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CATENOID-LIKE SOLUTIONS FOR THE MINIMAL
SURFACE EQUATION

Jenn-Fang Hwang

Let Ω ⊂ R2 be an unbounded domain with width of poly-
nomial growth and let u satisfy the minimal surface equation
in Ω. We find out an upper bound function for u and give an
example to illustrate that the upper bound function obtained
here is approximately optimal. In fact, the graph of the upper
bound function is a generalization of a catenoid.

1. Introduction.

Consider the minimal surface equation in R2

(1) div Tu = 0,

where
Tu =

Du√
1 + |Du|2 and Du = (ux, uy).

In 1965, Nitsche [5] announced the following result: “Let Ωα ⊂ R2 be a
sector with angle 0 < α < π. If u satisfies the minimal surface equation with
vanishing boundary value in Ωα, then u ≡ 0”. Hwang extends this result in
[3], [4] and proves that, in an unbounded domain Ω properly contained in
the half plane in R2, if u satisfies the minimal surface equation, then, the
growth property of u is determined completely by the shape of Ω and the
boundary value of u. In this respect, the Phragmén-Lindelöf theorem for
the minimal surface equation is better than that for the Laplace equation;
(indeed, if u satisfies the Laplace equation in an unbounded domain Ω, the
growth property of u cannot be determined completely by the shape of Ω
and the boundary data of u alone [8]).

One of the results in [4] is the following:

Theorem 1. Let Ωm = {(x, y) ∈ R2| − ym < x < ym, y > 0}, where m is
a constant, m ≥ 1. If u satisfies the minimal surface equation in Ωm with
vanishing boundary value, then

u ≤
√

1− 1
m

√
y2m − x2 in Ωm.
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The estimate in Theorem 1, however, is not optimal. In §2 of this pa-
per, we shall try to find out the optimal upper bound function for solutions
of (1) in Ωm. Then, in §3, we shall give an example to illustrate that the
upper bound function obtained in §2 is approximately optimal. The crucial
point of this paper is to approximate the solution of (1) in Ωm with van-
ishing boundary value by the so-called catenoid-like solutions (which will be
introduced in (3) below).

2. Catenoid-like solutions.

Henceforth, we shall denote Ωm as the domain

{(x, y) ∈ R2| − ym < x < ym, y > 0}

in R2, where m is a constant, m ≥ 1.
We first observe that the upper bound function in Theorem 1 is

u ≤
√

1− 1
m

√
y2m − x2 = ym

√
1− 1

m

√
1−

(
x

ym

)2

in Ωm.

This suggests us to consider comparison functions of the following form

(2) F = ymh

(
x

ym

)
,

or, even more generally,

(3) F = f(y)h
(

x

f(y)

)
.

For such a function F , each cross-section y = constant has a similar shape
and the graph of F is therefore a generalization of a catenoid; thus, we name
such a function F as a catenoid-like solution.

We shall proceed to show the following result:

Theorem 2. Let f ∈ C2(R+) ∩ C0(R+), where R+ = (0,∞) ⊂ R, and let
h ∈ C2((−1, 1)) ∩ C1([−1, 1]). Suppose that F = f(y)h( x

f(y)
). Then

div TF = (1 + |DF |2)−
3
2
f ′2

f

·
(

(1− p)(h− h′t)(h′2 + 1) + h′′(h2 + t2) +
h′′

(f ′)2

)
,
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where t = x
f(y)

and 1− p =
ff ′′

(f ′)2
.

Proof. By a direct calculation, we have

tx =
1

f(y)
,

ty =
−f ′(y)
f2(y)

x = −f
′(y)
f(y)

t,

and then

Fx = f(y)h′(t)tx = h′(t),

Fy = f ′(y)h(t) + f(y)h′(t)ty = f ′(y)(h(t)− h′(t)t).
Thus

Fxx = h′′(t)tx =
h′′(t)
f(y)

,

Fxy = −f
′(y)
f(y)

th′′(t),

Fyy = f ′′(y)(h(t)− th′(t)) + f ′(y)(h′(t)− th′′(t)− h′(t))
(
−f

′(y)
f(y)

t

)
= f ′′(y)(h(t)− th′(t)) +

f ′2(y)
f(y)

t2h′′(t).

