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SOME GENERALITIES ON D-MODULES IN POSITIVE
CHARACTERISTIC

MASAHARU KANEDA

After the ring theoretic study of differential operators
in positive characteristic by S.U. Chase and S.P. Smith, B.
Haastert started investigation of D-modules on smooth vari-
eties in positive characteristic, and the work of R. Bggvad
followed. The purpose of this paper is to complement some
basics for further study.

We fix an algebraically closed field ¢ of positive characteristic p. All the
varieties considered in this paper will be smooth over £ unless otherwise
specified. A celebrated theorem of A. Beilinson and J. Bernstein says that
if a variety X is D-affine, then the category of D(X)-modules is equivalent
to its local version the category of Dy-modules that are quasicoherent over
Ox. In §1 we note that the converse also holds. In §2 we will verify the base
change theorem for the direct image functor of D-modules as in characteristic
0, that will enable us to introduce a structure of &-equivariant D-module
on local cohomology modules. If & is an affine algebraic £-group acting on
a variety X, we give in §3 an infinitesimal criterion for an Ox-module to
be &-equivariant, introduce two ®&-equivariant versions of Haastert’s X>°-
modules, and show that the equivalence in characteristic 0 of the category of
Harish-Chandra (Dist(®), $)-modules to the category of quasi-®-equivariant
D¢ o-modules carries over to positive characteristic for a closed subgroup
scheme $) of &. §4 contains a few applications on the flag variety.

Notations. By Alg; (resp. Schg) we will denote the category of ¢-algebras
(resp. t-schemes). The tensor product ® without a subscript is always taken
over £. If A is a t-algebra, AMod (resp. ModA) will denote the category of
left (resp. right) A-modules. If A is commutative and if there is no need to
distinguish left and right, the category of A-modules is denoted by Mod 4. If
there are two ¢-algebra homomorphisms from A into C', one making C' into a
left A-module and the other into a right A-module, we will call C' a left (resp.
right) A-ring, and denote the category of left (resp. right) A-rings by ARng
(resp. RngA). For a t-variety X the category of quasicoherent Ox-modules
is denoted by qcx, and the category of sheaves of abelian groups on X by
Aby. If A is a sheaf of g-algebras on X, AMod will denote the category of
left A-modules replacing A by A above, and define likewise Mod.A, etc. In

103


http://nyjm.albany.edu:8000/PacJ/
http://nyjm.albany.edu:8000/PacJ/1998/v183no1.html
http://nyjm.albany.edu:8000/PacJ/1998/

104 MASAHARU KANEDA

case A = Ox, we will abbreviate Ox as X and write XMod for OxMod,
etc. The tensor product ®x will be taken over Ox. The sheaf of the ring of
differential operators on X is denoted Dy with D(X) the ring of the global
sections of Dx, and Dxqc denotes the category of left Dx-modules that are
quasicoherent over Ox. For each » € N we will denote by X" the €-variety
such that XM (A) = X(A") for each t-algebra A, where A" = A as a
ring with the E-algebra structure given by € — £7". Let §% : X — X be the
Frobenius morphism induced by the €-algebra homomorphism A — A" via
a— a” . If & is a E-group, ®Mod will denote the category of &-modules.
There should be no confusion with OgMod.

The author is grateful to B. Haastert for sending [H86], R. Bggvad for
explaining [Bg], R. Hotta for communicating a lemma, M. Kashiwara for a
suggestion, and to T. Tanisaki for consultation on the theory in characreristic
0.

§1.

In this section X will denote a smooth £-variety of dimension N. We will
employ the notations of [EGAIV, §16] unless otherwise specified.

1.1. The variety X admits a finite affine open cover (X;); with each X; étale
over the affine N-space AY. If A is an étale domain over £[AN], then A is flat
over £[AN] and

(1) Qb > A Yy in AMod.

If f:€AN] — A is the structure homomorphism and if we write ¢[AN] =
E[t1,...,tx] with indeterminates ¢;, Qi‘/é = H?IzlAdA/e z; with z; = f(t).
We call z = (z1,...,2x) a regular system of parameters on A. As A is
smooth over ¢ [EGAIV, 16.10],

gr(Paye) 22 Sy(Qaye) = Sa(A @eian) Qejanyse)

~ A @ean) Sipanyse(Qepanye)  as A is flat over ¢AY]
~ A ®@gan) gr(Pepanyse)-

Dualizing one obtains [EGAIV, 16.11]

(2) D(A) ~ A®yan D(AY)  in AMod.

In particular,

3)

D)= [ 40" = [ 0"4 with o"(z™) = <m> Z™ " Ym e NV,

neNN neNN n
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where 2z = [, 2. Also [EGAO, 21.1.7]

(4) A= [T A9z vreN,

nel0,p”—1N

where A = {a”" | a € A}. In addition to the standard filtration Diff%
there is another filtration on Dy, called the p-filtration, defined by

Dx’r = MOdO;T) (O%a Of{)a

where O ) is the sheaf of t-algebras such that Og (1) = Ox ()™ on each
open i of X [H87, 1.2]. By direct computation one checks:

Lemma. If A is an étale algebra over E[A'] with a regular parameter z,
then in D(A) for any m and r € N

(0™, 2P ] = )
0 otherwise.

. {Bm"f ifm>p"

1.2. One then obtains

Proposition ([MN, 1.2.2]). For each r € N the sheaf of ¢-algebras Dx ,
is generated by Diff% ~!in both XRng and RngX.

1.3. Let 2 be another smooth ¢-variety of dimension L, and let px (resp.
Py) : X X¢Q — X (resp. ) be the natural projection. We will suppress
tin X x¢ Y. If M € Mody and N' € Mody), we will write M KN for

(PEM) @zxgp (PyN).

Proposition. There is a natural isomorphism Dx X Dygy — Dxyy under
which

> Diffs ®Diff}, ~Diffy,y and Dx, R Dy, ~ Dxxy,. Vn €N,
i+j=n-+1

where X is taken with respect to the left Ox (resp. Oy)-module structure on
Dx (resp. Dy).

Proof. If 4 (resp. U) is an affine open of X (resp. 2)), then I'(l x T, Dy, K
D@,r) ~ Dr(ﬂ) X DT(QT) and F(il X Q], IDxXQJJ‘) ~ MOd(E[ﬂ]@E[‘U])(” (E[ﬂ] &®
E[Y], (U] @ ¢[Y]) for each r € N. The natural maps D,.(U) ® D.(0) —
Mod ¢jgjermy e (B[] @ E[T], U] @ €[V]) glue together to yield a morphism
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Dx, XDy, — Dxxy,. Then by taking the direct limits one obtains a
morphism in (X x 9)Rng

To see the assertions about the morphism (1), the question being local we
may assume that both X and 9) are affine and étale over A} and Af, respec-
tively, equipped with a regular system of parameters x on A = Ox(X) and
y on C = Oy(2). The assertion about the p-filtrations is immediate from
(1.1.4). One has (cf. [EGAIV, 16.4.23]) an isomorphism (Q}, ,, ® B) ® (A®
Q) — Lagpe in Modagp via

(da®b,d @dV)— (1®b)da®1)+ (' ®1)d(1®V).

Hence (x®1,1®y) = (z;®1,1®y;); ; forms a regular system of parameters
on A ® B. Then for each u,v € N¥ and p,q € NV

(0" @ oP)(x* ©y?) = (Z) (g) X7y,

hence 9% ® 9P +— O“P) under the morphism (1). Consequently one obtains
the isomorphisms with respect to the standard filtrations.

1.4. By [HS87, 1.3.3, 5]
(1) Dy is not noetherian but coherent in DxMod,

hence a left Dg-module of finite presentation type is coherent over Dx. As
Dy is Ox-quasicoherent, any Dx-coherent module belongs to Dxqc. By
[BVI, 2.1]

(2) Dxqc has enough injectives.

The following lemma was kindly communicated from Hotta R.

1.5.
Lemma. An injective of Dxqc remains injective in XMod, hence flasque.

Proof. Let 7 be an injective of Dxqc. We first show that 7 is injective in
Xqc. Given f € Modx(M,Z) and a mono j € Modx(M,N), Dx Qx j €
DxMod(Dx ®@x M, Dx ®x N) remains monic as Dy is locally free in ModX.
Then there is f € DxMod(Dx ®x N, ) such that fo (Dx ®xj) = Dx®xf :
d@m +— om. If 1y € Modx(M,Dx @x M) is the natural imbedding and
likewise jnr, then

f=(Dx&xf)orm = fo(Dx®xj)otm=fouoj,
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hence 7 is injective in Xqc. Next, as X is noetherian, by [RD, I1.7.18]

(1) there is J € Xqc, that is injective in ¥Mod,
and a mono : € XMod(Z, J).

Then ¢ has a left inverse / € XMod(J,Z). Given h € XMod(M',T)
and a mono j € XMod(M’,N’), there is b’ € XMod(N’, J) such that
h'oy =10h, hence v oh' o) =+ o10h = h. Thus Z remains injective in

XMod. O

1.6. One says X is D-affine iff for each M € Dxqc the following two con-

ditions hold: (i) The natural morphism Dx ®px) M(X) — M is epic, and

(ii) H'(X, M) =0 Vi > 0. The celebrated Beilinson-Bernstein local-global

principle says

(1) if X is D-affine, then I'(%X,?) : Dxqc — D(X)Mod is an equivalence
of categories with quasi-inverse Dx®p(x)?.

