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ALGEBRAIC CURVES AND NON RIGID MINIMAL
SURFACES IN THE EUCLIDEAN SPACE

Gian Pietro Pirola

Using method from algebraic geometry we prove:

Theorem. Let X be a compact connected Riemann surface and Z
be a non empty finite subset of X. Then there is a complete minimal
immersion F : X − Z → R3 such that F (X − Z) is non rigid and of
finite total Gaussian curvature.

Introduction.

We study the complete minimal surfaces of bounded total (Gaussian) cur-
vature in the Euclidean space. By the fundamental result of Osserman (see
[12], [13]) if F : Y → R3 is such a minimal immersion then Y is conformally
equivalent to a compact Riemann surface X minus a finite number of points
and the Weierstrass data (see 0.19 below) extends meromorphically to X.
A natural question ([13], page 151) is to give more examples of such sur-
faces. In [6] it is proved that for any connected compact Riemann surface
X there is a finite set of points Z = {p1, . . . , pn} and a minimal immersion
F : X − Z → R3 such that F (X − Z) is complete, non rigid and of finite
total curvature. Many more examples were found by Yang (cf. [15]) where
a bound on the degree of Z is given.

The non rigid minimal surfaces of finite curvature are algebraic geometric
objects. In fact a theorem of Calabi implies (cf. [4] and see 0.16, 0.27) that
F is the real part of an algebraic morphism Φ : X − Z → C3.

To show our theorem we adopt the spinor viewpoint of [10]. In our opinion
it has several advantages. Firstly (see 1.8) the components which correspond
to different spin bundles are separated. Then the existence result follows by
a Chern class computation. We notice the analogy with the Brill-Noether
theory (cf. [1]). This is the easy part of the job.

The duty is to prove that some of those surfaces are indeed immersed. The
spinor representation allows to compute the holomorphic tangent space of
the moduli variety, say F , representing them. In fact, as is neatly explained
in [10], some quadratic equations become linear. We prove, under suitable
hypothesis on the polar divisor, that a component of F , say G, has the
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expected dimension and it is generally smooth. By the same argument we
show that the subvariety of G defined by the branched minimal surfaces has
codimension one.

The smoothness of the moduli varieties turns out to be equivalent to
the surjectivity of certain linear maps obtained by composing a De Rham
homomorphism with a suitable multiplication of line bundles. The technical
problem is reduced to a single vanishing theorem (see 4.4). This result could
be of some independent interest. The question is to know when a space of
meromorphic forms, with pole and part of the zero divisor fixed, surjects
onto the cohomology of X − Z. To perform the various reductions we need
the degree of the Gauss map to be quite big. We provide (cf. 5.8) immersions
only for curvature approximately bigger than 2π(2g(n+ 1) + n(3n+ 1)− 6)
if deg(Z) = n ≥ 8, which is far to be a good bound. We prefer to avoid
further algebraic complications that would occur to obtain better, but not
definitive, results (see 5.9).

The paper is organized as follows: In §0 we give an account of the spinor
representation of a minimal surface. We suggest again [10] for an extensive
discussion about its geometric and topological meaning. Our effort was to
tie the algebraic and the differential geometry involved in a elementary way.
In §1 we fix the notation and discuss the moduli spaces. In §2 we show
the existence of branched minimal surfaces. In §3 the tangent spaces of the
moduli are computed and in §4 the basic technical problems are solved. The
proof of our theorem is completed in §5.

It is a current opinion that the non-rigid minimal surfaces are not very in-
teresting from any geometric point of view. The author only partially agree
with this. They were quite important in R. Bryant’s work on Willmore sur-
faces (cf. [3]), just on genus 0(!). They also provides flat ends examples and
non trivial Jacobi fields. In any way, we show that there are not conformal
obstructions to give a minimal immersion of an affine algebraic curve in the
Euclidean space, which is a natural question.

We would like to thank Francisco Lopez that suggested the problem, en-
couraged and helped me in many valuable discussions. I would like to thank
also Antonio Ros and the Department of Mathematics of Granada for the
friendly hospitality.

0. Spin representation of a minimal surface.

0.1. Conformal immersions. Let Y be a smooth (C∞), connected and
oriented surface. Let F : Y → R3 be a smooth immersion, that is the
differential of F is injective. We assume that F (Y ) is not contained in any
plane. There is a unique conformal structure on Y such that F is a conformal
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map. Since Y is oriented it is, in a natural way, a Riemann surface. Then
there exists a triple of 1.0 differentials (ω1, ω2, ω3) on Y :

(∗) F (q) = Re
∫

[p,q]

(ω1, ω2, ω3) + constant

where p is a fixed point of X. We recall that a (1.0) differential ω on Y has
locally the form: ω ≡ φdz, where z = x + iy is a holomorphic coordinate
and φ is a smooth complex valued function. The following conditions hold:∑

i

ω2
i = 0.(0.a)

g =
∑
i

ωiωi > 0.(0.b)

The forms Re(ωi), i = 1, 2, 3, are closed.(0.c)

∀ γ ∈ H1(Y,Z), Re
∫
γ

g(ω1, ω2, ω3) = 0, i.e. Re(ωi), i = 1, 2, 3, are exact.

(0.d)

Conversely if (Y, (ω1, ω2, ω3)) satisfies (0.a)...(0.d) then (*) defines a confor-
mal immersion:
I) The (0.c) and (0.d) are respectively the local and global compatibility
conditions, which imply that F is well defined.
II) (0.b) provides that F is an immersion, g is the first fundamental form.
III) Finally from (0.a) g = λ(dx2 + dy2) : F is a conformal map.

(0.2) Definition. The data (Y, (ω1, ω2, ω3)) where Y is a Riemann surface
and the ωi are (1.0) differentials on Y is called a Weierstrass data (W -data)
if (0.a) and (0.b) are satisfied.

(0.3) Spinors. We recall the classical definition of E. Cartan. Let q :
C3 → C be the quadratic form defined by q(x1, x2, x3) =

∑3
i=1 x

2
i . Let I =

{ω ∈ C3 : q(w) = 0} be the cone of the q-isotropic vectors. Set S = C2 and
define W : S → C3 by

(0.4) W(ζ0, ζ1) = (ζ2
0 − ζ2

1 , i(ζ
2
0 + ζ2

1 ), −2ζ0ζ1).

The image of W is I and W : S −{(0, 0)} → I −{(0, 0, 0)} is a 2:1 covering:
W(s1) =W(s2) if and only if s1 = ±s2. An element s of S is a spinor1 .

(0.5). The Veronese embedding V : CP1 → CP2 is defined by V([s]) =
[W(s)], where [ ] denote the projective class. The image of V is the conic

Q =

{
[x1, x2, x3] ∈ CP2 :

3∑
i=1

x2
i = 0

}
.

1A spinor is a sort of “directed” or “polarized” isotropic vector (E. Cartan).
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(0.6). Let OCPn(−1) = {(v,Λ) ∈ Cn+1 × CPn : v ∈ Λ} be the tautologi-
cal line bundle of CPn,OCPn(1) = OCPn(−1)−1 be its dual and OCPn(n) =
OCPn(1)⊗n, n ∈ Z, O = C × CPn. The coordinates zi of Cn+1 give sections
of OCPn(1). On CP1 : s⊗ s→W(s) induces an identification:

(0.7) OCP1(−2) ≡ V∗(OCP2(−1)) = {(v, [s]) ∈ I × CP1 : v ∈ V([s])}.

Dually we have V∗(OCP2(1)) ≡ OCP1(2).

(0.8). Set h : Y → CP2, h(q) = [ω1(q), ω2(q), ω3(p)], which is well defined:
By (0.b) the base locus {p ∈ Y : ωi(p) = 0, i = 1 ≤ i ≤ 3} is empty.
By the same reason λ : O3

Y → ωY , λ(a1, a2, a3) = a1ω1 + a2ω2 + a3ω3, is a
surjection. Therefore k : h∗(O3)→∼= O3

Y , k(ωi) = zi, gives an isomorphism:
h∗(OCP2(1)) ∼= ωY . Since, by (0.a), h(Y ) ⊂ Q we may define f : Y → CP1 in
such a way that h = V.f. Letting L = f∗(OCP1(1)) we obtain:

ωY ∼= f∗(V∗(OCP2(1))) = f∗(OCP1(2)) = f∗(OCP1(1))⊗ f∗(OCP1(1)) ∼= L2.

