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QUASIMINIMAL SURFACES OF CODIMENSION 1
AND JOHN DOMAINS

Guy David and Stephen Semmes

We study codimension 1 quasiminimizing surfaces in Rn,
and establish uniform rectifiability and other geometric prop-
erties of these surfaces. For instance, their complementary
components must be John domains. In fact we give a com-
plete characterization of quasiminimizers. As an application
we show that sets which are not too large and which separate
points in a definite way must have a large uniformly rectifi-
able piece. In this way we use area quasiminimizers to solve
a problem in geometric measure theory.

1. Introduction.

One of the main goals of this paper is to prove that quasiminimal surfaces
of codimension 1 in Rn (as defined in terms of functions of bounded varia-
tion) are Ahlfors-regular sets that bound exactly two domains in Rn, each of
which is a John domain. In particular they enjoy quantitative rectifiability
properties.

Let us first describe what we mean by quasiminimizers. Let BV =
BV (Rn) denote the space of functions of bounded variation on Rn, i.e.,
the space of real-valued locally integrable functions f on Rn such that each

of the distributional first derivatives
∂f

∂xj
of f is a finite (signed) measure.

This is equivalent to requiring that

(1.1) N(f) = sup
{ ∣∣∣∣∫

Rn
f(x) divϕ(x)dx

∣∣∣∣ : ϕ : Rn → Rn is C1,

compactly supported, and such that ‖ϕ‖∞ ≤ 1
}

be finite.

Let Q0 and Q1 be fixed closed cubes in Rn, with Q0 ⊂ int(Q1). Set

(1.2) F =
{
V ⊂ Rn : V is Lebesgue-measurable,

int(Q0) ⊂ V ⊂ Q1 and 1lV ∈ BV
}
.
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In effect, we shall not be directly interested in the set V , but its equivalence
class modulo equality almost-everywhere.
Definition 1.3. Let Q0, Q1 and F be as above. We say that W ∈ F is a
quasiminimizer for N(·) if there is a constant α ∈ (0, 1) so that

(1.4) N(1lW ) ≤ N(1lV ) + αN(1lV − 1lW )

for all V ∈ F .

Notice that (1.4) contains no information when α = 1. At the other end
of the spectrum, α = 0 corresponds to (true) minimizers. This use of BV
norms is quite standard in the context of minimal surfaces in codimension 1.
It is useful for getting existence results. We shall return to this point later.

Before we state our main result on the structure of quasiminimizers we
need to state some more definitions.
Definition 1.5. Let E be a compact subset of Rn, and suppose that
0 < d ≤ n. We say that E is Ahlfors-regular with dimension d if there exists
a constant C0 > 0 so that

C−1
0 rd ≤ Hd(E ∩B(x, r)) ≤ C0r

d for all x ∈ E and 0 < r ≤ diamE.

Here Hd denotes d-dimensional Hausdorff measure, and diamE is the
diameter of E. In the present paper, the dimension d will always equal
n− 1.
Definition 1.6. Let E be a compact, Ahlfors-regular set of dimension
n − 1 in Rn. We say that E satisfies condition B if there is a constant C1

such that, for each x ∈ E and each radius 0 < r ≤ diamE, we can find
two balls B1, B2 of radius C−1

1 r that are contained in B(x, r)\E and lie in
different connected components of Rn\E.

Bilipschitz images of the unit sphere in Rn satisfy condition B using a
theorem of Väisälä [V], but there are other examples. Condition B sets
have fairly good rectifiability properties: they “contain big pieces of Lipschitz
graphs”, and hence are uniformly rectifiable. See [D] for the original result,
[DS1] and [DJ] for simpler proofs, and [DS2] for general information about
uniform rectifiability.
Definition 1.7. (John domains). Let U be an open subset of Rn, and
let z0 ∈ U . If U is bounded, we say that U is a John domain with cen-
ter z0 and constant C3 if for each x ∈ U there is a C3-Lipschitz map-
ping α : [0, |x− z0|] → U such that α(0) = x, α (|x− z0|) = z0, and
dist (α(t),Rn\U) ≥ C−1

3 t for 0 ≤ t ≤ |x− z0|.
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If U is unbounded, we say that U is a John domain with center z0 and
constant C3 if there is a ball B such that U ⊃ Rn\B and for each x ∈ U ∩2B
there is a C3-Lipschitz mapping with the same properties as above.

This condition means that each point in the domain can be accessed “well”
from the center. It holds when the boundary is smooth and for cubes, for
instance. It fails to hold when the domain has an outward-pointing cusp. A
bubble with a small neck forces the John constant to be large.

Theorem 1.8. Let Q0, Q1 be closed cubes in Rn, with Q0 ⊂ int(Q1),
and let W ∈ F be a quasiminimizer for N(·). Then there is a unique open
set W0 ∈ F with the following properties: the two functions 1lW (x) and
1lW0(x) coincide almost everywhere; the boundary ∂W0 is an Ahlfors-regular
set of dimension n − 1 that satisfies Condition B; and Rn\∂W0 has exactly
two connected components (namely, W0 and Rn\W 0). Each of these two
components is a John domain, and we also have that ∂W0 = ∂

(
Rn\W 0

)
.

Moreover, the properties above are satisfied with constants C1, C2 and C3

that depend only on n, Q0, Q1, and α.

One should not pay too much attention to the cubes Q0, Q1. They provide
an obstacle problem for the definition of quasiminimizers which prevents
trivialities. This obstacle problem is not special, it was chosen with an eye
to an application (Theorem 1.15).

Theorem 1.8 has an analog where the BV norm N(1lW ) is replaced with
the Hausdorff measure Hn−1(∂W ) of the boundary. The same basic argu-
ments apply as we shall explain in Section 9. In the context of Hausdorff
measure, ∂W is what Almgren calls a (γ, δ)-restricted set. This notion still
makes sense in higher codimension, and Almgren showed that such a set is
Ahlfors-regular and rectifiable [Al]. In a forthcoming paper, we intend to
show that it is also uniformly rectifiable, with big pieces of Lipschitz graphs.

One of the main advantages of BV is that its compactness properties
permit us to find quasiminimizers very easily. Let us say a few words about
this.

For each bounded nonnegative lower semi-continuous function g : Rn →
R+, one can define a variant of the norm N(f) on BV by

(1.9) Ng(f) =
∫
Rn
g |∇f | .

[See the beginning of Section 2 for a more precise definition.] Examples
of quasiminimizers for N(·) will be provided for us by minimizers of Ng(·),
through the following result.
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Proposition 1.10. Let Q0, Q1 be closed cubes in Rn with Q0 ⊂ intQ1.
Let g : Rn → R be a lower semi-continuous function, and suppose that there
exists constants 0 < m ≤M < +∞ such that m ≤ g(x) ≤M for all x ∈ Rn.
Then there is a set W ∈ F such that

(1.11) Ng(1lW ) = inf
V ∈F

Ng(1lV ).

Every W ∈ F which satisfies (1.11) is a quasiminimizer for N(·) (as in
Definition 1.3), with the constant α = 1− m

M .

See Section 2 for a proof and more details.

The following converse to Theorem 1.8 will be proved in Section 7.

Theorem 1.12. Let Q0, Q1 be as above, and let E ⊂ Q1 be an Ahlfors-
regular set of dimension n−1. Suppose that Rn\E has exactly two connected
components W0 and W1, with int(Q0) ⊂ W0 ⊂ Q1, that E = ∂W0 = ∂W1,
and that W0, W1 are both John domains. Define g : Rn → R+ by

(1.13)

{
g(x) = 1 when x ∈ E
g(x) = A when x ∈ Rn\E.

If the constant A is large enough (depending only on the regularity constant
for E, the John constants for W0 and W1, n, Q0 and Q1), then W0 is the
unique minimizer for Ng(·) in the sense that

(1.14) Ng (1lW0) = inf
V ∈F

Ng (1lV )

and every W ∈ F for which Ng (1lW ) = Ng (1lW0) satisfies 1lW (x) = 1lW0(x)
almost everywhere.

The original motivation for the results of this paper came from the fol-
lowing consequence of Theorem 1.8 and Proposition 1.10.

Theorem 1.15. For each constant C4 > 0, there is a constant M =
M (C4, n) such that the following holds. Let K be a compact subset of Rn such
that K ⊂ B(0, 2)\B(0, 1), K separates 0 from ∞ in Rn, and Hn−1(K) ≤ C4.
Then there is an M -Lipschitz graph Γ such that Hn−1(K ∩ Γ) ≥M−1.

By M -Lipschitz graph we mean a set of the form Γ = {(x, h(x)) : x ∈
Rn−1}, where h : Rn−1 → R is such that |h(x)− h(y)| ≤ M |x− y| for
x, y ∈ Rn−1, or the image of such a set by a rotation.

Theorem 1.15 answers a question articulated in [Se2] and known to the
authors for some time. Although the hypotheses of Theorem 1.15 permit
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K to have a substantial fractal piece, the conclusion says that K must have
a reasonably smooth part too. In order to make a true wall without much
mass, K ought to contain something like a surface.

Results of a similar flavor had been proved before, but each time with
separation hypotheses that would hold at all scales. A simple example of
such a result is that every regular set of codimension 1 that satisfies condition
B contains big pieces of Lipschitz graphs at all scales. Theorem 1.15 was
proved independently and by a completely different method by P. Jones,
N. Katz and A. Vargas [JKV]. Here Theorem 1.15 will be obtained as a
consequence of the following more precise result.

Theorem 1.16. Let K be a compact subset of Rn such that K ⊂
B(0, 2)\B(0, 1), K separates 0 from ∞, and Hn−1(K) ≤ C4 < +∞. Then
for each ε > 0 there is a compact set E ⊂ B(0, 2)\B(0, 1) which is Ahlfors
regular of dimension n− 1, satisfies Condition B, separates 0 from ∞, and
for which

(1.17) Hn−1(E\K) ≤ ε.

(Thus E is almost contained in K.) The regularity and Condition B con-
stants for E depend only on n, C4, and ε, but not on K.

In fact, we could take E = ∂W0, where W0 is associated to a quasimini-
mizer for N(·) as in Theorem 1.8 (but with cubes replaced by balls), and so
E has the additional properties mentioned in that theorem. [That is, Rn\E
has only two components W0 and W1, E = ∂W0 = ∂W1, and W0, W1 are
John domains.]

There is a variant of Theorem 1.16 where the hypothesis that K separates
0 from ∞ is replaced with the existence of a function f ∈ BV (B(0, 3)\K)
that equals 0 on B

(
0, 1

2
)

and has a mean value on B(0, 3)\B(0, 2) which is
much larger than its BV norm. See Section 8 for details.

The rest of this paper is organized as follows. In Section 2, we shall
describe the relations between minimizers for Ng and quasiminimizers for
N(·), and in particular prove Proposition 1.10.

Theorem 1.8 will be proved in Sections 3, 4, 5 and 6. In Section 3, it
will be proved that we can associate to each quasiminimizer W for N(·) an
open set W0 such that 1lW0 = 1lW almost everywhere, ∂W0 is Ahlfors-regular
and satisfies Condition B. In Section 4 we check, for the convenience of the
reader, that the BV norm of characteristic functions 1lV is dominated by
Hn−1(∂V ), and that the converse is true for sets like W0. In Section 5 we
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prove that ∂W0 has only two complementary connected components (W0

and Rn\W 0), each of which is a “domain of isoperimetry”, i.e., a domain
on which an isoperimetric inequality holds. We shall see in Section 6 that
every domain of isoperimetry which is bounded, contains a ball, and has
an Ahlfors-regular boundary is also a John domain, and Theorem 1.8 will
follow.

Section 7 contains the proof of the converse (Theorem 1.12), and also of
the related fact that bounded John domains with Ahlfors-regular boundary
are domains of isoperimetry.

Section 8 is devoted to the proof of Theorems 1.15 and 1.16, and the
variant to which we alluded. It relies only on Section 2-4 for its proof, and
can essentially be read independently of all sections other than 1 and 8.

Section 9 deals with the notion of quasiminimizers based on the Hn−1

measure of the boundary instead of BV norms.

2. Existence of minimizers.

Recall that BV = BV (Rn) denotes the set of locally integrable functions on
Rn whose distributional gradient is a finite (vector-valued) measure. We shall
be particularly interested in functions in BV which are the characteristic
function of some set. If A is a measurable set and 1lA ∈ BV , then A is
called a Cacciopoli set or a set of finite perimeter. Basic examples include
cubes (and then the distributional first derivatives of 1lA are given by the
measures on the faces of A that one expects) and bounded domains with
smooth boundary. In these examples the BV norm of 1lA is the same as
Hn−1(∂A), but there are well-known pathological examples where this fails
to hold.

Let us first review some basic results about compactness and lower semi-
continuity that will be used to establish the existence of minimizers.

Lemma 2.1. Let B be a ball in Rn and let Xk denote the set of L1-
functions which vanish outside B and satisfy ‖f‖BV =: N(f) ≤ k. Then Xk

is a compact subset of L1(Rn).

This is well-known and easy to prove. For instance one can check that
Xk is closed and that for each ε > 0 there is a finite subset F of L1(Rn)
such that every element of Xk is within ε of F . The Poincaré inequality is
helpful in establishing the latter fact, while the closedness of Xk follows from
a lower semicontinuity property of the BV norm.

Our next task is to define the variants Ng(·) of the BV norm, and for
this a few simple properties of lower semicontinuous (l.s.c.) functions will
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be useful. Recall that a real-valued function g on Rn is said to be lower
semicontinuous if {x ∈ Rn : g(x) > λ} is open for every λ. Typical examples
of l.s.c. functions include characteristic functions of open sets.

Lemma 2.2. Let g be a nonnegative l.s.c. function on Rn. Then there is
a nondecreasing sequence {gj} of nonnegative smooth functions on Rn such
that g(x) = lim

j→∞
gj(x) for all x.

To see this, define U ⊂ Rn × R by

(2.3) U = {(x, t) ∈ Rn × R : g(x) > t} .

Then U is open because g is l.s.c. Let {ϕj(x, t)} be a sequence of smooth
functions such that 0 ≤ ϕj ≤ ϕj+1 · · · ≤ 1lU and lim

j→∞
ϕj(x, t) = 1lU(x, t) for

all (x, t), with uniform convergence on compact subsets of U . (For instance,
one can take partial sums of a partition of unity of U .) Set

(2.4) gj(x) =
∫ j

0

ϕj(x, t)dt.

Clearly, each gj is nonnegative and smooth and gj ≤ gj+1. Since g(x) =∫ g(x)

0 dt =
∫∞

0 1lU(x, t)dt for each x ∈ Rn, we also have that g(x) = lim
j→∞

gj(x)

for each x. This proves Lemma 2.2.

We now come to the definition of Ng(·). Given f ∈ BV , let µj denote
the signed Borel measure ∂f

∂xj
, and set µ =

∑n
j=1 |µj|. Thus µ is a positive

Borel measure and each µj is absolutely continuous with respect to µ. We
can write µj as hjµ, with hj ∈ L1(dµ). Let h denote the vector of hj’s, and
let |∇f | denote the measure |h| dµ.

Now let g be a bounded nonnegative l.s.c. function on Rn. Then

(2.5) Ng(f) =
∫
Rn
g |∇f | =

∫
Rn
g |h| dµ

makes sense (and is even finite) for f ∈ BV . We want to establish lower
semicontinuity properties for N(·) (the reason for the lower semicontinuity
assumption for g), and for this it will be convenient to rewrite (2.5) in various
ways. Let {gj} be the sequence of smooth functions provided by Lemma 2.2,
and set Nj(f) = Ngj (f). Then

(2.6) Ng(f) = lim
j→∞

Nj(f) = sup
j
Nj(f)

by the monotone convergence theorem.
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For each f ∈ BV , define v : Rn → Rn by v(x) = h(x)

|h(x)| when h(x) 6= 0 and
v(x) = 0 otherwise. This is a Borel-measurable function, and v · h = |h|.
Using for instance Lusin’s theorem to approximate v by smooth functions,
we can obtain that

(2.7) Nj(f) = sup
{∫

Rn
gjϕ · h dµ : ϕ : Rn → Rn is smooth

compactly supported, and ‖ϕ‖∞ ≤ 1
}
.

Combining this with (2.6) and the fact that h dµ is the distributional
gradient of f , we get that

(2.8) Ng(f) =sup
j

[
sup

{∫
Rn

div(gjϕ)f dx : ϕ : Rn → Rn is smooth,

compactly supported, and ‖ϕ‖∞ ≤ 1
}]
.

Lemma 2.9. Suppose that {fk} is a sequence in BV (Rn) which converges
in the sense of distributions to some f ∈ BV . Then

(2.10) Ng(f) ≤ lim inf
k→+∞

Ng(fk) .

Indeed, our convergence assumption implies that∫
Rn

div(gjϕ)f dx = lim
k→∞

∫
Rn

div(gjϕ)fk dx

≤ lim inf
k→∞

Nj(fk) ≤ lim inf
k→∞

Ng(fk)(2.11)

for all compactly supported smooth functions ϕ : Rn → Rn with ‖ϕ‖∞ ≤ 1
and for all j. We get (2.10) now by taking the supremum of the left side of
(2.11) over ϕ and j, and using (2.8). This proves Lemma 2.9.

We are now ready to prove the first half of Proposition 1.10.