The equivalence is called the Beilinson-Bernstein correspondence. Con-
versely,

Proposition. If the Beilinson-Bernstein correspondence holds on X, then
X is D-affine.

Proof. Let M € Dxqc. If M = M(X) and M — I  is an injective resolution
in D(X)Mod, then Dx®px)M — Dx®px)! remains an injective resolution
in Dxqc, hence
H' (X, M) ~ H (X, Dx ®px) M) ~ H(I'(X,Dx @py ') by (1.5)
~ HY(I)
=0 fori>0.

§2.

In this section f € Sche(X,2)) will denote a morphism from a smooth ¢-
variety X of dimension N to another smooth #-variety ) of dimension L.

2.1. By a theorem of Kleiman [H, Ex. II1.6.8]

(1) any coherent Ox-module is the quotient of a locally free Ox-module

of finite rank.



108 MASAHARU KANEDA

In case X is affine, by [C, Th. 3.5, [Sm, Th. 3.7
(2) gldimD(%X) = dim X.
As Dy is coherent, one obtains as in characteristic 0 (cf. [TH, Prop. 1.1.4.3]):

Proposition. The category Dxqc has enough locally free objects. More
precisely, each M € Dxqc admits a resolution

0O—-MNs o MM - M—0
in Dxqc with M~ locally free, i € [0,n — 1], M™N locally projective, and

N =dimX. If M is coherent over Dx, one could take all M* coherent over
Dx.

2.2. The inverse image functor f° : Dyqc — Dxqc is defined by ¥ =
Di_, Qj-1p,, 1?7 with Dj_, = "Dy = Ox ®j-10, "Dy € DxModf 'Dy.
Haastert [H86, 3.6.1], however, gave another definition using the 9>°-module
structure. If M € Dyqc, then (M™),cy with

M) = MOdog)(Om’ Og)) XDy , M

forms a projective system of 9> -module [H87, 2.2.3]. Let {" € Schy (X",
®(r)> with f(r)(A) = f(A(f’")) for each A € Alg, so that f(r) oFy = 33) o f.
Then

(1) (f* (M), forms an X>-module,

hence lim(F%)*(§)* (M) carries a structure of Dxqc such that Dy, acts

r

on (F%)* () (M®™) 2= Ox @, §7* (M) by the operation on Ox.

Proposition.  If M € Dyqc, then lim(F%)* (") (M) ~ Ds_, Q-ip,
§7M in Dxqc, hence the two deﬁmtz‘or:s agree.

Proof. 1t is enough to show

(2) (%) (1) (MY) ~ Dy, &-1p,,, f'M  in Dy, Mod

where Dj_, , = {*(Dy,-). One has in XMod

(3) (B2) (1) (MY) = § (Fy) (M) = M = Dy, @1y, M.
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To check that the composite isomorphism is Dy ,-equivariant, we may as-
sume X and Q) are both affine. If A = Ox(X), C = 09(2), and if M =
M(%), then the isomorphisms (3) read

AR g A R MOdC(T}(C, C(T)) QD,.(C) M Zl ac; 1@ x; ®m

I I

A Rc M a®@m
MOdC(T‘) (Ca A) ®Dr(C) M Mo @M,

where 3, ¢; ® x; — ide under the bijection C' ®cey Modgo (C,CM) ~
D,(C), and p, is the multplication by a.

If o€ D.(A),thend->,ac; @1 @ x; @m =>,0(ac;) ® 1 ® x; ® m while
d- (fta ®m) = (6 0 p1,) ® m, hence we must check >, ft5(ae;) © Xi = 0 © i in
Modqin (C, A). If ¢ € C, then

Z(Mé(m) oxi)(c) = 25(301‘))(1'(0) = Zé(aCiXi(C)) =4 (aZCiXi(C)>
= d(ac) = (0o py)(c),
as desired. -

2.3. Let wy = ANQy )y, wy = A"Qy ,,, and set

Dj =" (Dy @y wy') @x wx = (Dj—. ®j-1p,, | (Dy By wy')) Ox wx.

The module D;._ carries a structure of f ' Dy ModDyx [H88, 7.1]. To describe
the structure locally, let U (resp. 4 C §7'U) be an affine open of 9 (resp. X)
étale over A} (resp. AY), and let D;_. = D;_ (4). If we take i and U small
enough that Dj_ (L) may be identified with D;_, as ¢-linear spaces, then

(1) 8100y =063007, 6, € D(D),8, € D), 0 € Dy,

using the structure of DxModf Dy on D;_,, where * : D(U) — D(4) is an
involutive antiautomorphism of ¢-algebras such that > a,0" —
S(=DMoray, an € A= Ox(Y), In| = XN, n; [H88, 5.5]. More explicitly, if
Di_., =D, (4) and D;_, = Dy, (4) with Dy, = §(Dy,, @y wy') ®xwx
and if C' = Oy (V), then D;._ ,. can be identified with D;_, , >~ Modcw (C, A)
as €-linear spaces with the D, (C)ModD, (A)-structure given by

(2) 51 -0 - (52 = 5; ofo 5; V(Sl € DT(C),(sg S DT(A),O S MOdc(r)(C, A)
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Both D, (C) and D, (A) are invariant under * by (1.2). Hence if M € Dxqc,
D;. ®@p, M carries a structure of left f~'Dgy-module. Define a morphism
of ringed spaces fo : (X, 'Dy) — (2, Dy) via N +— f.N. Then the direct
image of M under f is defined by fo(Dj— ®p, M). If one defines fo, :
(X, 'Dy.,) — (Y, Dy, likewise, then fo(Dj— @p, M) ~ limfy,, (Dj—» Qp, .

M). As each fo,.(Ds—, ®p,, M) is Oy -quasicoherent, hence also Oy-
quasicoherent [H88, 3.1],

(3) fo(Dj— ®p, M) € Dyqc.

One then defines the derived direct image functor by

/f = (Rfo) o L(Ds_®p,?) : D’(Dxqc) — D’(Dyqc),

where D® denotes the bounded derived category. There is a simplification
due to [H88, 1.2] that

(4) D;_, is flat in DxyMod,
hence also [H88, 7.2]
(5) D;. is flat in ModDx.

Consequently,

(©) [ = B (Den,?),

To see that ff actually lands in Db(D@qc), however, seems to the present
author to require as in [BVI, 5.1] a spectral sequence argument and J. Bern-
stein’s theorem [BVI, 2.10] that if D} (DxMod) is the derived category of
bounded complexes of left Dy-modules with Ox-quasicoherent cohomlogies,
then

(7) the imbedding of Dxqc into DxMod induces an equivalence
D’(Dxqc) — D .(DxMod).

As we will need the argument in the proof of the base change theorem, let
us recall the spectral sequence from [BVI, 5.1].

2.4. Let U = {X; | i € I} be a finite affine open covering of X. We
number I, and for each J = (ig,...,%,) € I""" with iy < --- < 4, let
Xy = M_oXy, iy 0 X; — X, and f; = foi;. If Ais a sheaf of abelian
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groups on X, let A — .7-'; be a flasque resolution, and for each t € N let
Ft — C(U,F") be the Cech resolution of F* [H, II.4]. Then from the
double complex f.C" (U, F") = [1,, f.C*(U, F') one obtains:

Lemma. If A is a sheaf of abelian groups on X, there is a spectral sequence

Ey' = I ®RGDIAlx) = (RE)A).

|J|=s+1

2.5. Just like on gcx one has (cf. [TH, Th. 1.1.8.2]):

Proposition (Base change). Given a cartesian square

IxXx 2, x

- |

IxY) — 9
by

one has on D’(Dxqc)

p%o/f:(Lp%)o/f:/sxfo(w%):/sxfo(p%).

Proof. As px is flat, Lp% ~ p%, and likewise for py. Let M € Dxqc. Take a
locally free resolution £ — M in Dxqc and a finite affine open cover (X;);
of X such that L' |, is free for all t € {0, —1} and ¢ € I. As D;._ is flat in
ModDy, the sequence Ds._ ®p, L — Dj_ ®@p, M remains exact. By the
choice of the resolution (Dj_ ®p, L") |x,~ [[D;,— for t € {0,—1}, hence

(1) (Dj— ®p, M) |x, comes equipped with a structure of

right Ox-quasicoherent module.

As f7'DyMod has enough injectives, that are flasque (cf. [G, I1.7.1]), one
can compute R fo with flasques, hence by (1) and Serre’s theorem one obtains
from (2.4) a spectral sequence

(2)
Bt {HJ|—5+1(fJ)o((Df<— ®p, M) |x,) =11, J{, My ift=0
! 0

otherwise

= (Rfo)(Dj— ®p, M),
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where M ; = M |%,. One then obtains

3) M= H(

and likewise

0
/MJ,
fg

|J|=s+1

0

(4) BETOR (HH I pmwn) .

