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GEOMETRIC REALIZATIONS OF REPRESENTATIONS OF
FINITE LENGTH II

Charles H. Conley

Let G = H×sRn be a semidirect product Lie group, let O be
a locally closed orbit of H in the dual of Rn, and let S be the
subgroup of H stabilizing some point of O. Suppose that U is a
representation of length n+1 of G, such that every irreducible
representation in the composition series of U is associated to
the orbit O and a finite dimensional representation of S by
the Mackey machine. We prove that if H is a real linear
algebraic group, S is an algebraic subgroup of H, and all finite
dimensional representations of S are rational, then U may
be realized as a subquotient of the canonical representation
of G in the space of functions on the nth-order infinitesimal
neighborhood of O in its ambient vector space, taking values
in some finite dimensional representation of H.

0. Introduction.

In this paper we complete the program of finding geometric realizations of
indecomposable representations of real semidirect product Lie groups, begun
in [3], [4], and [5]. Fix a semidirect product Lie group G = H ×s A formed
by a real Lie group H acting linearly on a real vector group A, and assume
that the orbits of the dual action of H on A∗ are locally closed. Given
such an orbit O, let p0 be a point of O and let S be the (closed) subgroup
of H stabilizing p0. Given any representation σ of S in a finite dimensional
complex vector space V , let IndHS σ be the representation ofH induced by σ in
the space C∞c (O : H×SV ) of smooth compactly supported sections of the H-
vector bundle over O associated to V . For any element p of A∗, let eip denote
the one dimensional representation of A with character a 7→ exp i〈a, p〉, and
note that σ⊗eip0 is a representation of the inhomogeneous stabilizer S×sA in
the space V , because S stabilizes p0. We will study representations of finite
length of G having a topologically split composition series of representations
of the form IndGSA(σ ⊗ eip0), and we will always view this representation as
acting in the space C∞c (O : H ×S V ), where the action of H is the induced
one and the action of a ∈ A is multiplication by the restriction to O of the
character function ξa : A∗ → C defined by ξa(p) = exp i〈a, p〉.
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Guichardet has proven that there are no indecomposable representations
of G of this type having in their composition series representations associated
to more than one orbit [6], and so we may restrict our attention to the
category ExtGO of smooth topologically split representations of G whose
composition series elements are all induced from the stabilizer of a fixed
orbit O. This category is precisely defined in Section 1.

Rideau was the first to discover that not all representations in ExtGO are
induced, because the elements of H may act by differential operators above
their action on the orbit O, instead of by bundle maps above their action
on O as for induced representations [8]. Thus there arose the problem of
describing these representations in some general way, analogous to the de-
scription of the irreducible representations given by the Mackey machine, to
which this paper gives a solution: assuming that H is a real linear algebraic
group, S is an algebraic subgroup of H, and all finite dimensional represen-
tations of S are rational, we prove that any representation in ExtGO may be
realized as a subquotient of the canonical representation of G in the space
of smooth compactly supported functions on an infinitesimal neighborhood
of O in the ambient space A∗, taking values in a finite dimensional represen-
tation of H. As far as we know, the first example of such a realization was
given by Cassinelli, Truini, and Varadarajan in [2].

We remark that in [7] Guichardet gives a complete solution to the general
problem posed by Rideau, in the case that the tangent bundle TO of the
orbit admits an H-covariant complement in the untwisted bundle O × A∗:
here all representations in ExtGO are induced. In the case of the Poincare
group, only the light cones fail to satisfy this criterion; it was these orbits
which Rideau originally studied.

Our results are organized as follows. In Section 1 we recall the definitions
of ExtGO and functions on infinitesimal neighborhoods from [5], state our
main result, show that it follows from Section 2 and our earlier papers, and
treat the example of the Poincare group. In Section 2 we recall from [5]
the definition of representations of the infinitesimal neighborhood of S in
H, or “representations of S∞,” and in the case that S ⊂ H are algebraic
matrix groups we prove that any representation of S∞ may be realized as a
subquotient of the restriction of a representation of H.

We would like to thank V.S. Varadarajan for leading us to this problem,
David Witte and Bruce Crauder for helpful discussions, and Oklahoma State
University for their support during the course of the work.

