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COMPUTING THE INFINITESIMAL INVARIANTS
ASSOCIATED

TO DEFORMATIONS OF SUBVARIETIES

Randall F. Westhoff

The purpose of this article is to study and describe a
method for computing the infinitesimal invariants associated
to deformations of subvarieties. An interpretation of the in-
finitesimal invariant of normal functions as a pairing similar to
the infinitesimal Abel-Jacobi mapping is given. The compu-
tation of both invariants for certain forms is then reduced to
a residue computation at a finite number of points of the sub-
variety. Applications of this technique include a nonvanish-
ing result for the infinitesimal Abel-Jacobi mapping leading
to finiteness results for low degree rational curves on com-
plete intersection threefolds with trivial canonical bundle and
a generalization of a formula of Voisin for the infinitesimal
invariant of certain normal functions.

1. Introduction.

The problem of understanding the subvarieties of a given projective variety
is one of the central problems in algebraic geometry. If Y is a subvariety
of a projective variety X ⊆ Pm and Y is nontrivial in the sense that it is
the not the complete intersection of X with another subvariety of Pm, then
in many situations one expects the deformations of Y in X to “generate”
some of the cohomology of X. The cohomology generated by a subvariety
as it deforms is measured by Abel-Jacobi mappings, normal functions and
their infinitesimal variants. Understanding the degree to which deformations
of a subvariety generate the cohomology of a variety can yield information
about the structure of the family of all such subvarieties. (i.e. dimension,
smoothness, etc.)

We begin with a brief discussion of Abel-Jacobi mappings. Let X be a
smooth projective variety of dimension n and let F be a smooth projective
variety parametrizing a family of subvarieties of dimension d on X. Let
E = {(Y, x) ∈ F ×X : x ∈ Y } and let p : E −→ F and q : E −→ X be the
natural projections. Then the “cohomological” Abel-Jacobi mapping is the
morphism of Hodge structures of type (−d,−d) defined by the composition

H∗(X,C) q∗−→ H∗(E,C) p∗−→ H∗−2d(F,C)
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where p∗ the Poincaré dual of p∗ on homology when E is smooth and is
defined via a desingularization of E when E is not smooth.

With F as above assume further that the generic subvariety parametrized
by F is smooth. The tangent space TF,Y to F at a subvariety Y ∈ F maps
naturally into H0(NY |X), the tangent space to the deformation space of Y
in X. Then for generic Y in F there is a commutative diagram

Hd(Ω∗−dX ) p∗q∗−−−→ H0(Ω∗−2d
F )

Φ

y y
∧∗−2dH0(NY |X)∗ −−−→ ∧∗−2dT ∗F,Y .

where the map in the top row is identified with the (∗ − d, d) piece of the
Abel-Jacobi mapping and Φ is the infinitesimal Abel-Jacobi mapping which
is given by the contraction mapping

Φ : ∧∗−2dH0(NY |X)⊗Hd(Ω∗−dX ) −→ Hd(Ωd
Y ).

When ∗ = 2d + 1, Φ also computes the differential at Y of the Abel-Jacobi
mapping of Griffiths from F into the (n− d)th intermediate Jacobian of X.
For details see [4].

As Abel-Jacobi mappings measure the cohomology generated by a sub-
variety as it deforms in a fixed variety X, normal functions measure the
cohomology generated by a subvariety as it deforms with X. An infinitesi-
mal invariant of normal functions was first introduced by Griffiths in [7] and
later refined by Green in [6]. Let S = Spec(C[s]/s2). If Y is an algebraic
cycle of dimension d on X and YS is an infinitesimal deformation of Y in an
infinitesimal deformation XS of X, then there is a natural pairing

Φ : H0(NY |XS)⊗Hd(Ωd+1
XS
|X) −→ Hd(Ωd

Y )

given by contraction. If η ∈ H0(NY |XS) is the vector field determined by
YS ⊆ XS, then it is shown in Section 2 that Φ(η, ·) computes the infinitesimal
invariant of the normal function associated to YS ⊆ XS. For a related
interpretation of this invariant see [15].

This pairing is similar in form to the infinitesimal Abel-Jacobi mapping
and this observation is exploited to give a general technique for computing
both invariants in Section 3. This construction is a generalization of a con-
struction of Clemens in [4] and reduces the computation of Φ for certain
forms on X to a residue computation at a finite number of points of Y .
In the sections that follow several applications of this technique are given.
By appealing to a regularity result for space curves in [8], this technique
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is used to prove some nonvanishing results for the infinitesimal Abel-Jacobi
mapping

Φ : ∧n−2H0(NC|X)⊗H1(Ωn−1
X ) −→ H1(Ω1

C)

associated to certain low degree curves C on varieties X of dimension n.
In particular, it is shown that the infinitesimal Abel-Jacobi mapping is of
maximal rank for low degree smooth rational curves C on complete intersec-
tion threefolds X with trivial canonical bundle. Combining this with the fact
that the infinitesimal Abel-Jacobi mapping is trivial for such C which deform
generically with X forces H0(NC|X) to vanish. This yields finiteness results
for low degree rational curves on complete intersection threefolds with trivial
canonical bundle. There has been a great deal of interest in this problem
stemming from some computations of physicists working in string theory.
The mirror symmetry principle allows them to relate the number of rational
curves of a given degree on a generic quintic threefold (or more generally
a Calabi-Yau threefold) to the coefficients of a certain Fourier series deter-
mined by the variation of Hodge structure of some other family of threefolds
with trivial canonical bundle. It would therefore be of great interest to deter-
mine whether there was a finite number of rational curves of each degree on
a generic complete intersection threefold with trivial canonical bundle. For
a nice survey mirror symmetry and its implications in algebraic geometry
see [13].