As p, is exact, the isomorphism (3) induces

(5) p%(/f/\/o (H p@(/f/\/l>)

|J|=s+1
Moreover, for t € {0,—1} one has in Mod3yx,

(6)
D3ty ey, 0%, (L' [x,) = [[ P3xs,— ©pymp,, (O3 B Dx,)

~ [[(D3 ® Dy, ) @p:p; O3z, = [[(O3 KDy, ),

using the right Ox,-module structure on Ds,_ to form XD; .. Then for
each r € N one obtains in D3,q ,Mod

(7) (3 % §7)ob%, (D5, —r) = 0y (F7)0(Ds, ),

hence in D3,yMod

0
(8) /3 P, (€' x,) =~ [T lm(3  f2)op, (Dy,—)

Xf

0
~ T iet )0 (Dy, ) > B [ (€ [x)
T J
As Dsyxj,— is flat in ModDsxx,, Dixj,— @ps,o, p% (L |x,) —
D3xjy @Dsyyx, ngJ(MJ) remains exact, hence Djyj, @y, ., ngJ(MJ)
comes equipped with a structure of right O3« x ,-quasicoherent module. Then
f;xf‘] p% (L |x,) — f;xf‘] p% , (M,) is still exact by Serre’s theorem, and like-

wise p, ffoj(ﬁ' x,) = pY ffoj M ;. Hence

0 0

Xfg
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The assertion now follows from (4) and (5). O

2.6. Ifj:X — 9 is an open immersion,
(1) D,.~D, and D, ~D, bothin DxModDx,

where D% is Dy in Abyx but the DxyModDx-structure given by the formula
(2.3.1). Hence:

Proposition. If { is an open immersion, then L’ ~ =1 and Ji = Rio.

2.7. Assume f is étale. As an open immersion is étale, for the local study
of f we may assume both X and 2) are affine. Thus let A = Ox(X) and C' =
Oy (D). If (2i)1<i<n is a regular system of parameters on C, then (f°(z;));
forms one on A and the isomorphism (1.1.2) generalizes to an isomorphism
in AMod

(1) A®cD(C) — D(A) via a® 0f — ady,
where 0% € D(A) (resp. 92 € D(C)) are as defined in (1.1.3).

Proposition. Assume §: X — 9) is an étale morphism of affine varieties
with A = Ox(X) and C = Oy().
(i) For each r € N the bijection (1) induces an A-module isomorphism

A®c D (C) = Dr(A) via a® [(cam)] — al(*(cam))];

where D,(A) (resp. D.(C)) is identified with the p"™ x p™N matriz
algebra over A" (resp. CM). Hence another induced map D(f°) :
D(C) — D(A) such that cOp — §°(c)0% is a t-algebra homomorphism.

(i) If M € Dzxqc, then (f] M)(Y) ~ M(X) in D(C)Mod with D(C)
acting on M(X) via D(§°).

Proof. Define A®¢ D, (f°) € AMod(A®c D,.(C), D,.(A))* via a® [(cam)] —
a[(f°(cam))]- If t € NN take r > 0 that 9% € D,.(C). As 9§ is determined
by the evaluations at z", n < t, if €5, € D,(C) with €S (z') = 6mz®, then

(2) ot € Z tz]ed .

n,me(0,p" —1]N

Then (A ®@c D.(f°))(0%) = 0%, hence lim(A ®¢ D, (f°)) coincides with the
map (1), and (i) follows. Also we obtain a bijection Dj._ , ~¥ A®¢c D,(C) ~
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D, (A), under which the D, (C)ModD, (A)-structure on D;._ , is transferred
to D,.(A) such that

3) (cOg) - 8-0a=040080(=1)"MI55(c) = 63 000 (F°(c)03)".

Then in D, (C)Mod

0
</f M) () = D, ®@p,(a) M(X) =~ M(X)
with D,(C) acting on M(X) on the RHS by D,.(°), hence (ii) by taking the
direct limit. u

2.8. Assume in this subsection that { is a closed immersion. Put M =
L—-N =dim%Q — dimX. We will examine D;_, and D;_ locally but in an
invariant manner using a Koszul complex. Thus let U be an affine open of )
admitting a regular system of parameters z = (21,..., 2n+m) on C = Oy (V)
such that I = (2x41,.--,2v+m) < C with Ox(f10) ~ C/I, and that
(#1,...,2x) induces a regular system of parameters on A = C'/I. One has
then a commutative diagram of short exact sequences

(1)

0 —— A®c (I/I?) — A®cQb, —— Q) ——0

| | |
0 —— Hil\i1AZN+i —_— H?I:I_MAdczi _— H?I:1AdAZi — 0

with 2y i — do 2n 4. Let Dy, = D;. (§7'Y) ~ A®c D(C). The left D(A)-
module structure on Dj_, is given by the A-algebra homomorphism such that

(2) o — 1®0™0,

As A &Rc D(C) =A Rc HneNNvmeNM Ca(“*m) ~ D(A) & HmeNM Eé)(o’"‘),

(3) D;_, is locally free in Dxqc.

The Koszul resolution A'(I[)L, Cde zx4i) — A defined by the C-regular
sequence z = (2z1,...,2x+wm) [M, p. 127] induces a free resolution of D;_, in
ModD(C)

i=1
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Note that
(5) (de 2N +i)1<i<m is unique up to GLy(C) in Qlc/e.

If M € Dyqc with M = M(D),

M
(6) T D, (Lf°)(M)) ~ Dy @poy M = N <Hgdc 2N +¢> ® M,

i=1

that is by (5) independent of the choice of the parameters, hence these can
be glued together to give a description of (L{%)(M).

Turning to Dj_ = D;_ ('), that is D;_, ~ A®c D(C) ~ D(A) ®
[Lner 80©™ with the D(C)ModD(A)-structure twisted by *, one has

(7) Dy~ ][] 0™ @ D(A) in ModD(A) via 6" ® 0 «— 9 ® 0,

meNM

with D(A) acting on the right hand side by the right regular action on D(A).
In particular,

(8) D;._ is locally free in ModDx.

Also D;._ admits a Koszul resolution in D(C)Mod

i=1

As f is a closed immersion, f, is exact on Aby, hence

(10) /: (Rfo) o (Dj—®p,?) =~ fo(D;—®p,7), that is exact.
f

2.9. Assume f is still a closed immersion. Define f* : Dyqc — Dxqc via
M — (7 'Dy)Mod(D;_, M) [H88, 8.12/8.3]. We have as in [TH, Prop.
[.1.5.2]:

Proposition. Assume f is a closed immersion.
(i) [H87, 8.4, 8.12] If D%qc is the full subcategory of Dyqc consisting of
the objects with support in X, then f+ |D§§qC 1s right adjoint to ffo, hence
left exact.

(ii) On D*(Dyqc) Rt =~ (L{°)[dim X — dim Q).
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Proof. (ii) Let M € Dyqc. If M — T is an injective resolution in Dgqc
and if '7° — J° an injective resolution in f 'DyMod [G, Th. 11.7.1.1],
one obtains, as f~! is exact, an injective resolution {*M — J . Then in the
notation of (2.7), as J'|;-1y remains an injective resolution of ' M|;-19 in
- 1DyMod,

L(i'0, (Rf")(M)) =~ (f ' Dy)Mod(D;._|j-15, T |j-10)

i=1

M
~ MOdg (/\ (Hfdc ZN+i> ,M)

i=1

M
~ N <HEdC zNH) ® M[dim X — dim Q)]

i=1

~ (7', (L) (M))[dim X — dim Q).

Taking the cohomology, the end composite isomorphism is invariant under
the change of the parameters (2.8.5), hence the assertion. u

2.10. Let 3; D 32 be two closed subsets of X. Define I'5, : Aby — Abx by
s, (A)(V) = {a € A(D) | supp(a) C 3;}, A € Abx, U open of X, i = 1,2,
and set I's, /3, = I's3,/I'3,, ie, I's,/3,(A) = I'5,(A)/I'3,(A). Kempf [Ke]
defined the cohomology sheaf 3, /5 (A) using the Godement resolution of A.
As T3, /3, is exact on flasques [Ke, 8.5.c, f] and as the Godement resolution
is a flasque resolution, however,

(1) H:31/32 ~ R I‘31/32 on Abx
If A — F is a flasque resolution, one obtains from a short exact sequence
0— F32 (A) — PBl(A) — F31/32 (A) — 0

an exact triangle [Gr, 4.10, 5.10]
) . N 1
F32(f) - F:‘Sl(f) - F31/32(f) —
hence an exact triangle
(2) RT,, — RT,, — RT,, /5, -  on D’(Aby).
If 3 is a closed subset of X and if j : X\ 3 — X, by [Ke, 8.2]

(3) x5 ~j.J~" on flasques,



D-MODULES IN POSITIVE CHARACTERISTIC 117

hence

(4) RTx/3 =R = (Rj.)i™

as j—! sends flasques to flasques, and one obtains an exact triangle

1

() RT3 —id — (Rj.)i™ — .

In particular, RT3 sends D’(Aby) to itself by Grothendieck’s vanishing
theorem applied to the long exact sequence induced by (5), hence also from
(2) one obtains

(6) RT3, /5, : D(Aby) — D°(Aby).