We have fixed an isomorphism:

φ : L⊗ L→ ωY .

(0.9) Definitions. a) A spin (line) bundle on Y is a couple (L, φ), where
φ : L⊗ L→ ωY is an isomorphism.
b) Two spin bundles (L, φ) and (L′, φ′) are equivalent if there is a bundle
isomorphism α : L→ L′ such that: φ′(α(x)⊗ α(x)) = φ(x⊗ x).
c) A spin structure of Y is an isomorphism class of its spin bundles.
d) The data (Y, L, φ, s, t) where (L, φ) is spin bundle on Y, s, t are smooth
independent global sections of L will be called a spin data (S-data).
e) A spin data will be said base point free if {p ∈ Y : s(p) = t(p) = 0} = ∅.

We recall that a smooth section s of the spin bundle L has locally the form:
k(z)ζ, φ(ζ ⊗ ζ) = dz and k(z) is a smooth function. For sake of notation
we will denote the S-data (Y, L, φ, s, t) only by (Y, L, s, t) when confusion
should not occur. We often will also put φ(a⊗ b) = ab. Let s = f∗(z0) and
t = f∗(z1) be the pull-back of the sections defined in (0.6). We write

W(s, t) = (s2 − t2, i(s2 + t2),−2st) = (ω1, ω2, ω3),

where s2 = φ(s⊗ s), t2 = φ(t⊗ t) and st = φ(s⊗ t).
(0.10). If (Y, L, s, t) is a S-data then W(s, t) satisfies (0.a) and W(s, t) =
W(s′, t′) if and only if s = s′ and t = t′ or s = −s′ and t = −t′. Moreover
W(s, t) is a W -data if and only if the S-data is base point free.
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(0.11). We stress that the Weierstrass and spin data are equivalent. How-
ever from the S-data we see directly an important topological and conformal
invariant: The spin structure. This is hidden in the W -data.

(0.12) Minimal Immersions (see [13]). An immersion F : Y → R3 is min-
imal if the mean curvature of F (Y ) vanishes. A conformal map is minimal if
and only if it is harmonic. Let H0(Y, ωY ) and H0(Y, L) be respectively the
space of holomorphic global sections of ωY and L. Then F is minimal if and
only ωi ∈ H0(Y, ωY ) (locally ωi ≡ φidz, φi holomorphic) and s, t ∈ H0(Y, L),
that is if the spin and W -data are holomorphic.

(0.13). Let (Y, L, s, t) be a holomorphic S-data. The base locus B = {q ∈
Y : s(q) = t(q) = 0} = {q ∈ Y : W(s, t)(q) = (0, 0, 0)} is a discrete set.
It follows that F : Y − B → R3 is an immersion. The points of B are the
branch points of F, F (Y ) is a minimal surface branched at B.

(0.14). The meromorphic function
t

s
can be identified with f : Y →

CP1 and with the Gauss map Y → S2 ≡ C ∪ {∞} ≡ CP1. Usually the
Enneper-Weierstrass data of F is (Y, ω = s2, f) and ω ∈ H1.0. The Enneper-
Weierstrass and the spin representation of the minimal surface (up to a
translation) are:

F (q) = Re
∫

[p,q]

((1− f2)ω, i(1 + f2)ω,−2fω) = Re
∫

[p,q]

W(s, t).

(0.15). For a holomorphic spin or W -data the condition (0.c) is always
satisfied. It is a difficult question to know whenever (0.d) holds: It is the
“period” problem. Let OY be the sheaf of holomorphic functions on Y. The
external differential d = ∂ defines a De Rham exact sheaf sequence:

0→ C→ OY d−→ ωY → 0

where C denotes the constant sheaf. Cohomology induces the exact sequence:

0→ H0(Y,C) = C→ H0(Y,OY ) d−→ H0(Y, ωY ) c−→ H1(Y,C).

The coboundary c gives the classes of the forms. We may rewrite (0.d) as:

Re(c(ωi)) = 0 i = 1, 2, 3,(0.d)′

here H1(Y,C) ≡ H1(Y,R) ⊕ iH1(Y,R). If moreover c(ωi) = 0, i = 1, 2, 3,
then ωi = dFi, where the Fi are holomorphic functions on Y. Let Φ =
(F1, F2, F3) : Y → C3, F = Re Φ, F(Y) is the real part of the holomorphic
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curve Φ(Y ). We define the family of the associated surfaces Φθ : Y → R3,
θ ∈ [0, 2π], by:

Fθ(q) = Re(eiθΦ).

The metric g(θ) in (0.b) is independent of θ, that is F (Y ) is not rigid. The
converse also holds:

(0.16) Calabi’s Theorem. A minimal immersion F : Y → R3 is not
rigid if and only if it is the real part of a holomorphic curve.

Proof. [4] and [11].

(0.17). Let (Y, L, s, t) be the S-data of F and Π = span(s, t) be the subspace
H0(Y, L) generated by s and t. It follows that F (Y ) is non rigid if and only
for any σ ∈ Π, then c(σ2) = 0, i.e. d(κ) = σ2 where κ is a holomorphic
function. In fact the forms s2 − t2, i(s2 + t2) and −2st are exact if and only
if s2, t2 and (s+ t)2 are exact.

(0.18). Let K be the Gauss curvature of F (Y ), we say F (Y ) is of bounded
curvature if

∫
Y |K| < +∞. We have the fundamental:

(0.19) Osserman Theorem. Let F : Y → R3 be a complete minimal
surface, F (Y ) has bounded curvature if and only if Y is conformally equiv-
alent to a compact Riemann surface X minus a finite number of points Z,
Y = X − Z, and the forms ωi extend meromorphically to Y.

Proof. [12].

(0.20). Let F : Y = X − Z → R3 be given as in (0.19): X is a compact
connected Riemann surface and Z = {p1, . . . , pn} n > 0, pi ∈ X. We also
denote by Z =

∑n
i=1 pi its divisor. Let (ω1, ω2, ω3) be W -data of F, fix

coordinates zj centred in pj ∈ Z. The ωi extends to X:

ωi(zj) ≡
∑

k≥−mj(i)
ak,iz

k
j dzj,

where amj(i),i 6= 0. Set mj = maxi=1,2,3(mj(i)) and the polar divisor E =∑
jmjpj.

(0.21) Remark: mj > 1. The condition (0.d) implies that the triple
residue:

(a−1,1, a−1,2, a−1,3) = Re spj (ω1, ω2, ω3) =
1

2πi

∮
(ω1, ω2, ω3)

is real. If mj ≤ 1 by (0.a) (a−1,1)2 + (a−1,2)2 + (a−1,3)2 = 0, that is a−1,i =
0 : mj = 0. This is impossible. If F extends on pj and (Y, g) is not complete.
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(0.22). Let ωX(E) be the sheaf of the meromorphic forms having polar
divisor contained in E. Recall that ωX(E) can be identified with the sheaf
of the holomorphic sections of a line bundle on X (see [1] or [7]) which is
usually still denoted by ωX(E). We may consider ωi ∈ H0(X,ωX(E)). The
(0.8) extends and by abuse of language we write h : X → CP2, h(X) = Q.
Repeating the square root extraction: h = Vf, f : X → CP1 is the extended
Gauss map. Set M = f∗(OCP1(1)) : M 2 = ωX(E). We find two sections
of M, called again s and t, such that W(s, t) = (ω1, ω2, ω3). Note that the
restriction of M to Y is L.