Proposition 2.12. Let Q0, Q1 be closed cubes in Rn, with Q0 ⊂ intQ1

and let F be, as before, the collection of measurable sets V ⊂ Rn such that
intQ0 ⊂ V ⊂ Q1 and 1lV ∈ BV . Also let g : Rn → R be a l.s.c. function such
that 0 < m ≤ g(x) ≤ M < +∞ for all x ∈ Rn. Then there exist a W ∈ F
such that

(2.13) Ng(1lW ) = inf
V ∈F

Ng(1lV ) .
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This is quite straightforward. Let {Vj} be a sequence in F for which
lim
j→+∞

Ng

(
1lVj
)

= inf
V ∈F

Ng (1lV ). Notice that
{
1lVj
}

is bounded in BV , since

‖f‖BV = N(f) ≤ m−1Ng(f) for all f ∈ BV . The compactness result in
Lemma 2.1 allows us to find a subsequence of

{
1lVj
}

that converges in L1(Rn).
The limit is the characteristic function of some set V such that int(Q0) ⊂
V ⊂ Q1. [This may be seen by extracting a subsequence that converges a.e.]
Also, V ∈ F because the sets Xk of Lemma 2.1 are closed. Moreover, the
subsequence of

{
1lVj
}

converges to 1lV in the sense of distribution since it
converges in L1, and so Lemma 2.9 implies that Ng(1lV ) ≤ lim inf

j→+∞
Ng

(
1lVj
)
,

and Proposition 2.12 follows.

Proposition 2.14. Let Q0, Q1, F , and g be as in Proposition 2.12 (or
Proposition 1.10). If W ∈ F is a minimizer for Ng(·), i.e., satisfies (2.13),
then W is a quasiminimizer for N(·) (as in Definition 1.3), with α = 1− m

M
.

To prove this, let W ∈ F be a minimizer for Ng(·), and let V ∈ F be
some other competitor. Then

M

∫
Rn
|∇1lW | =

∫
Rn
g |∇1lW |+

∫
Rn

(M − g) |∇1lW |

≤
∫
g |∇1lV |+

∫
(M − g) |∇1lW |

≤M
∫
|∇1lV |+

∫
(M − g) (|∇1lW | − |∇1lV |)(2.15)

≤M
∫
|∇1lV |+

∫
(M − g) |∇1lW −∇1lV |

≤M
∫
|∇1lV |+ (M −m)

∫
|∇1lW −∇1lV |

= MN(1lV ) + (M −m)N(1lW − 1lV ),

from which (1.4) follows at once, with α = 1− m
M

. This completes the proof
of Proposition 2.14. Proposition 1.10 follows from this and Proposition 2.12.

Remark 2.16. The same kind of argument implies that any quasiminimizer
for Ng(·) is also a quasiminimizer for N(·) (with a worse constant). We shall
not need this.

3. Ahlfors-regularity and Condition B.

In this section we want to prove that for every quasiminimizer W for N(·),
there is an open set W0 such that 1lW0(x) = 1lW (x) a.e., and ∂W0 is Ahlfors
regular of codimension 1 and satisfies Condition B.
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For this part of the argument, we shall only need to compare W with
competitors V of the form W ∪Q or W\Q, where Q is a cube. Let us state
the slightly more precise result that we shall get.

Theorem 3.1. Let Q0, Q1 be closed cubes in Rn, with Q0 ⊂ int(Q1), and
let W ∈ F be given. [See (1.2) for the definition of F .] Suppose that there is
an α ∈ (0, 1) such that (1.4) holds for all sets V ∈ F of the form V = W ∪Q
or V = W\Q, where Q is a cube. Then there is an open set W0 ∈ F such
that 1lW (x) = 1lW0(x) a.e., ∂W0 is Ahlfors-regular of dimension n − 1 and
satisfies Condition B. The constants for the regularity of ∂W0 and Condition
B can be taken to depend only on n,Q0, Q1 and α.

See Lemma 3.43 for some additional information concerning Condition B.

Let W ∈ F be as in the statement of Theorem 3.1 and fixed from now on.
We begin the argument with a fairly rough estimate.

Lemma 3.2. Let Q be a cube, and set X+ = 1lW∪Q and X− = 1lW\Q.
Then X+ and X− lie in BV (Rn), ∇X+ and ∇X− are both equal to 0 in the
interior of Q and to ∇1lW outside Q, and

(3.3)
∫
∂Q

|∇X±| ≤ Hn−1(∂Q).

The proof of Lemma 3.2 uses a straightforward approximation argument.
Let {θj} be a sequence of smooth functions such that 0 ≤ θj ≤ 1 for all j,
θj ≡ 1 on a neighborhood of Q and θj = 0 outside (1 + 2−j)Q. Let us even
take θj to be of the form

(3.4) θj(x) =
n∏
i=1

θ̃j (xi − ci) ,

where x1, · · · , xn are the coordinates of x, c1, · · · , cn the coordinates of the
center of Q, and θ̃j is a smooth even function of one variable such that∫∞

0

∣∣∣θ̃′j∣∣∣ = 1. With this choice of function θj, we have that

(3.5) lim
j→+∞

∫
Rn
|∇θj| = Hn−1(∂Q) ,

which will help us get the constant 1 in (3.3). [Such precision is not really
needed for the proof of Theorem 3.1, though.]

For each j we have that (1− θj)1lW ∈ BV , and

(3.6) ∇ ((1− θj) 1lW ) = − (∇θj) 1lW + (1− θj) (∇1lW )
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in the obvious distributional sense. It follows that X− = (1− 1lQ) 1lW ∈
BV , since it is the limit in L1

loc of (1− θj) 1lW , and since the sequence
{(1− θj) 1lW} is bounded in BV by (3.6) and (3.5). [See Lemma 2.2.]

It is clear that ∇X− equals 0 in int(Q) and ∇1lW outside Q. Also no-
tice that the sequence {(1− θj)∇1lW} of vector-valued measures converges
weakly to 1lRn\Q ∇1lW , and in particular gives zero mass to ∂Q. Applying
Lemma 2.9 to the sequence {(1− θj) 1lW}, we get that∫

∂Q

|∇X−| = N(X−)−
∫
Rn\Q

|∇1lW |

≤ lim inf
j→+∞

N ((1− θj)1lW )−
∫
Rn\Q

|∇1lW |(3.7)

≤ lim inf
j→+∞

{∫
1lW |∇θj|

}
≤ Hn−1(∂Q)

by (3.6) and (3.5). This proves our claims concerning X−.

The corresponding statements for X+ are proved similarly. This time we
write

(3.8) 1−X+ = (1− 1lQ) (1− 1lW ) = lim
j→+∞

(1− θj) (1− 1lW )

and use the formula

(3.9) ∇ ((1− θj) ((1− 1lW ))) = − (1− 1lW )∇θj − (1− θj)∇1lW

instead of (3.6). The fact that X+ ∈ BV , ∇X+ = 0 inside int(Q) and
∇X+ = ∇1lW outside Q follows from the same fact for X−, and (3.3) now
follows because∫

∂Q

|∇X+| = N (X+)−
∫
Rn\Q

|∇1lW |

≤ lim inf
j→+ inf

N ((1− θj) (1− 1lW ))−
∫
Rn\Q

|∇1lW |(3.10)

≤ lim inf
j→+ inf

{∫
Rn

(1− 1lW ) |∇θj|
}
≤ Hn−1(∂Q).

This completes the proof of Lemma 3.2. We shall need also the following
slightly more precise version of (3.3).

Lemma 3.11. Let Q, X−, and X+ be as in Lemma 3.2. Then

(3.12)
∫
∂Q

|∇X−| ≤ C lim inf
ε↘0

{
(ε diamQ)−1 |((1 + ε)Q\Q) ∩W |

}
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and

(3.13)
∫
∂Q

|∇X+| ≤ C lim inf
ε↘0

{
(ε diamQ)−1 |((1 + ε)Q\Q)\W |

}
.

Here C depends only on n and |A| denotes the Lebesgue measure of the set
A in Rn.

This lemma follows from the second-to-last inequalities in (3.7) and (3.10),
at least if we choose the θj’s more carefully. (The θ̃j’s should be almost
piecewise linear.)

Lemma 3.14. Let Q be a cube such that Q ⊂ Q1 or int(Q0)∩Q = ∅. Then

(3.15)
∫
Q

|∇1lW | ≤ 1 + α

1− αH
n−1(∂Q) .

To prove this lemma, we want to compare N(X+) or N(X−) to N(1lW ).
If Q ⊂ Q1, then int(Q0) ⊂W ∪Q ⊂ Q1 because W ∈ F , and so W ∪Q ∈ F ,
since X+ ∈ BV by Lemma 3.2. Similarly, if int(Q0)∩Q = ∅, then int(Q0) ⊂
W\Q ⊂ Q1 and W\Q ∈ F . Thus we may apply (1.4) with 1lV = X+ or X−.
We get that

(3.16) N(1lW ) ≤ N(X±) + αN(1lW −X±),

and then Lemma 3.2 yields

∫
Q

|∇1lW | = N(1lW )−
∫
Rn\Q

|∇1lW |
(3.17)

≤ N(X±) + αN (1lW −X±)−
∫
Rn\Q

|∇1lW |

≤
∫
Q

|∇X±|+ αN (1lW −X±)

≤ (1 + α)
∫
Q

|∇X±|+ α

∫
Q

|∇1lW |

and then ∫
Q

|∇1lW | ≤ 1 + α

1− α
∫
Q

|∇X±| = 1 + α

1− α
∫
∂Q

|∇X±|(3.18)

≤ 1 + α

1− αH
n−1(∂Q).
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This proves the lemma.

Now we want to control quantities like

(3.19) h(Q) = r(Q)−nMin (|Q ∩W | , |Q\W |) ,

where r(Q) denotes the sidelength of the cube Q, and |E| is the Lebesgue
measure of E ⊂ Rn.

Lemma 3.20. Suppose that

(3.21) Q ⊂ Q1 or Q ∩ int(Q0) = ∅.

Then

(3.22) r(Q)−n+1

∫
Q

|∇1lW | ≤ Ch(2Q),

where C depends on n and α, but not on Q.

To prove this we may as well assume h(2Q) ≤ δ for some small δ > 0 that
we get to choose, since otherwise (3.22) follows from (3.15).

Let us first suppose that h(2Q) = (2r(Q))−n |W ∩ 2Q| so that |W ∩ 2Q| ≤
2nδr(Q)n. If δ is small enough, this implies that 3

2
Q ∩ int(Q0) = ∅, and so

Vλ = W\λQ ∈ F for 1 ≤ λ ≤ 3
2
. Thus we may apply (3.18) to the function

Xλ
− = 1lVλ that corresponds to λQ and get that

∫
Q

|∇1lW | ≤
∫
λQ

|∇1lW | ≤ 1 + α

1− α
∫
∂(λQ)

∣∣∇Xλ
−
∣∣(3.23)

≤ C

1− α liminf
ε↘0

{
(εr(Q))−1 |[(1 + ε)λQ\λQ] ∩W |}

by (3.12). Thus (3.22) will follow if we can find λ ∈ [1, 3
2
) such that the

right-hand side of (3.23) is ≤ C′

1−αr(Q)−1 |W ∩ 2Q| = C′

1−α2nr(Q)n−1h(2Q).
The existence of such a λ comes from the general fact that if µ is a finite
nonnegative measure on [1, 2), there is a λ ∈ [1, 3

2
) such that

(3.24) liminf
ε↘0

ε−1µ ([s0, s0 + ε]) ≤ Cµ([1, 2)).

This last fact is itself an easy consequence of the Hardy-Littlewood maximal
theorem. (One can make a more elementary argument using Fatou’s lemma.)

This proves (3.22) when h(2Q) = (2r(Q))−n |W ∩ 2Q|.
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If h(2Q) = (2r(Q))−n |2Q\W |, then |2Q\W | ≤ 2nr(Q)nδ. If δ is small
enough, this implies that 3

2
Q ⊂ Q1, and so V ′λ = W ∪λQ ∈ F for 1 ≤ λ ≤ 3

2
.

Thus we may apply (3.18) to the function Xλ
+ = 1lW∪λQ. This gives that

(3.25)
∫
Q

|∇1lW | ≤ 1 + α

1− α
∫
∂(λQ)

∣∣∇Xλ
+

∣∣ .
We then apply (3.13) and choose an appropriate value of λ as before, to
conclude that

∫
Q

|∇1lW | ≤ C

1− α liminf
ε↘0

{
(εr(Q))−1 |[(1 + ε)λQ\λQ] \W |

}(3.26)

≤ C ′

1− αr(Q)n−1h(2Q).

This completes the proof of Lemma 3.20.

Next we want to show that
∫
Q |∇1lW | controls h(Q). This will be a con-

sequence of the following Sobolev-Poincaré inequality: for f ∈ BV (Rn) and
any cube Q,

(3.27)

{∫
Q

∣∣∣∣f(x)− 1
|Q|

∫
Q

f

∣∣∣∣ n
n−1

dx

}n−1
n

≤ C
∫
Q

|∇f | .

This inequality is well-known. If one wanted to prove it from scratch, one

could use the argument on p. 128-130 of [St].
[
A first step would be to notice

that g =
[
f − 1

|Q|
∫
Q f
]

1lQ lies in BV , with a norm N(g) ≤ C
∫
Q

|∇f | .
]

For

the purpose of this paper, the power n
n−1

is not crucial, in the sense that
anything larger than 1 would work as well. Thus we could manage with
more vulgar Sobolev-Poincaré inequalities than (3.27).

Applying (3.27) to f = 1lW and then using (3.22) we get that{
r(Q)−n

∫
Q

∣∣∣∣1lW (x)− |Q ∩W ||Q|
∣∣∣∣
n
n−1
}n−1

n

≤ C r(Q)−n+1

∫
Q

|∇1lW | ≤ Ch(2Q)(3.28)

when Q satisfies (3.21). On the other hand,

(3.28 1
2
) h(Q) ≤ 4r(Q)−n

∫
Q

∣∣∣∣1lW (x)− |Q ∩W ||Q|
∣∣∣∣
n
n−1
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because
∣∣∣1lW (x)− |Q∩W ||Q|

∣∣∣ ≥ 1
2

on Q\W if |Q∩W ||Q| ≥ 1
2

and
∣∣∣1lW − |Q∩W ||Q|

∣∣∣ ≥ 1
2

on Q ∩W when |Q∩W |
|Q| ≤ 1

2
. Therefore

(3.29) h(Q) ≤ Ch(2Q)
n
n−1

for all cubes Q that satisfy (3.21). The constant C depends on n α, Q0 and
Q1, but not on Q. The next lemma will be a rather mechanical consequence
of (3.29).

Lemma 3.30. There is a small number ε0 > 0, depending only on n,
α, Q0 and Q1, such that if Q satisifies (3.21) and h(Q) ≤ ε0, then either∣∣ 1

2
Q ∩W ∣∣ = 0 or

∣∣ 1
2
Q\W ∣∣ = 0.

Let Q be as in the lemma. For each x ∈ 1
2
Q and each integer j ≥ 1, let

Qj(x) denote the cube with center x, sidelength 2−jr(Q), and sides parallel
to those of Q. Thus Qj(x) ⊂ Q for all j ≥ 1, and in particular Qj(x) satisfies
the condition (3.21). Our assumption gives that h(Q1(x)) ≤ 2nh(Q) ≤ 2nε0.
Also, (3.29) tells us that h (Qj+1(x)) ≤ C h (Qj(x))

n
n−1 . If ε0 is chosen small

enough, this implies that h(Qj+1) ≤ 1
2
h (Qj(x)) as soon as h (Qj(x)) ≤ 2nε0.

A trivial induction then shows that h (Qj(x)) ≤ 2−j+n+1ε0 for all j ≥ 1 and
x ∈ 1

2
Q.

Now suppose first that h(Q) = r(Q)−n |Q ∩W |. Then |Q1(x) ∩W | ≤
|Q ∩W | ≤ 2nε0 |Q1(x)|, and so h (Q1(x)) = |Q1(x)∩W |

|Q1(x)| . Since h (Q1(x)) is also

very small, this implies that |Q2(x)∩W |
|Q2(x)| is so small that h (Q2(x)) = |Q2(x)∩W |

|Q2(x)| .
The argument can be continued like this, and the estimate above gives that

(3.31) |Qj(x) ∩W | ≤ 2−j+n+1ε0 |Qj(x)|
for all j ≥ 1 and x ∈ 1

2
Q. The Lebesgue density theorem implies that∣∣ 1

2
Q ∩W ∣∣ = 0 in this case.

If h(Q) = r(Q)−n |Q\W |, the same argument as above shows that

(3.32) |Qj(x)\W | ≤ 2−j+n+1ε0 |Qj(x)|
for all x ∈ 1

2
Q and j ≥ 1, so that

∣∣ 1
2
Q\W ∣∣ = 0. This completes the proof of

Lemma 3.30.

Set W0 =
{
x ∈ Rn : |B(x, r)\W | = 0 for some r > 0

}
, W1 =

{
x ∈ Rn :

|B(x, r) ∩W | = 0 for some r > 0
}

, and E = Rn\ (W1 ∪W2). Clearly, W0

and W1 are open. Let us check that

(3.33)

{
W0 is the set of points of density of W, and
W1 the set of points of density of Rn\W.
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It is clear that W0 and W1 are contained in the sets of points of density
of W and Rn\W respectively. To prove the converse, let x ∈ Rn be given.
Note that all the small enough cubes centered at x satisfy (3.21). If there is
such a cube Q such that h(Q) < ε0, then Lemma 3.30 says that x lies in W0

or W1. This proves the claim (3.33), but it also tells us that

(3.34)

{
if x ∈ E, then h(Q) ≥ ε0 for all the
cubes Q centered on x and for which (3.21) holds.

An immediate consequence of the first part of (3.33) is that

(3.35) |W0\W | = |W\W0| = 0.

Observe that if x ∈ E, then (3.34) says that |Q ∩W | > 0 and |Q\W | > 0
for every cube centered at x, so that (3.33) now implies that x ∈ ∂W0∩∂W1.
Conversely, if x ∈ ∂W0, then x cannot be in W0 or W1 (because they are
open), and so x ∈ E. Altogether,

(3.36) E = ∂W0 = ∂W1.

Our next task is to show that E is an Ahlfors-regular set that satisfies
Condition B. We shall see in later sections that if W is a quasiminimizer,
then W0 and W1 are connected and are John Domains. To prove that E is
regular, we shall use (3.34) to compare Hn−1(E) with

∫ |∇1lW |.
Let µ denote the positive measure |∇1lW |. Observe that suppµ ⊂ E, since

∇1lW = ∇1lW0 .