1. Definitions, the Main Result, and an Example.
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Throughout this paper fix G = H ×sA and O, p0, and S as in the introduc-
tion. In this section we recall some definitions from [5], and state our main
result. We will use Schwartz’ notations D and E in place of C∞c and C∞,
and if B is a vector bundle over a space O then D(B) and E(B) will always
denote the sections of B, equipped with their usual topologies of uniform
convergence of all derivatives on all compact sets. We will write DB instead
of D(B) whenever it simplifies the notation, and similarly for E . We will
write B(p) or Bp for the fiber of B at p ∈ O. All representations and spaces
of functions are complex unless otherwise noted.

Definition. Let ExtGO be the category of smooth representations of G in
topological vector spaces V that admit a G-invariant flag

V = V0 ⊃ · · · ⊃ Vn ⊃ Vn+1 = 0

with the following properties. First, for each i there is a closed subspace of
Vi complementary to Vi+1. Second, each subquotient Vi/Vi+1 is topologically
equivalent to the representation IndGSA(σ ⊗ eip0) for some finite dimensional
complex representation σ of S. Morphisms are continuous linear intertwining
maps.

Next we define the space DO(n) of functions on the nth order infinitesimal
neighborhood O(n) of O in its ambient space A∗, although in fact we will not
define O(n) itself, but only think of it heuristically as a space. We will see
that DO(n) carries a canonical representation V(n) of G that is an element
of ExtGO. All of the following definitions and statements are discussed in
more detail in [5].

Suppose that N is a regularly imbedded submanifold of an arbitrary
smooth manifold M . Let JnM be the nth jet bundle of M , the fibers of
which are algebras, and let jn : DM → DJnM be the n-jet map, which is
an injective algebra homomorphism. Note that the sections D(JnM |N) of
the restriction of the bundle JnM to N also form an algebra.

Definition. The space DN (n) of smooth compactly supported functions
on the nth-order infinitesimal neighborhood N (n) of N in its ambient space
M is the subspace of D(JnM |N) consisting of sections F such that for each
p ∈ N , there is an open neighborhood V of p in M (not N) and a smooth
function fV on V , such that for all q ∈ V ∩N we have jnfV (q) = F (q).

So locally, functions on N (n) are restrictions to N of n-jets of functions
on M . The space DN (n) is a closed subalgebra of D(JnM |N), and so it is
an inductive limit of Frechet spaces. We remark that it admits partitions of
unity. For k ≤ n, let πkn : JnM → JkM be the restriction map, which is an
algebra homomorphism on the fibers. Then πkn(DN (n)) ⊂ DN (k), and we
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write Ikn for the kernel of πkn : DN (n) → DN (k). We have the flag of ideals

DN (n) ⊃ I0,n ⊃ I1,n ⊃ · · · ⊃ In−1,n,

and it turns out that Ikn admits a (non-canonical) closed complementary
subspace in Ik−1,n. Furthermore, the quotient Ik−1,n/Ik,n is canonically iso-
morphic to the subspace Ik−1,k of DN (k), which is itself naturally a DN -
module that is canonically isomorphic to the space of sections D(SnT⊥N)
of the nth symmetric power Sn of the conormal bundle T⊥N ⊂ Ω1M of
N ⊂M . Therefore DN (n) is linearly homeomorphic to ⊕n0D(SiT⊥N).

Since O is a locally closed orbit of the Lie group H in A∗, it is regularly
imbedded, and so we may consider the case that N = O and M = A∗.
Here the H-action on A∗ defines an H-bundle structure on JnA∗, such that
jn intertwines the representations of H on DA∗ and DJnA∗. Since O is
H-invariant, there is a smooth representation of H on D(JnA∗|O), and one
finds that DO(n) is an invariant subspace. We define V(n) to be the resulting
representation on DO(n), and we extend V(n) to a representation of G by
letting V(n)

a be multiplication by (jnξa)|O for all a ∈ A, where ξa is the
character function from the introduction. We remark that the representation
of H on D(JnA∗|O) can also be extended to G in this way, and the resulting
representation is induced and contains V(n) as a subrepresentation. However,
V(n) itself is not induced because DO(n) is not the space of sections of any
subbundle of D(JnA∗|O).

In this setting the above maps πkn are G-maps, and so the ideals Ikn of
DO(n) are G-invariant. Thus V(n) admits the G-flag

DO(n) ⊃ I0,n ⊃ · · · ⊃ In−1,n.

Furthermore, the conormal bundle T⊥O is anH-bundle and the isomorphism
from Ik−1,n/Ik,n to D(SkT⊥O) is a G-map, and so we have the following
proposition.

Proposition 1.1. The representation V(n) of G on DO(n) is an object of
ExtGO, whose composition series is isomorphic to D(SkT⊥O), 0 ≤ k ≤ n.