As an injective of Dxqc is flasque by (1.5) and as f] ~ Rjo on D’(Dxqc),
one obtains exact triangles on D’(Dxqc)

1]

(7) RT3, — RT3, — RTI'3,3, 1,
and
(8) RT3 —id — [0t 2,

j

that are compatible with the triangles (2) and (5), respectively, under the
forgetful functors.

2.11.

Lemma. Iff is a closed immersion, one has on D’(Dxqc)

RIly ~ /fo(L f)[dim X — dim 9)].

Proof. If f, = Mod(§'Dy)(Dj—,f'?) : qcDy — qcDx, one has by
[H8S8, 8.10]
(1) e olx  on qcDy.

rgt

As §t ~ {f£,(? @9 wy )} ®x wx' on Dyqe by [H88, 8.12], transferring (1) to
Dy qc reads ft =~ ft o 'y, hence by Kashiwara’s equivalence [H88, 8.13]

0 0
Iy ~ / of oy ~ / of* on Dyqc.
f f
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Then on D’(Dyqc)

Rrx:RUfoﬁ)

~

0
~ (R/ > oRft asf" sends injectives to injectives by (2.8.10, 2.9.i)
f

:/fo(Lfo)[dim%—dim@] by (2.9.ii).

O

2.12. Together with (2.5) one obtains from (2.11) as in [TH, Th. 1.1.8.2]:

Theorem (Base change). Given a cartesian square

3 XQ)EE SLLE N X

Sl

35 —9

g
with all X, Y, 3, 3 X9 X smooth varieties over ¥,

(Lgo)o/[dimﬁ—l—dim%—dimQJ]2/ o(L7})[dim 3 xg X].
7

3
2.13.

Example. Assume f is a closed immersion, and set

0
ZSXVD CiuK‘(Ox ::fo(l)ﬂ—can C)x).

Locally, in the notation of (2.7), one has isomorphisms in D(C)Mod
(1)
D ®pay A~ (A®c D(C)) @pa) A
~ {(C/I) ®c D(C)} ®pay A

{ /ZZNH }®D<A> {D(A)/ > D(A)a“}

neNN

~ D(C {25“0 )+ZZN+1‘D(C)}
SANTICTEES W

12
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with the last bijection induced from 6 +— 6* on D(C), hence the D(C')-action
on the last term is the one induced by the left regular action.

Consider, more concretely, the case f : AN — AY ™™ defined by the pro-
jection €[z1,...,2n4m] — €[2z1,...,2x], and let T = (2x41,...,28+M). By
(2.8.6)

M
F(AE, (L fo)(OAIE\I‘FI\/I)) ~ N\ (H E[ANJFM] dZN_;,_,L‘) N
i=1
hence for each r € Z

EAN] ifr=0

0 otherwise,

F<AE,<LTﬁ>a9Ag+M>>::{
that reads in D AN +MC

OAIE\I lfTZO

0 otherwise.

(2) amwgpw:{
Then in DAIJ +MC

(3) 0
Buyn = [ (LF)(Op0)

~ [ ) M)

~ HM (/f(L i~ M](OA§+M)) as /fO is exact and by (2.8.10)
~ HY (R4 (Opym)) by (2.11)
~ RY Ty (Ovor) & H (Ove).

Likewise from (3)

(4) XIE\I(OAII:T-%—M) ~ Ri FAIE\T(OAIE\I-%—M) =0 wunlessi=M.

§3.

In this section & will denote an affine algebraic €-group and £[®] the associ-
ated Hopf algebra with the comultiplication Ay, the augmentation ideal mg
and the antipode os. We do not have to assume & to be connected.

3.1. Let Jg be the kernel of the multiplication ¢[&] ® £[&] — ¢[&], and set
Py =6 ®t[6]/Is™, n € N. We will regard £[6] ® €[] as £[®]-algebra via
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a— a®1, and likewise Pg. If [ € Sche(® x &, & x &)* via (z,y) — (x,zy),
then the associated ¢-algebra automorphism [© : ¢[&] @ ¢[8] — ¢[&] @ ¢[&] is
given by a ® b — aAg(b). Then (cf. [Sp, 3.3.2])

(1) [O(jg) = E[@] ® meg,
hence [° induces for each n € N a ¢[®]-algebra isomorphism
(2) [ Py — t6] @ (¢6]/m")

such that if n > m, there is induced a commutative diagram of ¢[®]-algebras

©

Py —— 6] @ (¢[6]/mg")

l l

Py —— 6] @ (¢[6]/mg™)

o
[’ITL

with the natural vertical homomorphisms.

3.2. TFor each n € N let Dist,(8) = {u € €6]* | p(mi™) = 0} and
Dist(®) = U, Dist,(®) the algebra of distributions of &. If §s : & —
&) is the r-th Frobenius morphism on &, let &, = ker(F%) with £[®,] =
b[&]/(a? | a € mg). If A, = E[&]Mod(I°, £[®]) one obtains a commutative
diagram of ¢[®]-modules

£[6] ® Dist, (&) —— Diff?,

l l
I I

£[6] ® Dist(6,) —— D,(6)

with the vertical maps being inclusions and the bijective horizontal maps
given by a ® u — (a ® pu) o Ag. Moreover, if one defines a G-action on
D(®) by (z6)(a) = §(azx)x™! with ax = a(z?), z € & and a € €[&], and if
D'"(®) ={§ € D(®) | z§ = § Vo € &}, then the middle horizontal bijection
in (1) induces a t-algebra isomorphsm (cf. [DG, 11.4.6.5])

(2) Dist(®) — D'(®).

For our purposes, however, it is more convenient to work with v € Sch(® x
&, 6 x B)* via (z,y) — (z,yz) in place of [ in (3.1) to obtain:
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3.3.

Proposition. For each v € N there is a commutative diagram of €[®]-

modules
¢[®] ® Dist,. () —— Diff,

l l

£[®] ® Dist(®) (®)

I

RN D
€[6] ® Dist(®,) —— D, (&)

with the wvertical arrows being inclusions and the horizontal ones bijective
given by a @ p— a(p ® €[&]) o Ag. If D'8(B) = {§ € D(&) | dx = Vz €
&} with (6x)(a) = 27 '8(za) and xa = a(?x) Ya € €[B], then the middle
horizontal bijection induces a €-algebra isomorphism Dist(®)? — D& ().

3.4. Let a € Schy(® x X,X) be a group action of ® on a smooth variety
X. We will call such a triple (&, X, a) a &-variety, and denote the category
of B-varieties by Sch?. A ®-equivariant Ox-module is a pair (M, ¢) of
M € gcx and ¢ € Modgxx(a* M, piM)* such that the diagram

(multxX)*¢
-

(mult x X)*a* M (mult x X)*pi M

| |

(1) (& x a)*a* M PoxxPeM
(®xa)*o Tpéxw
B BM e M

commutes, where the p’s are the projections and * indicates that ¢ is invert-
ible. A morphism f : (M, dpp) — (N, ¢n) of G-equivariant Ox-modules is
a morphism f : M — N of Ox-modules such that ¢ oa*f = p5fodam. We
will denote the category of &-equivariant Ox-modules by (&, X)qc.

If (M, ¢) € (6,X)qc and if ix : X — & X X via z +— (e, x), one obtains a
commutative diagram

(2) M —22 i M.

>~ <
M
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If @’ € Schy(®& x X, 8 x X)* such that (g,x) — (g, gx), then
(3) a=pxoda.
As px and pe«x are both affine and flat and as o’ is invertible,
(4) a, mult x X, and & x a are all affine and flat.
In particular,

(5) all pk, a*, and py. o, (mult x X)*, (& x a)* are exact

on Modj; and Modgx, respectively.

Then for any f € (&, X)qc, both ker f and coker f belong to (&, X)qc, hence

(6) (8, X)qc is an abelian category.

If we define the category D% (qcx) to consist of all pairs (M-, ¢) of M" €
D’(qcx) and ¢ € D(qcgxz)(a* M, pi M) * such that the diagram (1) com-
mutes in D’(qcgxx) with M replacing M. If (M',¢) € Db (qcy), each
H'(M), i € Z, carries by (6) a structure of (&, X)qc. Hence

(7) D°((&,%)qc) is equivalent to D% (qcz) under the forgetful functor
with quasi-inverse (M, ¢) — (H' (M), H (¢)).

3.5. Let f € Sche(X%,9), M € Modx, N € Mody), and § € Mod(N, f.M).
Slightly extending the definition of [DG, I1.4.5.1] we say a pair (f,0) is a &
deviation of order < n, n € N, iff

{ad(ap) ...ad(a,)}0(4) =0 Va; € Oy(Ll), Y open of ),

where ad(a;)0(U) = a;0(U) — 6(U)a;. In particular (cf. DG, 11.4.5.4, 5],
[EGALV, 16.8.3)),

(1) the set of t-deviations of order < n for f =idx and N'= M is just
Difty (M) = Dift ,(M, M).