Lemma 3.37. There is a constant ε1 > 0 such that if Q is a cube centered
on E which satisfies (3.21), then

(3.38) µ(Q) ≥ ε1 |Q|
n−1
n .

Let Q be as in the statement. We may apply the Sobolev-Poincaré es-
timate (3.27) to f = 1lW and get the first inequality in (3.28). Because of
(3.281

2
), this yields

h(Q)
n−1
n ≤ Cr(Q)−n+1

∫
Q

|∇1lW |(3.39)

= C |Q|−n−1
n µ(Q).

The lemma follows, because h(Q) ≥ ε0 by (3.34).
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Lemma 3.37 implies that

(3.40) E = suppµ.

Moreover, it follows from Lemma 3.14 and Lemma 3.37 that E is Ahlfors-
regular of dimension n− 1. To be precise, these lemmas imply that

(3.41) C−1rn−1 ≤ µ(B(x, r)) ≤ Crn−1

for all x ∈ E and 0 < r < r0, with r0 = (2
√
n)−1 dist (∂Q0, ∂Q1), say. This

last condition on r comes from the fact that we may only apply Lemmas
3.14 and 3.37 to cubes that satisfy (3.21). Of course, this is not a serious
restriction, and (3.41) remains true with a different constant C for x ∈ E
and 0 < r < diamE. [Recall that E ⊂ Q1 by definitions.] In Definition 1.5,
we required that the estimate (3.41) be satisfied with Hd

|E rather than µ, but
it is fairly easy to see that if µ is a measure that satisfies (3.41), then there
is a constant C̃ such that

(3.42) C̃−1Hd
|E ≤ µ ≤ C̃Hd

|E.

This is fairly easy to check using standard arguments. (A proof was written
down for Lemma C.3 in [Se3].)

Thus E is regular, and our next task is to prove Condition B. We shall
actually prove the following slightly more precise result.

Lemma 3.43. There is a constant C1, that depends only on n, Q0, Q1

and α, such that for each x ∈ E and each 0 < r < diamE, we can find
z0 ∈ W0 ∩ B(x, r) and z1 ∈ W1 ∩ B(x, r) such that dist (zi, E) ≥ C−1

1 r for
i = 0, 1.

The fact that E satisfies Condition B will follow from this, since W0, W1

are disjoint open sets whose union is Rn\E. [Compare with Definition 1.6.]

To prove the lemma, let x ∈ E and 0 < r < diamE be given. Without
true loss of generality, we may assume that r ≤ (2

√
n)−1 dist (∂Q0, ∂Q1)

so that the largest cube Q centered at x and contained in B(x, r) satisfies
(3.21). Because of (3.34), |W ∪Q| ≥ ε0 |Q| and |Q\W | ≥ ε0 |Q|. Since W
and W0 coincide almost everywhere (by (3.35)) and similarly Rn\W and W1

are almost the same (by a similar argument or by (3.35) and the fact that
|E| = 0), we have that

(3.44) |W0 ∩Q| ≥ ε0 |Q| and |W1 ∩Q| ≥ ε0 |Q| .
On the other hand, Ahlfors-regularity of E implies that

(3.45) |{x ∈ Q : dist(x,E) ≤ t r(Q)}| ≤ Ct |Q|
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for all t ∈ (0, 1), and a constant C that does not depend on t or Q. This
is easy to prove. For instance one can select a maximal subset A of E ∩
(2Q) whose points are at mutual distances ≥ t r(Q). Because the balls
B
(
z, t r(Q)

2

)
, z ∈ A, are pairwise disjoint, (3.41) implies that A has at most

Ctn−1 elements; (3.45) follows because the set in (3.45) can be covered by
the balls B(z, 2t r(Q)), z ∈ A.

If we choose t small enough, depending on ε0, (3.44) and (3.45) imply the
existence of points z0 ∈W0∩Q and z1 ∈W1∩Q such that dist (zi, E) ≥ t r(Q)
for i = 1, 2. This completes the proof of Lemma 3.43, and of Theorem 3.1
as well.
Remark 3.46 (about uniqueness). In the statement of Theorem 3.1,
the set W0 is not yet unique. It is easy to see that any open set W2 with
the properties described in Theorem 3.1 must be contained in W0. [Each
point of W2 must be a point of density of W .] On the other hand, one
may artificially reduce W0 by adding a piece of E, in a way that preserves
Ahlfors-regularity and Condition B. [See Figure 1.]

This problem does not arise if we also require that W2 satisfy the con-
clusion of Lemma 3.43 [i.e., that one can find z0 ∈ W2 ∩ B(x, r) and z1 ∈
B(x, r)\W2 with dist (zi, ∂W2) ≥ C−1

1 r]. Indeed, if W2 satisfies this condi-
tion and if x ∈ W0\W2, then x ∈ ∂W2 because x is a point of density of
W , and hence of W2. This contradicts the conclusion of Lemma 3.43, since
x ∈W0.

Thus W0 is unique if we require that it satisfy the condition stated in
Lemma 3.43, in addition to the conclusion of Theorem 3.1.

Figure 1.

4. |∇1lW | and Hausdorff measure on ∂W .

In this section we want to compare the sizes of the measures |∇1lΩ| and
Hn−1|∂Ω when Ω is an open set such that Hn−1(∂Ω) < +∞. This will



QUASIMINIMAL SURFACES... 231

be used in the next section to prove that the open set W0 associated to a
quasiminimizer for N(·) as in Section 3 is connected and even a “domain of
isoperimetry”. It will also be used later to derive geometric consequences
like Theorems 1.15 and 1.16 from properties of quasiminimizers.

Proposition 4.1. Let W be a quasiminimizer for N(·) and E = ∂W0 be
as in the last section. Then |∇1lW | is the restriction of Hn−1 to E.

The plan of this section is to first derive Proposition 4.1 from standard
results on Caccioppoli sets, and then give a direct proof of the weaker fact
that |∇1lW | is equivalent to Hn−1|∂Ω with constants that depend only on the
dimension n. The point of doing so is that the proof is slightly simpler (both
because we are in a simpler situation and prove less), and we shall typically
need only the weaker estimate.

To each set W such that 1lW ∈ BV , one associates a reduced boundary
∂∗W , which is the set of points x ∈ Rn with the following properties:

(4.2)
∫
B(x,r)

|∇1lW | > 0 for all r > 0

and, if we define vectors νr(x) by

(4.3) νr(x) =

∫
B(x,r)∇1lW∫
B(x,r) |∇1lW | for r > 0,

then

(4.4) ν(x) =lim
r→0

νr(x) exists, and its length is |ν(x)| = 1.

This is Definition 3.3 on p. 43 of the book of E. Giusti [Gi], which we
also refer to for more information on Caccioppoli sets. Observe that ∂∗W
does not change when we replace W with an equivalent set, i.e., a set W̃
such that

∣∣∣W̃\W ∣∣∣ =
∣∣∣W\W̃ ∣∣∣ = 0. It is clear from (4.2) that

(4.5) ∂∗W ⊂ ∂W,
and of course this information may become more interesting if we replace W
by a correctly chosen equivalent set, like the set W0 of the previous section.

The theorem of Besicovitch on differentiation of measures implies that
|∇1lW |-almost every point of the support of |∇1lW | lies in ∂∗W . [See 3.3 on
pp. 43-44 in [Gi].] Moreover,

(4.6)

{
the measure |∇1lW | coincides with
the restriction to ∂∗W of Hn−1.
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This is (4.1) on p. 52 of [Gi].

In the special case when W is a quasiminimizer for N(·), (4.5) applied to
the open set W0 instead of W tells us that ∂∗W ⊂ E = ∂W0. Also, we know
from (3.40) and (3.41) that E = supp (|∇1lW |) and that |∇1lW | and Hn−1|E
are equivalent in size. [See also (3.42).] Because of this, Hn−1-almost every
point of E lies in ∂∗W , and Proposition 4.1 follows from (4.6).

The next lemma is an easy consequence of (4.5) and (4.6), but we shall
prove it for the convenience of the reader.

Lemma 4.7. If Ω is a Borel set such that Hn−1(∂Ω) < +∞, then 1lΩ ∈ BV
and we have the following inequality between measures:

(4.8) |∇1lΩ| ≤ Cn Hn−1
∣∣
∂Ω
.

We know from (4.5) and (4.6) that we can take Cn = 1, but we shall only
prove (4.8) with a constant Cn that depends only on n. The point is to give
a very direct proof.

To prove the lemma, we shall establish that for every choice of an open
set ω, a test-function ϕ with compact support in ω, and an index j ∈
{1, 2, . . . , n}, we have that

(4.9)
∣∣∣∣〈 ∂

∂xj
1lΩ, ϕ

〉∣∣∣∣ ≤ C ′n ‖ϕ‖∞Hn−1(ω ∩ ∂Ω)

where
〈

∂
∂xj

1lΩ, ϕ
〉

= −
∫
Rn

1lΩ
∂ϕ

∂xj
is the result of the action of the distribu-

tion ∂
∂xj

1lΩ on the test function ϕ.

Let us check that the lemma will follow from (4.9). If (4.9) holds with
ω = Rn, the Riesz representation theorem tells us that each ∂

∂xj
1lΩ is a

finite measure, and so 1lΩ ∈ BV . Then (4.9) and the regularity of the finite
Borel measures

∣∣∣ ∂
∂xj

1lΩ
∣∣∣ and Hn−1|∂Ω imply that

∣∣∣ ∂
∂xj

1lΩ
∣∣∣ ≤ C ′n Hn−1|∂Ω, from

which (4.8) follows.

We shall only prove (4.9) with j = 1. Let H denote the hyperplane
{x ∈ Rn : x1 = 0} and let π be the orthogonal projection into H. We want
to use the fact that

(4.10)
∫
H

N(y)dy ≤ CHn−1(ω ∩ ∂Ω),
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where N(y) denotes the number of elements in ω∩∂Ω∩π−1(y). This formula
will be proved later, but let us first see why it implies (4.9).

Let ϕ be a test-function with compact support in ω. By Fubini,

〈
∂

∂x1

1lΩ, ϕ
〉

= −
∫
Rn

1lΩ
∂ϕ

∂x1

(4.11)

= −
∫
H

{∫
R

1lΩ (x1, y)
∂ϕ

∂x1

(x1, y) dx1

}
dy,

where we wrote points of Rn as x = (x1, y) with x1 ∈ R and y ∈ H. Let
y ∈ H be given, and suppose that N(y) < +∞. (By (4.10), this is the case
for almost every y ∈ H.) Denote by {Ik}, k ∈ K, the connected components
of {x1 ∈ R : (x1, y) ∈ Ω}. For each k ∈ K,∫

Ik

1lΩ (x1, y)
∂ϕ

∂x1

(x1, y) dx1 = ϕ(a+
k , y)− ϕ(a−k , y),

where a−k and a+
k are the extremities of Ik. Notice that ϕ(a±k , y) = 0 unless

(a±k , y) ∈ ω, in which case (a±k , y) ∈ ω ∩ ∂Ω. Thus∣∣∣∣∫
R

1lΩ (x1, y)
∂ϕ

∂x1

(x1, y) dx1

∣∣∣∣(4.12)

≤
∑
k∈K

(|ϕ(a+
k , y)|+ |ϕ(a−k , y)|) ≤ 2N(y) ‖ϕ‖∞ ,

where the factor 2 comes from the fact that a given (x1, y) ∈ ω∩∂Ω may cor-
respond to two intervals Ik. The desired estimate (4.9) follows from (4.11),
(4.12) and (4.10).

Let us now verify (4.10). Given ε > 0, choose a sequence of closed
subsets Ek in Rn such that ∂Ω ∩ ω ⊂ ⋃

k Ek, diamEk ≤ ε for all k, and∑
k (diamEk)

n−1 ≤ Hn−1 (∂Ω ∩ ω) + ε. Set Fk = π (Ek) and, for y ∈ H,
denote by Nε(y) the supremum of the integers ` ≥ 0 such that there exist `
points x1, · · · , x` ∈ ∂Ω ∩ ω ∩ π−1(y) which satisfy |xi − xj| > 2ε for i 6= j.
Then Nε(y) ≤∑k 1lFk(y), and so∫

H

Nε(y)dy ≤ C
∑
k

(diamEk)
n−1(4.13)

≤ CHn−1(∂Ω ∪ ω) + Cε.

By sending ε to 0 we get (4.10) (from Fatou’s lemma). We can finesse the
issue of measurability of N(y) by observing that the proof shows that N(y)
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is less than or equal to a measurable function whose integral is bounded by
CHn−1(∂Ω ∩ ω), which suffices for the proof of (4.9). This completes our
proof of Lemma 4.7.

Next we want to prove that when W is a quasiminimizer for N(·), then

(4.14) Hn−1
∣∣
E
≤ Cn |∇1lW |

(an inequality between measures), where E = ∂W0 is the Ahlfors-regular set
introduced in the last section. This estimate is less precise than Proposition
4.1, but it is better than (3.41) or (3.42) because in (4.14) we do not allow
Cn to depend on anything other than the dimension. It will also be sufficient
for the purposes of this paper.

The proof of (4.14) will only use the fact that W0 is an open set that
satisfies Condition B, as in the following variant of Definition 1.6.
Definition 4.15. Let W be a bounded open set in Rn. We say that W
satisfies Condition B if ∂W is an Ahlfors regular set of dimension n− 1 (as
in Definition 1.5) and if there is a constant C1 such that, for each x ∈ ∂W
and each radius 0 < r ≤ diamW , we can find two balls B1 and B2 of radius
C−1

1 r, contained in B(x, r), and such that B1 ⊂W and B2 ⊂ Rn\W .

Notice that we do not require that W or Rn\W be connected. The con-
dition in this definition is slightly more restrictive than requiring that ∂W
be a Condition B set; we also demand that one of the balls Bi be contained
in one of the connected components of W and the other one in one of the
components of Rn\W . Of course a good example of Condition B open set is
our set W0 of the previous section (by Lemma 3.43).

Lemma 4.16. There is a constant Cn > 0 such that, if W is an open set
that satisfies Condition B, then

(4.17) Hn−1
∣∣
∂W
≤ Cn |∇1lW | .

It is important that Cn does not depend on the Condition B constants for
W . In fact, as in Proposition 4.1, one can even take Cn = 1, but we shall
typically not need this fact.

Let W be an open set that satisfies Condition B, and set E = ∂W . The
first property of E that we want to use is its rectifiability, and more precisely
the existence of tangent planes to E almost everywhere. For each x ∈ E and
t > 0, set

(4.18) β(x, t) =inf
P

{
sup

y∈E∩B(x,t)

t−1 dist(y, P )

}
,
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where the infimum is taken over all affine hyperplanes P . We claim that

(4.19) lim
t→0

β(x, t) = 0 for Hn−1-almost every point x ∈ E.

One way to see this is to observe that, since E satisfies Condition B,
E “has big pieces of Lipschitz graphs” (see [D], [DJ], or [DS1]), and in
particular E is rectifiable. Then E has approximate tangent planes almost
everywhere, and it is easy to check that for Ahlfors regular sets, approximate
tangent planes are the same as tangent planes. In terms of total amount of
work, though, the best proof of (4.19) is probably to use Theorem 1.20
and Proposition 1.18 in [DS1] to get that E satisfies the “weak geometric
lemma”. (See Definition 1.16 in [DS1].) The fact that the weak geometric
lemma implies (4.19) is only a matter of definitions.

Denote by µ the restriction to E of Hn−1. Because of Lemma 4.7, the
Radon-Nikodym theorem says that there is f ∈ L∞(µ) such that

(4.20) |∇1lW | = fdµ.

To prove Lemma 4.16, it will be enough to show that f(x) ≥ C−1
n µ-almost

everywhere. Let us first check that there is a constant C(n), that depends
only on the dimension n, such that

(4.21)
∫
B(x,t)

|∇1lW | ≥ C(n)−1tn−1

for each x ∈ E and each t ≤ diamW such that β(x, t) ≤ (10C1)−1, say,
where C1 is the constant in the definition of Condition B.

Indeed, suppose that 0 < t ≤ diamW and β(x, t) ≤ (10C1)−1, let P be a
plane that realizes the infimum in the definition (4.18) of β(x, t), and denote
by U± the two connected components of {y ∈ B(x, t) : dist(y, P ) > tβ(x, t)}.
By definition of P , U+ and U− do not meet E.

Because W satisfies Condition B, we can find two balls B1 and B2, of
radius C−1

1 t, such that B1 ⊂ B(x, t) ∩ W and B2 ⊂ B(x, t)\W . The set
B(x, t)\ (U+ ∪ U−) is too thin to contain B1 or B2, and so each of them
meets U+ or U−. Suppose for definiteness that B1 meets U+. Then U+ ⊂W
because it is connected and does not meet E. Then B2 cannot meet U+

(because B2 ⊂ B(x, t)\W ), and so B2 meets U−. Then U− ⊂ B(x, t)\W for
the same reason as above. Thus 1lW equals 0 on U− and 1 on U+, and (4.21)
follows fairly easily. Let us sketch the argument. Without loss of generality,
we may assume that x = 0 and P is parallel to the hyperplane {x1 = 0}.
Choose a bump function of the form ϕ(x) = ϕ1

(
x1
t

)
ψ
(
x2
t , · · · ,

xn
t

)
, where
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ψ is a nonegative bump function with integral 1 and small support around
0, and ϕ1 is even, supported in

[− 1
2
, 1

2

]
equal to 1 on

[− 1
4
, 1

4

]
and decreasing

on
]

1
4
, 1

2

[
. Then

tn−1 =
∣∣∣∣∫ ∂ϕ

∂x1

1lW
∣∣∣∣ =

∣∣∣∣∫ ϕ
∂

∂x1

1lW
∣∣∣∣(4.22)

≤ ‖ϕ‖∞
∫
B(x,t)

|∇1lW |

= ‖ϕ1‖∞ ‖ψ‖∞
∫
B(x,t)

|∇1lW | .

This proves (4.21).