If π is a finite dimensional representation of H on a space V , we may
extend it to a representation of G that is trivial on A. Then ExtGO is closed
under tensoring with π, and so it contains the representation V(n) ⊗ π on
the space DO(n) ⊗ V of V -valued functions on O(n). Our main result is as
follows.

Theorem 1.2. Suppose that H may given the structure of a real algebraic
matrix group, such that S is an algebraic subgroup whose finite dimensional
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representations are all rational. Then any representation of length n+ 1 in
the category ExtGO is a subquotient of V(n)⊗π, for some finite dimensional
representation π of H.

Proof. We will show that the theorem follows from the results of [3], [4], and
[5], along with Theorem 2.1 of this paper. We use the notation of [5], which
contains a summary of [3] and [4].

In [3] we defined a subcategory ExtCGO of ExtGO and proved that inclusion
is an equivalence of categories, and so it is enough to prove the theorem for
any representation in ExtCGO. In [4] we defined an equivalence of categories
F from ExtCGO to a certain category C of finite dimensional representations
of the inhomogeneous stabilizer S′ = S×sA, where the objects of C are given
with some additional structure which makes them what we call representa-
tions of the infinitesimal neighborhood of S′ in G, or representations of S′∞.
These are defined in Section 2 of this paper. Any representation of S′∞ may
be restricted to a representation of the infinitesimal neighborhood of S in H,
or a representation of S∞, and representations of H may also be restricted
to S∞. The category of representations of S∞ admits subquotients, and the
main result of [5] is that if U is a representation of length n + 1 in ExtCGO,
and the restriction to S∞ of the representation FU of S′∞ is a subquotient of
the restriction to S∞ of some representation π of H, then U is a subquotient
of V(n) ⊗ π.

Now any representation of S∞ may be restricted to a representation of S,
and in Theorem 2.1 we will prove that if σ is a representation of S∞ whose
restriction to S is rational, then σ is the subquotient of the restriction of
some representation of H to S∞. This will prove Theorem 1.2, and also the
following stronger variation of it.

Corollary 1.3. Suppose that S ⊂ H are algebraic matrix groups, but that
not all finite dimensional representations of S are necessarily rational. Re-
taining the notation of Theorem 1.2 and its proof, let U be a representation
of length n + 1 in ExtCGO such that the restriction to S of the representa-
tion FU of S′∞ is rational. Then U is a subquotient of V(n) ⊗ π for some
representation π of H.

Example. In his original study of ExtGO, Rideau considered the case that
G is the Poincare group SL(2,C)×s R1,3. Here the stabilizer of each orbit is
an algebraic subgroup of SL(2,C), isomorphic to either SU(2), SL(2,R), the
entire group SL(2,C), or the solvable group S1 ×s C. It is well-known that
the finite dimensional representations of the first three of these groups are
all rational, and it is shown in [1] that this is also true of S1×sC. Therefore
if O is any orbit of the Poincare group G, every representation in ExtGO is
isomorphic to a subquotient of V(n) ⊗ π for some n and π as above.
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2. Representations of Infinitesimal Neighborhoods of Subgroups.

In this section we recall from [5] the definition of representations of S∞, and
prove Theorem 2.1, the result used in the proof of Theorem 1.2. Henceforth
we will use gothic letters for complexified Lie algebras of real Lie groups,
and we will write U(k) and Ur(k) for the universal enveloping algebra of a Lie
algebra k and its standard filtration, respectively. Wherever it is convenient,
we will write 1 for the identity map of any set with itself, and if π is a
representation of some group K 3 k we will write πk for π(k) if it abbreviates
the notation. We will often use the above filtration where k is the Lie algebra
h of the group H fixed throughout the paper, and so we will write Ur for
Ur(h). We will need to choose a subspace r complementary to the subalgebra
s of h, and we write R1 for the subspace C1⊕ r of U1, where 1 is the identity
in U0.

Definition. Let H be a real Lie group, and let S be a Lie subgroup. A
representation of the infinitesimal neighborhood of S in H, or more briefly
a representation of S∞, is a complex finite dimensional vector space W0, a
representation σ of S on W0, an S-invariant subspace W1 of W0, and for
each X ∈ h a linear map σ(X) : W1 →W0 such that:

1. Let dσ : s → End(W0) be the differential of σ|S. Then for all X ∈ s,
dσ(X)|W1 = σ(X).

2. For all s ∈ S and X ∈ h, σ(s) ◦ σ(X) ◦ σ(s−1) = σ(AdsX) on W1.
3. For all X,Y ∈ h, [σ(X), σ(Y )] = σ([X,Y ]) wherever the left hand side

is defined, i.e., on the intersection of the inverse images of W1 under
the maps σ(X) and σ(Y ).