Hence

Fxx + Fyy = f ′′(h− th′) +
f ′2

f
t2h′′ +

h′′

f

= (1− p)f
′2

f
(h− th′) +

f ′2

f
t2h′′ +

h′′

f

=
f ′2

f

(
(1− p)(h− th′) + t2h′′ +

h′′

f ′2

)
.

And

Fx
2Fyy − 2FxFyFxy + Fy

2Fxx

= h′2
(
f ′′(h− th′) +

f ′2

f
t2h′′

)
− 2f ′h′(h− th′)

(
−f

′

f
th′′
)

+ f ′2(h− th′)2h′′

f

= (1− p)f
′2

f
h′2(h− th′)+

f ′2

f
t2h′2h′′+2

f ′2

f
(h− th′)th′h′′+ f ′2

f
h′′(h− th′)2

=
f ′2

f
((1− p)h′2(h− th′) + h′2h′′t2 + 2h′(h− th′)th′′ + h′′(h− th′)2)

=
f ′2

f
((1− p)h′2(h− th′) + h2h′′).



94 JENN-FANG HWANG

Finally, we obtain, by adding the last two identities,

divTF = (1 + |DF |2)−
3
2 ((1 + Fx

2)Fyy − 2FxFyFxy + (1 + Fy
2)Fxx)

= (1 + |DF |2)−
3
2
f ′2

f

(
(1− p)(h− th′)(1 + h′2) + h′′(h2 + t2) +

h′′

f ′2

)
,

as desired.

In the special case where

f(y) = ym, 1 ≤ m <∞, m = a constant,

we have
p = p(f) =

1
m
,

which is also a constant; moreover, in the bracket in the expression of div TF ,
the order of growth of the term h′′

f ′2 is lower than that of the others. Thus, to
obtain an optimal comparison function, we may first consider the equation

(4)
(

1− 1
m

)
(hm − th′m)(1 + h′m

2) + h′′m(hm
2 + t2) = 0,

where the domain of definition is [−1, 1], throughout which we require that

(5) hm(t) > 0 for t ∈ (−1, 1).

We specify one of the initial conditions as

(6) hm(−1) = 0,

and now proceed to determine the other initial data h′m(−1). For this, we
note that, (4) yields

h′′m
1 + h′m

2 =
(

1− 1
m

)
th′m − hm
t2 + hm

2 ;

that is,

(tan−1 h′m)′ = −
(

1− 1
m

)(
tan−1 t

hm

)′
,

which yields

tan−1 h′m
∣∣t
0

= −
(

1− 1
m

)
tan−1 t

hm

∣∣∣∣t
0

.
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Thus, imposing an additional condition that

(7) h′m(0) = 0,

we have
tan−1 h′m = −

(
1− 1

m

)
tan−1 t

hm
,

or, equivalently,

(8) h′m(t) = − tan
((

1− 1
m

)
tan−1 t

hm

)
.

Since (5) holds for all t ∈ (−1, 1), we note, by (8) and the assumed continuity
of h, that

(9) h′m(−1) = − tan
((

1− 1
m

)(
−π

2

))
= tan

((
1− 1

m

)
π

2

)
,

which is the second initial condition of (4). We note that (7) and (8) yield

hm(−t) = hm(t),

for all t ∈ (−1, 1). Hence,

(10)


hm(1) = 0,
h′m(t) ≥ 0, for − 1 ≤ t ≤ 0,
h′m(t) ≤ 0, for 0 ≤ t ≤ 1.

From this, it follows that:

Lemma 1. hm(t2) ≤ hm(t1), whenever 0 ≤ |t1| ≤ |t2| ≤ 1.

Also, (10) yields

hm − th′m ≥ 0, for − 1 ≤ t ≤ 1,

and hence, by virtue of (4),

(11) h′′m ≤ 0, for − 1 ≤ t ≤ 1.

We may also note that, for a constant q with 1 ≤ q < m <∞, since hm and
hq are both solutions of (4) with

hm(±1) = hq(±1) = 0
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while

h′m(−1) = tan−1

((
1− 1

m

)
π

2

)
> tan−1

((
1− 1

q

)
π

2

)
= h′q(−1),

therefore

(12) hm(t) > hq(t)

for all t ∈ (−1, 1).
In general, we cannot write out explicitly a solution of the equation (8)

with initial data (6). However, for some specific m, the solution can be
explicitly written out. For example, for m = 2, we have

h2(t) =
1− t2

2
.