Also if ¢ : ¢ — & is the unit section, then [DG, 11.4.6.2]

(2) Dist,(®) may be identified with the set of all deviations (eg, 1)
with 4 € Mod(Os, (€6)+O.) of order < n.
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Now let (M, ) € (&,%)qc and ¢ € Modx(M, a.pi M) the adjoint of
¢. Then (a,¢) is a deviation of order 0. Let i} € Schy(%,¢ x X)* induced
by ix and let M’ = (i%).M. Then (i}, idyy : M — (i%).M) is also a
deviation of order 0. If ;1 € Dist,,(®), define a deviation (g X X : ¢ x X —
G XX p@M: piM — (eg x X). M) of order 0 [DG, 11.4.5.11] by the

commutative diagram

(h@M) (S xYU)
_—

(PxM)(& x 1) ((ee x X),M')(6 x 1)

(3) | K

el o MU) —— M(8h).

HRM(LL)
Then the composite deviation
4) )
(idy =ao(eg X X) oiy,au(es X X).(idpy) cau(p@ M) o p: M — M)

is of order < n [DG, I1.4.6.3]. On the other hand, for n € N let U, (¢e) =
Gpe(E[B8]/mp™), en ¢ Vo(e) — &, a, = ao (g, x X) : Vy,(e) x X — X,
Prn = Pxo (e, x X) : V,(e) x X — X the projection, ¢, = (e, X X)*¢ :
aM — p%; M, and bn 2 M — (an)sb% M the adjoint of ¢,. Define
¢’ : Dist(®) — Mod,(M, M) by the commutative diagram

VAT M
(5) &ml T/L@M
()P M —— (E[G] /™) & M
for p € Dist,(®) and m > n, that is independent of the choice of m. If

€on 1 ¢ — U, (e) is the inclusion and if we define a deviation (¢, X X, y@M :
piM — (g0.n X X).M') as in (3), then

(6) ¢ (1) = (an).(n® M) 0

under the identification of (a,).(g0., X X).M’ with M, and the composite
deviation (idx = a,, o (g9, X X) 0i%, ¢'(1)) coincides with the deviation (4),
hence ¢'(n) € Diffx(M).

3.6.

Proposition. If (M, ¢) € (&,X)qc, the t-linear map ¢’ of (3.5.2) induces
a t-algebra homomorphism Dist(®)°? — Diffx (M), still denoted ¢', under
which

Dist,.(®)°? — Diff’% (M)
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and

Dist(®,)°* — D,(M) = Mod ,» (M, M) VreN.

Proof. The assertion that ¢’ induces a €-algebra homomorphism follows from
the commutative diagrams (3.4.1, 2). To see the last assertion, let p €
Dist(®,.), M = M(LU), & an affine open of X, and C' = Ox (). We must
show

¢ (W )(” m) = " ¢'(p)(W)(m) VYee Candm e M.

As &, is infinitesimal, the action a induces an action a, : &, x { — . If
i, : 8, - & and j: Y4 — X are two inclusions and if v, is the adjoint of
(i, X j)*¢, then

¢ (L) (W) = (1@ M) o (44).

Also (eg, x U)° 0 a? = idey) with eg, the unit section of &,, hence one can
write

Cl?(C) :1®c+2ai®ci, a; Gm@E[Qﬁr],Ci eC.
If ), () (m) = 32, b; @ my, by € E[®,], m; € M, then

U ()(” m) = (i, x§)"9)(&, x W(aX (") @ m) = ij ® " m;

asal =0, hence ¢/ () (U) (e m) = 32, u(by)e” m; = & ¢ (1) (&) (m). O

3.7. Conversely,

Lemma (infinitesimal test). Assume M € qcy is of finite type or locally
free. Let ¢ € Modx(a* M, piM)*. If ¢’ induces a t-algebra homomorphism
Dist(®)°? — Mod¢(M,, M,) at each x € X(¢), i.e., each M, is a &°P-
module for all r € N compatibly, then the diagram (3.4.1) commutes, hence
defines a structure of (&,%X)qc on M. If & is transitive on X, one has only
to test the criterion at arbitrary one point of X(€).

Proof. We will show that the diagram (3.4.1) commutes at each point
(91,92, %) € B(F) x &(8) x X(E) :

(1) (p§¢)(gl,ga,z) = (p§¢)(91g927m) © (pi(b)(ghgz,x) :

O®X®><3€,(g1ygz,96) ®OI,9192$ M91921 - O®X®X3€,(91,927w) X0x,. M.,
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where p; = & X a, po = mult x X, and p3s = psxx. For that it is enough by
Krull’s intersection theorem [M, Th. 8.9, 10] to show the equality under the
natural surjection

O x6x2,(g1,000) D0x.. Mo = {O6x6x2,(91,02.0)/ Mgy 9901} Q0. Mo ¥r €N,

where mz;fgw) is the maximal ideal of Ogyexx,(g,,95,2)- For simplicity put
A = £[8], and let U be an affine open neighbourhood of z in X, C' = Ox (L),
B, (g;) = Gpe(A/m/ ™) with m; = ker g; € Max(A), and m the maximal ideal
of O, (41) %0, (92) %41, (g1.92.2)- Then

r—4+1 ~ —r+1
O6x6xx,(91,92,0)/ Mgy g.2) = OB(91) % B0 (92)x s (g1,92,2) /T -

Hence, if i% : U,.(g;) — & and j : 4 — X are inclusions, the equality (1) will
follow from

(2) {07 X2 X 3) P30} (g1.g0.m) = L X4 X 5)"((p50) © (919)) } (g1 .90.0)

But i¥ =i, 0g; " ifi, =i¢ and if g; : V,(e) — V,(g:) is the translation by
gi- Asi x i xj = (i, xi, xj)o(g;" xgs' xU) and as g;* x g5 " x U :
U, (g1) X V.(g2) x 4 — V,.(e) x V,.(e) x U is invertible, we may assume
g1 = g2 = e in (2). Let as, = ao(ia, Xj), px2r = Pxoiz,, and o, = (iz, Xj)* .
If we define p; ., 1 <14 < 3, by the commutative diagrams

G xBxX P, BxXx

irxi,.ij Txm.xj

U,.(e) x Vy(e) x th —— Yy, (e) x YU,

then the equality (2) reads
(3) (p;r¢2’l")(€,€’x) = (pg,r¢2r)(e’e,z) © (pirgf)%")(e,e,z) :
(p;,.a;./\/i)(e,e,x) - (p;,rp;eer)(e,e,I)v

that in turn will follow from

(4)  (93,02,)(Ty(e) X Dy (e) x U)
= (p3,¢2,) (T (€) x V() x ) © (p7 ;. P2,) (Vs (e) X V.. (e) x L)

As both sides are ¢[U,.(e) x U, (e) x U]-linear, we have only to verify (4) after
composing with the natural homomorphism

() M(U) — (p3,05, M) (T, (e) x Ty (e) x U).
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Let ¢, : M — (a,).p% M be the adjoint of ¢,, M = M(L), Ay, = 9, (L) :
M — (A/my™) @ M, and define likewise Ay, from ¢o,. If i,.9, : U,.(e) —
s, (e) is the inclusion and if Ag, : A/m2Z ™" — (A/mpM) @ (A/mi"") is the
t-algebra homomorphism induced by the multiplication U, (e) x U,(e) —
Vs, (e), the LHS (resp. RHS) of (4) composed with (5) reads (if,, ® Ap,) 0
Apror (resp. (Ag, @ M) o Aya,). But from the hypothesis one has

{(iS,QT®AM,T)OA1M,2T}®CC’J¢:{(Aﬁ,r®M>OAM,2r}®CCx at each T € %(E),

hence (i9,, ® Any) 0 Apror = (Ae,r @ M) 0 Ay, as desired.
Assume finally that & is transitive on X. If the hypothesis is verified at
z € X(8) and if gz = z, g € B(¥), then the equality (3) will follow from

(T (e) x By (e) X )", P2r = (Vr(€) X Vy(e) x g)"{(p3,b2r) 0 (P] ,P2r) }

as the translation is invertible, hence the assertion from the hypothesis at

. O

3.8. In the set-up of (3.4) we say (M, ¢) is a B-equivariant Dyx-module iff
M € Dxqc and ¢ € DgyxxMod(a® M, ph M)*. We will denote the category
of B-equivariant Dyx-modules by (&,Dx)gc. As a and px are both flat,
La® = a° and Lp% = p%. We have as in characteristic 0 (cf. [Sa, §1]).

Proposition. Let f € Schy (%,9).

(i) L{°:D’(Dyqc) — D’ (Dxqc) sends D'((&, Dy)qce) to D’((&, Dx)qc).
(ii) J; : D'(Dxqc) — D*(Dyqc) sends D'((®, Dx)qc) to D’((6, Dy)qc).
(iii) If 31 2 32 are two G-invariant closed subsets of X, RI's, /3,

D’(Dxqc) — D’ (Dxqc) preserves D°((&, Dx)qc).

Proof. (i) An application of the base change theorem (2.12) to the cartesian
square

@X.’{L%

ol )

GExY — 9

2

yibelds ag o fi = [y, 00%. Likewise p, obff ~ g oPy- Hence for (M, ) €
D’((&, X)qc) one can define QSLM. € D’(Dexypac)(ay [; M, py [ M')* by
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the commutative diagram

¢

M-

J
M e M

M | [

f@xf GM — feﬁxfp%M.'