We will often refer to such representations simply as σ,W , where it is
understood that W denotes the flag W0 ⊃ W1 and σ denotes the actions
of both S and h. The representations of S∞ form a category: a morphism
T from an object σ,W to an object σ′,W ′ is a linear map T : W0 → W ′

0

such that T (W1) ⊂ W ′
1 and T intertwines both the S and h actions. There

is an obvious notion of subobjects: if σ,W is as above and V = {V0 ⊃ V1}
is a subflag of W0 ⊃ W1, such that Vk is an S-invariant subspace of Wk for
k = 0, 1 and σ(X)(V1) ⊂ V0 for all X ∈ h, then V is a subobject of σ,W .

There is also a notion of quotient objects, but only certain subobjects are
permitted as factors. Specifically, if σ,W and V are as above and V1 = V0 ∩
W1, then we define the quotient representation σ,W/V of S∞ by (W/V )k =
Wk/Vk for k = 0, 1 and σ the obvious quotient action. The property V1 =
V0 ∩W1 is necessary and sufficient to insure that (W/V )1 is canonically a
subspace of (W/V )0, and subrepresentations having it will be said to have
the “quotient property.” As usual, by a subquotient of a representation σ
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of S∞ is meant a quotient of a subrepresentation of σ, and we have that a
subquotient of a subquotient is another subquotient.

If π is a representation of H on a space V , it restricts to a representation
π|S∞ of S∞ on the flag V0 = V1 = V , and if σ is a representation of S∞ on a
flag W0 ⊃W1, we define its restriction to S to be the representation σ|S on
W0.

Theorem 2.1. Suppose that H is a real algebraic matrix group and S is
an algebraic subgroup of H, and let σ be a representation of S∞ on a flag W
whose restriction to S is rational. Then σ is isomorphic to a subquotient of
the restriction of a finite dimensional rational representation of H to S∞.

Proof. The proof will be in three steps, and contains several lemmas. The
idea is to copy the proof of the standard fact that any rational representation
π of S on a space V is a subquotient of the restriction of a finite dimensional
representation of H, which goes as follows. Let us write OK for the complex-
valued regular functions on any real algebraic matrix group K, and define
a map F : V → OS ⊗ V by F (v)(s) = πsv. Then F is an injection and
intertwines π with ρ ⊗ 1, where ρ is the right regular representation. Since
OS is a quotient of OH, π is a subquotient of the restriction to S of the
representation ρ ⊗ 1 of H on OH ⊗ V . Since OH has a finite dimensional
H-invariant filtration, the fact is proven. We remark that nowhere below do
we need the third axiom in the definition of representations of S∞.
Step 1. Given a representation π of S on a space V , write V ⊗s Un for the
quotient V ⊗U(s)Un of V ⊗Un by SpanC{πXv⊗Z+v⊗XZ : v ∈ V,X ∈ s, Z ∈
Un−1}. The representation σ ⊗ Ad of S factors through to a representation
σ⊗sAd of S on V ⊗s Un, which we extend to a representation π(n) of S∞ on
the flag V ⊗s Un ⊃ V ⊗s Un−1 by defining π(n)|h to be 1⊗ ρ, where ρ is the
right regular representation of h on U(h). In other words, if v⊗Z ∈ V ⊗sUn−1

and X ∈ h, then π
(n)
X (v ⊗ Z) = −v ⊗ ZX. One checks that π(n) is indeed a

representation of S∞.

Lemma 2.2. Given any representation σ of S∞ on a flag W , let π be the
representation σ|S on W0. Then σ is isomorphic to a subquotient of the
representation π(1) of S∞ on W0 ⊗s U1 ⊃W0 ⊗s U0.

