

ds,ββ

is in MP(T ). We can thus associate an ideal I(as,β) to any point (as,β)
in Adim MT ; the polynomials fs are known as the standard generators
of this ideal. For each β ∈ ∆s, ds,β is a polynomial function of the at,γ
for which t ≤ s and β ∈ Υt.

(2) The map from Adim MT to MP(T ) which takes (as,β)(s,β)∈Υ to I(as,β) is
an isomorphism of varieties.

(3) For each point (as,β)(s,β)∈Ξ in Adim LT , there is a unique sequence
(ds,β)(s,β)∈Λ so that the ideal generated by the polynomials

fs = αs +
∑
β∈Ξs

as,ββ +
∑
β∈Λs

ds,ββ
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is in LP(T ). As before, this enables us to associate an ideal I(as,β) to
any point (as,β) in Adim LT and again, we call the polynomials fs the
standard generators of this ideal. For each β ∈ Λs, ds,β is a polynomial
function of the at,γ for which t ≤ s and γ ∈ Ξt.

(4) The map from Adim LT to LP(T ) which takes (as,β)(s,β)∈Ξ to I(as,β) is
an isomorphism of varieties.

(5) The inclusion map of LP(T ) in MP(T ) and the restriction of the pro-
jection map ρT from MP(T ) to LP(T ) are given in coordinates in the
obvious way. In particular, MP(T ) = LP(T ) × An(T ).

3.4.c. The Hilbert function strata of Zn−1,n(A2, 0).
Finally, we turn to the case Zn−1,n(A2, 0). We consider Zn−1,n(A2, 0)

under a C∗-action induced by one of the one-parameter subgroups described
in Lemma 3.4.1. Any fixed point of the action is a pair of invariant ideals
(I1, I2) of C [x, y] = C [Y1/Y0, Y2/Y0] satisfying I1 ⊃ I2; it corresponds to a
pair of nested Young diagrams (Γ1,Γ2) as shown in Figure 6.

Since any non-empty Hilbert function stratum MT1,T2 must contain such
a C∗-fixed point I ∈ LT1,T2 , we have the analogue of the first part of Propo-
sition 3.4.3: Given a pair of sequences (T1, T2) = ((t10, t

1
1, . . . , ), (t

2
0, t

2
1, . . . , ))

with |T1| = n− 1 and |T2| = n, MT1,T2 and LT1,T2 are non-empty if and only
if
(1) For j ∈ {1, 2}, tj0 = 1 and tji ≤ tji−1 for all i ≥ dj0, where dj0 is the initial

degree of Tj,
(2) There exists some i for which t1i + 1 = t2i .

Consider the Young diagram Γ2 and draw a diagonal line L through the
box representing the monomial α̃ which is in I1 but not in I2. Mark with the
symbol � any box representing one of the canonical generators of I2; mark
with the symbol ? any box which lies simultaneously in the same column
below some � and in the same row to the right of some other �, as illustrated
in the following picture.

Figure 11.
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Let ��(Γ1,Γ2) (resp. ??(Γ1,Γ2)) be the number of symbols � (resp. ?) on
the diagonal L or on a smaller diagonal than L; let �(Γ1,Γ2) (resp. ?(Γ1,Γ2))
be the number of symbols � (resp. ?) on the diagonal L; let ��+(Γ1,Γ2) (resp.
??+(Γ1,Γ2)) be the number of symbols � (resp. ?) on the diagonal L in a
row higher than α̃ or on a smaller diagonal than L; let �+(Γ1,Γ2) (resp.
?+(Γ1,Γ2)) be the number of symbols � (resp. ?) on the diagonal L in a row
higher than α̃.

Lemma 3.4.9. Suppose that (I1, I2) ∈ LT1,T2 ⊂ MT1,T2 is a C∗-fixed point
on Zn−1,n(A2, 0) and (Γ1,Γ2) is the associated pair of Young diagrams.
(1) The dimension of the tangent space to MT1,T2 at (I1, I2) is equal to

dim MT1 + � � (Γ1,Γ2) − ? ? (Γ1,Γ2);

(2) The dimension of the tangent space to LT1,T2 at (I1, I2) is equal to

dim LT1 + �(Γ1,Γ2) − ?(Γ1,Γ2);

(3) The dimension of the positive part of the tangent space to MT1,T2 at
(I1, I2) is equal to

dim (TI1(MT1))+ + � �+ (Γ1,Γ2) − ? ?+ (Γ1,Γ2);

(4) The dimension of the positive part of the tangent space to LT1,T2 at
(I1, I2) is equal to

dim (TI1(LT1))+ + �+(Γ1,Γ2) − ?+(Γ1,Γ2).