Because of (4.21) and (4.19),

(4.23) lim inf
t→0

t1−n
∫
B(x,t)

|∇1lW | ≥ C(n)−1

for almost every point x ∈ E.

On the other hand, it is well known that there is a constant C ′(n) such
that

(4.24) lim sup
t→0

Hn−1 (E ∩B(x, t))
tn−1

≤ C ′(n)

for every compact set E such that Hn−1(E) < +∞ and Hn−1-almost every
point x ∈ E, and so

lim inf
t→0

tn−1

µ(B(x, t))
≥ C ′(n)−1

for µ-almost every x ∈ E. Thus

(4.25) lim inf
t→0

µ(B(x, t))−1

∫
B(x,t)

|∇1lW | ≥ C(n)−1C ′(n)−1.

By a standard differentiation theorem (see [Fe] or [Ma]),

(4.26) f(x) =lim
t→0

µ(B(x, t))−1

∫
B(x,t)

|∇1lW |

for µ-almost every x ∈ E. Note that in the present case, (4.26) can be
obtained more easily than for general measures, because E is Ahlfors-regular
and so we may use the standard proof of the Lebesgue differentiation theorem
in Rn.

From (4.26) and (4.25), we deduce that f(x) ≥ C(n)−1C ′(n)−1 µ-almost
everywhere, and Lemma 4.16 follows.
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5. Domains of isoperimetry.

Let Q0, Q1 be closed cubes in Rn, with Q0 ⊂ int(Q1). We have seen in
Section 3 that to each quasiminimizer W for N(·), we can associate a unique
open set W0 such that |W0\W | = |W\W0| = 0 and which satisfies Condition
B. [See Theorem 3.1 and Lemma 3.43 for the existence, the end of Remark
3.46 for uniqueness, and Definition 4.15 for Condition B open sets.] We shall
call such a set W0 a normalized quasiminimizer for N(·).

The aim of this section is to prove that if W0 is a normalized quasimini-
mizer for N(·), then W0 and Rn\W0 are connected, and are even “domains of
isoperimetry”. We shall see in Section 6 that this, together with Condition
B, implies that W0 and Rn\W0 are John domains.
Definition 5.1. An open set W ⊂ Rn is a domain of isoperimetry if there
is a constant C2 > 0 so that if Ω is any open set in W , then

(5.2) min (|Ω| , |W\Ω|) ≤ C2H
n−1 (W ∩ ∂Ω)

n
n−1 .

Remark 5.3. It is clear from the definition that domains of isoperimetry
are connected if they have finite measure or if they contain the complement
of a ball.

Note that (5.2) is just an isoperimetric inequality for Ω as a space in its
own right, without regard to the ambient space. Cubes, balls, or Rn itself
are domains of isoperimetry (with uniform constants).

Theorem 5.4. Let Q0, Q1 be closed cubes in Rn, with Q0 ⊂ int(Q1), and
let W be a normalized quasiminimizer for N(·). Then W and Rn\W are
domains of isoperimetry. Moreover, the constant C2 in (5.2) can be taken to
depend only on n, Q0, Q1, and the constant α in (1.4).

To prove this it will be easier to work with a minor reformulation of the
conditions that W and Rn\W be domains of isoperimetry. We start with
W .

Lemma 5.5. Let Q0, Q1 be closed cubes in Rn, with Q0 ⊂ int(Q1), and
let W be an open set such that int(Q0) ⊂W ⊂ Q1. Then W is a domain of
isoperimetry if and only if there is a constant C > 0 so that

(5.6) |W\Ω| ≤ CHn−1 (∂Ω ∩W )
n
n−1

for all open subsets Ω of W with int(Q0) ⊂ Ω.

If W is a domain of isoperimetry and if Ω is an open subset of W such
that int(Q0) ⊂ Ω, then (5.6) holds because |W\Ω| ≤ C |Ω|.
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To prove the converse, let W be as in the lemma, and let us show that W
is a domain of isoperimetry. Let Ω be an open subset of W . If ∂Ω ∩W has
positive Lebesgue measure, then (5.2) holds trivially. Thus it is enough to
consider the case when

(5.7) |Q0 ∩ Ω| ≥ 1
2
|Q0| ,

and prove that

(5.8) |W\Ω| ≤ C2H
n−1 (W ∩ ∂Ω)

n
n−1 ,

since otherwise we can work with W\Ω instead of Ω.

Let us apply (5.6) to the open set Ω′ = Ω ∪ int(Q0). We have that
∂Ω′ ∩W ⊂ (∂Ω ∩W ) ∪ [(∂Q0\Ω) ∩W ], and so (5.6) yields

(5.9) |W\Ω′| ≤ CHn−1 (∂Ω ∩W )
n
n−1 + CHn−1 ((∂Q0\Ω) ∩W )

n
n−1 .

Also,

|W\Ω| ≤ |W\Ω′|+ |int(Q0)\Ω|(5.10)

≤ |W\Ω′|+ CHn−1 (int(Q0) ∩ ∂Ω)
n
n−1 ,

because int(Q0) is a domain of isoperimetry and |int(Q0)\Ω| ≤ |int(Q0) ∩ Ω|
by (5.7). Thus (5.8) will follow as soon as we prove that

(5.11) Hn−1 ((∂Q0\Ω) ∩W ) ≤ CHn−1 (∂Ω ∩W ) .

[This looks rather reasonable, ∂Q0\Ω and ∂Ω∩Q0 are the two pieces of the
boundary of int(Q0)\Ω, and one expects the first one not to be much larger
than the second one.] Note that Hn−1(∂Q0 ∩ ∂Ω∩W ) is under control, and
so it is enough to show that

(5.12) Hn−1
(
∂Q0\Ω

)
≤ CHn−1 (∂Ω ∩W ) .

Set Q = λQ0, where λ ∈ (0, 1) is chosen so that |Q0\Q| = 1
4
|Q0|. Thus

|Ω ∩Q| ≥ 1
4
|Q0|, by (5.7). Given p ∈ Ω ∩ Q, define rp : Rn\{p} → ∂Q0 to

be the obvious “radial projection”. [In other words, rp(x) − p is a positive
multiple of x− p.] For each p ∈ Ω ∩Q we have that

(5.13) ∂Q0\Ω ⊂ rp (int(Q0) ∩ ∂Ω) ,

because for each z ∈ ∂Q0\Ω, the line segment (p, z) must meet ∂Ω.
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Of course the mapping x→ rp(x) is not Lipschitz with uniform estimates,
even if we choose p as far as possible from ∂Ω, but we still have that

Hn−1
(
∂Q0\Ω

)
≤
∫

Int(Q0)∩∂Ω

|∇rp(x)|n−1
dHn−1(x)

(5.14)

≤ C
∫

Int(Q0)∩∂Ω

(
diamQ0

|x− p|
)n−1

dHn−1(x).

We now get (5.12) by averaging (5.14) over p ∈ Ω ∩ Q, using also the fact
that |Ω ∩Q| ≥ 1

4
|Q0|. This completes our proof of Lemma 5.5.

Here is the analogue of Lemma 5.5 for unbounded domains.

Lemma 5.15. Let W1 be an open set such that Rn\Q1 ⊂W1. Then W1 is
a domain of isoperimetry if and only if there is a constant C > 0 so that

(5.16) |W1\Ω| ≤ CHn−1 (∂Ω ∩W1)
n
n−1

for all open subsets Ω of W1 such that Ω ⊃ Rn\Q1.

If W1 is a domain of isoperimetry that contains Rn\Q1, and if Ω is as in
the lemma, (5.16) holds because it is exactly the same as (5.2) in this case.
To prove the converse, we give ourselves an open set W1 with the property
of Lemma 5.15 and an open set Ω ⊂ W1, and we want to check (5.2). As
before, the case |∂Ω ∩W1| > 0 is trivial, and since we may always replace Ω
by W1\Ω, it is enough to prove (5.2) when

(5.17) |(Rn\Q1) \Ω| ≤ |(Rn\Q1) ∩ Ω| .

Observe that in this case |Ω| = |(Rn\Q1) ∩ Ω| = +∞, and (5.2) is the
same as

(5.18) |W1\Ω| ≤ C2H
n−1 (W1 ∩ ∂Ω)

n
n−1 .

It is not too hard to check that Rn\Q1 is a domain of isoperimetry. Thus

|(Rn\Q1)\Ω)| ≤ CHn−1 ((Rn\Q1) ∩ ∂Ω)
n
n−1(5.19)

≤ CHn−1 (W1 ∩ ∂Ω)
n
n−1 .

Now apply (5.16) to the open set Ω′ = Ω ∪ (Rn\Q1). Since W1\Ω′ =
(W1 ∩Q1) \Ω and ∂Ω′ ⊂ ∂Ω ∪ (∂Q1\Ω), we get that

(5.20) |(W1 ∩Q1) \Ω| ≤ CHn−1 (W1 ∩ ∂Ω)
n
n−1 +CHn−1 (W1 ∩ ∂Q1\Ω)

n
n−1 .
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Putting (5.19) and (5.20) together, we get that

(5.21) |W1\Ω| ≤ CHn−1 (W1 ∩ ∂Ω)
n
n−1 + CHn−1 (W1 ∩ ∂Q1\Ω)

n
n−1 .

Moreover, if |(W1 ∩Q1) \Ω| ≤ 2 |(Rn\Q1) \Ω|, then we do not need (5.20),
and (5.18) follows directly from (5.19). Thus it is enough to prove (5.18)
when

(5.22) |(Rn\Q1) \Ω| ≤ 1
2
|Q1| .

Let us check that

(5.23) Hn−1 ((W1 ∩ ∂Q1) \Ω) ≤ CHn−1 (W1 ∩ ∂Ω)

when (5.22) holds; the lemma will then follow at once from this and (5.21).

The proof of (5.23) is practically the same as for (5.12). It suffices to show
that

(5.24) Hn−1
(
∂Q1\Ω

)
≤ CHn−1 (W1 ∩ ∂Ω) .

Let Q1,j, 1 ≤ j ≤ 3n − 1 denote the various translates of Q1, adjacent to
Q1, which fill up 3Q1\Int(Q1) in the obvious way. In order to get (5.24) it
is clearly sufficient to show that

(5.25) Hn−1
(
∂Q1,j\Ω

)
≤ CHn−1 (Int (Q1,j) ∩ ∂Ω)

for each j. These estimates in turn follow from exactly the same argu-
ment as used to establish (5.12), because our assumption (5.22) implies that
|Q1,j ∩ Ω| ≥ 1

2
|Q1,j| for each j. (Also Int(Q1,j) ⊆ W1 for each j.) This

completes the proof of Lemma 5.15.

Let us now return to the proof of Theorem 5.4. Let W be a normalized
quasiminimizer; we want to prove that W satisfies the condition of Lemma
5.5, and so we give ourselves an open set Ω such that

(5.26) int(Q0) ⊂ Ω ⊂W,

and we want to prove that (5.6) holds. Of course we may assume that
Hn−1 (∂Ω ∩W ) < +∞ because otherwise there is nothing to prove. Notice
that Hn−1(∂Ω) ≤ Hn−1 (W ∩ ∂Ω) +Hn−1(∂W ) < +∞, and so 1lΩ ∈ BV by
Lemma 4.7. Thus Ω ∈ F , and (1.4) says that

(5.27) N (1lW ) ≤ N (1lΩ) + αN (1lW − 1lΩ) .
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If we want to use (5.27), it will be useful to understand better the measures
ν = ∇1lW , ν+ = ∇1lΩ and ν− = ∇1lW\Ω. The more interesting part of the
discussion will concern the parts of ν+ and ν− that live on the boundary of
W , i.e. νb± = 1l∂W ν±. Let us first enumerate the obvious relations

(5.28) ν = ν+ + ν− = νb+ + νb−,

which follow from the identity 1lW = 1lΩ + 1lW\Ω and the fact that ν is
supported on E = ∂W .

Denote by µ the restriction of Hn−1 to E. Because of Lemma 4.7 (or
(4.6)) and the Radon-Nikodym theorem, there are bounded, measureable,
vector-valued functions f , f+ and f− such that

(5.29) ν = fdµ, νb+ = f+dµ and νb− = f−dµ.

Obviously, f = f++f−. We shall get more information about these functions
by looking more closely at the geometry of the situation.

Lemma 5.30. For µ-almost every x ∈ E, we have either

(5.31) lim
r→0

r−n |Ω ∩B(x, r)| = 0

or

(5.32) lim
r→0

r−n |(W\Ω) ∩B(x, r)| = 0.

In other words, at almost every point x ∈ E, Ω is asymptotically either as
thick as it can be or as thin as it can be in W . To prove the lemma, consider
the finite Borel measure η = Hn−1

|W∩∂Ω. We claim that

(5.33) lim
r→0

r1−nη(B(x, r)) = 0 for µ-almost all x ∈ E.

This will only use the facts that η(E) = 0 and that µ is Ahlfors-regular
of dimension n− 1, i.e. that

(5.34) C−1rn−1 ≤ µ(B(x, r)) ≤ Crn−1

for all x ∈ E and 0 < r ≤ diamW . [See (3.41) and (3.42), and remember
that then µ denoted |∇1lW | rather than Hn−1

|E .] To prove (5.33), notice first
that for every ε > 0, there is a δ > 0 such that

(5.35) η ({y ∈ Rn : dist(y,E) ≤ δ}) < ε.
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We then define a maximal function by

(5.36) η∗(z) =sup
{
r1−nη(B(z, r)) : 0 < r < δ

}
,

and we conclude that

(5.37) µ ({z ∈ E : η∗(z) > λ}) ≤ C

λ
η ({y ∈ Rn : dist(y,E) ≤ δ}) ≤ Cε

λ
,

by the standard proof of the Hardy-Littlewood maximal theorem that uses
a covering argument of Vitali type, for instance. [The point is that all the
balls that we consider are centered on E, and (5.34) gives a very good control
on their mass for µ.] Applying (5.37) with λ = ε

1
2 we conclude that the lim

sup of the quantity in (5.33) is > ε
1
2 only on a set of measure ≤ Cε 1

2 . Since
ε > 0 is arbitrary it is easy to conclude that (5.33) holds.

We now return to the proof of Lemma 5.30. Let x ∈ E be such that

(5.38) lim
r→0

r1−nHn−1 (W ∩ ∂Ω ∩B(x, r)) = 0,

and also lim
r→0

β(x, r) = 0, where β(x, r) is as in (4.18). We know from (5.33)
and (4.19) that these equalities hold for µ-almost every x ∈ E.

Suppose that r is so small that β(x, r) ≤ ε, where ε > 0 is given in ad-
vance. Let P denote a hyperplane that realizes the infimum in the definition
(4.18) of β(x, r), and denote by U+ and U− the two connected components of
B(x, r)\{y ∈ Rn : dist(y, P ) ≤ εr}. Since β(x, r) ≤ ε, we know that E does
not meet U+ or U−. If ε is small enough, depending on the condition B con-
stant for the open set W , we conclude that U+ ⊂W ∩B(x, r) ⊂ B(x, r)\U−,
or else U− ⊂W ∩B(x, r) ⊂ B(x, r)\U+. Suppose for definiteness that we are
in the first case. If r is small enough, (5.38) and the isoperimetric inequality
tell us that either almost all of U+ is contained in Ω, or else almost all of U+

is contained in W\Ω. (This is not hard to check. One can make it look like
more standard statements using the fact that U+ is bilipschitz equivalent to
a ball and a cube, with uniform bounds.) This argument shows that

(5.39) lim
r→0

Min
(
d+(r), d−(r)

)
= 0,

where we set d+(r) = r−n |Ω ∩B(x, r)| and d−(r) = r−n |(W\Ω) ∩B(x, r)|.
This is not exactly the same as the alternative (5.31) or (5.32), which requires
that either d+(r) or d−(r) tend to 0, because one could imagine a situation
where d+(r) is small for some values of r, and d−(r) is small for the other
ones. It is easy to see that, since d+(r) + d−(r) ≥ C−1 for r small enough,
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this situation cannot occur for continuity reasons. This completes our proof
of Lemma 5.30.

Remark 5.40. Lemma 5.30 is also true, with the same proof, if we
replace W by W1 = Rn\W , and Ω by any open set Ω′ ⊂ Rn\W such that
Hn−1(∂Ω′) < +∞.

Let us now come back to our measures ν, νb± and our functions f and f±.

Lemma 5.41. For µ-almost every point x ∈ E, we either have that

(5.42) f+(x) = 0 and f(x) = f−(x)

or

(5.43) f−(x) = 0 and f(x) = f+(x).

Let x ∈ E be a Lebesgue point for f+ and f− (with respect to µ), and
suppose that (5.38) holds and that we have (5.31) or (5.32). We know from
Lemma 5.30 and (5.33) that this is the case for µ-almost every point of E.
We want to show that f+(x) = 0 or f−(x) = 0.

For each small r > 0, choose a bump function ϕr on Rn supported in
B(x, r) and such that 0 ≤ ϕr ≤ Cr−n+1, |∇ϕr| ≤ Cr−n, and

∫
E ϕrdµ = 1.

Since x is a Lebesgue point for f± we have that

(5.44) f±(x) =lim
r→0

∫
E

ϕrf±dµ.

On the other hand,∫
E

ϕrf±dµ =
∫
ϕrdν

b
±(5.45)

=
∫
ϕrdν± −

∫
W

ϕrdν±.

Because of Lemma 4.7 (or (4.6)),∣∣∣∣∫
W

ϕrdν±

∣∣∣∣ =
∣∣∣∣∫
W

ϕr∇1lΩ
∣∣∣∣(5.46)

≤ C
∫
∂Ω∩W

|ϕr| dHn−1

≤ C ‖ϕr‖∞Hn−1 (∂Ω ∩W ∩B(x, r))

which tends to 0 by (5.38).
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Suppose that (5.31) holds. Then∣∣∣∣∫ ϕrdν+

∣∣∣∣ =
∣∣∣∣∫ ∇ϕr1lΩ∣∣∣∣(5.47)

≤ ‖∇ϕr‖∞ |Ω ∩B(x, r)| ,

which tends to 0 when r → 0 because of (5.31). In this case f+(x) = 0.