In case that f(y) = ey in (3), we have p(f) = 1− ff ′′

f ′2 = 0. Thus, we may
formally define m =∞ and 1

m
= 0, substituting this into (8) to obtain

(13) h∞ =
√

1− t2;

since h∞(−1) = 0 and h′∞(−1) =∞, we have

hm(t) < h∞(t)

for every t ∈ (−1, 1) and every constant 1 ≤ m < +∞.
We are now in a position to prove the following Main Theorem of this

paper.

Theorem 3. Let 1 ≤ m <∞ be a constant and let

Ω ⊂ {(x, y) ∈ R2| − aym < x < aym, y > 0},

where a is a positive constant. Let u ∈ C0(Ω̄) ∩ C2(Ω). Suppose that{
(i) div Tu ≥ 0 in Ω.
(ii) u ≤ aymhm( x

aym
) on ∂Ω.

Then
u ≤ aymhm

(
x

aym

)
in Ω.

Remark.
(i) In this theorem, no growth condition on u is imposed.
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(ii) When f(y) = ey, m =∞ and Theorem 3 still holds with aym replaced
by ey.
(Cf. [4])

Proof. For every positive constant ε, by a direct computation, we have

(14) aym ≤ a
(
y +

ε

m

)m+ε

, for every y > 0.

Set

Gε = a

(
y +

ε

m

)m+ε

hm+ε

(
x

a(y + ε
m

)m+ε

)
.

Since {
(x, y) ∈ R2| − a

(
y +

ε

m

)m+ε

< x < a

(
y +

ε

m

)m+ε

, y > 0

}
⊃ {(x, y) ∈ R2| − aym < x < aym, y > 0},

by Theorem 2, (4) and (11), we have

div TGε ≤ 0 in Ω.

Also, on the boundary ∂Ω of Ω,

u ≤ aymhm
(

x

aym

)
(by assumption)

≤ a
(
y +

ε

m

)m+ε

hm

(
x

a(y + ε
m

)m+ε

)
(by (14) and (10))

(15)

= Gε.

Moreover, by [4, Theorem 2.10],

u ≤
√

1− 1
m
aymh∞

(
x

aym

)
in Ω;

hence, by (13),

(16) u ≤
√

1− 1
m
aym in Ω.

Note that
lim
y→∞

aym

a(y + ε
m

)m+ε
= 0,



98 JENN-FANG HWANG

it is easy to see that

(17)
√

1− 1
m
aym ≤ Gε for y sufficiently large.

An application of the maximum principle, together with (15), (16), and (17),
yields that

u ≤ Gε in Ω.

Letting ε→ 0, the theorem follows immediately.

3. Examples to illustrate that the estimate in Theorem 3 is
approximately optimal.

Let m, 1 < m < ∞, be a constant. In this section, we shall construct a
solution u of the minimal surface equation in a domain Ω with

lim
y→∞

|Γy|
ym

= 2 (where Γy0 = Ω ∩ {y = y0}, |Γy| is the length of Γy)

such that
lim
y→∞

(
max

Γy

u

ym

)
= hm(0).

This shall illustrate that the estimate in Theorem 3 is approximately optimal.
The discussion will be divided into two cases seperately, namely

Case 1: +∞ > m > 1.5

Case 2: 1.5 ≥ m > 1.
We consider first:

Case 1. +∞ > m > 1.5.
Let f(y) = ym + y0.5 where y > 0.
Then

1− p(f)
(18)

=
ff ′′

f ′2

=
(ym + y0.5)(m(m− 1)ym−2 − 0.25y−1.5)

(mym−1 + 0.5y−0.5)2

=
(

1− 1
m

)
+ (f ′)−2

[
(m− 1.5)(m− 0.5)ym−1.5 − 0.5

(
1− 0.5

m

)
y−1

]
.

Let
F (x, y) = f(y)hm

(
x

f(y)

)
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where y > 0, −f(y) < x < f(y). Now, setting t = x
f(y)

, we have

divTF = (1 + |DF |2)−
3
2

(f ′)2

f

·
(

(1− p(f))(hm − th′m)(1 + h′m
2) + h′′m(t2 + hm

2) +
h′′m

(f ′)2

)
.

Hence, by (4) and (18), we have

divTF = (1 + |DF |2)−
3
2

(f ′)2

f

·
((

(f ′)−2

[
(m− 1.5)(m− 0.5)ym−1.5 − 0.5

(
1− 0.5

m

)
y−1

])
· (hm − th′m)(1 + h′m

2) +
h′′m

(f ′)2

)
.