Proof. We will just prove the first part of the lemma here as the proofs of
the other parts are completely analogous.

Recall from Lemma 2.6.2 that we have an exact sequence

0→ Ker (φ− ψ)→ HomR(I1, R/I1)⊕HomR(I2, R/I2)
φ−ψ−−→ HomR(I2, R/I1)→ 0.

Let HomR(I2, R/I1) (resp. Kerψ) be the subspace of HomR(I2, R/I1) (resp.
Kerψ) consisting of homomorphisms which preserve or increase degree. Re-
stricting the exact sequence above to the homomorphisms which preserve or
increase degree and applying the first part of Note 3.4.5, we have
(3.4.3)

0→ T(I1,I2)(MT1,T2)→ TI1(MT1)⊕ TI2(MT2)→ HomR(I2, R/I1)→ 0.
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From Equations (2.6.1), (2.6.2), (2.6.3) and (2.6.4), we can express
HomR(I2, R/I1) as a direct sum decomposition

HomR(I2, R/I1) = Imψ ⊕ (⊕
i
〈Fi〉).

We check that the number of homomorphisms Fi which preserve or increase
degree is equal to ? ? (Γ1,Γ2). Hence,

(3.4.4) dim HomR(I2, R/I1) = dim TI2(MT2) − dim Kerψ + ? ? (Γ1,Γ2).

Recall also that we constructed a basis {Gi} for Kerψ in the proof of
Proposition 2.6.3, It is easy to see that the number of homomorphisms Gi

which preserve or increase degree is equal to � � (Γ1,Γ2), and so

(3.4.5) dim Kerψ = � � (Γ1,Γ2).

The dimension of the tangent space toMT1,T2 at (I1, I2) can now be computed
from the exact sequence (3.4.3) together with the Equations (3.4.4) and
(3.4.5).

Let Li be the ith diagonal and let Γ be a Young diagram. We define �i(Γ)
(resp. ?i(Γ)) to be the number of symbols � (resp. ?) lying on Li.
Lemma 3.4.10. Let Γ be a Young diagram with the diagonal sequence
T (Γ) = (t0, t1, t2, ..). Then,

�i(Γ)− ?i(Γ) =


0 if i = 0,
2− t1 if i = 1,
(ti−1 − ti)− (ti−2 − ti−1) if i ≥ 2.

Proof. We use induction on the number of boxes n in the Young diagram
Γ. When n = 1, the lemma is clearly true. So, let us assume that Γ has n
boxes, where n ≥ 2, and that the lemma holds for any Young diagram with
less than n boxes.

If T (Γ) = (t0, t1, t2, ...), let k = max {i : ti 6= 0} and let Γ′ be any Young
diagram sitting inside Γ with the diagonal sequence

T (Γ′) = (t0, t1, t2, . . . , tk−1, tk − 1, 0, 0, ...).

One can verify, say by considering the cases listed in the beginning of Section
2.6, that

�i(Γ)− ?i(Γ) = �i(Γ′)− ?i(Γ′) if 0 ≤ i < k or k + 2 < i,
(3.4.6)

�k(Γ)− ?k(Γ) = �k(Γ′)− ?k(Γ′)− 1,

�k+1(Γ)− ?k+1(Γ) = �k+1(Γ′)− ?k+1(Γ′) + 2,

�k+2(Γ)− ?k+2(Γ) = �k+2(Γ′)− ?k+2(Γ′)− 1.
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For each j, we obtain by induction an expression for �j(Γ′)− ?j(Γ′) in terms
of the diagonal sequence {ti}. Plugging this expression for �j(Γ′) − ?j(Γ′)
into the relevant equation in (3.4.6) then yields the required expression for
�j(Γ)− ?j(Γ) in terms of the diagonal sequence {ti}.