If (5.32) holds, then∣∣∣∣∫ ϕrdν−

∣∣∣∣ =
∣∣∣∣∫ ∇ϕr1lW\Ω∣∣∣∣(5.48)

≤ ‖∇ϕr‖∞ |(W\Ω) ∩B(x, r)| ,

which tends to 0 when r → 0. This time, f−(x) = 0. This proves that
f+(x) = 0 or f−(x) = 0 for µ-almost every x ∈ E. Lemma 5.41 follows,
because we already know that f = f+ + f−.

We are now ready to use the information given by (5.27). Let E+ denote
the piece of E where f− = 0, and E− denote the rest of E.

Lemma 5.41 tells us that

(5.49) N (1lΩ) =
∫
W

|∇1lΩ|+
∫
E+

|∇1lW |

and

(5.50) N (1lW − 1lΩ) =
∫
W

|∇1lΩ|+
∫
E−
|∇1lW |

(because ∇1lΩ = −∇1lW\Ω on W ), while

(5.51) N (1lW ) =
∫
E+

|∇1lW |+
∫
E−
|∇1lW | .

Thus (5.27) is the same as

(5.52) (1− α)
∫
E−
|∇1lW | ≤ (1 + α)

∫
W

|∇1lΩ| .

Now use (4.6) (or Lemma 4.7 if you do not want sharp constants) to
estimate the right-hand side, and then (5.50) again to get

(5.53) N
(
1lW\Ω

) ≤ 2
1− αH

n−1(W ∩ ∂Ω).
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By the (standard) isoperimetric inequality in Rn,

(5.54) |W\Ω| ≤ CN (
1lW\Ω

) n
n−1 ≤ CHn−1 (W ∩ ∂Ω)

n
n−1 ,

which is (5.6). Thus we proved that W satisfies the condition of Lemma 5.5,
and that it is a domain of isoperimetry.

To complete the proof of Theorem 5.4, we still need to prove that W1 =
Rn\W is also a domain of isoperimetry. Fortunately, the proof is very similar
to what we did for W .

This time we want to show that W1 satisfies the condition of Lemma 5.15,
and so we give ourselves an open subset Ω of W1 such that Ω ⊃ Rn\Q1, and
we want to prove (5.16).

We may as well assume that Hn−1(∂Ω) < +∞, because otherwise there
is nothing to prove. Thus 1lRn\Ω lies in BV . Moreover, W1 = Rn\W ⊃ Ω ⊃
Rn\Q1, and so int (Q0) ⊂ W ⊂ W ⊂ Rn\Ω ⊂ Q1, so that V = Rn\Ω lies in
F and the quasiminimality of W implies that

(5.55) N (1lW ) ≤ N (1lV ) + αN
(
1lV \W

)
.

This time we want to study the measures

ν = ∇1lW1 , ν+ = ∇1lΩ and ν− = 1lW1\Ω,

as well as their boundary parts νb± = 1lE ν±. We still have the identity
(5.28) for the same reason as before, and we still can use Lemma 4.7 and the
Radon-Nikodym theorem to write ν, νb+ and νb− as density measures relative
to µ = Hn−1

|E as in (5.29).

The analogue of Lemma 5.30 (but with W1 instead of W ) still holds, as we
observed in Remark 5.40, and Lemma 5.41 also works with the same proof.
[We have used the fact that W is a Condition B domain, but not the fact
that it is bounded.]

Let us still decompose E into E+, where f = f+ and f− = 0, and E− =
E\E+, where f = f− and f+ = 0 µ-almost everywhere. Then

N (1lV ) = N (1lΩ)(5.56)

=
∫
W1

|∇1lΩ|+
∫
E+

|∇1lW1 | ,

N
(
1lV \W

)
= N

(
1lV \W

)
= N

(
1lW1\Ω

)
(5.57)

=
∫
W1

|∇1lΩ|+
∫
E−
|∇1lW1 | ,
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and

N (1lW ) = N (1lW ) = N (1lW1)(5.58)

=
∫
E+

|∇1lW1 |+
∫
E−
|∇1lW1 | .

Now (5.55) implies that

(5.59) (1− α)
∫
E−
|∇1lW1 | ≤ (1 + α)

∫
W1

|∇1lΩ| .

We may use (4.6) and (5.57) again to get

N
(
1lW1\Ω

) ≤ 2
1− α

∫
W1

|∇1lΩ|(5.60)

≤ 2
1− αH

n−1 (W1 ∩ ∂Ω) ,

and then the isoperimetric inequality to deduce (5.16) from (5.60). Hence
W1 satisfies the condition of Lemma 5.15, and is a domain of isoperimetry
as well.

This completes our proof of Theorem 5.4.

6. Isoperimetry and John domains.

The main goal of this section is to prove the following result.

Theorem 6.1. Let W be a bounded domain that contains B(0, 1). Sup-
pose that W satisfies Condition B and is a domain of isoperimetry. Then
W is a John domain with center 0. The constants for the John condition
can be bounded in terms of diam W and the Condition B and domain-of-
isoperimetry constants for W .

See Definition 4.15 for Condition B, Definition 5.1 for domains of isoperime-
try, and Definition 1.7 for John domains.

Note that John domains are domains of isoperimetry, as in Theorem 5.1
of [B] (with p = 1, p∗ = n

n−1
).

There is an obvious analogue of Theorem 6.1 for unbounded domains. In
this version we ask that the given domain W1 contain the complement of
a ball, that it be a domain of isoperimetry, and that it satisfy the natural
variant of Condition B in this situation, in which the radius r in Defini-
tion 4.15 is constrained by r ≤ diam(Rn\W1). We can derive the analogue
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of Theorem 6.1 for this case from the statement given above in the follow-
ing manner. Let x0 be a point in the complement of W1 such that dist
(x0,W1) ≥ C−1 diam (Rn\W1). The existence of such a point is provided
by our Condition B assumption. Let ζ be the inversion of Rn about the
sphere |x− x0| = diam (Rn\W1), say, and set W = ζ (W1) ∪ {x0}. Then
W is a bounded domain which contains the ball centrered at x0 with radius
diam (Rn\W1), and it is contained in a ball which is larger by only a bounded
factor. It is easy to check that W satisfies Condition B and is a domain of
isoperimetry, the latter because of the characterization provided by Lemmas
5.5 and 5.15. Theorem 6.1 implies that W is a John domain with center
x0, and it follows that W1 itself is a John domain. Furthermore, the John
constant for W1 depends only on the diameter of Rn\W1, and the Condition
B and domain-of-isoperimetry constants for W1.

Theorem 1.8 will follow as soon as we prove Theorem 6.1. Indeed, let
W ∈ F be a quasiminimizer for N(·). Then the proof of Theorem 3.1
provides us with two open sets W0, W1 such that E = ∂W0 = ∂W1 is
Ahlfors-regular, and W1 = Rn\W 0. [See (3.33), (3.36) and the remark before
Lemma 3.43.] Moreover, W0 and W1 satisfy Condition B by Lemma 3.43,
and the functions 1lW and 1lW0 are the same almost everywhere by (3.35).
The uniqueness of W0 (and hence W1 = Rn\W 0) with these properties was
discussed in Remark 3.46. Then W0 and W1 are domains of isoperimetry
by Theorem 5.4 and John domains by Theorem 6.1 and its analogue for
unbounded domains.

Thus we can forget about quasiminimizers for the moment and concentrate
on Theorem 6.1.

Remark 6.2. The John condition and the property of being a domain of
isoperimetry are both quantitative strengthenings of connectedness. How-
ever, it is not true that a domain of isoperimetry is necessarily John, i.e.,
we cannot drop the Condition B assumption from Theorem 6.1. The point
is that we can cut out a fine grid from a nice domain and get a domain
of isoperimetry which is not John. Let us give an example of this phe-
nomenon in the plane. [See Figure 2.] Given a positive integer n, set
En = {t ∈ (0, 1) : 2j

2n
≤ t ≤ 2j+1

2n
for some integer j, 0 ≤ j ≤ n − 1}.

Set Wn = ((0, 1)× (0, 1))\({1/2} ×En). These are domains of isoperimetry
in R2 with uniformly bounded constant, their boundaries are Ahlfors regular
and uniformly rectifiable with bounded constants, but the John constants
tend to +∞ as n→ +∞. We could also construct a domain of isoperimetry
which is not John although ∂W is Ahlfors-regular and uniformly rectifiable,
as in Figure 3.
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Figure 2. Figure 3.

One could prevent the preceding type of example by requiring that Rn\W
be also a domain of isoperimetry, and that it have the same boundary as
W . If one also demands that ∂W be Ahlfors-regular, than one can perhaps
derive Condition B from arguments like the ones used in Section 3. Without
the assumption of Ahlfors-regularity of the boundary, it seems that one can
construct counterexamples in R3. The generalized Eiffel tower of Figure 4
should be a domain W such that W and Rn\W are domains of isoperimetry
with a common boundary E, W and Rn\W satisfy the same conditions for
the existence of balls as in the definition of Condition B, but E is not regular
and W is not John.

Figure 4. On the left, a picture of a finite approximation of the
generalized Eiffel tower. On the right, its sections by various horizontal

planes.
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Let us now prove Theorem 6.1. From now on we let W be as in Theorem
6.1. We begin with a technical reduction.

Lemma 6.3. In order to prove that W is John, it suffices to show that
there is a constant k > 0 so that for each ball B0 ⊂W with radius r we can
find a ball B1 ⊂W and a path γ in W with the following properties:

(6.4) γ connects B0 to B1;

(6.5) either B1 = B(0, 1) or B1 has radius 2r;

(6.6) diam γ ≤ kr;
(6.7) dist(γ,Rn\W ) ≥ k−1r.

This lemma is a straightforward consequence of the definition of the John
condition, and we leave the proof as an exercise.

Now we want to prove that W has the property stated in the lemma. Let
B0 = B(x0, r) ⊂W be given. We want to construct various open subsets of
W , and then apply our hypothesis that W is a domain of isoperimetry.

For each choice of 0 < t < r and R > r, set

(6.8) WR,t = {x ∈W ∩B(x0, R) : dist(x,Rn\W ) > t}

and then denote by G = GR,t the connected component of WR,t that contains
x0. This makes sense because x0 ∈WR,t. Also note that GR,t ⊂ GR′,t′ when
t ≥ t′ and R ≤ R′. Because of Lemma 6.3, it will be enough to prove that
there is a t ≥ k−1r and an R ≤ kr such that

(6.9)

{
either GR,t contains a point x1 such that
dist (x1,Rn\W ) ≥ 2r, or GR,t ∩B(0, 1) 6= ∅.

We want to replace GR,t by a larger domain with as little boundary in
W as possible. To do so, it will be convenient to use the collection ∆t of
cubes in Rn which are cartesian products of intervals of the form [jt, (j+1)t],
j ∈ Z. Thus the cubes in ∆t cover Rn and have disjoint interiors. Set

(6.10) ∆̃t = {Q ∈ ∆t : dist(Q,GR,t) ≤ 10t},

and then

(6.11) V = VR,t = W ∩
 ⋃
Q∈∆̃t

Q

 .
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We shall want to evaluate the size of the part of ∂V ∩W which is not too
close to ∂B(x0, R). Let us assume that

(6.12) 100nt ≤ r ≤ R

10
≤ kr

10

(other conditions will show up later). We are mostly interested in the set

(6.13) ER,t = {x ∈ ∂V ∩W ∩B(x0, 8R/10)}.

This set will be controlled using the Condition B hypothesis on W . Let
β(x, t) be as in (4.18), only with E replaced with ∂W .

Lemma 6.14. There is a constant τ > 0, that depends only on n and the
Condition B constant for W , such that for each x ∈ ER,t,

(6.15) dist(x, ∂W ) ≤ 20nt

and

(6.16) β(y, 100nt) ≥ τ for all y ∈ ∂W ∩B(x, 50nt).

To prove the lemma, let x ∈ ER,t be given. Then x lies in cubes Q1,
Q2 ∈ ∆t, with Q1 ∈ ∆̃t and Q2 /∈ ∆̃t. Since dist (Q1, GR,t) ≤ 10t and
dist (Q2, GR,t) > 10t, we have that dist (x, ∂GR,t) ≤ 10t + 2nt. Since GR,t

is a connected component of WR,t, we get that dist (x, ∂WR,t) ≤ 10t + 2nt.
Because x is very far from ∂B(x0, R) (compared to t), this means that x lies
within 10t+ 2nt of {z ∈W : dist(z,Rn\W ) ≤ t}. This proves (6.15).

Now suppose that in addition there is a point y ∈ ∂W ∩ B(x, 50nt) such
that β(y, 100nt) ≤ τ . We want to find a contradiction. Let P denote a
hyperplane such that dist(z, P ) ≤ 100ntτ for all z ∈ ∂W ∩ B(y, 100nt),
and call H+ and H− the two connected components of {z ∈ B(y, 100ny) :
dist(z, P ) > 100ntτ}. By our choice of P , H± does not meet ∂W , and so
each of H+ and H− is contained in W or in Rn\W . If τ is small enough,
depending on the Condition B constant for W , we even get that H+ or H−

(say H+ for definiteness) is contained in W and the other is contained in
Rn\W . [This is because there is not enough space between H+ and H− to
fit a ball of reasonable size.]

Next we claim that if τ is small enough, then the set

(6.17) H+
0 = {z ∈ H+ ∩B(y, 90nt) : dist(z, P ) ≥ 2t}

is contained in GR,t.
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Notice that H+
0 ⊂ WR,t because x ∈ ER,t (and hence B(y, 90nt) ⊂

B (x0, R) by (6.12) and (6.13)). Thus the claim will follow if we show that
some point of H+

0 lies in GR,t. Let w ∈ GR,t be such that |x− w| ≤ 11t+2nt.
Such a point exists because x ∈ Q1 and dist (Q1, GR,t) ≤ 10t. If w ∈ H+

0 ,
then we are happy. So let us assume that w /∈ H+

0 . Note that |w − y| ≤
|w − x|+ |x− y| ≤ 63nt, so w is still well inside B(y, 90nt). What happens
in this case is that w is too close to P , but this will be fairly easy to fix.

We know that w ∈ GR,t ⊂ WR,t, and so dist (w,Rn\W ) > t. If τ is
small enough, this implies that w ∈ H+, and also that dist(w,Rn\W ) ≤ 3t
(because w /∈ H+

0 and H− ⊆ Rn\W ). [See Figure 5.]

Figure 5.

Let L denote a line segment of length 2t which goes from w in the direction
perpendicular to P and away from P . Thus L connects w to H+

0 . If z ∈
L, then dist(z, ∂W ∩ B(y, 100nt)) ≤ 5t, which is much smaller than the
distance from z to the rest of ∂W or ∂B(x0, R). Therefore dist(z, ∂W ) =
dist(z, ∂W ∩B(y, 100nt)). Notice also that the distance from z to any point
of ∂W ∩B(y, 100nt) increases when z runs along L from w to H+

0 . [This is
because w ∈ H+ and ∂W ∩B(y, 100nt) lies under H+.] Thus L is contained
in WR,t, and hence in GR,t. This proves our claim, that H+

0 ⊂ GR,t.

The desired contradiction follows from the claim, because x ∈ Q2 and
so dist (Q2, GR,t) ≤ dist

(
x,H+

0

) ≤ 3t (since x ∈ W ∩ B(y, 50nt)), which
contradicts the definition of Q2. This completes our proof of Lemma 6.14.

Recall from (6.13) and (6.11) that ER,t is composed of pieces of boundary
of cubes Q ∈ ∆t. Lemma 6.14 and the Ahlfors-regularity of ∂W imply that

(6.18) Hn−1 (ER,t) ≤ CHn−1 ({y ∈ ∂W ∩B(x0, R) : β(y, 100nt) ≥ τ}) ,
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where τ is as in (6.16). That is, to each ∂Q from (6.11) one associates a ball
of radius t centered on ∂W , these balls have bounded overlap, and they lead
to the estimate (6.18).

Let us now use Condition B to control the right-hand side of (6.18) on
average. As was mentioned earlier, every regular set of dimension n − 1
that satisfies Condition B satisfies a “weak geometric lemma”. See [DS1],
Theorem 1.20 on p. 680, Proposition 1.18 and Definition 1.16. (To be precise,
this result is only stated and proved in [DS1] for unbounded regular sets,
but if E is any bounded regular set that satisfies Condition B, then the union
of E with any hyperplane that touches E is an unbounded regular set that
satisfies Condition B.) Thus our set ∂W satisfies the weak geometric lemma.
This means that for every choice of τ > 0, there is a constant C = C(τ) that
depends only on τ and the regularity and Condition B constants for W and
for which

(6.19)
∫ R

0

∫
{x∈∂W∩B(x0,R):β(x,t)>τ}

dHn−1(x)dt
t

≤ CRn−1.

Because of (6.18), this implies that

(6.20)
∫ (100n)−1r

0

Hn−1 (ER,t)
dt

t
≤ CRn−1.

(Do not bother to worry about the measurability of Hn−1 (ER,t), it is enough
to know that it is bounded by a measurable function which satisfies this
estimate.)

Let us now choose t, depending on R, so that

(6.21) k−1r ≤ t ≤ (100n diamW )−1r

and

(6.22) Hn−1 (ER,t) ≤ C
[
Log

k

100n diamW

]−1

Rn−1.

The value of R
r

will be chosen soon, and then we shall choose k very large,
so that the right-hand side of (6.22) will be very small compared to rn−1.
For the moment, we want to apply our hypothesis that W be a domain of
isoperimetry to the sets

(6.23) V (s) = V ∩B(x0, s), r < s <
8R
10
,

where V continues to be as in (6.11).
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Remember that we are trying to find t and R such that (6.9) holds. If
GR,t meets B(0, 1), then we are happy. So we may assume that GR,t does
not meet B(0, 1). Let us first check that

(6.24) |V (s)| ≤ C |W\V (s)| .