(0.23). To obtain a canonical extension of L to X it is convenient to divide
Z in the two pieces: Z ′ = {p ∈ Z : mi odd} and Z ′′ = {p ∈ Z : mi even}.
Then E = 2D + Z ′, D =

∑
nipi, 2ni = mi if pi ∈ Z ′′ and 2ni + 1 = mi

if pi ∈ Z ′. Set L = M ⊗ OX(−D), L2 = ωX(Z ′), s and t are sections of
L(D) = M : L|Y = L.

We remark that (L, φ) determines completely L. To see this let Dj be
an open disk centred on pj and set D∗ = Dj − {pj}. By restriction (L, φ)
defines a spin structure on D∗. There are exactly two spin structures on D∗,
L = OD∗ :

1) φ(κ⊗ κ) = κ2dz ⇔ ωD ∼= L2
|D∗ ⇔ pj ∈ Z ′′.

2) φ(κ⊗ κ) = κ2 dz
z
⇔ ωD(pj)|D∗ ∼= L2

|D∗ ⇔ pj ∈ Z ′.
Conversely, L determines (L, φ). In fact the number of holomorphic line

bundles L, such that ωX ⊂ L2 ⊂ ωX(Z) is 22g+n−1, which is the number of
the spin structures on Y (cf. [10]).

(0.24). By abuse of notation we will write L instead of L. From (0.19) the
(extended) data of bounded curvature complete minimal surfaces are:

Weierstrass: (X, (ω1, ω2, ω3)), ωi ∈ H0(X,ωX(E)) E =
∑
imipi, mi > 1.

Spin: (X,L(D), s, t), s, t ∈ H0(X,L(D)), D =
∑
i nipi, ni > 0 (L2(2D) =

ωX(E)).

(0.25). Recall that F : Y = X − Z → R3 has embedded ends if for any j
there is a disk Dj centred at pj such that F (Dj − pj) is embedded. In this
case (cf. [9]) mj = 2, D = 2Z and L2 = ωX : L is a spin bundle of X. If
F is a global embedding then (cf. [14] and [2]) L is an even spin bundle:
dim(H0(X,L)) = 2n ∈ Z.

As a straightforward application we obtain:

(0.26) Jorge-Meeks Formula (cf. [9]): Let f be the extended Gauss map
of F. Then deg(f) = deg(L(D)) = g − 1 + deg(Z′)

2
+ deg(D). If the ends of

F (Y ) are embedded: deg(f) = g − 1 + deg(Z) = − 1
2
χ(Y ) = − 1

4π

∫
Y K.

(0.27). The differential (0.15) extends to d : OX(E − Z) → ωX(E) (E =
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2D + Z ′). This provides an exact sequence in cohomology:

0→ C→ H0(X,OX(E − Z)) d−→ H0(X,ωX(E)) c−→ H1(X − Z,C).

The condition (0.d)′ gives Re(c(ωi)) = 0 i = 1, 2, 3. We recall that F has
flat ends if Re spj (ω1, ω2, ω3) = 0 for any j. This means that c(ωi) belongs to
i∗(H1(X,C)) where i : X − Z → X is the inclusion.

In the non-rigid minimal case (of bounded curvature) (see 0.15), (ω1, ω2,
ω3) = (dF1, dF2, dF3), the Fi are rational functions with poles in E − Z. In
particular F = Re Φ where

Φ = (F1, F2, F3) : X − Z → C3

is an algebraic morphism (see [8] Ch. 1). We note that a non rigid minimal
surface has flat ends. Moreover, by (0.17), F is non rigid if and only for
any σ ∈ span(s, t) ⊂ H0(X,L(D)) there is a rational function κ such that
dκ = σ2. The ramification divisor of κ is twice the divisor of σ. These minimal
surfaces can therefore be studied by means of rational functions having even
ramification divisors. This will be a topic of this paper.

1. Notations and basic definition.

The following notation will be fixed all over the paper.
- Let X be a compact connected Riemann surface of genus g.
- Let Z = {p1, . . . , pn} n > 0, pi ∈ X. We also denote by Z =

∑n
i=1 pi

its divisor.
- Fix k, 0 ≤ 2k ≤ n, and Z ′ =

∑n
i=1 pi (Z ′ = 0 if k = 0) and write

Z = Z ′ + Z ′′.

- Let L be a holomorphic bundle of X such that L2 = ωX(Z ′), L defines
a spin structure of X − Z (see [10] and 0.23 above).

- Let D =
∑
i nipi, ni > 0, be a divisor supported on Z, set d =

deg(D) =
∑n
i=1 ni.

- For any divisor, say E =
∑
i kiqi where the qi are distinct and ki 6= 0,

we will denote by [E] =
∑
i qi its support divisor, in particular [D] = Z.

- If A = Σp∈Xapp and B = Σp∈Xbpp are effective divisors, i.e. ap ≥
0, bp ≥ 0 and 6= 0 on a finite set of points, we define A ∩ B =
Σp∈X min(ap, bp)p. Note that [A ∩ B] = [A] ∩ [B] and [A + B] =
[A] + [B]− [A ∩B].

- We consider the line bundles OX(2D − Z ′′), L(D) = L ⊗ OX(D) and
L(D)2 = ωX(2D+Z ′). We let OCPn(1) be the tautological line bundle
of the complex projective space CPn.
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- Set H0(X,OX(2D−Z ′′)) =R, H0(X,L(D)) =V, W =H0(X,ωX(2D+
Z ′)) and if F is an effective divisor V (−F ) = H0(X,L(D − F )).

- R is a space of rational functions (poles at 2D−Z ′′), W of differentials
(poles at 2D + Z ′) and V of L “half-differentials” (poles at D) of X.
Set H = H1(X − Z,C), dim(H) = 2g + n− 1.

- The exterior differential (see 0.15) defines a mapping: d : R → W. If
R 6= 0 (e.g. 2d+ 2k − n > g − 1) it gives rise to a exact sequence:

0→ H0(X − Z,C) = C→ R
d−→W

c−→ H.

- Define the maps: m : Sym2 V →W m(s1⊗ s2) = s1 · s2, θ : Sym2 V →
H θ(s1 ⊗ s2) = c(s1 · s2) and θ′ : V → H by θ′(s) = θ(s⊗ s) = c(s2).

After settled the basic notation we start with some new definitions fol-
lowed by a few comments.

(1.1) Definition. An element s of V will be called half-exact if c(s2) = 0,
i.e. d(f) = s2 with f ∈ R. Set P = {s ∈ V : s is half-exact} and P(V ) the
projective space of V and H = {[s] ∈ P(V ) : s ∈ P}, P is the affine cone of
H.
(1.2). Let N be a subspace of V and P(N) ⊂ P(V ) the associated projective
space. Set P(N) = N ∩ P, H(N) = P(N) ∩ H, P(V (−F )) = P(F ) and
P(V (−F )) = P(F ) when N = V (−F ) and F is an effective divisor of X.

(1.3) Definition. A subspace Π of V will be called a minimal plane if
dim(Π) = 2 and all its elements are half-exact. The minimal planes corre-
sponds to the lines of P(V ) contained in H. A plane Π = span(s, t) will be
called base point free if {p ∈ X, s(p) = t(p) = 0} ≡ ∅.

We remark that if Π = span(s, t) is a base point free minimal plane then
(X,L, s, t) is base point free S-data (0.9 e). Hence by (0.17) we have:

(X,L, s, t) is S-data of a non rigid minimal immersion ⇔
Π = span(s, t) is a base point free minimal plane.

(1.4). Let G(2, V ) be the Grassmannian of 2 dimensional space and M =
{Π ∈ G(2, V ) : Π is a minimal}. We also define the two frame space of M:

F = {(s1, s2) ∈ V × V : span(s1, s2) ∈M}.
Note that F ⊂ P × P. We have F 6= ∅ ⇔ M 6= ∅ and if M 6= ∅ ⇒
dim(F) = dim(M) + 4.