Following [Iar], we define MP(T1),P(T2) and LP(T1),P(T2) to be the sets

MP(T1),P(T2) := {(I1, I2) ∈MT1,T2 : I1 ∈MP(T1) and I2 ∈MP(T2)}

and

LP(T1),P(T2) := {(I1, I2) ∈ LT1,T2 : I1 ∈ LP(T1) and I2 ∈ LP(T2)}

respectively.
We observe as before that MP(T1),P(T2) is exactly the cell of MT1,T2 associ-

ated to the C∗-fixed point (IT1 , IT2), while LP(T1),P(T2) is the set{
(I1, I2) ∈ LT1,T2 : lim

t→0
(t.I1, t.I2) = (IT1 , IT2)

}
.

The argument of Remark 3.4.7 shows that MT1,T2 (resp. LT1,T2) has a
connected cover consisting of finitely many open sets which are isomorphic
to MP(T1),P(T2) (resp. LP(T1),P(T2)).

Proposition 3.4.11. Every Hilbert function stratum MT1,T2 of
Zn−1,n(A2, 0) is smooth and irreducible. If we write T1 = (t0, t1, . . . , tk−1, tk,
tk+1, ...) and T2 = (t0, t1, . . . , tk−1, tk + 1, tk+1, ...) and let d be the initial
degree of T1, then we have

dim MT1,T2 = (n− 1) −
∑
j≥d

(tj−1 − tj)(tj−1 − tj + 1)/2 + (tk−1 − tk).

Proof. It is clear that MT1,T2 is smooth and irreducible as it has a connected
cover of finitely many smooth open subsets. To obtain the formula for its
dimension, observe that

dim MT1,T2 = dim MT1 + (tk−1 − tk)

by Lemma 3.4.9.1 and Lemma 3.4.10, while

dim MT1 = (n− 1) −
∑
j≥d

(tj−1 − tj)(tj−1 − tj + 1)/2

by Proposition 3.4.3.
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Proposition 3.4.12. The space LT1,T2 is an irreducible smooth projective
variety. With the notation of Proposition 3.4.11, the dimension of LT1,T2 is
equal to

(3.4.7)
∑
j≥d

(tj−1 − tj + 1)(tj − tj+1) + (tk−1 − tk − 1)− (tk−2 − tk−1).

Proof. It is clear that LT1,T2 is a closed subset of the projective variety LT1×
LT2 . Since LT1,T2 has a connected cover consisting of finitely many open
subsets isomorphic to LP(T1),P(T2) and since the set

LP(T1),P(T2) := {(I1, I2) ∈ LT1,T2 : lim
t→0

(t.I1, t.I2) = (IT1 , IT2)}

is obviously connected, we need only show that LP(T1),P(T2) is a smooth
variety whose dimension is given by expression (3.4.7).

Let d̃ be the initial degree of T2; let {α0, α1, . . . , αd} (resp. {α̃0, α̃1, . . . ,
α̃d̃}) be the set of canonical generators of IT1 (resp. IT2) labelled as in
Figure 10. Let Ξs (resp. Ξ̃s) be the set of elements β in Pαs ⊂ ΓT1 (resp.
Pα̃s ⊂ ΓT2) for which the homomorphism fαs,β (resp. fα̃s,β) preserves degree
and let Ξ = {(s, β) : β ∈ Ξs} (resp. Ξ̃ = {(s, β) : β ∈ Ξ̃s}). By Proposition
3.4.8.4, LP(T1) (resp. LP(T2)) is an affine space whose point with coordinates
(as,β)(s,β)∈Ξ (resp. (ãs,β)(s,β)∈Ξ̃) represents the ideal I(as,β) (resp. I(ãs,β)).

There are three cases to consider: the case where d̃ = d < k, the case
where d̃ = d+ 1 and the case where d̃ = d = k.

Case 1. d̃ = d < k. Recall that if f0, f1, . . . , fd are the standard generators
of I(as,β), then

fs = αs +
∑

β∈P(T1)

As,ββ,

where As,β is a polynomial in the at,γ for which t ≤ s and γ ∈ Ξt; in the case
where β ∈ Ξs, As,β = as,β, and in the case where degβ 6= deg αs, As,β = 0.