By construction, every point of V lies within 10t+ 2nt of GR,t and, since
t ≤ (100n diamW )−1r ≤ (100n)−1, V does not meet B(0, 1/2). Then (6.24)
follows from the fact that W is bounded.

Because of (6.24), the isoperimetry condition (5.2) yields

|V (s)| ≤ C Hn−1 (∂V (s) ∩W )
n
n−1

(6.25)

≤ CHn−1 (V ∩ ∂B (x0, s))
n
n−1 + CHn−1 (ER,t)

n
n−1

by the definitions of V (s) and ER,t.

Let us first dispose of the last term. We shall soon choose R ≤ C1r, where
the constant C1 will depend on n, diamW , and the isoperimetry, regularity
and Condition B constants for W , but not on k. We choose k, depending
on C1 in particular, so large that if we apply to (6.25) the estimate that
comes from (6.22), then the contribution of Hn−1 (ER,t) in (6.25) is less
than 1

2

∣∣B (x0,
r
2

)∣∣, say. Observe that B
(
x0,

r
2

) ⊂ WR,t by (6.8) and (6.21),
so that |V (s)| ≥ ∣∣B (x0,

r
2

)∣∣. Therefore, with this choice of k, (6.25) yields

(6.26) |V (s)| ≤ CHn−1 (V ∩ ∂B (x0, s))
n
n−1 .

For each s ∈ [r, 4R
10

), choose λ ∈ (s, 2s) such that Hn−1(V ∩ ∂B(x0, λ)) ≤
s−1 |V ∩B (x0, 2s)|. [This is possible by Fubini and Tchebytchev.] We may
now apply (6.26) to V (λ) and get

(6.27) |V (s)| ≤ |V (λ)| ≤ C
[ |V ∩B (x0, 2s)|

s

] n
n−1

,

for r ≤ s ≤ 4R
10

. We rewrite this as

(6.28) h(2s) ≥ C−1h(s)
n−1
n ,

where h(s) = s−n |V (s)|. Observe that

(6.29) h(r) ≥ C−1,
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because V (r) ⊃ B
(
x0,

r
2

)
, as we said earlier. From (6.28) and (6.29) we

deduce that

(6.30) h(2mr) ≥ C−1
2

for all integers m such that 2mr < 4R
10

, and with a constant C2 that depends
only on the various constants in the statement of Theorem 6.1, but not on
R
r

or k. (If h(2mr) were ever too small, then h(r) would have to be even
smaller, by iterating (6.28).)

Lemma 6.31. If m is sufficiently large (depending only on n, the regularity
constant for ∂W , and C2) but 2mr < 4R

10
, then there is a point z ∈ V (2mr)

such that dist(z, ∂W ) ≥ 3r.

To prove the lemma, choose a maximal subset Z of V (r) with the property
that |z1 − z2| ≥ 10r for z1, z2 ∈ Z, z1 6= z2. Because of (6.30), Z has at least
C−1C−1

2 2nm points, where C depends on n and nothing else. Set Z1 = {z ∈
Z : B(z, 3r) meets ∂W}. For each z ∈ Z1, Hn−1(∂W ∩B(z, 5r)) ≥ C−1rn−1

because ∂W is Ahlfors-regular, and since these sets are disjoint, the number
of points in Z1 is ≤ Cr1−nHn−1(∂W ∩B(x0, (2m+5)r)) ≤ C2m(n−1) again by
Ahlfors-regularity of ∂W . If m is large enough, then Z has more elements
than Z1, and the lemma follows.

We may now choose m as in Lemma 6.31, and take R = 2m+3r. Thus
we keep our promise that R

r
would not depend on k, and this allows us to

choose k and t as was explained earlier.

Let z be as in Lemma 6.31. Because z ∈ V (2mr) ⊂ V , there is a point
x1 ∈ GR,t such that |x1 − z| ≤ 10t + 2nt. [See the definitions (6.10) and
(6.11) of V .] Then dist(x1,Rn\W ) = dist(x1, ∂W ) > 3r− 10t− 2nt > 2r by
Lemma 6.31 and (6.21). (Recall that diamW ≥ 2 since W ⊃ B(0, 1).)

Thus we have finally proved that (6.9) holds. Theorem 6.1 follows, as was
explained just before (6.9).

7. Regular bi-John domains are quasiminimizers.

So far we have obtained a lot of information about the structure of minimizers
and quasiminimzers for N(·). Our next result says that if a domain W
satisfies the conclusions of Theorem 1.8, then 1lW is a minimizer for some
functional Ng(·), and in particular it is a quasiminimizer for N(·).
Definition 7.1. Let W be a bounded domain in Rn. We say that W is a
regular bi-John domain if ∂W is an Ahlfors-regular set of dimension n− 1,
∂W = ∂(Rn\W ), and W and Rn\W are both John domains.
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See Definitions 1.5 and 1.7 for regular sets and John domains. Notice that
if W is a regular bi-John domain, then W and Rn\W are connected open
sets that satisfy Condition B. The following is a restatement of Theorem
1.12.

Theorem 7.2. Let W be a bounded regular bi-John domain. Let Q0, Q1

be two cubes in Rn, with Q0 ⊂ int (Q1) and int (Q0) ⊂ W ⊂ Q1. For each
constant A > 1, define a lower-semicontinuous function g : Rn → R+ by

(7.3)

{
g(x) = A when x ∈ Rn\∂W
g(x) = 1 when x ∈ ∂W.

If A is large enough, depending only on Q0, Q1 and the regular bi-John
constants for W , then

(7.4) Ng (1lW ) = inf
V ∈F

Ng (1lW )

and 1lW is the unique minimizer for Ng in the sense that if V ∈ F satisfies
Ng (1lV ) = Ng (1lW ), then 1lV (x) = 1lW (x) almost everywhere.

See (1.2) for the definition of F , and (2.5) for Ng. Recall from Proposition
2.12 that minimizers for Ng exist anyway, so the content of Theorem 7.2 is
that if 1lV is a minimizer for Ng, then 1lV = 1lW a.e. The following is an
immediate consequence of Theorem 7.2 and Proposition 2.14.

Corollary 7.5. If W is a bounded regular bi-John domain and Q0, Q1 are
as in Theorem 7.2, then W is a quasiminimizer for N(·).

It might be helpful to think about Theorem 7.2 in the easier case when
∂W is something like a Lipschitz graph. The point is that if we penalize the
mass outside ∂W sufficiently, then W should be the only minimizer, in the
same way that a flat surface minimizes ordinary area. It is amusing that
we can manage to establish quasiminimality under conditions that exactly
match the conclusions of Theorem 1.8.

Before we prove Theorem 7.2, we shall establish a related result which is
a variation of converses to Theorem 6.1, and which might well be known.

Recall that BV (W ) (the set of functions of bounded variation on W )
consists of the locally integrable functions whose distributional gradients are
finite measures on the open set W . Such functions need not extend to BV
functions on all Rn, even when 1lW ∈ BV .

Theorem 7.6. Suppose that W is a bounded John domain in Rn such
that ∂W is Ahlfors-regular with dimension n − 1. Then W is a domain of
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isoperimetry. [See Definition 5.1.] Moreover, BV (W ) ⊂ L1(W ), and if for
each f ∈ BV (W ) we define an extension f̂ on Rn by

(7.7)

f̂(x) = f(x) for x ∈W
f̂(x) = 1

|W |
∫
W

f for x ∈ Rn\W,

then f̂ ∈ BV (Rn) and

(7.8)
∥∥∥f̂∥∥∥

BV (Rn)
≤ C ‖f‖BV (W ) ,

where C depends only on n, diamW , and the regularity and John constants.

The assertion that W be a domain of isoperimetry will follow once we
prove the BV statement. Indeed, if Ω ⊂ W is open and Hn−1(∂Ω ∩W ) <
+∞, then 1lΩ ∈ BV (W ) and ‖1lΩ‖BV (W ) ≤ CHn−1(∂Ω ∩W ). This follows
from the proof of Lemma 4.7 (which is local). Then we get that the function
f̂ which is equal to 1 on Ω, 0 on W\Ω and |Ω|/|W | outside W lies in BV (Rn),
whit a norm ≤ CHn−1(∂Ω∩W ). The desired estimate (5.2) follows from the
usual Sobolev-Poincaré inequalities for BV (Rn). Note that it is even true
that every John domain is a domain of isoperimetry, even when its boundary
is not Ahlfors-regular. See [B].

Thus it suffices to prove the part about extending BV functions. Roughly
speaking, the point is to control the L1-norm on ∂W of the boundary values
of a BV function on W . The concept of “boundary values” is somewhat
ambiguous here, but it turns out that a crude version will suffice for our
purposes.

Let W be a bounded John domain with an Ahlfors-regular boundary, and
let z0 be the center of W given by the John condition. [See Definition 1.7.]
Thus there is a ball B0 = B (z0, r0) such that 2B0 ⊂W and r0 ≥ C−1.

Define δ(x) = dist(x,Rn\W ). Given f ∈ L1
loc(W ), define f] on W by

(7.9) f](x) = δ(x)−n
∫
B(x, δ(x)

10 )
|f(y)−m0f | dy,

where

(7.10) m0f =
1
|B0|

∫
B0

f(x)dx.

Define a sort of nontangential maximal function on ∂W by

(7.11) Nf(z) = sup {f](x) : x ∈W and |x− z| ≤ 10δ(x)} .
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Lemma 7.12. If f ∈ BV (W ), then

(7.13)
∫
∂W

Nf dHn−1 ≤ C
∫
W

|∇f | .

Let η > 0 be small, to be chosen soon. Given z ∈ ∂W , define the “cone”
Γ(z) by

(7.14) Γ(z) = {x ∈W : η |x− z| ≤ δ(x)}.

Sublemma 7.15. If η is small enough, then

(7.16) Nf(z) ≤ C
∫

Γ(z)

|z − x|−n+1 |∇f(x)| dx.

Let z ∈ ∂W and x ∈ W be given, with |x− z| ≤ 10δ(x); we want to
estimate f](x). Let α : [0, |x− z0|] → W be a path as in Definition 1.7, so
that α is C-Lipschitz, α(0) = x, α (|x− z0|) = z0 and dist (α(t),Rn\W ) ≥
C−1t for 0 ≤ t ≤ |x− z0|. Because α(0) = x and α is Lipschitz, we even
have that

(7.17) dist(α(t),Rn\W ) ≥ C−1(t+ δ(x)),

perhaps with a larger C. Let τ = (3C)−1, where C is as in (7.17), and set

(7.18) B(t) = B(α(t), τ t+ τδ(x))

and

(7.19) h(t) = |B(t)|−1
∫
B(t)

f(y)dy

for 0 ≤ t ≤ |x− z0|.
Suppose |t− u| ≤ a(t+δ(x)), where the constant a is chosen so small that

B(u) ⊂ 2B(t). Then

|h(t)− h(u)| = |B(t)|−1 |B(u)|−1

∣∣∣∣∣
∫
B(t)×B(u)

[f(y)− f(w)] dydw

∣∣∣∣∣
≤ C (t+ δ(x))−n+1

∫
2B(t)

|∇f |(7.20)

by the Poincaré inequality.
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Note that if y ∈ 2B(t), then

|y − z| ≤ |y − α(t)|+ |α(t)− x|+ |x− z| ≤ C (t+ δ(x))

because α is C-Lipschitz, and by our assumption that |x− z| ≤ 10δ(x).
On the other hand, dist(y,Rn\W ) ≥ dist (α(t),Rn\W ) − 2τ(t + δ(x)) ≥
τ(t + δ(x)) by (7.17) and our choice of τ . Because of this, 2B(t) ⊂ Γ(z) if
η is small enough, 2B(t) ∩ 2B(t′) = ∅ when t′ ≥ C(t + δ(x)) with C large
enough, and (7.20) is the same as

(7.21) |h(t)− h(u)| ≤ C
∫

2B(t)

|z − y|−n+1 |∇f(y)|

when |t− u| ≤ a(t+ δ(x)).

Define a finite sequence {tm} by t0 = 0 and tm+1 = tm + a (tm + δ(x))
until tm + a (tm + δ(x)) > |x− z0|, at which point we stop. Let t∞ denote
the last of the points tm of the sequence. By repeated applications of (7.21),
we get

|h(t∞)− h(0)| ≤ C
∑
m

∫
2B(tm)

|z − y|−n+1 |∇f(y)|(7.22)

≤ C
∫

Γ(z)

|z − y|−n+1 |∇f(y)| ,

because we know that the 2B(tm) are contained in Γ(z) and have bounded
overlap.

To complete the proof of Sublemma 7.15, we still need to control what
happens at the endpoints. Let us systematically denote by mBf the mean
value of f on B. We have that∣∣∣∣h(0)−m

B(x, δ(x)
10 )f

∣∣∣∣ =
∣∣∣∣mB(x,τδ(x))f −mB(x, δ(x)

10 )f
∣∣∣∣(7.23)

≤ Cδ(x)−n+1

∫
B(x, δ(x)

10 )
|∇f |

by Poincaré (and assuming, without true loss of generality, that τ ≤ 1
10

).
Similarly,

|h(t∞)−m0f | =
∣∣mB(t∞)f −mB0f

∣∣(7.24)

≤ C
∫

2B(t∞)∪2B0

|∇f |

because the balls 2B0 and 2B(t∞) both have radii ≥ C−1 and have a non-
trivial intersection, by our choices of t∞ and a. The desired estimate (7.16)
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follows from (7.22), (7.23), (7.24), the Poincaré inequality, and the fact that
2B0 and B

(
x, δ(x)

10

)
, just like the 2B(tm)’s, are contained in Γ(z) if η is small

enough. This proves Sublemma 7.15.

We are now ready to prove Lemma 7.12. By (7.16) and Fubini,

∫
∂W

Nf dHn−1

(7.26)

≤ C
∫
W

{∫
∂W

|z − y|−n+1 1lΓ(z)(y)dHn−1(z)
}
|∇f(y)| dy.

For each y ∈W , the inside integral is taken over the set {z ∈ ∂W : |z − y| ≤
η−1δ(y)}. The measure of this set is ≤ Cδ(y)n−1 because ∂W is Ahlfors-
regular. We also have that |z − y| ≥ δ(y) on this set by definition of δ(y).
Lemma 7.12 follows from this.

We have the control we wanted on the “boundary values of f”. Next we
want to deal with the distribution theory. Roughly speaking, the idea is that
the jump of f across ∂W should control the singular part of |∇f | on ∂W .

Lemma 7.27. For each (small ) t > 0 we can find a smooth function ϕt
on W such that 0 ≤ ϕt ≤ 1, ϕt(x) ≡ 0 when δ(x) ≤ t, ϕt(x) ≡ 1 when
δ(x) ≥ 2t, and |∇ϕt| ≤ Ct−1.

This is standard. If we did not require ϕt to be smooth we could simply
take it to be a function of δ(x). It is easy to get a smooth function by
regularization. This proves Lemma 7.27.

Let f ∈ BV (W ) be given. For t > 0 small define ft on Rn by

(7.28) ft = ϕtf + (1− ϕt)m0f.

These are locally integrable functions on Rn, and we have that

(7.29) ∇ft = ϕt∇f + [f −m0f ]∇ϕt.
Thus each ft lies in BV (Rn), since suppϕt is a compact subset of W .

Lemma 7.30. ∫
Rn
|∇ft| ≤ C

∫
W

|∇f |
for all t, where C depends only on the constants implicit in the statement of
Theorem 7.6, but not on t.

This comes down to

(7.31)
∫
Wt

|f(x)−m0f | dx ≤ Ct
∫
W

|∇f | ,
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where Wt = {x ∈W : t ≤ δ(x) ≤ 2t}. Let {Qi} be a family of closed cubes
with diameter t

2
such that Wt ⊂ ⋃iQi, each Qi intersects Wt, and the Qi’s

have disjoint interiors. Choose, for each Qi, a point zi ∈ ∂W such that
dist (zi, Qi) = dist (∂W,Qi) ≤ 2t, and set B(i) = B (zi, t) ∩ ∂W . It is easy
to see that the B(i)’s have bounded overlap, since the Qi’s have diameter t

2

and bounded overlap.

Let us check that

(7.32) sup
x∈Qi

f](x) ≤ inf
z∈Bi

Nf(z).

According to the definition (7.11) of N(f), this comes down to the statement
that

(7.33) |x− z| ≤ 10δ(x) when x ∈ Qi and z ∈ B(i).

If x ∈ Qi, then δ(x) ≥ t
2
, since Qi intersects Wt and has diameter t

2
. If also

z ∈ B(i), then

|x− z| ≤ |x− zi|+ |zi − z|(7.34)

≤ dist (zi, Qi) + diamQi + |zi − z|
≤ 2t+

t

2
+ t ≤ 4t.

This implies (7.33), since δ(x) ≥ t
2
; (7.32) follows. Next∫

Qi

|f −m0f | dx ≤ C
∫
Qi

f](x)dx(7.35)

≤ Ct
∫
B(i)

NfdHn−1

by (7.9) and Fubini, (7.32), and the fact that Hn−1(B(i)) ≥ C−1tn−1 because
∂W is regular.

We may now sum over i and use the fact that the B(i)’s have bounded
overlap to get that∫

Wt

|f(x)−m0f | dx ≤
∑
i

∫
Qi

|f −m0f |(7.36)

≤ Ct
∑
i

∫
B(i)

Nf dHn−1

≤ Ct
∫
∂W

Nf dHn−1

≤ Ct
∫
∂W

|∇f | ,
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by Lemma 7.12. This is the same as (7.31), and Lemma 7.30 follows.

From Lemma 7.30 and the Poincaré inequality (applied to a ball that
contains W ) we get that

(7.37)
∫
W

|ft −mB0ft| ≤ C
∫
Rn
|∇ft| ≤ C

∫
W

|∇f | .

When t > 0 is small enough we have that ft = f on B0 and hence

(7.38)
∫
W

|ft −m0f | ≤ C
∫
W

|∇f | .