By (4) again, we have

(1 + h′m
2)(hm − th′m) = − m

m− 1
h′′m(hm

2 + t2).

Thus

divTF = (1 + |DF |2)−
3
2

(−h′′m)
f

·
(

m

m− 1

(
(m− 1.5)(m− 0.5)ym−1.5 − 0.5

(
1− 0.5

m

)
y−1

)
(hm

2 + t2)− 1
)
.

Hence, as hm
2 + t2 is bounded below by a positive constant depending only

on m, (11) yields a positive number y1, such that

(19) divTF ≥ 0, for all y ≥ y1.

Next, let

G = f(y)hm+ε

(
x

f(y)

)
,

where ε is a positive constant. By the same calculation, we obtain

divTG = (1 + |DG|2)−
3
2

(−h′′m+ε)
f

·
((

m+ ε

(m+ ε)− 1

(
(m− 1.5)(m− 0.5)ym−1.5

− 0.5
(

1− 0.5
m

)
y−1

)
(h2
m+ε + t2)− 1

)
+

m+ ε

(m+ ε)− 1

(
1

m+ ε
− 1
m

)
(h2
m+ε + t2)(f ′)2

)
.
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Since f ′ = mym−1 + 0.5y−0.5, it is easy to see that there exists a positive
constant y2, determined by on m and ε, such that y2 > y1 and

(20) divTG ≤ 0, for all y ≥ y2.

To summarize up, we have constructed the functions F and G as the lower
and upper barriers, respectively; that is, we have

divTG ≤ 0 ≤ divTF in Ω′

G = F = 0 on ∂Ω′\{y = y2}
G ≥ F in Ω′,

where Ω′ = {(x, y) ∈ R2|− (ym+y0.5) < x < ym+y0.5, y > y2}. As Perron’s
method can be adopted here (cf. [6, p. 593-600]), this gives us a function u′

defined in Ω′ such that
divTu′ = 0 in Ω′

G ≥ u′ ≥ F in Ω′

u′ = 0 on ∂Ω′\{y = y2}.
Set

u = u′ − max
{y=y2}

u′

and
Ω′′ =

{
(x, y) ∈ Ω′|u′(x, y) > max

{y=y2}
u′, y > y2

}
.

Then u = 0 on ∂Ω′′. It is easy to see thet Ω′′ contains (0, y) for all sufficiently
large y, and Ω′′ contains {(x, y)| − ym < x < ym, y > y0} where y0 is
sufficiently large. To see that u is our desired optimal solution, it remains
to show that the behaviour of u near infinity is asymptotic to that of the
function ymhm( x

ym
). To do so, we may define

H(x, y) = (y + 1)mhm
(

x

(y + 1)m

)
+ max
{y=y2}

u′(x, y);

then, as
(y + 1)m ≥ ym + y0.5,

we have H(x, y) defined in Ω′ and H ≥ u′ on ∂Ω′. Hence, by Theorem 3,

H ≥ u′ in Ω′.

This, together with the inequality that

u′ ≥ F in Ω′
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gives us the desired estimate of the behaviour of u′ and u near the infinity.
Next, we consider

Case 2. 1.5 ≥ m > 1.
Let f(y) = ym − yβ, for all y > 0, where β = m+1

2
. Then

1− p(f)

= 1− 1
m

+ (f ′)−2

(
−(m− β − 1)(m− β)ym+β−2 − β

(
1− β

m

)
y2β−2

)
,

in which we may note that −(m− β − 1)(m− β) > 0 and m+ β − 2 > 0.
Let

F (x, y) = f(y)hm
(

x

f(y)

)
,

and

G(x, y) = f(y)hm+ε

(
x

f(y)

)
,

where ε is a positive constant. By the same reasoning as in Case 1, there
exists a positive constant y3 such that, in

Ω3 = {(x, y) ∈ R2| − f(y) < x < f(y), y > y3},

we have
divTF ≥ 0

and
divTG ≤ 0.

These again give us a function u, defined in Ω3, such that
divTu = 0 in Ω3

F ≤ u ≤ G in Ω3

u = 0 on ∂Ω3\{y = y3}.

Moreover, since ym > ym − yβ = f(y), an upper bound for u is

ymhm

(
x

ym

)
+ max
{y=y3}

u.

Thus, the function
u′ = u− max

{y=y3}
u
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is what looked for.
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