To each pair consisting of a point (as,β) in LP(T1) and a (tk−1−tk−1)-tuple
(kp)tk<p<tk−1 , we associate an ideal J((as,β), (kp)) of C [x, y] as follows. If f0,
f1, . . . , fd are the standard generators of I(as,β), let J((as,β), (kp)) be the
ideal generated by the polynomials f ′0, f ′1, . . . , f

′
d, where

f ′i =



fi if i < tk,

yftk −
tk−1∑
j=tk+1

atk,αj/yfj if i = tk,

fi + kiftk if tk < i < tk−1,

fi if i ≥ tk−1.
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Writing αs as xsyls and letting ms = ls−1 − ls, we have:

Lemma 3.4.13. For tk−1 + 1 ≤ r ≤ tk−2, there is a polynomial gr in the
coordinates as,β and kp such that

ymrfr − xfr−1 = gr((as,β), (kp)) ftk mod〈f ′tk+1, . . . , f
′
r−1〉.

We will return to the proof of this lemma when we are done with proving
Proposition 3.4.12.

Define H to be the closed subvariety of LP(T1) ×Atk−1−tk−1 satisfying the
equations

(3.4.8) gr((as,β), (kp)) = 0 for tk−1 + 1 ≤ r ≤ tk−2.

We claim that if ((as,β), (kp)) lies in H, the pair of ideals (I(as,β), J((as,β),
(kp))) is in LP(T1),P(T2):
(1) It is clear that J((as,β), (kp)) is contained in I(as,β); in fact, we have

〈J((as,β), (kp)), ftk〉 = I(as,β).

Since xftk and yftk are both in J((as,β), (kp)), either J((as,β), (kp)) =
I(as,β) or J((as,β), (kp)) ∈ LT2 . (To see that xftk is in J((as,β), (kp))
requires a short argument analogous to the proof of Lemma 3.4.13.)

(2) That J((as,β), (kp)) is in LP(T2) is then a consequence of the following
lemma, which we will prove later.

Lemma 3.4.14. If ((as,β), (kp)) ∈ H,

〈f ′0, f ′1, . . . , f ′r〉 ∩
(

linear span
of P(T2)

)
= {0} for any r ≤ d.

Regarded as a point in LP(T2), the ideal J((as,β), (kp)) has coordinates
(ãs,β) specified by

ãs,β =



As,β if s < tk,

Atk,β/y −
tk−1∑
j=tk+1

Atk,αj/yAj,β if s = tk,

As,β + ksAtk,β if tk < s < tk−1 and β 6= αtk ,

ks if tk < s < tk−1 and β = αtk ,

As,β if tk−1 ≤ s.



CELLULAR DECOMPOSITIONS FOR NESTED HILBERT SCHEMES OF POINTS 85

Therefore, the locus of such pairs of ideals (I(as,β), J((as,β), (kp))) is the
closed subvariety Y of LP(T1),P(T2) ⊂ LP(T1) × LP(T2) consisting of points
whose coordinates ((as,β), (ãs,β)) satisfy the equations

gr((as,β), (ãp,αtk )) = 0 for tk−1 + 1 ≤ r ≤ tk−2,

together with the equations

(3.4.9)

ãs,β = As,β for s < tk and β ∈ Ξ̃s,

ãs,β = Atk,β/y −
tk−1∑
j=tk+1

Atk,αj/yAj,β for s = tk and β ∈ Ξ̃s,

ãs,β = As,β + ãs,αtkAtk,β for tk < s < tk−1 and β ∈ Ξ̃s r {αtk},
ãs,β = As,β for tk−1 ≤ s and β ∈ Ξ̃s.

Because the morphism from H to Y associating the pair of ideals (I(as,β),
J((as,β), (kp))) to the point ((as,β), (kp)) in H is an isomorphism, we know
that every component of Y has dimension at least

(3.4.10) dim LT1 + (tk−1 − tk − 1)− (tk−2 − tk−1).