Q,’quﬁ/w

The cocyclicity (3.4.1) of ¢ fr . follows likewise.

iii) As ax = px o ay with a/; invertible, one has by [Ke, 11.5

x x

(2) Cl; © P31/32 = F®><31/®><32 o Cl% on D%qc
Also from [Ke, 11.5]
(3) p%, hence also a%, sends flasques to I3, /6 x3,-acyclics.
Hence on D’ (Dxqc)
Cl% ORF31/32 = RF®X31/®X32 anx and pox ORF31/32 = RF®X31/Q§><32 Op%’

and the assertion follows as in (ii). u

3.9. If X is affine, X is D-affine by Serre’s theorem, and the equivariant
version of Beilinson-Bernstein’s local-global principle carries over. Thus let
(&, D(X))Mod be the category whose objects are simultaneously &-modules
and D(X)-modules such that (i) the two Dist(®)°P-actions on M induced
by the ®-module structure and the D(X)-module structure coincide, i.e.,
if Ayy: M — M ® ¢[®] is the -module structure on M, then with ¢ :
Dist(®)°? — D(X) of (3.6) and transposition 7 : M ® ¢[&] — ¢[&] @ M

(@ M)oToAy =¢' (1) Yu € Dist(8),
and that (ii) Vo € D(X), g € & and m € M, g(dm) = (gd)(gm).
Proposition (cf. [Bg, Prop. 4.5]). If X is affine, there is an equivalence of
categories (&, Dx)qc — (&, D(X))Mod via M +— M(X) with quasi-inverse
M — (Dx ®px) M, ¢) such that (& x X) €

D(& x X)Mod((¢[®& x X],a°) @) D(X) @p(x) M,
(E[& x X],p°) @z D(X) @p(x) M)
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is induced by the left €[&]-comodule map T o Ay 2 M — 8B @ M.

3.10.

Remark. If X is not affine, the proposition implies for each affine open U
of X and for each infinitesimal subgroup &, of &, r € N, that there is an
equivalence

(8,,Dy)qe — (&,, D(U))Mod.

3.11. If X is a G-variety, Ox is naturally equipped with a structure of
(8, Dx)qc, hence also R' T3, /3,(Ox) for each i € N and two closed subsets
31 2 3 0of X

Using either the standard filtration or the p-filtration, one can equip Dy
with a structure of (®,X)qc as follows. Let Ay : X — X x X be the
diagonal immersion, Jx the ideal sheaf of the closed subvariety im(Ax) in
Xx X, Xa, = (|imAx|, Oxxx/I%™") the n-th infinitesimal neighbourhood
of im(Ax), and p;, = p;oinc: Xa,, — X, i =1,2, with p; : X x X — X the
i-th projection. By [EGAIV, 16.7.1.1]

(1) Py = (p1,n)«p5,0%.

As im(Ay) is &-invariant, so is Xa ,, hence p;, are both G-equivariant.
Then P% inherits a structure of (&, X)qc from Ox. As Py is locally free of
finite rank in XMod, one has

a*Dfo?g ~ Q*MOd;{(Pg, O;{) >~ MOd@X}j(a*P;, G*Ox)

and likewise with p%. Hence from the structure morphism ¢»» one can define
a structure of (&, X)qc on Diffy by the composite

Mode x(pxPy: oy ) © Modexx(¢py, 0" Ox) :
Modegyx(a"Py,a"Ox) — Modexx(p3 Py, pxOx).

Then lim¢p; s makes Dy into a G-equivariant Ox-module. Equivalently,

one could define a structure of (&, X)qc on Dy . ~ Modx ((F%)* (§%)«Ox, Ox)
[H87, 1.2.6] by the composite

MOd@xx(p;(%ge)*(srx)*Oxa ¢Ogg) o MOdQﬁxaE((z)(_;glg)*(gg)*oxa a*ox)a

and take lim¢p, . Unfortunately,

(2) ¢p, is not Dgyx-equivariant, hence (Dx, ¢p.) ¢ (&, Dx)qc.
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Explicitly, let us consider ¢p,, on &, x i, r € N, U affine open of X. Let
G, ©,) L X, 0, = a0 (i), pr = pro(ix), @ = ((ix])* do,)(®, x
0, B = (i % 1) by - (570.00)(Br % 1), (@,8) = (i x )6, ) (G, x ),
A =¢[6,], and C = ¢U]. Then & : (AR C,a2) ®c C — A® C is given
by a ® b® ¢ — (a ® b)a2(c), hence &' : (A ® C" a%) @con C — (A ®
C,p2) @cn C by a®@b®c+— Y aa; ®b® ¢; if a2(c) = Y a; ® ¢;. Then
(@)t :a®b®cr— Y ao(a;) @ b® ¢; with o the antipode of A, hence
(@,®): (A C,a°) ®¢c D, (C) — (A® C,p°) @c D,(C) is given by

fr— (0®@f)oa)=(mult® C)o(c® f)oa)

upon identification of (A ® C,a°) ®c D,(C) (resp. (A ® C,p°) ®¢c D,(C))
with D,.(C, A® C). In particular, the °P-action on D,.(C) is given by

(x-0)(c) =z(0(x 'c)), x€®,,cecC,

where the RHS is written with respect to the ®¢P-action on C given by
e = (x®@C)oa(c)in R Cif v € &,.(R), R € Alg,. If §; ® 05 €
D,(®,)® D,(C) = D,(A% C), then

{o®((61®d2) 0 f)} o a¥(c) = Y o(ai)(d1 ® b2) f(c:)

while

(62 8,) 0 (00 f) 0 a2(c) = 3(61 @ ) (0 () £ (c2).
Hence ¢p, , is only Og X Dy ,-linear, i.e., Dy is a quasi-&-equivariant Dx-
module [Ka, 4.7]. We will denote the category of quasi-B-equivariant Dx-
modules by (&, Dx)qqc.

Nevertheless, in [Bg, Prop. 4.5] it is proved that if X = G/B is a flag
variety with G semisimple and if M is a D(X)-module such that the induced
Dist(G)°P-action on M lifts to make a G°P-module, then Dy ® p(x) M admits
a structure of (G, Dx)qc.

3.12. Resume the notation of (2.2). We define two equivariant versions of
X>°-modules, categories (&,X*)qc and (&,X>°)qqc of B-equivariant X>°-
modules and quasi-®-equivariant X*°-modules, respectively.

Definition. A &-equivariant X*°-module is a projective system
(MT) ")), e of X*®-module (M ™), such that

(1) (MO, 60) € (80, x)qe

and that for each r € N the structure morphism 7,1, € Mod ¢+ (MU+D,
x

M) of the projective system (M), induces an isomorphism

(2) (’);’”) ® i+ MO M@ i (80, X)) g,
x
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i.e., identifying X" with (X, Og)) the composite

(ﬂ<7'))*(0¥)®o(r+1) Yr41,r)
x

(O(T))* (Og) ®Og€r+1> M(T+1))
)\ * T ¢(T) )\ * T
(a®) (M) 2= (p) (M ™)
is equal in Mod g x) to the composite
My (o) (r+1)
(CL ) (036 ®0¥+1) M )

= (@) Fro (M) gy (@) (MOD)

k4 (¢(7‘+1)) e
Floxx)® (pge+ ))* (MU+D)

= () (0 @ppen M)

(& xx)(™)

(Pglx *(Og)®o(r+1)’yr+1,r)
x

(p))" (M)

A quasi-B-equivariant X>*-module is a projective system (N ¢,),.cy of
X*°-module (N(™), such that

3) W, 6,) € (8,X7)qc

and that for each r the structure morphism 7,,,, : N+ — N of the
projective system (N (T))T induces an isomorphism

(4) O @ posn N — N in (6, 7)qc,
x

ie.,ifa, =a® oy x X)) and p, = p¢ o (Fo x X)) : & x XM — x0),
the composite

(a7~)*(0¥)®o(r+1) Nrt1,r)
x

(a,)" (OF @ M)
(8,)" (W) 2 (p,) (M)
is equal in Modg 3 to the composite
()" (OF) @pirsn NUFD) 2 (8 X Frn) (ar4) (WD)
(BXF ()" (Br41) (Q5 y 3x<r>)*(lﬂr+1)*(/\/(r+l))
= (p,)* (Og) Do N“““))

(p'r)* (Og)@o(r-f—l)'rh'ﬁ»lm)
x

(p,)" (N).
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3.13. If (M, ¢) € (&, Dx)qc, then by the Cartier-Chase-Smith equivalence
[H87, 2.2.1] with M) = Mod) (Ox, OF)) @p, . M
x