Proof. Identify W0⊗sU0 with W0, and define a subspace K = SpanC{σXw+
w ⊗ X : w ∈ W1, X ∈ h} of W0 ⊗s U1. Using the fact that σ is a rep-
resentation of S∞ we find that K is S-invariant, and so K ⊃ 0 is an
S∞-subrepresentation of π(1). Now it is standard that the quotient map
W0 ⊗ U1 → W0 ⊗s U1 restricts to a linear isomorphism from W0 ⊗ R1 to
W0 ⊗s U1, where R1 = U0 ⊕ r was defined at the beginning of this section.
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It follows that the map W1 ⊗ r → K defined by w ⊗ Y 7→ σYw + w ⊗ Y
is a linear isomorphism, and that K ∩W0 = 0. Therefore K ⊃ 0 has the
quotient property, and furthermore, the linear map from W0 to W0⊗s U1/K
defined by inclusion from W0 to W0 ⊗s U1 followed by projection is injec-
tive. It is easy to prove that it is an S∞-intertwining map, which proves the
lemma.

Step 2. In light of Lemma 2.2, Theorem 2.1 will be proven if we prove it for
the special case that σ is the representation π(1) of S∞ on V ⊗s U1 ⊃ V , for
some rational representation π of S on V . In order to adapt to this setting
the proof that rational representations of S are subquotients of restrictions
of representations of H, it is helpful to consider duals of representations of
S∞, despite the fact that they are not themselves representations of S∞.

If σ is a representation of S∞ on W0 ⊃ W1, we define its dual σ∗ to be
the following collection of objects: The spaces W ∗

0 and W ∗
1 , the canonical

projection pW : W ∗
0 → W ∗

1 , the representations of S on W ∗
0 and W ∗

1 dual
to σ|S (both denoted by σ∗), and finally the maps σ∗Y = −σTY : W ∗

0 → W ∗
1

for all Y ∈ h, where T denotes the transpose. Note that pW is an S-map,
and axioms 1 and 2 in the definition of representations of S∞ translate to
pW ◦ dσ∗X = σ∗X for X ∈ s, and σ∗s ◦ σ∗Y ◦ σ∗s−1 = σ∗(AdsY ) for s ∈ S and
Y ∈ h. We shall refer to σ∗ as acting in pW : W ∗

0 → W ∗
1 . The following

lemma says that if a map intertwines the duals of two representations of S∞,
then its transpose intertwines the representations themselves; we omit the
proof.

Lemma 2.3. Let (µ,M) and (ν,N) be representations of S∞, and for i =
0, 1 suppose that Ti : N∗i → M∗

i are maps such that pM ◦ T0 = T1 ◦ pN , both
Ti intertwine the representations ν∗ and µ∗ of S, and T1 ◦ ν∗Y = µ∗Y ◦ T0 :
N∗0 →M∗

1 for all Y ∈ h. Then the map T ∗ = T T0 : M0 → N0 intertwines the
representations µ and ν of S∞, and if T0 is injective or surjective then T ∗

is surjective or injective, respectively.

For any representation β of S on a space B, let us define a space

HB = Homs(U1, B) = {F : U1 → B : F (X) = βXF (1) ∀ X ∈ s}.

This is the space of maps intertwining the left action λX : U0 → U1 with the
action of βX on B for all X ∈ s. The reader is warned that since U1 is not
closed under λ, this is not the standard use of the notation Homs. In fact,
the restriction map from HB to HomC(R1, B) is a linear isomorphism.
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For any Z ∈ U1, let eZ : HB → B be the evaluation map F 7→ F (Z).
Note that HV ∗ is dual to V ⊗s U1 by the pairing 〈F, v ⊗ Z〉 = 〈F (Z), v〉,
and the representation Hom(Ad, π∗) of S on HV ∗ is dual to π ⊗s Ad. It
is an exercise to check that the dual π(1)∗ of the representation π(1) of S∞

acts in e1 : HV ∗ → V ∗, with S-actions Hom(Ad, π∗) and π∗, and h-action
π

(1)∗
Y = eY : HV ∗ → V ∗.
Now let O1H ⊂ O2H ⊂ · · ·OH be any finite dimensional filtration on the

regular functions OH that is invariant under the right regular representation
ρ, and let {OkS} be the ρ|S-invariant filtration on OS given by restricting it.
Let us write simply H for the space HOS, defined using the representation
ρ of S on OS. Then the spaces Hk = HOkS give a finite dimensional S-
invariant filtration of H.

Let O∗kS be the vector space dual to OkS, and let ρ∗k be the dual of the
right regular representation on it. Then the representation ρ

∗(1)
k of S∞ acts

in O∗kS⊗sU1 ⊃ O∗kS, and we will write µk for its dual. We have seen that µk
acts in e1 : Hk → OkS, with µk|S = Hom(Ad, ρ) and µk(Y ) = eY for Y ∈ h.