(1.5). As before if N ⊂ V is a subspace, we let F(N) = (N × N) ∩ F
and M(N) =M∩G(2, N). The inclusion G(2, N) ⊂ G(2, V ) is the natural
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one. If N = V (−F ) set M(N) = M(F ) and F(N) = F(F ). Note that
M′ = M− ∪p∈XM(p) and F ′ = F − ∪p∈XF(p) give the base point free
loci. For s ∈ F we set F(s) = {(s1, s2) ∈ F : s1 = s} and M(s) =
{Π ∈ M : s ∈ Π}. If λ1 : F → V is the projection λ1(s1, s2) = s1 then
λ−1

1 (s) = F(s) and dimF(s) = dimM(s)+2. SetM(s,N) =M(s)∩M(N),
M(s, F ) =M(s) ∩M(F ) etc..

(1.6). The two frame space of V

s = {(s1, s2) ∈ V × V : dim(span(s1, s2)) = 2}
is by definition the locus of the holomorphic S-data (see 0.13 and 0.27). Set
S(p) = {(s1, s2) ∈ S : s1(p) = s2(p) = 0} and S ′ = S − ∪p∈XS(p). The
sublocus (1.4), F , of S corresponds to the S-data of non rigid (branched)
minimal surfaces. The locus of the branched S-data is G = ∪p∈XF(p).

(1.7) Moduli. We denote by Q (Qflat) respectively the locus of the spin
data of minimal surfaces (with flat ends):

Q =
{

(s1, s2) ∈ S : Re
∫
γ

W(s1, s2) = 0, γ ∈ H1(Y,Z)
}

Qflat =
{
(s1, s2) ∈ Q : Re spjW(s1, s2) = 0, pj ∈ Z

}
.

We have a filtration:
F ⊂ Qflat ⊂ Q ⊂ S.

The immersions correspond to Q′ = Q ∩ S ′. It could be that F = ∅ and
Q 6= 0 as the cases of embedded minimal surfaces show.

(1.8). Clearly F is a moduli space of the non rigid spin minimal surfaces
with bounded curvature. We discuss the moduli of the minimal immersions
of X−Z by using spinors. Let I = (k1, . . . , kn), ki ∈ Z, ki > 0 be a n-ple, set
DI =

∑
i . Fix a line bundle L on X such that L2 = ωX(Z ′) where Z ′ ⊂ Z.

Now L (see 0.23) defines a spin structure on X−Z. Set VI,L = H0(X,L(DI)),
SI,L = S = {(s1, s2) ∈ VI,L × VI,L : dim(span(s1, s2)) = 2} and accordingly:

FI,L ⊂ Qflat,I,L ⊂ QI,L ⊂ SI,L
F ′I,L ⊂ Q′flat,I,L ⊂ Q′I,L ⊂ S ′I,L.

If I = (k1, . . . , kn) and K = (k′1, . . . , k
′
n) we say that I ≥ K if ki ≥ k′i for all

i. If I ≥ K there is a natural inclusion VK,L ⊂ VI,L and hence:

FK,L ⊂ FI,L; QK,L ⊂ QI,L; SK,L ⊂ SI,L.
We may consider

∪I,LFI,L ⊂ ∪I,LQI,L ⊂ ∪I,LSI,L; ∪I,LF ′I,L ⊂ ∪I,LQ′I,L,
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with the induced topology: A set C ⊂ ∪I,LSI,L is closed if C ∩SI,L is closed
for all I and L. Note that if I ≥ K then SK,L is closed in SI,L. Now

Q(X,Z) = ∪I,LQ′I,L
is the space of the spin data of the minimal immersions of X − Z in the
euclidean space. If we fix L and let Q(X,Z,L) = ∪IQ′I,L we have:

Q(X,Z) = ∪LQ(X,Z,L).

We note that Q(X,Z,L) is an open and closed subset of Q(X,Z). Let j :
Q(X,Z) → Q(X,Z) be the involution j(s, t) = (−s,−t). The points of the
quotient M(X,Z) = Q(X,Z)/j corresponds to the W -data having poles at
Z.

(1.9). We call M(X,Z) the moduli space of the complete minimal immer-
sions of bounded curvature of X − Z in R3. We will show in (5.8) that
M(X,Z) is not empty and more precisely that F ′(k1,... ,kn),L 6= ∅ if ki � 0 for
all i. Letting M(X,Z,L) = Q(X,Z,L)/j we have M(X,Z) = ∪LQ(X,Z,L),
where the M(X,Z,L) are not empty open and closed sub-sets.

(1.10) Warning. We note that M(X,Z) is not, in general, a good moduli
space of the immersed surfaces F (X−Z). This is not due only to the effect of
the translations, which could be ignored. If a is an automorphism of X such
that a(Z) = Z, then the W -data (a∗(ω1),a∗(ω2),a∗(ω3)) and (ω1, ω2, ω3)
give the same image. To get the actual moduli space here one should take
the quotient by the automorphisms action.

(1.11). The set of all the minimal complete immersions of bounded cur-
vature is ∪X,ZM(X,Z). To define however a good topology and possibly
other structures, one needs to consider holomorphic S-data (or W -data) on
families of Riemann surfaces. We do not perform here it furthermore.

2. Existence Results.

We keep the previous notations. We have introduced the vector spaces V =
H0(X,L(D)), W = H0(X,ωX(2D + Z ′)) and H = H1(X − Z,C). Then for
any subspace N of V we have defined the loci H(N),M(N),F(N),M(s,N),
etc. (cf. 1.1,...,1.5). In the sequel we will always have dim(V ) > g, in
particular L(D) will be non-special and hence dim(V ) = d + k. We recall
that d = deg(D), n = deg(Z) and [D] = Z. We will use the convention that
the dimension of the empty set is −∞, hence dim(S) ≥ 0 implies S 6= ∅.

Proposition 2.1. Let N be a subspace of V, dim(N) = e. Assume e ≥ 2g−n
then

i) dim(H(N)) ≥ e− 2g − n;
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ii) dim(M(N)) ≥ 2e− 3(2g + n)− 1;
iii) If [s] ∈ H(N), then dim(M(s,N)) ≥ e− (4g + 2n).

Proof. Set dim(H) = 2g+n−1 = f. We will describe our loci as zero sections
of vector bundles. First at all we restrict the map θ of §1 to Sym2N. This
defines θ(N) : Sym2N → H. By abuse of notations we will write θ = θ(N):

θ(s⊗ t) = c(st) = De Rham class of {st}.

i) Set O(k) = OP(N)(k) and consider the tautological sequence on P(N):

0→ O(−1)→ N → Q→ 0

where Q is the quotient bundle. Taking symmetric product we get a map
Sym2(O(−1)) ≡ O(−2)→ Sym2N and, by composing with θ, µ′ : O(−2)→
H. This gives a section µ of H ⊗O(2) and H(N) is the zero locus of µ:

H(N) = {x ∈ P(N) : µ(x) = 0 = µ′(x)}.

Let ζ = c1(O(1)) be the Chern class of O(1), that is the hyperplane section.
Since H is a trivial bundle the top Chern class of H ⊗O(2) ≡ O(2)f is:

(2.2).
cf (H ⊗O(2)) = 2fζf .

Assume dim(P(N)) = e−1 ≥ f, then H(N) is not empty and the dimension
of any component is bigger than e− 1− f.
ii) The proof is similar to the previous one. Consider on G(2, N) the tauto-
logical sequence of vector bundles:

0→ S → N → Q→ 0.

The composition Sym2S → Sym2N → H defines λ : Sym2 S → H. We have

(2.3).
M(N) = {x ∈ G(2, N) : λ(x) = 0}.

Let S∗ be the dual of S. We identify λ as a section of H ⊗ Sym2 S∗. The
result follows by computing the top Chern class:

c3f (H ⊗ Sym2 S∗) = c3(Sym2 S∗)f = 4fc2(S∗)f (c1(S∗))f 6= 0.