(™) (MD) = Modye) (Oexx, Oglx) @pas, (Foxe) (a7) (M)
= MOdog;x(Oeﬁx% 0g)) DD, 0 (F) (M)
~ Modgy) (Osxx; Og)x) @pe s, M,
and likewise
(L)) (M) = Mod) (O O8)x) B, BEM.
Under these identifications define
67 € Modyyy ((a7)"(M™), (b)) (M))"
to be Modog;x((’)@xx,(’)glx) ®pgrr, ¢ Then (MM ¢M), forms a &-
equivariant X*°-module. To check the condition (3.12.2), recall that
(1) oY), Bogy ./\/lodogig(oqsxxv 0g77) ODgx i £
~ Mody (Osxx, OF) %) @ v, L YL € Dgyxqc

as applying Og« x®o<®r>x 3€? on both sides yields an isomorphism and as Ogxx

is faithfully flat over O%) .. One then obtains a commutative diagram

~

(@) (0F) @gran M) —— (a)" (M)
(@) (M) S Modyo) (Oexx, Og)x) @D, 8" M

J{Mod o (Osxx, Oglx)

o@x%

)

S7 »
(©xx)() & XX

* (r+1)

5 ey @ >l
* +1)\* ~ s ' *
Broyn (0L T0)7 (MOHD) —>Modoglr(omx,oglx)®%XM piEM

zl lz
(P?)*(Og) ®O£€r+1) M(TJrl)) 7) (pg))*(/\/l“)).
If (va) € (®7Dx)qq0, then
a*(N(T))

T

~ Mody, 000 (06 B O2, 06 BOY) @oymp, . (& x F5) a:(N)
~ MOdO@&Og:) <O® IE Ox, O@ & O¥)> ®O@®'D3¢’r a*N
~ {(’)@ X MOdog) ((’)35, (’)g))} Roerpr, AN,
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and likewise
pN) 2 {00 B Mody (Ox, 0F)} @ompe, PEN-

Hence one can define ¢, € Mod,, 5, (ar(N),pr(N))* from . Then

(N 1) forms a quasi-B-equivariant X(-module. Hence [H87, 2.2.4] is
now refined to:

Theorem. Let C(X>°) be the category of X°°-modules. The equivalence of
categories Dxqc — C(X*) via M — (M), induces upon restriction two
equivalences (&,Dx)gc — (&, X>)qc and (&, Dx)qqc — (&, X°)qqc.

3.14. Assume & is connected and reduced. Let $) be a closed subgroup
scheme of & so that the quotient &/$) is a &-variety via the multiplication
from the left. For M € HMod let Lg,5(M) be the Og,g-module associated
to M [J, 1.5]. It is well-known that

(1) Leg/s defines a functor HMod — (&, B/9H)qc, that is an equivalence
with quasi-inverse M — M(e) =t ®o,, ,, . M..

Let (Dist(®), $)Mod be the category of Harish-Chandra (Dist(®), ))-modu-
les [H87, 4.3.8], that are the same as ¢-linear spaces equipped with a struc-
ture of compatible &, $-modules, r € N. We can generalize [H87, 4.3.7/9]
as in characteristic 0 [Ka, Th. 4.10.2] to:

Theorem. The functor Lg/s induces upon restriction an equivalence of
categories

(Dist(®), H)Mod — (8, Dg,5)aqc.
In particular, Le;s(Dist(®) Qpist(sn) £) ~ Do/ in (8, De/5)qqc.

Proof. Put X = 8/9, L = L&/, and denote the G-action on X by a. Let
a, = a® o (Fn x X)) and p, = p§) o (% x X)) : & x X" — X, We will
identify X" with & /®,.$ via the commutative diagram

X S x(r)

H [

&/H —— 6/6,.9,

qr

where ¢, : /9 — &/&,.9 is the quotient morphism.
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If M € (Dist(®), 5)Mod, let ¢, : aLe 0, 5(M) — p*Leoo, o(M) be the
structure morphism of Lg /s, (M) in (&, X)gc. Then (Le/s, (M), ¢r), €
(8, X>)qqc.

On the other hand, if M € (6,Dx)qqc with a structure morphism ¢,
then (M ¢,), € (6,X>)qc by (3.13). Hence for each € N one has in
MOdg

EQ0,, Me 2 @0y, Oxe O (MD)e 2 E@p0) (M),
~ ¢ ®O¥) (’)?e ®Og~+1> (M(TJrl))e-
We may regard (M), ¢,), € (6,6/6,9)qc. If &, =g, 066 : ¢ — B/6,.H
and if we let &,9 act on e trivially, then (£,)*(M")) ~ ¢ ®, 0 (M),
X,e
admits a structure of &,$-module as &, is &,9H-equivariant. Moreover,
Erp1 = Qi1 0 & With g, 41 1 /8,9 — &/6,,19 the quotient morphism,

hence
(Erg1) (MTHD) ~ (£,)°(MD)  in &,HMod.

Then M(e) = ¢ ®o, , M. comes equipped with a structure of &,$-module
compatibly with respect to r € N, and the first assertion follows.
To see the second assertion, recall that

Dist(®) @pisi(s) & ~ lim Dist(®8,.) @pisy(s,) € in Dist(&)Mod

and that (cf. [J, 1.8.15, 8.20])
(2) Dist(®,) ®pisi(s,) £~ (indg"?€)*  in &,HMod.
We have isomorphisms in Mod 4

(3) Dxp ~ Mod ) (Ox, Ox) ~ Modx((§%)"(8%)+Ox, Ox)

~ Modz (q;(4,)+Ox, Ox) =~ Modx(L(ind5™ £), Ox)

~ L((indg " €)").
It is enough to show that the composite isomorphism of (3) belongs to
Dx-Mod and also to (&,X)qc. The questions being local, let 4 be an
affine open of &/6,9, U = g, 'U and W = 7 'Y with 7, : & — &/8,.9 the
quotient morphism. Both 4’ and U remain affine. Recall an isomorphism
(cf. [J, 1.5.18.5])

T(8L, (q,).0x) = E[UW]" — Sche(W, indg" " (€))®?
=T(Y, Lo/o,5(indg(£)))



134 MASAHARU KANEDA

via a +— a such that

(4) a(z) = a(z?) € Sche(®,9,8)° =indg (), =z e,
and another (cf. [K95, 1.8]) for each &,$-module Q
() L(B, 0L /6,5(Q)) = U] Ryuers Sche(W, Q)%

— Schy (W, Q)" =T(T, L(Q))
via a ® f — af. Hence on ¥ the composite (3) sends
0 € Schy(W,indg"(£)*)° = L((indg"” €)*) ()
to 0 = (0,7) € D, ([t]°) with (0, a) € €[W]?, a € E{W]?, such that
(6) (0,a)(x) = (0(x), a(x)), @ €.
The Dy ,-module structure on £((inds"” €)*) is given on U by
a® fr—8(a)®f, actW]?, feSche(tl, (indg™” €))%, 5 € D, ((U]°)
under the identification (5), hence by af +— d(a)f. Then we must show
(7) (6(a)f)” =doaf in D(¢el]”).
If b € ¢[U']® and = € Y, then

{(6(a) 1) ()}(@) = (3(a) £, b) (2) =

while

hence (7), and the composite (3) belongs to Dy ,.Mod.

To see next that the composite belongs to (&, X)qc, it suffices to show by
(3.7) that the composite is Dist(®,)°P-equivariant on U for each s € N, i.e.,
the composite yields

(8) L((indg"" £)*)(V) ~ Dx, (V) in &Mod.
The assertion will follow from:
3.15.

Lemma. Let M € $Mod.
(i) Lese,s(indg™® M)~ (q,).Lo/s(M) in (6,6/6,9)qc.
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(i) Le/s(indg™® M) =~ q:(q,).Lo/n(M) in (6,8/9)qe.

Proof. We carry over the notations of the previous section. By taking direct
limit we may assume M is finite dimensional. Then the question being local,
we have by (3.7) only to show for all s € N

(1) T(8 Lojos(ndS (M) = DL, (4,).£(M)) in 6Mod
and

(2) ['(W, L(indg™"(M))) ~ T(D, q:(q,).L(M)) in *Mod.
But in (1) we have an isomorphism in $%*Mod

T(U, Lo/e,5(indg " (M))) = Sche (8, indg"? (M))®°
— Schy (W, M) =T(4U, (q,).L(M))

via f +— evyrof with evyy : ind?fﬁ(M) — M the evaluation at e. Likewise

(2) using (1). |

§4.

In this section X will denote a flag variety G/B with G a simply connected
semisimple €-group and B a Borel subgroup of G. Let T be a maximal
torus of B, W = Ng(T')/T the Weyl group, B* the Borel subgroup of G
opposite to B, and U* the unipotent radical of B*. For all other unexplained
standard notations we refer to [J].