Sending t to 0 we get

(7.39)
∫
W

|f −m0f | ≤ C
∫
W

|∇f | .

In particular, f ∈ L1(W ) and so ft → f in L1(W ) as t→ 0.

Define f̃ on Rn by

(7.40)

{
f̃(x) = f(x) for x ∈W
f̃(x) = m0f for x ∈ Rn\W.

Since ft and f̃ coincide on Rn\W , we get that ft → f̃ in L1
loc(Rn). From

Lemma 7.30 we conclude that f̃ ∈ BV (Rn) and
∫
Rn
∣∣∣∇f̃ ∣∣∣ ≤ C ∫W |∇f | .

This proves Theorem 7.6, modulo the difference between f̂ and f̃ , which
is given by

(7.41) f̂ − f̃ =
[

1
|W |

∫
W

f −mB0f

]
1lRn\W .

The difference of the mean values is ≤ C ∫W |∇f |, by (7.39). It follows that

(7.42)
∫
Rn

∣∣∣∇(f̂ − f̃)
∣∣∣ ≤ C [∫

W

|∇f |
]
Hn−1(∂W ),

by Lemma 4.7. This completes the proof of Theorem 7.6.
Remark 7.43. Theorem 7.6 has an analogue for domains in Rn with
bounded complement. Namely, if W is a domain in Rn such that Rn\W is
bounded, W is a John domain and ∂W is Ahlfors-regular with dimension
n− 1, then W is a domain of isoperimetry, and every function f ∈ BV (W )
can be extended to a function f̂ ∈ BV (Rn), with the same sort of estimates
as in Theorem 7.6. This is easily deduced from Theorem 7.6; one can first
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cut out a small ball from the middle of W (this does not change the problem)
and then use an inversion centered on this ball to reduce to the case of a
bounded domain.

We now come to the proof of Theorem 7.2. Let W be a bounded regular
bi-John domain, and let Q0, Q1, A and g be as in the statement of the
theorem. Also let V ∈ F be such that Ng(1lV ) is minimal. As we observed
just after the statement of Theorem 7.2, such a V always exists, and it is
enough to prove that 1lV = 1lW almost everywhere when A is sufficiently
large.

We know from Proposition 2.14 that V is a quasiminimizer for N(·), and
so we may apply to V the results of Section 3. In particular, we may replace
V by an open set which is equivalent to V (in the sense that the characteristic
functions are equal almost everywhere) and which has a regular boundary
and satisfies Condition B. Assuming this substitution, we shall prove that
V = W .

Note that the Ahlfors-regularity and Condition B constants for V may
depend on A. Thus, although we can use these conditions, we cannot do so
in a “quantitative way”.

Our assumption is that

(7.44)
∫
g |∇1lV | =

∫
g |∇1lW | ,

but we can simplify this expression because Proposition 4.1 tells us that
|∇1lV | is the same as the restriction of Hn−1 to ∂V . Similarly, (4.5) and
(4.6) tell us that |∇1lW | ≤ Hn−1

|∂W . Thus
∫
g |∇1lV | = Hn−1 (∂V ∩ ∂W ) +

AHn−1 (∂V \∂W ) and
∫
g |∇1lW | ≤ Hn−1(∂W ), so that (7.44) yields

(7.45) AHn−1 (∂V \∂W ) ≤ Hn−1 (∂W\∂V ) .

Notice that for the first time we have used the full strength of Proposi-
tion 4.1, i.e., the fact that |∇1lV | and Hn−1

|∂W are actually equal, rather than
equivalent in size. It is probable that one can avoid doing so, at the price of
a more careful examination of ∇ (1lV − 1lW ) on ∂V ∩ ∂W . [We need to be
able to say that the contributions of |∇1lV | and |∇1lW | to ∂V ∩ ∂W are the
same.]

Lemma 7.46. We have that

(7.47) Hn−1
(
∂W\V

)
≤ CHn−1 (∂V ∩W )
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and

(7.48) Hn−1 (∂W ∩ V ) ≤ CHn−1
(
∂V \W

)
,

with a constant C that depends only on n and the various constants for W .

Let us first derive Theorem 7.2 from this lemma. If A is large enough, a
comparison of (7.45) with the sum of (7.47) and (7.48) gives that
Hn−1 (∂V \∂W ) = Hn−1 (∂W\∂V ) = 0. Since ∂V and ∂W are both (closed)
regular sets, we get that ∂V = ∂W , and then V = W because Rn\∂W has
only two connected components. The theorem follows.

To prove (7.47), we want to use the same construction as in the proof
of Theorem 7.6. Consider the function f = 1lW\V on W , and define the
functions f] and Nf as in (7.9) and (7.11), except that we replace 10 in
(7.11) with a larger constant that depends only on the John constant for W.
Remember that we can choose the center z0 for the John domain W and the
ball B0 = B (z0, r0) so that B0 ⊂ Q0. With this choice, m0f = 0 and

(7.49) f](x) = δ(x)−n
∣∣∣∣B (x, δ(x)

10

)
\V
∣∣∣∣ .

With the present definition of Nf, we have that Nf(z) ≥ C−1 for every z ∈
∂W\V . (This uses the John condition to find plenty of “good” points x ∈W
near z.) Then Hn−1(∂W\V ) ≤ C

∫
∂W NfdHn−1 ≤ C

∫
W |∇f | by Lemma

7.12, and (7.47) follows because
∫
W |∇f | =

∫
W |∇1lV | = Hn−1 (∂V ∩W ).

The proof of (7.48) is similar. The simplest approach is probably to ob-
serve that the proof of Lemma 7.12 is stable under a suitable inversion (or
that the proof extends without difficulty to domains with bounded comple-
ment).

This completes the proof of Theorem 7.2.

8. Separation and rectifiability.

Let Q0 and Q1 be closed cubes in Rn, with Q0 ⊆ IntQ1. Let K be a
compact subset of Q1\IntQ0 which separates IntQ0 from Rn\Q1 and satisfies
Hn−1(K) ≤ C5 <∞. Also let ε ≥ 0 be given. We want to find a regular set
E of dimension n − 1 which is almost entirely contained in K in the sense
that

(8.1) Hn−1(E\K) ≤ ε
holds. We also want E ⊆ Q1\ IntQ0 and for E to separate IntQ0 from
Rn\Q1, and that E satisfy Condition B. We shall obtain E as the boundary
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of a normalized quasiminimizer (as defined at the beginning of Section 5).
Theorem 1.16 will follow once we have found such an E, because the state-
ment of Theorem 1.16 obviously behaves well under bilipschitz mappings.

Let F denote the class of measurable sets V such that Q0 ⊂ V ⊂ Q1 and
1lV ∈ BV . Also let A > 1 be a large number (to be chosen soon), and define
g : Rn → R+ by

(8.2)

{
g(x) = A when x ∈ Rn\K
g(x) = 1 when x ∈ K.

This function is lower semicontinous, because K is compact by assumption.

Proposition 1.10 tells us that there is a set W ∈ F such that Ng(1lW ) =∫
g |∇1lW | is minimal among such sets. It also tells us that W is a quasi-

minimizer for N(·), and then Theorem 1.8 says that we can modify W on
a set of measure zero to get an open set W0 with the following properties:
the boundary E = ∂W0 is Ahlfors-regular of dimension n − 1 and satisfies
Condition B; Rn\E has exactly two connected components W0 and Rn\W 0,
each of which is a John domain; and E = ∂W0 = ∂(Rn\W 0). [See Definitions
1.5, 1.6 and 1.7.] For the purposes of Theorems 1.16 and 1.15, we shall not
need all this information, and Theorem 3.1 (instead of Theorem 1.8) would
be enough.

Note that E ⊂ Q1\ IntQ0 and E separates IntQ0 from Rn\Q1 because
W0 ∈ F .

Let us now check that we can choose A, depending on n, ε, and C4,
so that (8.1) holds. We want to compare Ng(1lW ) with Ng(1lV ), where V
denotes the connected component of Rn\K that contains IntQ0. Clearly
IntQ0 ⊂ V ⊂ Q1 because K ⊂ Q1\ IntQ0 and by the separation hypothesis
for K.

Because of Lemma 4.7 for instance, 1lV ∈ BV and∫
|∇1lV | ≤ CnHn−1(∂V ) ≤ CnHn−1(K)(8.3)

≤ CnC5,

where Cn is a constant that depends only on n (and could even be taken to
be 1, by (4.5) and (4.6)). Thus V ∈ F , and

(8.4) Ng(1lV ) =
∫
K

|∇1lV | ≤ CnC5,
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because |∇1lV | lives on K where g equals 1. On the other hand, Lemma 4.16
(or the stronger Proposition 4.1) yields

Hn−1(E\K) ≤ C ′n
∫
E\K
|∇1lW0 |(8.5)

≤ A−1C ′n

∫
E\K

g |∇1lW0 |

≤ A−1C ′nNg(1lW0)

≤ A−1C ′nNg(1lV ),

since W (and hence W0) is a minimizer for Ng. If we choose A > CnC
′
nC5ε

−1,
(8.4) and (8.5) imply the desired estimate (8.1). Observe that the various
constants that describe the good properties of E depend only on n and A.
This completes the proof of Theorem 1.16.

Let us now explain why Theorem 1.15 follows from Theorem 1.16. Let
K be as in these theorems, and apply Theorem 1.16 with ε = ωn−1

2 , where
ωn−1 is the volume of the unit ball in Rn−1. We get a regular set E ⊂
B(0, 2)\B(0, 1) that satisfies Condition B, separates 0 from∞, and for which
(8.1) holds.

Let P be any hyperplane through 0, and denote by π the orthogonal
projection onto P . Every line through B(0, 1) and orthogonal to P must
meet E somewhere between B(0, 1) ∩ P and ∞ (which are not in the same
component of Rn\E), and so

(8.6) Hn−1(π(E)) ≥ ωn−1.

This and (8.1) imply that

(8.7) Hn−1(π(E ∩K)) ≥ 1
2
ωn−1.

Now we want to apply Theorem 2.11 on p. 863 of [DS1] to the set E
and the projection π. The main hypothesis that E be an n− 1-dimensional
regular set that satisfies the weak geometric lemma follows from the fact that
E is regular and satisfies Condition B. [See Theorem 1.20 and Proposition
1.18 of [DS1].] There is a minor difference between our definitions and
those in [DS1], because regular sets there are unbounded. This is not a
problem, because we can always apply the theorems of [DS1] to the union
of E and some hyperplane that touches ∂B(0, 3) for instance. The statement
of Theorem 2.11 in [DS1] talks about a “dyadic cube” Q0, but we don’t need
to worry about this; we can either cover E with a finite collection of such
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cubes with diameters comparable to 1, or observe that we can modify the
cubes so that E is a single cube Q0.

The function f = π is well approximated by affine functions because it is
affine, and so the quantity (2.10) in [DS1] is simply 0.

The result is that we can find subsets F1, · · · , FL of E such that π is
bilipschitz on each Fj, i.e.

(8.8) |π(x)− π(y)| ≥ τ |x− y| for x, y ∈ Fj,

and

(8.9) Hn−1

π
E\ L⋃

j=1

Fj

 ≤ ωn−1

4
.

The constants L ∈ N and τ > 0 depend on our choice of ωn−1

4
in (8.9), and on

the regularity and Condition B constants for E (which themselves depend
on n and C5).

From (8.7) and (8.9) we deduce that there is a j ∈ {1, · · · , L} such that
Hn−1 (π(Fj ∩K)) ≥ ωn−1

4L . Because of (8.8), Fj ∩ K is contained in some
τ−1-Lipschitz graph Γ, and

Hn−1(Γ ∩K) ≥ Hn−1(Fj ∩K) ≥ ωn−1

4L

because π is 1-Lipschitz. This completes the proof of Theorem 1.15.

The separation hypothesis in Theorems 1.15 and 1.16 can be relaxed, as
follows.

Theorem 8.10. Let K be a compact subset of Rn such that K ⊂
B(0, 2)\B(0, 1). Suppose that Hn−1(K) ≤ C5 and that there is a smooth
function f on B(0, 2)\K such that

(8.11)
∫
B(0,2)\K

|∇f | ≤ 1

and

(8.12) f(x) = 0 on B(0, 1) and f(x) ≥ L on ∂B(0, 2)

for some large L. Then for each ε > 0 there is a compact subset E of
B(0, 2)\B(0, 1) which is Ahlfors-regular of dimension n − 1 and satisfies
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Condition B (with constants that depend only on n, C5 and ε), separates 0
from ∞, and satisfies

(8.13) Hn−1(E\K) ≤ ε+ L−1.

Note that the conclusion of Theorem 8.10 is still valid when L is small,
but it is completely useless then because (8.13) does not forbid the trivial
case where E = ∂B(0, 1) and E ∩K = ∅.

The hypotheses on the function f can be weakened somewhat; see Remark
8.18 below.

The set E will come from an application of Theorem 1.16, and so it
satisfies the usual additional properties that Rn\E has exactly two connected
components, each of which is a John domain with boundary E.

Let us say a few words about our “almost separation” condition on K.
Although K may not separate 0 from ∞, it is quite hard for an average
curve to go from 0 to ∂B(0, 2) if L is large. One can think about the simple
case when K is the sphere

{|x| = 3
2

}
with a small set Z removed. When L

is very large, (8.11) and (8.12) force Z to be very small.

It is very pleasant to think of the “almost separation” property in terms
of families of curves. If K = ∅, then there are plenty of curves in B(0, 2)\K
which connect B(0, 1) to ∂B(0, 2) and which are sufficiently spread out to
imply the negation of (8.12) (when (8.11) holds and L is large enough)
through the usual trick of averaging the fundamental theorem of calculus
over the curves. If K is very scattered - e.g., if it is totally unrectifiable
- then one can find such a family of curves that avoids K, and (8.11) and
(8.12) cannot hold at the same time. In general, (8.11) and (8.12) prevent the
existence of a large family of curves that connect B(0, 1) to ∂B(0, 2) without
meeting K. One can think of this in terms of networks, or highways; (8.11)
and (8.12) imply that in order to travel from B(0, 1) to ∂B(0, 2), one has to
go through a small number of bottlenecks. Our proof will consist in closing
off these bottlenecks by adding them to K, so that the result separates 0
from +∞. The bottlenecks will be found with the help of the coarea formula.

We are now ready to prove Theorem 8.10. Let K and f be as in the
statement, and set

(8.14) Ωt = {x ∈ B(0, 2)\K : f(x) < t}
for 0 < t < L. From the coarea formula we get that

(8.15)
∫ L

0

Hn−1 (∂Ωt ∩ (B(0, 2)\K)) dt ≤
∫
B(0,2)\K

|∇f | ≤ 1.
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[In this case the coarea formula is simpler than usual, since f is smooth, so
that almost all t are regular values for f .] Hence there is a t ∈ (0, L) such
that

(8.16) Hn−1 (∂Ωt ∩ (B(0, 2)\K)) ≤ L−1.

Since 0 < t < L, we have that B(0, 1) ⊂ Ωt and Ωt ⊂ B(0, 2). Set
K ′ = K ∪ ∂Ωt. Then K ′ is a compact subset of B(0, 2)\B(0, 1) which
separates 0 from ∞ and satisfies

(8.17) Hn−1(K ′\K) ≤ L−1.

We can now apply Theorem 1.16 to K ′ to get a set E ⊂ B(0, 2)\B(0, 1)
with the usual good properties and Hn−1(E\K ′) ≤ ε. This estimate and
(8.17) imply (8.13). Note that the regularity, Condition B, and John con-
stants for E depend on n, ε, and C5 = C ′5 + L−1, which is a bound for
Hn−1(K ′). We can take C5 independent of L, though, because the theorem
is trivial when L is small.

This completes the proof of Theorem 8.10.
Remark 8.18. In the statement of Theorem 8.10, we may replace our
hypotheses on f by the weaker assumptions that f ∈ BV (B(0, 3)\K),

(8.19)
∫
B(0,1)

f(x)dx = 0,

and

(8.20)
∫
B(0,3)\B(0,2)

|f | ≥ L
∫
B(0,3)\K

|∇f | .

The conclusions of Theorem 8.10 remain valid with these weaker assump-
tions, except that we replace (8.13) with

(8.21) Hn−1(E\K) ≤ ε+ CnL
−1,

where Cn is a constant that depends only on n.

To prove this observation, let f ∈ BV (B(0, 3)\K) satisfy (8.19) and
(8.20). First multiply f by a cut-off function ϕ1 such that ϕ1 ≡ 0 in a
neighborhood of B

(
0, 1

2

)
, ϕ1 ≡ 1 on B(0, 3)\B(0, 2), 0 ≤ ϕ ≤ 1 everywhere,

and |∇ϕ1| ≤ C. We get a new function f1 ∈ BV (B(0, 3)\K) such that

∫
B(0,3)\K

|∇f1| ≤
∫
B(0,3)\K

ϕ |∇f |+
∫
B(0,1)\B(0, 12)

|f | |∇ϕ|
(8.22)

≤ C
∫
B(0,3)\K

ϕ |∇f |
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by (8.19) and the Poincaré inequality.

Next replace f1 by f2 = ϕ2 |f1|+ (1− ϕ2)A, where A is the mean value of
|f | on B(0, 3)\B(0, 2) and ϕ2 is a smooth cut-off function such that ϕ2 ≡ 1
on B(0, 2), ϕ2 ≡ 0 on a neighbourhood of B(0, 3)\B (0, 5

2

)
, 0 ≤ ϕ2 ≤ 1

everywhere, and |∇ϕ2| ≤ C. Then∫
B(0,3)\K

|∇f2| ≤
∫
B(0,3)\K

|∇|f1||+
∫
B(0, 52)\B(0,2)

||f1| −A| |∇ϕ2|

≤ C
∫
B(0,3)\K

|∇|f1|| ≤ C
∫
B(0,3)\K

|∇f |(8.23)

by definition of A, Poincaré, the fact that f1 = f on B(0, 3)\B(0, 2), and
(8.22). Note that f2 ≡ 0 on a neighborhood of B

(
0, 1

2

)
and f2 ≡ A on a

neighborhood of B(0, 3)\B(0, 5/2).