In fact c1(S∗) is ample and c2(S∗)f 6= 0 if f ≤ e : c2(S∗)e = 1 (see [7] Ch. 3
§3).
iii) Fix a half-exact element s of N, s 6= 0. Set P = {Π ∈ G(2, N) : s ∈ P},
P ∩ M = M(s,N). Now P is isomorphic to the projective space of the



ALGEBRAIC CURVES AND NON RIGID MINIMAL SURFACES 345

quotient of N by the space generated by s. Let OP(−1) be the tautological
bundle of P and SP = S ⊗OP the restriction of S to P. Define the splitting
exact sequence:

0→ OP s−→ SP → OP(−1)→ 0

where OP → SP is induced by s : Sym2 SP = OP⊕OP(−1)⊕OP(−2). Denote
still by H its restriction to P. The map Sym2 S → H defines a section σ
of H ⊗ O(1) ⊕ H ⊗ O(2) ≡ O(1)f ⊕ O(2)f such that M(s,N) = {Π ∈ P :
σ(Π) = 0} = Z(σ). Since c2f (H ⊗O(1)⊕H ⊗O(2)) = 2fζ2f it follows that
dim(M(s,N)) ≥ e− 2− 2f.

Corollary 2.4. i) dim(H(F )) ≥ d + k − 2g − n − deg(F ), dim(H) ≥
d + k − 2g − n; ii) dim(M(F )) ≥ 2(d + k − deg(F )) − 3(2g + n) − 1; iii) If
(s) ∈ H(F ), then dim(M(s, F )) ≥ d+ k − 4g − 2n− deg(F ).

In particular we get:

Proposition 2.5. If 2(d−k) > 3(2g+n) then there are (possibly) branched
minimal surfaces with polar divisor at Z, moreover dim(M) ≥ 2(d + k) −
3(2g + n)− 1.

(2.6) Algebraic structure. All previous spaces are zero sections of vector
bundles (cf. 2.2 and 2.3) over quasi-projective varieties. We discuss the
induced scheme structure (for details see [8] Ch. 1 and 2).

We recall that a Zariski closed set of CPn is the zero set of a finite number
of homogeneous polynomials. Let X ⊆ CPn be a smooth projective (alge-
braic and compact) variety. Consider on X the induced Zariski topology (cf.
[8] Ch. 1). Let Y be a Zariski open set of X , Y is a quasi-projective variety.
Let E be a rank e an algebraic vector bundle over Y. A section s of E defines
a map s : OY → E and its dual s∗ : E∗ → OY . Here OY is the sheaf of the
regular algebraic functions on Y: If U is an open set of Y, Γ(U,OY) is the
space of the holomorphic functions on U obtained by restriction of rational
functions of CPn. The image J of s∗ is an ideal sheaf. The scheme structure
on Z = {z ∈ Y : s(z) = 0} is given by the sheaf OZ = OY/J . We say
that Z has the expected dimension if dim(Z) = dim(Y)− e. Let TY,z be the
holomorphic tangent space of Y at z and ds : TY,z → Ez be (induced by)
the differential of s. If z ∈ Z, ker(ds) ∼= (Jz/(Jz)2)∗ is the Zariski tangent
space (see [8] §II Ex. 2.8) of Z at z. We say that z is smooth if ds is surjec-
tive. By implicit function theorem the smooth points define a codimension
e subvariety Z ′ of Z, ker(ds) is the holomorphic tangent space of Z ′ at z.

(2.7). A closed algebraic subset of Z is called a component if it contains
some open subset of Z. We are ignoring here the immersed components (cf.
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[8] Ch. 2 §3). Clearly Z is union of its components. A component of Z is
good (reduced) if it contains a smooth point. An algebraic set Z is reduced if
all its components are good and irreducible if Z is itself a component. Then
any smooth point defines a good component of Z. Therefore the closure of
a connected component (in the usual topological sense) of Z ′ is a component
(in the algebraic sense) of Z which is good by definition. Note that a good
component has the expected dimension.

(2.8) Examples. The algebraic smoothness is more than the usual one.
Set Y = CP2, E = OCP2(2) (e = 1). The coordinate zi gives as in (0.5) a
section of OCP2(1), then the homogeneous forms of degree 2 define sections
of E:
a) s =

∑3
i=1 z

2
i ;Z = Z ′, Q =

{
[z1, z2, z3] ∈ CP2 :

∑3
i=1 z

2
i = 0

}
, Q is a good

component;
b) s = z1z2 : Z = L1∪L2, Li = {[0, z2, z3] ∈ CP2 : zi = 0}; Z ′ = Z−[(0, 0, 1)]:
L1 and L2 are good components, Z is reduced but not irreducible;
c) s = z2

1 ;Z = L1, Z ′ = ∅ : Z is irreducible and not reduced, no good
components.

(2.9). Recall that dim(P(F )) = dim(H(F )) + 1 and dim(F(F )) =
dim(M(F )) + 4. The computations (2.1) give that any component of our
spaces has dimension bigger or equal than the expected one. Then (cf.
2.6) H,H(F ),M, . . . have the expected dimension if the inequalities in
(2.1)...(2.5) are equalities. The expected dimension of F is 2(d−k)−3(2g+
n− 1) the one of F(p) is 2(d− k)− 3(2g+n− 1)− 2 : G = ∪p∈XF(p) should
be a divisor in F .

(2.10) Example. We present a case where the inequality (2.1) is sharp.
Let p = Z be a point, H = H1(X,C) and L be a spin structure of X :
L2 = ωX . Take D = (2g + 1)p, s ∈ H0(X,L(2g + 1)p) half-exact and F ∈
H0(X,OX(4g + 1)p) such that dF = s2. The ramification of F contains the
zero divisor E of s. Note that deg(E) = 3g and that expected dimension of
H is zero. Varying the moduli of X and p we find a variety of dimension
≥ 3g − 2.

Let Γ be the Hurwitz scheme of the degree 2g+1 coverings of CP1 = C∪∞
ramified on 3g + 1 points as follows: Total ramification on ∞ and 3 to
1 on the other points. By Hurwitz’ formula the curves have genus g and
dim(Γ) = 3g − 2, i.e. the coverings coming from half-exact differentials fill
up a component of Γ. It implies that if X and p are general the expected
dimension is the actual one. An easy analysis shows that the general points
are smooth. Then (2.2) gives that there are 22g of such coverings.
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3. Infinitesimal computation.

We study the Zariski tangent (see 2.6) of the spaces we have defined in (cf.
1.1 and 1.4). Take a holomorphic curve s(t) in P, s(0) = s. There is a curve
G(t) in R such that

s(t)2 = dG(t).

Expanding we get

s2 + 2ss′ + o(t2) = dG(0) + tdG′ + o(t2),

where s′ = s′(0) belongs to V = H0(X,L(D)) and F ′ toR = H0(X,OX(2D−
Z ′′)). It follows that ss′ = 1

2
dG′ is an exact differential. Denote by s : V →W

the multiplication s(t) = st and define c(s) : V → H by:

(3.1).
c(s)(t) = De Rham class of {st}.

The Zariski tangent space Ts,P (cf. 2.6) of P at s is Cs = ker(c(s)). If c(s)
is surjective we obtain

dim(Ts,P) = dim(Cs) = dim(V )− dim(H) ≤ dimH+ 1 = dimP.
Since always dim(P) ≥ dim(Ts,P), dim(P) = dim(Ts,P). Then (s) is a
smooth point and defines a good component (see 2.7) of P. In the same
way Cs/ span(s) is the Zariski tangent of H as defined by (2.2). We have
seen:

Proposition 3.2. If c(s) is surjective then (s) is a smooth point of a good
component C of H : dim(C) = d+ k − 2g − n.

For any effective divisor F we set

(3.3).
Cs(−F ) = ker(c(s) : V (−F )→ H) = V (−F ) ∩ Cs.

If furthermore s ∈ V (−F ) it follows that Cs(−F ) is the Zariski tangent space
to P(F ) at s. If the map in (3.3) is surjective s is a smooth point of P(F ).
We have the following:

Lemma 3.4. If for s ∈ P(q) c(s) : V (−q)→ H is surjective, then there is
a holomorphic curve s(t) in P, s(0) = s and s′(0)(q) 6= 0, hence s(t) ∈ P(q)
for small t 6= 0.