4.1. Fixw € W. In X let X, = UTwB/B, X,, the closure of X, 0X,, =
Xo \ X0, My = wUTB/B, iy, : Xy — Ny, and j, : N, — X. Then N, is
an affne open of X, and X, = X, NN, of codimension £(w), the length of
w, in N,,. f *UT = wUtw™" and U} = *UT NU", there is a commutative

diagram of ¢-varieties
vt — M,

I I

ur —— %,
with the vertical arrows being inclusions and the horizontal ones ivertible
given by ¢ — zwB. Let Z,, be the ideal sheaf of X, in 91,,. We have as in
characteristic 0:

Proposition. Let ¢ = {(w) and B} = (wBTw™')N B*.
(i) OnD’(Dxqc) RIs,px, ~ (u)ooRTx, 0in! = [ . L(j,oiw)[—4].
In particular, if M € D*((B*, Dx)qc), RI% jpx, M) = [ o L(wo
1,)2(M)[—£] in D"((B*, Dx)qe).
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(i) OnD’(Abx) RTsx, oRIx px, =0.
(iii) In (B*,Dx)qc Vs €N,

. [0 Ox,  ifs={
H?w/axw (Ox) ~ {OJw w X

(iv) (cf. [Bg, Prop. 4.7].) In (B}, Dx)qc
Mo oz, (Ox) I, = My, (Om,) = B,

X /0%y

and in (B}, D(M,))Mod

otherwise.

Bz, ., (M) =~ {D(N,,)/(D(N,) Dist " (U;}) + D(MNy) Loy (M)} © Lo
~ E[UF] @ Dist(U) @ €y

In particular,

1

¢
ch H}Tu/axw (X,0%) = e(w-0) H T ol ) )’

a€ERt

where ch is the formal character of the T-module in question obtained
from the T°P-module by inversion on T.

(v) (cf. [Bo, Prop. 4.7].) If L(w) = Dx{H%, . (X,0x)w0}, then

X /0%
supp (H%u/axw ((935)> = X, = supp(L(w)) and
supp (Ha— ¢ (Ox)/L(w)) C X,

Proof. Let j, : M, — X\ 90X, and j; : X\ 9X,, — X be two inclusions.
(i) On flasques of Aby
(1) T oz, = (5)«0Tx, 0 (j5) " by [Ke, 8.3]
~ (ju)s o Tx, 0 (ju)~' by excision [Ke, 7.9],

hence on D’(Dxqc)

RIs;ox,
~ R(ju)ooRTx, oR(j,") as both T'y, and j,' send flasques to flasques
~ (ju)oo RTx, 0j,' by Serre’s theorem as j,, is affine

~ (oo [ LE)=goiy by (2.11)

w

~ L(jw 0iw)’[—4] by (2.6).

JwOlw
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(ii) By (i), as (;). o 'z, o (j5) " sends flasques to flasques,
RTGx, © RFﬁ/o%w ~ R(T'px, © (j5)« o Tx, © G)7Y).

As Tox, 0 (53)s 0Ty, o (j5) ! is left exact and as any sheaf of abelian groups
can be imbedded in a flasque sheaf, it is enough to show that I'yx, o ()« ©
Tz, o (j,)~" = 0 on flasques. But on flasques the LHS is I'x, o 'z 52, by
(1). If F is a flasque sheaf, the short exact sequence

0 — Iox, (F) — FH(}—) - Fﬁ/axw(]‘—) — 0
remains exact after applying 'y, as I'yx, (F) is flasque. Then

lox, o Txpox, (F) = Doz, (P (F))/Tozx,, (Fax, (F)) = 0.

(iii) As j,, is affine and as i,, is a closed immersion, both (j,)o and (i, )o
are exact, hence [ .= (ju)o © (iw)o(Di,—®py,?) is exact. Then
0

L (G0 1))(O0x) = [ L (G 01)") (Ox)

jwOlw

M, (O2) = [

Jw Olay
By (2.13)
Oxw ifs=/

0 otherwise.

L™ ((uw 0 10)")(0x) = L* (i3 )(On,,) = {
(iv) By (i), (iii) and as j,, is affine, one has in (B}, Dx)qc

Mo jox, (Ox) = (w)o © Hy, (Ox) = (ju)o / Ox, ~ (u)o(Bx,m, )

Identifying D(M,,) with D(U}) ® D(U,;) ~ €U} ® Dist(U}) ® ¢U, ] ®
Dist(U,, ) one has in D(9,,)Mod
By, ., (Nw) ~ D(N,) /{D(N,,) Dist™ (U}) + D(N,)Z,(Nw)} by (2.13)
~ ¢[U.f] ® Dist(U,,).
On the other hand, we know from [Ke, Lem. 12.8]
1
ch Hi (X,0%) =e(w-0) H _
TLEZT —e(—
’ aERT 1 6( Oé)
As ch¢[UT| @ Dist(U,, ) = [Tacn+ ﬁa we must have by the affine version

of the Beilinson-Bernstein correspondence (3.9)

B, o, (M) ~ ¢US] @ Dist(U,,) ® (w-0) in (B}, D(MN,))Mod.
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(v) Consider the image of idy,, in
D(M,)/{D(M,) Dist ™ (U;) + D(O,) Ty (M)} = Hi o, (X, Ox)-

As Dy, /{Dx, Dist" (U}) + Dn,Zu} |x,= Do, /D, Dist*(U}) |x, and as
idy,, is a global section of Hae oy (Ox),

supp (Hgﬁ,/axw(of)) D X,,

hence supp(H4—, .. (Ox)) = X, by [Ke, Lem. 9.3]. Asidy, has weight w-0

X /0%
and as dimHs—, . (%, 0x)w.0 = 1, idy, € T'(X, L(w)), hence supp(L(w)) =

anc ELE
X, also. Finally, as

Lw) o, = Mz o, (02)] o { s o, (02)/L£(w)}

=0,

N

hence

supp (Hx 1o, (Ox) /£(w)) C X, \ My =X,

4.2.
Remark. In [Bg, Th. 4.6] Begvad goes on to show

L(w) = SOC(BﬂDx)qCHae /Xy, (Ox)

and that any simple of (B*, Dx)qc with support X, is isomorphic to £(w).
Hence [BBIII, Prop. 2.7] carries over to positive characteristic except that
(cf. [K90])

ng oz, (X5 Ox) # {Dist(G) ®pist(s) (—(w - 0))}*  in Dist(G)Mod,

where x denotes the weightwise dual.

4.3. From [H87, 4.4.1] we know
(1) any M € Dxqc is generated by the global sections over Oy.

Then (cf. [Ka, Th. 1.4.1]) the following three statements are equivalent:
(i) X is D-affine,
(ii) for any ample £ € Mody if r > 0, the natural morphism Dy ®x
(L2 ® LZ (X)) — Dy splits in Aby,

(iii) there is an ample £ € Mody such that if » > 0, the morphism of (ii)
splits in Abg.
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If we write £ = L(A) = Lg (), A € Grpe(B, GL;), the morphism of (ii) is
obtained from the commutative diagram in (G, Dx)qqc

Dx @x {L(—rN) @ H'(r\)} —— Dy

(2) zl lz
L(Dist(G) Qpist(p) —TA ® H°(r\)) —— L(Dist(G) ®pist(B) £),
where H’(r\) = L(r\)(X) and the bottom horizontal morphism is induced
from the B-homomorphism —rA ® ev,y : —rA @ H(r\) — € with ev,, :
H°(rA) — r) the evaluation at e.
In characteristic 0 [BB] finds (cf. [Ka, Th. 6.3.1]) that in (2)
(3) Dist(G) ®pist(p) —TA ® HO(T)\) — Dist(G) ®pise(p) € splits in BMod,

the statement (ii) is equivalent, given £ and r, to the statement that

(4) if s > 0, the natural morphism Dy ®x {L¥ " ® LZ(X)} — Dx.s
splits in Aby.

If £ = L£(\), the morphism is obtained from the commutative diagram in
(G7 Dx,s)qqc

Dx.. @x L(—r)\) @ H(r)\) —_— Dz,
(5) L(Zy(rA)* @ H(r))) L(Z,(¥)")

s(E
L(Z,((2(p" = 1)p—rX) @ H'(rX))) —— L(Z,(2(p" — 1)p)),

where Z, = ind%°? and the bottom horizontal morphism is induced from the
G, B-homomorphism 8(s, 7)) : Z,((2(p° — 1)p — rA) @ H(rA)) — Z,(2(p® —
1)p), that in turn is induced from the B-homomorphism (2(p®* —1)p —r\) ®
even : (2(p° — 1)p —7A) @ H(rA) — 2(p° — 1)p.

Unfortunately, we find already in SL, that

(6) O(s, (p" —1)p), s € N, does not split in BMod.
Nevertheless, we can show

(7) ido, € T(X,L(0(r + 1, (p" — 1)p))),
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and hence G/B is D-affine in SL,. More generally, Haastert has proved by
different arguments [H87, 3.2, 4.5.4] that all P{, n € N, and the flag variety
in SL3 are D-affine.

[EGAO]

[EGAIV]
[H86]

[H87]
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NOTE: THE EQUATION NUMBERS IN SECTIONS 2.1, 3.1, AND 4.1 OF THE PAPER VERSION
WERE INCORRECT. IN ADDITION, REFERENCES TO (2.7.x) HAVE BEEN CHANGED TO
(2.8.x) FOR = > 5, (2.8.i) HAS BEEN CHANGED TO (2.9.i) IN LINE —2 OF (2.11), AND
CORRECTIONS HAVE BEEN MADE IN LINE 1 OF (2.4), IN THE PARAGRAPH AFTER 2.5.8, IN
LINE 2 OF (2.7) PROPOSITION, IN THE SECOND TERM OF (2.7.3), AND IN (2.9.i).