On the other hand, by Lemma 3.4.9.2 and Lemma 3.4.10, the tangent
space at any C∗-fixed point of LT1,T2 has dimension

(3.4.11) dim LT1 + (tk−1 − tk − 1) − (tk−2 − tk−1).

Since the closure of the C∗-orbit of any point of LT1,T2 must contain one of
these fixed points, no tangent space to LT1,T2 can have a larger dimension.
This, together with (3.4.10) implies that Y = LP(T1),P(T2) is a smooth variety
whose dimension is given by expression (3.4.11). By Proposition 3.4.3.2,

dim LT1 =
∑
j≥d

(tj−1 − tj + 1)(tj − tj+1),

so (3.4.11) is equal to (3.4.7) as required.

Case 2. d̃ = d + 1. This case can only occur when d = k = tk. Hence,
(tk−1 − tk − 1)− (tk−2 − tk−1) = 0 and we are required to demonstrate that
LP(T1),P(T2) is a smooth variety whose dimension is equal to that of LT1 .

This follows because we can show as in the previous case that the pro-
jection map $ : LP(T1),P(T2) → LP(T1) is surjective and we know by Lemma
3.4.9.2 and Lemma 3.4.10 that the dimension of every tangent space to
LP(T1),P(T2) is no more than the dimension of LP(T1).
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Case 3. d̃ = d = k. Again, a similar but simpler argument to that in Case
1 shows that the projection map $ : LP(T1),P(T2) → LP(T1) is surjective with
each fibre having dimension at least tk−1 − tk. This, together with Lemma
3.4.9.2 and Lemma 3.4.10, yields

dim LP(T1),P(T2) = dim LP(T1) + (tk−1 − tk)

as needed.

Proof of Lemma 3.4.13. The procedure for obtaining the polynomial
gr((as,β), (kp)) is as follows:
(1) Write E1 = ymrfr − xfr−1 as

∑
monomials γ hγ(as,β) γ; then, eliminate

monomials divisible by αr−1 from E1 by subtracting from E1 a suitable
multiple hr−1f

′
r−1 of f ′r−1 to obtain E2 = E1 − hr−1f

′
r−1.

(2) Having obtained Ei, eliminate monomials divisible by αr−i from Ei
by subtracting from Ei a suitable multiple hr−if ′r−i of f ′r−i to obtain
Ei+1 = Ei − hr−if ′r−i.

(3) After r− tk − 1 steps, we obtain Er−tk . Er−tk lies in the linear span of
P(T1) and αtk , and satisfies

Er−tk = ymrfr − xfr−1 mod 〈f ′tk+1, . . . , f
′
r−1〉.

The process produces polynomials Gβ and g in the coordinates as,β
and kp so that

Er−tk = gftk +
∑

β∈P(T1)

Gββ.

Since Er−tk and ftk are both in I(as,β) and I(as,β)∩
(

linear span
of P(T1)

)
= {0},

the polynomials Gβ are identically zero and Er−tk = gftk .

Proof of Lemma 3.4.14. If 〈f ′0, f ′1, . . . , f ′r〉 ∩
(

linear span
of P(T2)

)
6= {0}, there must

exist some
g = ftk +

∑
deg β=k
β∈P(T1)

λββ

in the ideal generated by f ′0, f
′
1, . . . , f

′
r. This is clearly not possible if r ≤ tk

since the polynomials f ′0, f
′
1, . . . , f

′
tk

all have degrees larger than k.
We proceed to prove the lemma by induction on r. Suppose that

(i) 〈f ′0, f ′1, . . . , f ′r−1〉 ∩
(

linear span
of P(T2)

)
= {0}
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and assume for contradiction that

(ii) 〈f ′0, f ′1, . . . , f ′r〉 ∩
(

linear span
of P(T2)

)
6= {0}.

Case 1. tk < r < tk−1. For (ii) to hold, there must exist complex numbers
µs, λβ and λ such that

λftk +
∑

deg β=k
β∈P(T1)

λββ = f ′r +
r−1∑

s=tk+1

µsf
′
s.

As all terms in the above equation apart from f ′r are divisible by ylr−1 , we
have a contradiction.

Case 2. r = tk−1. The same arguments lead to a contradiction.