Proof. The map c(s) : V → H is also surjective and dimCs(−q) = dimCs−1.
Hence there is s′ ∈ Cs −Cs(−q) and a curve s(t) in P, s(0) = s and s′(0) =
s′.
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(3.5). To study the tangent space of F and ofM we fix a minimal plane Π
and a basis (s1, s2) of Π. Set x = (s1, s2) ∈ F and let

γ(t) = (s1,t, s2,t)

be a holomorphic curve in F such that γ(0) = x. The condition γ(t) ∈ F
implies the existence of rational functions Fi,t, i = 1, 2 and 3, such that

dF1,t = s2
1,t; dF2,t = s1,ts2,t; dF3,t = s2

2,t.

First order expansion gives: si,t = si + tvi + O(t2), i = 1, 2, and Fj,t =
Fj + tGj + o(t2), j = 1, 2, 3, and then

2s1v1 = dG1, s1v2 + s2v1 = dG2, 2s2v2 = dG3.

(3.6). Letting ci = c(si) : V → H and Ci = Ker(ci) we define κ = κs1,s2 :
V 2 → H3 by:

κ(v1, v2) = (c1(v1), c1(v2) + c2(v1), c2(v1))

= de Rham classes of {(2s1v1, s1v2 + s2v1, 2s2v2)}.

The tangent space to F at x is Cs1,s2 = ker(κ). If κ is surjective then
dim(Cs1,s2) = 2(d + k) − 3(g + n − 1) which is the expected dimension of f
(cf. 2.7). Note that if (v1, v2) ∈ Cs1,s2 then vi ∈ Ci, i = 1, 2.

Proposition 3.7. Let x = (s1, s2) ∈ F . If κ : V 2 → H3 is surjective then
x is a smooth point of F .

(3.8). If κ is surjective then ci i = 1, 2, are surjective, i.e. s1 and s2 are
smooth points of P. Define χs1,s2 = χ : C1 ⊕ C2 → H by

χ(v1, v2) = c1(v2) + c2(v1) = De Rham class of {s1v2 + s2v1},
sivi = dGi i = 1, 2.

Set f = s2
s1

we get s1v2 + s2v1 = f−1dG1 + fdG2, and hence:

χ(v1, v2) = De Rham class of {f−1dG1 + fdG2}
= De Rham class of {−(f−2G1 −G2)df}.

The surjectivity of χ means exactly that the elements of the type (0, h, 0),
where h is in H, are in the image of κ. We obtain:

κ is surjective ⇔ χ, c1 and c2 are surjective.
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(3.9). We shortly turn to the Zariski tangent space of F(s1) at x = (s1, s2).
This can be identified with Ks1,s2 the kernel of ρ = ρs1,s2 : V → H2:

ρ(v) = (c1(v), c2(v)) = De Rham class of {s1v, s2v}.

The inclusion F(s1) ⊂ F gives the injection Ks1,s2 → Cs1,s2 : (v)→ (0, v). If
ρ is onto x is a smooth point (cf. 2.8) of F(s1). If v ∈ C1 then s1v = dG,
thus:

(3.10).

c2(v) = De Rham class of {s2v}
= De Rham class of {fdG} = De Rham class of {−Gdf}.

We have:

c2 : C1 → H and c1 : C2 → H are onto ⇔ ρ is onto ⇒ κ is onto.

(3.11). If F is an effective divisor x = (s1, s2) ∈ F(F ). The tangent spaces
of F(F ) and F(s1, F ) at x are Cs1,s2(−F ) = ker(κ : V 2(−F ) → H3) and
Ks1,s2(−F ) = ker(ρ : V (−F ) → H2) respectively. If the above maps
are surjective the corresponding components are good. In particular if
κ : V 2(−p) → H3 is surjective for any p ∈ X then there is component K of
F such that dim(K) > dim(K∩(∪p∈XF(p))) and hence F 6= ∪p∈XF(p). This
will be our strategy in proving the existence of immersed minimal surfaces.

4. Technical lemmas.

We need to prove a simple result about the ramification of rational functions
on X. Let A =

∑a
i=1 aiqi and B =

∑b
i=1 biri be two effective divisors with

disjoint supports: [A]∩[B] = ∅, [A] =
∑a
i=1 qi and [B] =

∑b
i=1 ri, deg([A]) =

a and deg([B]) = b. The problem is to know if the De Rham map

c : H0(X,ωX(A−B))→ H1(X − [A],C)

is surjective. Set A′ = A − [A] and write A = A′ + [A′] + A′′. If ai > 1 for
i ≤ a′ then A′ =

∑a′

i=1(ai − 1)qi and A′′ =
∑a
i=a′+1 qi.

Let R = R(A,B) be the sheaf of the rational functions on X with poles
at A′ and ramified at B. If U is an open set of X:

Γ(U,R(A,B)) = {f : f ∈ Γ(U,OX(A− [A])) and df ∈ Γ(U, ωX(−B))}.

Now OX(A′−B− [B]) is a subsheaf of R and there is a sheaf exact sequence
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(4.1).
0→ OX(A′ −B − [B])→ R→ O[B] → 0,

where R → O[B] is the evaluation at [B]. Exterior differential gives another
exact sequence:

(4.2).
0→ C→ R d−→ ωX(A′ + [A′]−B) ⊂ ωX(A−B).

Taking residues we obtain a surjection ωX(A − B) res−→ O[A]. Its kernel,
ωX(A − B)0, which is also the kernel of ωX(A′ − B) res−→ O[A′], is the im-
age of d, d(R) = ωX(A−B)0. Hence (4.2) defines two short exact sequences:

(4.3).

0→ C→ R d−→ ωX(A−B)0 → 0

0→ ωX(A−B)0 → ωX(A−B) res−→ O[A] → 0.

Therefore the vanishing of H1(X,R) gives that the coboundary maps

H0(X,ωX(A−B)0)→ H1(X,C) and H1(X,ωX(A−B)0)→ H2(X,C) = C

are both surjective and the second one is an isomorphism. The image of

H0(X,ωX(A−B)) res−→ H0
(
X,O[A]

)
= Ca

is the hyperplane L = {∑a
i=1 xi = 0} by the residues theorem, this im-

plies H1(X,ωX(A − B)) = 0 and that the maps H0(X,ωX(A − B)0) →
H1(X,C) and H0(X,ωX(A − B)) → L are both surjective. This show that
c : H0(X,ωX(A−B))→ H1(X − [A],C) is also a surjection.

Conversely if c is onto then H0(X,ωX(A − B)0) → H1(X,C) is surjec-
tive and H1(X,ωX(A − B)) = 0 (deg(A − B) ≥ g + 1 > 0). This forces
H1(X,ωX(A − B)0) = C and therefore H1(X,R) = 0. Summarizing we
have:

Proposition 4.4. The map c : H0(X,ωX(A − B)) → H1(X − [A],C) is
onto if and only if H1(X,R(A,B)) = 0.

From (4.1) H1(X,OX(A′ −B − [B])) = 0 implies H1(X,R) = 0, we get:

Lemma 4.5. If deg(A−B)− a− b > 2g − 2 then H1(X,R(A,B)) = 0.

We will give some applications. Let M be a line bundle on X and σ ∈
H0(X,M) be a section of M. By composing c with the multiplication σ :
H0(X,ωX(A−B)⊗M−1)→ H0(X,ωX(A−B)), we obtain (compare with
3.1):
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(4.6).
c(σ) : H0(X,ωX(A−B)⊗M−1)→ H1(X − [A],C).

Let E be the zero divisor of σ, M is isomorphic to OX(E) and s defines the
exact sequence:

(4.7).

0→ ωX(A−B)⊗M−1 σ−→ ωX(A−B)→ ωX(A)|E → 0,

then the image of σ : H0(X,ωX(A − B) ⊗M−1) → H0(X,ωX(A − B)) is
H0(X,ωX(A−B−E)). It follows that c(σ) is onto if and only ifH0(X,ωX(A−
B −E))→ H1(X − [A],C) is surjective. Write E = E′+E′′, [E′] ⊂ [A] and
E′′ ∩ A = ∅. If A − E′ is effective and [A − E′] = [A]. Applying (4.5) and
(4.6) to A− E′ and E′′ +B we obtain:

Lemma 4.8. If deg(A − B − [A + B + E]) > 2g − 2 + deg(M) and
[A] = [A− E ∩A] then c(σ) is surjective.