Lemma 2.4. Let π be a rational representation of S on a space V . Then
for k large enough, the representation π(1) of S∞ is isomorphic to a quotient
of the representation ρ

∗(1)
k ⊗1 of S∞ on (O∗kS⊗s U1)⊗V ⊃ O∗kS⊗V , whose

action on the factor V is trivial.

Proof. Define maps T0 : HV ∗ → H⊗ V ∗ and T1 : V ∗ → OS ⊗ V ∗ as follows.
For F ∈ HV ∗ , T0F : U1 → OS ⊗ V ∗ has for its value at Z the V ∗-valued
rational function on S defined by T0F

(
Z
)
(s) = π∗sF (Z), and for ω ∈ V ∗,

T1ω is the V ∗-valued rational function s 7→ π∗sω on S.
Since π is rational, T0F (Z) and T1ω are indeed rational functions, and

both T0 and T1 are clearly injective. Since HV ∗ is finite dimensional, the
image of T0 lies inside Hk ⊗ V ∗ if we take k large enough. Then checking
the definitions shows that the Ti satisfy the hypotheses of Lemma 2.3 with
respect to π(1)∗ and µk ⊗ 1, and so T ∗ = T T0 : (O∗kS ⊗s U1) ⊗ V → V ⊗s U1

is a surjective S∞-map. As was proven in Lemma 1.1 of [5], this means
that kernel(T ∗) is an S∞-subrepresentation of ρ∗(1)

k ⊗ 1 with the quotient
property, and π(1) is isomorphic to the resulting quotient.

Step 3. In light of Lemmas 2.2 and 2.4, the next two lemmas complete the
proof of Theorem 2.1.

Lemma 2.5. For any k > 0, there exists some j > 0 such that the rep-
resentation ρ

∗(1)
k of S∞ on O∗kS ⊗s U1 ⊃ O∗kS is isomorphic to a subrepre-

sentation of the restriction to S∞ of the dual ρ∗j ,O∗jH of the right regular
representation ρ of H on OjH.
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Proof. Let r : OH → OS be the restriction map, and define a map α :
OH → H by αf(Z) = r ◦ ρZ(f) for all Z ∈ U1. We will see in Lemma 2.6
that α is surjective, and so Hk ⊂ α(OjH) for some j. On the other hand,
α(OjH) ⊂ Hj. Now the restriction ρ∗j |S∞ of the representation ρ∗j of H on
O∗jH acts in the trivial flag O∗jH ⊃ O∗jH, and we will write νj for its dual,
which acts in 1 : OjH → OjH. Recall that we are writing µj for the dual of
ρ
∗(1)
j , and that µj acts in e1 : Hj → OjS.

Define maps T0 : OjH → Hj and T1 : OjH → OjS by T0 = α and
T1 = r. One checks that these maps satisfy the hypotheses of Lemma 2.3
with respect to νj and µj, and so T ∗ = T T0 : O∗jS ⊗s U1 → O∗jH intertwines
ρ
∗(1)
j and ρ∗j |S∞ . Since the image of T0 contains Hk, the restriction of T ∗ to
O∗k ⊗s U1 is injective, which completes the proof.

For the last lemma, recall that S is an algebraic subgroup of the real
algebraic matrix group H, and that we are writing OK for the complex-
valued regular functions on any real algebraic matrix group K. Let Kc be
the complex algebraic group whose real points make up K; then the algebra
of regular functions OKc on Kc is equal to OK. Define H and α : OHc → H
as above.

Lemma 2.6. The map α is surjective.

Proof. Let eZ : H → OSc be evaluation at Z ∈ U1, and note that e1 ◦ α = r
is surjective. Hence it is enough to prove that kernel(e1) ⊂ image(α). Let
I ⊂ OHc be the ideal vanishing on Sc, and let J = kernel(e1). If F ∈ J ,
F (X) = ρXF (1) = 0 for all X ∈ s, from which it follows that J is isomorphic
to HomC(h/s,OSc) = (h/s)∗ ⊗ OSc, the global sections of the conormal
bundle of Sc in Hc. Now note that α(I2) = 0 and α(I) ⊂ J , so α factors
through to α : I/I2 → (h/s)∗ ⊗ OSc. But this is just the first map in
the conormal exact sequence, which is well-known to be an isomorphism of
sheaves when Sc is connected. Here it is an isomorphism of global sections if
Sc is connected, because Sc is a closed subvariety of the affine variety Hc. An
easy argument shows that it is still surjective if Sc is not connected.
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