We can also replace f2 by a smooth function f3 which is equal to 0 on
B
(
0, 1

2

)
and to A on B(0, 3)\B (0, 5

2

)
, at the expense of multiplying again∫

B(0,3)\K |∇f2| by at most a constant. Also, A ≥ C−1L
∫
B(0,3)\K |∇f3| by

(8.20).

We are now almost in the same situation as in the proof of Theorem
8.10, with the small difference that we have to apply the co-area formula
on the larger domain B

(
0, 5

2

) \ [B (0, 1
2

) ∪K]. We find a compact set K ′ ⊂
B
(
0, 5

2

) \B (0, 1
2

)
such that Hn−1(K ′\K) ≤ CL−1. If K ′ is not contained

in B(0, 2)\B(0, 1), we take K ′′ = Ψ(K ′), where Ψ equals the identity in
B(0, 2)\B(0, 1), Ψ equals the radial projection onto ∂B(0, 1) on
B(0, 1)\ (0, 1

2

)
, and Ψ equals the radial projection onto ∂B(0, 2) on

B
(
0, 5

2

) \B(0, 2). Thus K ′′ ⊆ B(0, 2)\B(0, 1), K ′′ has approximately the
same properties as K ′ in terms of Hausdorff measure, and one can check
that K ′′ still separates 0 from∞. We can apply Theorem 1.16 and conclude
as in the proof of Theorem 8.10. This proves Remark 8.18.

9. Hn−1 quasiminimizers.

Much of this paper is written in the language of BV . Much of it could be
reformulated into the language of Hausdorff measure, i.e., by defining min-
imizers and quasiminimizers directly in terms of Hausdorff measures of the
boundaries of sets. This is more direct and pleasant, but the language of
BV has the advantage of an easy existence theory for minimizers. This is a
well-known and crucial point; the lower semicontinuity theorems needed for
the direct method of the calculus of variations do no work when we simply
take the Hausdorff measure of the boundary. Actually, for some of the pur-
poses of this paper one could get an adequate existence theory for Hausdorff
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minimizers by restricting one’s attention to finite sets of competitors with
controlled local structure, like polyhedral structure. The point is that our
methods and results are very stable and give uniform estimates which do
not depend on the scale of the discretization.

In this section we look at reformulations of our definitions and results
adapted to Hausdorff measure instead of BV . We shall follow closely our
earlier work, and we shall see that many of the arguments become simpler.

Fix closed cubes Q0, Q in Rn, with Q0 ⊆ Int(Q1).
Definition 9.1. Let F0 denote the class of sets V ⊂ Rn such that int(Q0) ⊂
V ⊂ Q1 and Hn−1(∂V ) < +∞. We say that W ∈ F0 is a quasiminimizer for
Hn−1(·) if there is an M ≥ 1 such that

(9.2) Hn−1(∂W\∂V ) ≤MHn−1(∂V \∂W )

for every competitor V ∈ F0.

This is quite similar to Definition 1.3, and the analogy is even more obvious
if we observe that (9.2) is equivalent to

(9.3) Hn−1(∂W ) ≤ Hn−1(∂V ) + αHn−1(∂W\∂V ) + αHn−1(∂V \∂W );

with M = α+1
α−1

. This is easy to check: if a = Hn−1(∂W\∂V ), b =
Hn−1(∂V \∂W ) and c = Hn−1(∂W ∩ ∂V ), then (9.2) says that a ≤ Mb
while (9.3) says that a+ c ≤ b+ c+ αa+ αb.

Proposition 9.4. Theorem 3.1 and Lemma 3.43 are also valid with quasi-
minimizers for N(·) replaced with quasiminimizers for Hn−1(·).

To prove this we fix W ∈ F0 such that (9.2) holds for every V ∈ F0 of the
form V = W ∪Q or V = W\Q, where Q is a cube.

Lemma 9.5. We have that

(9.6) Hn−1(∂W∩ o

Q) ≤MHn−1(∂Q\ o

W )

for all cubes Q such that Q ⊂ Q1, and

(9.7) Hn−1(∂W∩ o

Q) ≤MHn−1(∂Q ∩W )

for all cubes Q such that Q ∩ int(Q0) = ∅. Here
o

W= Int (W ), etc.

If Q ⊂ Q1, then int(Q0) ⊂ W ∪ Q ⊂ Q1 and so W ∪ Q ∈ F0. Also,

∂(W ∪ Q) ⊂ (W ∪ Q)\( o

W ∪ o

Q) = (∂W\ o

Q) ∪ (∂Q\ o

W ), and (9.6) follows
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from (9.2). Similarly if Q ∩ int(Q0) = ∅, then int(Q0) ⊂ W\Q ⊂ Q1 and

W\Q ∈ F0. This time ∂(W\Q) ⊂W ∩(Rn\Q) \ (
o

W ∩(Rn\Q)0) ⊂ (∂W\ o

Q)

∪(∂Q ∩W ), so that (9.7) also follows from (9.2). This proves Lemma 9.5.

Let us now prove the analogue of Lemma 3.20.

Lemma 9.8. Suppose that Q satisfies (3.21). Then

(9.9) Hn−1(∂W∩ o

Q) ≤ C r(Q)n−1h(2Q),

where h(·) is still defined by (3.19).

The proof is very similar to the proof of Lemma 3.20, but let us sketch it
anyway. Because of Lemma 9.5 we have that

(9.10) Hn−1(∂W∩ o

Q) ≤MHn−1(∂Q),

and so we may assume that h(2Q) < δ for some very small δ > 0. Let us
first assume that h(2Q) = r(2Q)−n |W ∩ 2Q|. Then |W ∩ 2Q| ≤ δ r(2Q)n,
and so

(
3
2
Q
) ∩ int(Q0) = ∅ (if δ is small enough). Thus we may apply (9.7)

to the cube λQ for λ ∈ (1, 3
2

)
.

Note that
∣∣∣W ∩ 2Q

∣∣∣ = |W ∩ 2Q| = r(2Q)nh(2Q) because |∂W | = 0
(since Hn−1(∂W ) < +∞). By Tchebytchev, we can choose λ ∈ (1, 3

2

)
such

that Hn−1
(
W ∩ ∂(λQ)

)
≤ Ch(2Q) r(Q)n−1, and then Hn−1(∂W∩ o

Q) ≤
Hn−1(∂W ∩ λ o

Q) ≤ MHn−1(W ∩ ∂(λQ)) ≤ Ch(2Q) r(Q)n−1 by (9.7) and

our choice of λ. This proves (9.9) in this first case.

When h(2Q) = r(2Q)−n |2Q\W |, we have that |2Q\W | ≤ δr(2Q)n and,
if δ is small enough, 3

2
Q ⊂ Q1. Then W ∪ λQ ∈ F0 for λ ∈ (1, 3

2

)
, and

we may apply (9.6). By Tchebytchev we can choose λ ∈ (
1, 3

2

)
so that

Hn−1(∂(λQ)\ o

W ) ≤ Ch(2Q) r(Q)n−1, and (9.9) follows from (9.6) with this
choice of λQ. This proves Lemma 9.8.

Lemma 9.11. We have that

(9.12) h(Q)
n−1
n ≤ Cr(Q)−n+1Hn−1(∂W ∩Q).

This is simply the right version of the isoperimetric inequality for a cube.
If one insists one can reduce it to the case of a sphere by a doubling argument.
One could instead use (3.27).
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From (9.12) and (9.9) we deduce that

(9.13) h(Q) ≤ Ch(3Q)
n
n−1

for all cubes Q such that 3
2
Q satisfies (3.21). [The factor 3 (instead of 2)

is a small precaution which we need because (9.9) does not give us control
over ∂W ∩ ∂Q.] Of course this estimate is just as good as (3.29), and we
may continue the proof almost exactly as in the case of minimizers for N(·).
In particular, Lemma 3.30 is still valid (when 3

2
Q satisfies (3.21), and with

essentially the same proof), and the sets E, W0, and W1 defined just before
(3.33) still satisfy the properties (3.33)-(3.36) in the present situation.

Note that E ⊆ ∂W , by the definition of E, and that Hn−1(∂W\E) = 0,
because of the quasiminimality property (9.2) applied to V = W0 (and using
(3.36)).

We can continue the argument with µ = Hn−1
|∂W (rather than µ = |∇1lW |).

Lemma 3.37 still holds, but (3.39) has to be replaced with (9.12). The rest
of the proof is the same. This completes our proof of Proposition 9.4.

Thus to each quasiminimizer W we can associate a unique open set W0

such that |W\W0| = |W0\W | = 0, ∂W0 ⊆ ∂W , Hn−1 (∂W\∂W0) = 0,
and W0 satisfies Condition B (Definition 4.15). This open set W0 is also a
quasiminimizer and we call it a normalized quasiminimizer for Hn−1.

Theorem 9.14. If W is a normalized quasiminimizer for Hn−1, then W
and Rn\W are domains of isoperimetry. The isoperimetry constants C2 (as
in (5.2)) for W and Rn\W depend only on n, Q0, Q1 and M .

This is the analogue of Theorem 5.4, and we follow its proof.

Let us first prove that normalized quasiminimizers for Hn−1 are domains
of isoperimetry. We want to use Lemma 5.5, and so we give ourselves a
normalized quasiminimizer W for Hn−1 and an open subset Ω of W such
that int(Q0) ⊂ Ω. We want to prove that (5.6) holds.

Of course Ω is a competitor, but it is probably not good enough. One
problem with Ω is that it may have a lot of tiny bubbles away from its main
core and close to ∂W , so that ∂Ω contains the whole ∂W “artificially”, and
(9.2) holds too easily. We want to remove these bubbles from Ω before we
apply (9.2). Similarly, Z = W\Ω may have lots of tiny bubbles inside Ω
and near ∂W . We don’t like this because we want to estimate |Z| in terms
of ∂Z by the isoperimetric inequality, and we would be happy to say that
∂Z\W ⊂ ∂W\∂Ω. So we want to remove these tiny bubbles of Z as well.

Notice that all of these considerations have conterparts in the earlier story
for BV .
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Set E = ∂W and µ = Hn−1
|E . We want to decompose ∂W into a piece E+

that clearly belongs to ∂Ω, a piece E− that clearly belongs to ∂Z, and a set
of µ-measure zero. Let β(x, r) be as in (4.18). Since E is an Ahlfors-regular
set that satisfies Condition B, the proof of Lemma 5.30 tells us that µ-almost
every point of E satisfies

(9.15) lim
r→0

r−n |Ω ∩B(x, r)| = 0

or

(9.16) lim
r→0

r−n |Z ∩B(x, r)| = 0.

Notice that (9.15) and (9.16) cannot hold at the same time, because W =
Ω ∪ Z satisfies Condition B. Thus the sets E+ = {x ∈ E : x satisfies (9.16)}
and E− = {x ∈ E : x satisfies (9.15)} are disjoint. Let E∗+ be the set of points
x ∈ E+ where E− has density zero, i.e., such that lim

r→0
r1−nµ(E−∩B(x, r)) =

0.

Standard density arguments show that µ(E+\E∗+) = 0. Thus

(9.17) µ(E\(E∗+ ∪ E−)) = 0

by the discussion above.

Let ε > 0 be very small, to be chosen later. It will be allowed to depend
on W and on Ω. For each x ∈ E∗+, choose a radius r(x) ∈ (0, 1) such that

(9.18) |B(x, r(x)) ∩ Z| ≤ εr(x)n,

(9.19) Hn−1 (∂B(x, r(x)) ∩ Z) ≤ εr(x)n−1,

and

(9.20) µ(B(x, 2r(x)) ∩ E−) ≤ εr(x)n−1.

This is possible because of (9.16), Tchebytchev, and the fact that E− has
vanishing density at x. Choose a Vitali covering of E∗+ by balls B

(
x, r(x)

2

)
,

x ∈ I1 ⊂ E∗+, with the property that the balls B
(
x, r(x)

10

)
, x ∈ I1, are

disjoint. See for instance the first pages of [St] for the existence of such a
covering. Select a finite subset I of I1 such that

(9.21) µ

(
E∗+\

⋃
x∈I

B

(
x,
r(x)

2

))
≤ ε.
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For each y ∈ E∗− := E−\⋃x∈I B(x, 2r(x)), choose a radius r(y) > 0 such
that

(9.22) r(y) <
1
10

inf
x∈I

r(x),

(9.23) r(y) < dist (y,Q0) ,

and

(9.24) Hn−1 (∂B(y, r(y)) ∩ Ω) ≤ εr(y)n−1.

[Observe that (9.23) is easy to get, because y /∈ ∂Q0 when (9.15) holds;
(9.24) is also easy to get from (9.15) and Tchebytchev.] Next cover E∗− by
balls B

(
y, r(y)

2

)
, y ∈ J1, with the property that the balls B

(
y, r(y)

10

)
are

disjoint. Select a finite subset J of J1 so that

(9.25) µ

(
E∗−\

⋃
x∈J

B

(
y,
r(y)

2

))
≤ ε.

Set A1 =
⋃
x∈I B(x, r(x)) and A2 =

⋃
x∈J B(y, r(y)) ; notice that A1∩A2 =

∅ because of (9.22) and the definition of E∗−. Finally set

(9.26) V = [Ω ∪ (W ∩A1)] \A2.

Observe that V ∈ F0 because V ⊂W and int(Q0) ⊂ V (by 9.23). We are
now ready to estimate |W\Ω|. Oberve that W\Ω = Z ⊂ (W\V )∪ (Z ∩A1),
and |Z ∩A1| ≤ ∑x∈I |Z ∩B(x, r(x))| ≤ ε

∑
x∈I r(x)n, by (9.18). The balls

B
(
x, r(x)

10

)
, x ∈ I, are disjoint, and so

∑
x∈I r(x)n ≤ C (1 + |Q1|), where C

depends only on n. Thus

(9.27) |W\Ω| ≤ |W\V |+ Cε.

The isoperimetric inequality tells us that

(9.28) |W\V | ≤ C [Hn−1(∂(W\V ))
] n
n−1 ;

our next task is to control ∂(W\V ). We start with ∂1 = W ∩ ∂(W\V ).
Notice that ∂1 = W ∩ ∂V . If z ∈ ∂1\∂Ω, then z must lie on some sphere
∂B(x, r(x)), x ∈ I or ∂B(y, r(y)), y ∈ J . In the first case, z ∈ Z because
otherwise a whole neighborhood of z would be contained in Ω and hence in
V . [We use the fact that A1 ∩ A2 = ∅, so that A2 is far from z.] In the
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second case, z cannot be in the interior of Z for the same reason. Since it
does not lie in ∂Ω either, it must lie in Ω. Altogether

Hn−1 (∂1) ≤ Hn−1(∂Ω ∩W ) +Hn−1(∂1\∂Ω)
(9.29)

≤ Hn−1(∂Ω ∩W ) +
∑
x∈I

Hn−1 (∂B(x, r(x)) ∩ Z)

+
∑
y∈J

Hn−1 (∂B(y, r(y)) ∩ Ω)

≤ Hn−1(∂Ω ∩W ) + ε
∑
x∈I

r(x)n−1 + ε
∑
y∈J

r(y)n−1

≤ Hn−1(∂Ω ∩W ) + Cεµ(E)

by (9.19), (9.24), the fact that the balls B
(
x, r(x)

10

)
and B

(
y, r(y)

10

)
are pair-

wise disjoint, and the Ahlfors regularity of E.

The other piece of ∂(W\V ) is ∂2 = E ∩ ∂(W\V ). Obviously ∂2 does not
meet any of the B

(
x, r(x)

2

)
, x ∈ I. (Compare with (9.26).) Hence

Hn−1(∂2) = µ
(
∂2 ∩ E∗+

)
+ µ (∂2 ∩ E−)(9.30)

≤ ε+ µ(E−)

by (9.17) and (9.21). Next we want to control E− ∩ ∂V . If z ∈ E− ∩ ∂V ,
then z cannot lie in any B

(
y, r(y)

2

)
, y ∈ J , and so z ∈ E∗− \

⋃
y∈J B

(
y, r(y)

2

)
or else z ∈ E− \ E∗− ⊂

⋃
x∈I B(x, 2r(x)). Therefore

µ(E−) = µ(E− \ ∂V ) + µ(E− ∩ ∂V )(9.31)

≤ µ(E\∂V ) + ε+
∑
x∈I

εr(x)n−1

≤ µ(E\∂V ) + ε+ Cεµ(E)

by (9.25), (9.20), the disjointness of the B
(
x, r(x)

10

)
’s, and the Ahlfors regu-

larity of E. Altogether,

Hn−1(∂(W\V )) ≤ Hn−1(∂1) +Hn−1(∂2)
(9.32)

≤ Hn−1(∂Ω ∩W ) + µ(E\∂V ) + Cε(1 + µ(E))

by (9.29), (9.30) and (9.31).
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Now we may use the fact that V ∈ F0. It follows from (9.2) that

(9.33) µ(E\∂V ) = Hn−1(∂W\∂V ) ≤MHn−1(∂V \∂W ).

Since ∂V \∂W = W ∩ ∂V = ∂1, (9.29) and (9.33) yield µ(E\∂V ) ≤
MHn−1(∂Ω ∩W ) + Cεµ(E). The desired conclusion

(9.34) |W\Ω| ≤ C [Hn−1(∂Ω ∩W )
] n
n−1

follows from (9.27), (9.28), (9.32) and this last inequality by taking ε small
enough. This is the same as (5.6). This completes the proof that W is a
domain of isoperimetry.

It remains to show that Rn\W is a domain of isoperimetry as well. The
proof is very similar to the one for W , and we leave it to the reader. This
finishes the proof of Theorem 9.14.

Once we have Theorem 9.14, we can get the John conditions as in Theorem
6.1.

One can also make a story as in Section 7 using Hn−1 instead of BV
norms, but we shall not bother with that.
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