Let P be the projective space of H0(X,M) and U be a compact algebraic
subset of P. Put dim(U) = u and define the Zariski open set of U :

U ′ = {(σ) ∈ U : c(σ) is surjective}.

We fix a point q of X, q /∈ [A], A =
∑a
i=1 aiqi, and we find (σ) ∈ U with

zero divisor E = uq + ∆, ∆ effective and deg([∆]) ≤ deg(M) − u. If ai >
deg(M)− u then the multiplicity condition is satisfied. This gives:

Lemma 4.9. If u ≥ max(deg(M)−ai+1, 2g−2+a+b+deg(2M+B−A))
there is (σ) ∈ U such that c(σ) is surjective, i.e. U ′ is non empty.

(4.10). To apply the previous results to minimal surfaces we need to
consider the slightly more sophisticated (3.6), (3.8) and (3.10) situations.
Let f be a non constant rational function with polar divisor F. It follows
f ∈ H0(X,OX(F )) and df ∈ H0(X,ωX(F + [F ])). Let A and B be as before
and Ω be the zero divisor of df. As in (4.7) we have an exact sequence:

0→ OX(A−B) .df−→ ωX(A+ F + [F ]−B)→ ωX(A+ F + [F ]−B)Ω → 0.

Set F ′′ = (F + [F ])∩B, B′ = B−F ′′ and F ′ = F + [F ]−F ′′. We compose c
with the multiplication: df : H0(X,OX(A−B))→ H0(X,ωX(A+F ′−B′))
and obtain:

c(df) : H0(X,OX(A−B))→ H1(X − [A+ F ′],C).
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If G ∈ H0(X,OX(A−B)) then:

c(df)(G) = De Rham class of {Gdf}.
We apply (4.8) where M = ωX(F + [F ]) and σ = df. The roles of the A

and B are taken by A+ F ′ by B′ = B − F ′′. To use (4.8) we need:

deg(A−B) + deg(F ) > 2(g − 1) + deg(W ) + deg([A+ F +W +B]).

Since deg(W ) = 2g − 2 + deg(F + [F ]) it gives deg(A − B) > 4(g − 1) +
deg([F ])+deg[A+F+Ω+B] ≥ 4(g−1)+2 deg(F )+deg(Ω)+deg([A+B]) ≥
6(g − 1) + 4 deg(F ) + a+ b.

Since the multiplicity of the point of Ω is less than deg(f) and Ω is disjoint
from [F ] the other inequalities are ai ≥ deg(f). Hence:

Lemma 4.11. If ai ≥ deg(f) for any i and deg(A − B − [B + A]) >
6g − 6 + 4 deg(f) then c(df) : H0(X,OX(A−B))→ H1(X − [A+ F ′],C) is
surjective.

We need a “dual” version of the above lemma, we assume

(∗) ai > deg(f) for all i.

Let R = R(A,B) and d(R) be defined as in (4.3). Multiplication by f gives
0 → ωX(A − B) .f−→ ωX(A + F − B). Write F = F ′ + F ′′, F ′′ = B ∩ F and
B′ = B −F ′′. Set T = [A+F ′] and define c(f) : H0(X,R)→ H1(X − T,C)
by:

c(f)(G) = De Rham class of {fdG}.
From the inclusion: (4.1) H0(X,OX(A − [A] − B − [B])) → H0(X,R) we
have

c′(f) : H0(X,OX(A− [A]−B − [B]))→ H1(X − T,C).

Now Leibnitz rule, d(fG) = Gdf + fdG says that the De Rham classes of
fdG and of −Gdf are the same: c′(f) = −c(df). The following implication
holds:

c(df) is surjective ⇒ c′(f) is surjective ⇒ c(f) is surjective.

Since, from (∗) T = [A − [A] + F ′] we rewrite (4.11) for A′ = A − [A] and
B′ = B + [B]:

Lemma 4.12. If ai > deg(f) and deg(A−B)−2(deg[A]+ [B]) > (g−1)+
4 deg(f) for all i, then c(f) : H0(X,R)→ H1(X − [A+F ′],C) is surjective.

(4.13). Take two independent global sections of M, say σ1 and σ2. Let Ei,
i = 1, 2, be their zero divisors and ci = c(σi) : H0(X,ωX(A−B)⊗M−1)→
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H1(X − [A],C) be as in (4.6). Set Ci = ker(ci). By restriction we define
ci : Cj → H1(X − [A],C), i 6= j, and χ(σ1, σ2) : C1 ⊕ C2 → H1(X − [A],C)
(compare with 3.8) by

χ(σ1, σ2)(x, y) = c2(y) + c1(x).

Set f = σ1/σ2. If y ∈ C1, then σ1y = dG and hence σ2y can be written

(4.14).
σ2y = f(σ1y) = fdG.

The polar and zero divisors of f are respectively F2 = E2 − E1 ∩ E2 and
F1 = E1−E1∩E2.We write E1 = E′+E′′ where [E′] ⊂ [A] and [E′′]∩[A] = ∅.
Set ∆ = B + E′′.

(∗∗) We assume ai > deg(f) + deg(E′) + 1 for all i.

By (∗∗) C = A − E′ =
∑a
i=1 ciqi and ci > 1, C − [A] is effective and

[A] = [C−[A]]. The rational function G of (4.14) belongs to H0(X,R(C,∆)).
As we have observed in the proof of (4.8) the image of the multiplication

σi : H0(X,ωX(A−B)⊗M−1)→ H0(X,ωX(A−B))

is H0(X,ωX(A− B − Ei)), i = 1, 2. In particular dG ∈ H0(X,ωX(A− B −
E1)) ⇔ fdG ∈ H0(X,ωX(A − B − E2)) = Im(σ2) ⇔ ∃z ∈ H0(X,ωX(A −
B)⊗M−1) and σ2z = f(σ1z) = fdG.

We have σ1z = dG, that is z ∈ C1. Hence the following implication holds:

c2 : C1 → H1(X − [A],C) is onto ⇔ c(f) : H0(X,R(C,∆))

→ H1(X − [A],C) is onto.

We apply (4.12) where C and ∆ take the place of A and of B. Note that in
our case [T ] = [C] = [A]. The inequalities in (4.12) are the (∗∗) and

(∗∗∗) deg(C −∆)− 2 deg([C] + [∆]) > 6(g − 1) + 4 deg(f).

Now we have: deg(f) + deg(E1 ∩ E2) = deg(M) = deg(E1) C = A − E′,
[C] = [A] and ∆ = B + E′′ = E1, hence (∗∗∗) is implied by

deg(A−B)− 2 deg([A])− 2 deg([B])− 2 deg[E′′]

> 6(g − 1) + 5 deg(M)− 4 deg(E1 ∩ E2).

Finally using that [E′′] = [E1]− [A] we have:

Lemma 4.15. If ai > deg(M − E1 ∩ E2) + deg(E′) + 1 for any i and
deg(A−B)− 4a− 2b > 6(g − 1) + 2 deg([E1]) + 5 deg(M)− 4 deg(E1 ∩E2)
then c2 is surjective. A “fortiori” χ : C1⊕C2 → H1(X− [A],C) is surjective.
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5. Proof of the main result.

We apply the results of §4 to our situation: M = L(D), D =
∑n
i=1 nipi,

[D] = Z, A = 2D + Z ′, B = ∅, ωX(A) ⊗M−1 = L(D), V = H0(X,L(D))
and H = H1(X − Z,C).

Proposition 5.1. Assume: i) 2ni ≥ 3g − 1 + n if i ≤ 2k; ii) 2ni ≥ 3g + n
if i > 2k; iii) d+ k ≥ 6g + 2n− 4, then any component C of H is good.