Case 3. tk−1 < r ≤ tk−2. For (ii) to hold, there must exist complex
numbers λβ, polynomials hs and a polynomial h of degree mr such that

ftk +
∑

deg β=k
β∈P(T1)

λββ = hf ′r +
r−1∑
s=0

hsf
′
s.

Since ylr−1 divides the left hand side of the equation as well as the sum∑r−1
s=0 hsf

′
s, it must also divide hf ′r. In particular, h = λymr and

ftk +
∑

deg β=k
β∈P(T1)

λββ = λ (ymrf ′r − xf ′r−1) + λxf ′r−1 +
r−1∑
s=0

hsf
′
s.

However, the fact that the point ((as,β), (kp)) lies in H implies that

ymrfr − xfr−1 ∈ 〈f ′0, f ′1, . . . , f ′r−1〉,
so we obtain

ftk +
∑

deg β=k
β∈P(T1)

λββ ∈ 〈f ′0, f ′1, . . . , f ′r−1〉,

contradicting (i).

Case 4. r > tk−2. Again, for (ii) to hold, there must exist polynomials h
and hs, and complex numbers λβ such that

ftk +
∑

deg β=k
β∈P(T1)

λββ = h (ymrfr − xfr−1) +
r−1∑
s=0

hsf
′
s.
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To obtain a contradiction as before, it only remains to check that

ymrfr − xfr−1 ∈ 〈ftk−1 , ftk−1+1, . . . , fr−1〉.

This can be done by using the same elimination procedure seen earlier in
the proof of Lemma 3.4.13:
(1) Write E1 = ymrfr − xfr−1.
(2) Having obtained Ei, eliminate monomials divisible by αr−i from Ei

by subtracting from Ei a suitable multiple pr−ifr−i of fr−i to obtain
Ei+1 = Ei − pr−ifr−i.

Observe that all the monomials occuring in each of the Ei lie in the (r+lr−1)th

diagonal. Since r + lr−1 < k, there are no monomials occuring in Ei which
are divisible by αj for j = 0, 1, 2, . . . , tk−1− 1. Hence, Er−tk−1+1 already lies
in the linear span of P(T1) and satisfies

Er−tk−1+1 = ymrfr − xfr−1 mod〈ftk−1 , ftk−1+1, . . . , fr−1〉.

So Er−tk−1+1 = 0 and ymrfr − xfr−1 is in 〈ftk−1 , ftk−1+1, . . . , fr−1〉 as re-
quired.

Since LT1,T2 is smooth and projective, any C∗-action on LT1,T2 induced by
one of our C∗-actions on Zn−1,n(A2, 0) gives rise to a cellular decomposition
of LT1,T2 by the theorem of Bialynicki-Birula. The cells of LT1,T2 are the
intersections of LT1,T2 with the cells of MT1,T2 .

Proposition 3.4.15. Let X be the Hilbert function stratum MT1,T2 of
Zn−1,n(A2, 0) or the related smooth projective variety LT1,T2. Then,
(1) X has a cellular decomposition; the map A∗(X) → H∗(X) is an iso-

morphism and H∗(X) is free.
(2) The Betti number b2i(MT1,T2) is equal to the cardinality of the set of

pairs of Young diagrams (Γ1,Γ2) for which

(T (Γ1), T (Γ2)) = (T1, T2) and

(n−1)−|{(u, v) ∈ Γ1 :hu,v(Γ1) ∈ {0, 1}}|+��+(Γ1,Γ2)−??+(Γ1,Γ2) = i.

(3) The Betti number b2i(LT1,T2) is equal to the cardinality of the set of
pairs of Young diagrams (Γ1,Γ2) for which

(T (Γ1), T (Γ2)) = (T1, T2) and

|{(u, v) ∈ Γ1 : hu,v(Γ1) = −1}|+ �+(Γ1,Γ2)− ?+(Γ1,Γ2) = i.
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In particular, the Euler numbers are

χ(MT1,T2) = χ(LT1,T2) = |{(Γ1,Γ2) : Γ1 ⊂ Γ2, T (Γi) = Ti}|.

Proof. This follows from Theorem 3.0.2, Lemma 3.4.9.3, Lemma 3.4.9.4,
Equation (3.4.1) and Equation (3.4.2).
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