Proof. Let C be a component of H. Put dim(C) = u = d + k − v. We know
that (cf. 2.1 and 2.8) v ≤ 2g + n. The hypotheses of (4.9) need exactly:

i) v ≤ 2g+ n ≤ 2ni − g+ 1, i ≤ 2k; ii) v ≤ 2ni − g, i > 2k; iii) v ≤ 2g+ n ≤
d+ k − 4(g − 1)− 2n.

We find (s) ∈ C such that c(s) is surjective, hence (cf. 2.8 and 3.2) C is a
good component.

Set as usual V (−q) = H0(X,L(D− q)), and H(q) = H∩P(V (−q)) where
the q is a point of X. Arguing as before a reasonable statement that avoids
the cases q ∈ Z, q ∈ Z ′ and q ∈ Z ′′ is the following:

Proposition 5.2. Assume d + k ≥ 6g + 2n − 2 and 2ni ≥ 3g + 2 + n for
all i. Then for any q ∈ X, H(q) is a generically smooth divisor of H.

For completeness we prove:

Corollary 5.3. If 2ni ≥ 3g + n and d+ k ≥ 8g + 3n− 4 H is irreducible.

Proof. Assume we have two components C and D of H. Then dim(C ∩ D) ≥
d+ k − 2(2g + n). Now C ∩ D is contained in Hsing the singular locus of H.
By (4.9) and (5.1) we get dim(Hsing) < 4(g − 1) + n. This gives

(d+ k)− 2(2g + n) < 4(g − 1) + n.

Hence d+ k ≥ 8g + 3n− 4 which implies that H is irreducible.

(5.4). We would like to use (4.15) to study minimal surfaces. Writing as
usual M(F ) =M∩G(2, V (−F )) we know from (2.4) that

dim(M(F )) ≥ 2(d+ k)− 3(g + n)− 1− 2 deg(F ).

Take F = mq where q ∈ Z. To be sure thatM(mq) is not empty we assume:

(∗) 2(d+ k −m) ≥ 3(2g + n) + 1.
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Then there are σ1 and σ2 in V (−mq) such that Π = span(σ1, σ2) is minimal.
Recall (cf. 3.6) and (4.13) the spaces Ci = ker(c(σi) = V → H) and the
restrictions ci : Cj → H {i, j} = {1, 2}. Let Ei be the zero divisors of σi,
i = 1, 2, we have: deg([E1]) ≤ (d+k)+g−m, deg(E1∩E2) ≥ m. We rewrite
E1 = E′ + E′′ where [E′] ⊂ [2D + Z] and [E′′] ∩ [2D + Z] = ∅ : deg(E′) ≤
(d+ k) + (g− 1)−m. We first use (4.15) with A = 2D+Z and B = ∅, this
requires:

2ni ≥ 2(d+ k −m) + 2g + 1,(∗∗)
2(d+ k)− 4n > 6(g − 1) + 2(d+ k + g −m) + 5(d+ k + g − 1)− 4m.

The second one becomes: 6m > 5(d+ k) + 13g+ 4n− 11. Coupling with (∗)
we have to find integer an m such that:

(∗∗∗) 6(d+ k)− 9(2g + n)− 3 ≥ 6m > 5(d+ k) + 13g + 4n− 11.

This certainly exists if: 6(d+k)−9(2g+n)−3 > (5(d+k)+13g+4n−11)+6.
It gives

d+ k > 31g + 13n− 2.

Then we take the biggest value of m, say n. The upper bound reads 2(d+k)−
3(2g+n)−1 ≥ 2m, i.e. ν ≥ d+k−3g−3n/2−1 : d+k+g−ν ≤ 4g+3n/2−1.
If 2ni ≥ 8g + 3n − 1 (∗∗) holds: 2ni ≥ 8g + 3n − 1 ≥ 2(d + k + g − n) + 1.
We have showed:

Lemma 5.5. If d+ k > 31g+ 13n− 2 and 2ni ≥ 8g+ 3n− 1 for all i, then
there is (σ1, σ2) ∈ F such that ρ(σ1, σ2) and κ(σ1, σ2) are onto.

Using (5.5), (3.7) and (3.11) we get:

Proposition 5.6. Assume d + k > 31g + 13n − 2 and 2ni ≥ 8g + 3n − 1
for all i. Then there is a good component of F and of F(σ1), where σ1 ∈ V
is a suitable half exact differential.

Recall (see 1.5) that F ′ = F−∪p∈XF(p). Consider M = L(D−p), p ∈ X,
σi ∈ V (−p) i = 1, 2, and (see 3.3) Ci(−p) = ker(σi : V (−p) → H). Letting
B = p and A = 2D + Z if p ∈ Z, or A = 2D + Z − p and B = ∅ if p ∈ Z,
the previous computation gives:

Lemma 5.7. If d + k > 31g + 13n + 8 and 2ni > 8g + 3n for all i, then
there is x = (σ1, σ2) ∈ F such that ρ : V (−p)→ H2 is onto for all p in X.

Proposition 5.8. If d + k > 31g + 13n + 8 and 2ni > 8g + 3n for any
i then there is a smooth point x = (σ1, σ2) ∈ F ′. (Note that n ≥ 8 and
2ni ≥ 8g + 3n+ 1 imply d+ k > 31g + 13n+ 8.)

Proof. Take y = (σ1, σ2) given by (5.7). Let E be the zero divisor of σ1 and
(see 3.9) ρp : V (−p) → H be the restriction of ρ : V → H. If K = ker(ρ)



356 GIAN PIETRO PIROLA

we have K(−p) = ker(ρp). Recall (cf. 3.11) that K and K(−p), p ∈ [E], are
respectively the tangent spaces of F(σ1) and of F(σ1, p), at y. Since ρp is onto
F(σ1) is smooth at y and dimK(−p) = dimK−1. Take v ∈ K−∪p∈[E]K(−p)
and a holomorphic curve γ(t) = (σ1, σ2,t) ∈ F(σ1) such that γ(0) = y,
γ′(0) = v. As in (3.4) σ2,t does not vanish on [E] for some t 6= 0. Fix such a
t, σ1 = s1 and σ2,t = s2. Then Π = span(s1, s2) is a minimal base point free
plane.

Our theorem has been proved. By convenience we repeat some details:

Proof of the Theorem. Fixed Z we can take for instance L2 = ωX , k = 0
and D = mZ. We need 2m ≥ 8g + 3n + 1 and nm > 31g + 13n + 8.
By (5.7) there is (s1, s2) ∈ F ′. Define as in (1.8) y = Re

∫ W((s1, s2)) =
Re(F1, F2, F3).

(5.9). In the hypothesis of (5,8) (s1, s2) defines a good component G of F ,
of dimension 2(d−k)−3(2g+n−1). It would be interesting, in analogy with
(5.3), to know when F = G. Varying X and Z as in (1.11) we obtain families
of dimension r = 2d− 2k− 3g− 2n, provided (cf. 2.7) that ρ ≥ 4. For n = 1
we conjecture the existence of non rigid minimal surfaces if 2d ≥ 3g + 6.

References

[1] E. Arbarello, M. Cornalba, P. Griffiths and J. Harris, Geometry of algebraic curves,
Vol. 1, Grund. Math. Wiss., 267, Berlin, Heidelberg, New York, 1985.

[2] A. Bobenko, Surfaces in terms of 2 by 2 matrices. Old and new integrable cases,
in ‘Harmonic maps and integrable system’ (Ferdy, Wood, eds.), Vieweg, (1994),
82-127.

[3] R. Bryant, A duality theorem for Willmore surfaces, J. Diff. Geom., 20 (1984),
23-53.

[4] E. Calabi, Quelche applications de l’analyse complex aux surfaces d’aire minima, in
‘Topics in Complex Manifold’ (H. Rossi ed.), Les Presses de l’Univ. de Montreal,
1989.

[5] E. Cartan, The theory of spinors, Dover publ., New York, 1981.

[6] F. Gackstatter and R. Kunert, Konstruction vollständiger Minimalflächen vom
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