In the last two sections the formulas for the infinitesimal invariant of a
normal function developed in Section 3 are refined in the case of subvarieties
of hypersurfaces. This leads to a generalization of Voisin’s formula [16]
for the infinitesimal invariant of normal functions associated to algebraic
one-cycles on hypersurface threefolds which are contained in a hyperplane
section.

This work is an expanded version of some results in the authors disserta-
tion completed at the University of Utah. The author would like to thank
Herb Clemens for suggesting these problems and for many helpful conversa-
tions.

2. Normal Functions.

Let X be a smooth projective variety of dimension n and let XS be an in-
finitesimal deformation of X. Let Y be an algebraic cycle on X of dimension
d. When Y is smooth there is a natural pairing

Φ : H0(NY |XS)⊗Hd(Ωd+1
XS
|X) −→ Hd(Ωd

Y )(2.1)

given by contraction. When Y is not smooth this pairing is still defined if
we take a desingularization f : Ỹ −→ Y of the irreducible components of Y
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and define the normal bundle to Y in XS by NY |XS = f∗TXS/TỸ and replace
Ωd
Y with Ωd

Ỹ
in (2.1). This agrees with the usual definition of NY |XS when

Y is smooth. Let YS ⊆ XS be an infinitesimal deformation of Y in XS given
by η ∈ H0(NY |XS). The goal of this section is to prove that:

Theorem 2.1. Φ(η, ·) computes the infinitesimal invariant of the normal
function associated to YS ⊆ XS.

The key step in this process will be the computation of Hd(Ωd+1
XS
|X). For

simplicity, assume that S is one-dimensional. Then there is an exact se-
quence

0 −→ (NX|XS)∗ −→ ΩXS |X−→ ΩX −→ 0

where (NX|XS)∗ = IX|XS/I2
X|XS = IX|XS = OX · ds ⊆ ΩXS |X and IX|XS is

the ideal sheaf of X in XS. This induces an exact sequence

0 −→ Ωd
X
∧ds−→ Ωd+1

XS
|X −→ Ωd+1

X −→ 0.(2.2)

To obtain an explicit description of Hd(Ωd+1
XS
|X) it will be necessary to find

a nice Dolbeault type resolution of Ωd+1
XS
|X .

Assume that XS −→ S comes from a family of smooth projective varieties
X −→ T where T is a disc in C centered at the origin 0 ∈ C and X = X0.
After shrinking T, if necessary, there is a diffeomorphism Ψ : X × T −→ X .
The fibers Xt of X −→ T can then viewed as a family of complex structures
on the C∞ manifold X. From this point of view, Kodaira in [12, Chapter 5],
describes this variation of the complex structure in terms of the Kodaira-
Spencer class of the deformation. Let {Uk} be an open cover of X and let
z1
k, . . . , z

n
k be local holomorphic coordinates on Uk for X. Then on each

Uk × T
Ψ(z1

k, . . . , z
n
k , t) = (ζ1

k(z, t), . . . , ζnk (z, t), t)

where ζ1
k(z, t), . . . , ζnk (z, t) are local C∞ coordinates on X which are holo-

morphic with respect to the complex structure on Xt. On each (Uj∩Uk)×T ,
write ζ lk(z, t) = f lj,k(ζk(z, t), t). Note that f lj,k is holomorphic in ζ1

k , . . . , ζ
n
k , t

and ζ lk(z, t) is holomorphic in t for all j,k,l. Thus we can write ζ lk(z, t) as a
power series in t, ζ lk(z, t) = zlk + tαlk(z) + · · · . The Kodaira-Spencer class of
the deformation is the image of ∂/∂t under the Kodaira-Spencer map and
is represented by the ∂̄-closed C∞ vector valued (0, 1) form θ where

θ|Uk =
∑

θij,k
∂

∂zik
⊗ dz̄jk and θij,k = −∂αik/∂z̄jk.

Replacing T by S gives the same set up with all equations taken modulo
t2. We wish to determine the ∂̄ operator on XS in terms of z and s. First
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notice that

∂̄ζ lk = ∂̄(zlk + sαlk) = s∂̄αlk = −s
∑

θlj,kdz̄
j
k = −sθ|Uk(zlk).

Thus (∂̄ + sθ|Uk)(ζ lk) = 0 for each l and a straight forward computation
shows that a C∞ function f(z, s) on Uk×S is holomorphic when viewed as a
function on Ψ(Uk×S) if and only if (∂̄+ sθ|Uk)(f) = 0. Thus ∂̄+ sθ detects
the holomorphic functions on XS. Since ζ1

k , . . . , ζ
n
k , s are local holomorphic

coordinates on Uk × S ∼= Ψ(Uk × S), (ΩXS |X)|Uk is generated by ds and
dζik = dzik + αikds, i = 1, . . . , n over OUk .

Let Ap,q = Ap,q(X,C) denote the sheaf of C∞ (p, q)-forms on X. The
following lemma will enable us to effectively compute Hd(Ωd+1

XS
|X).

Lemma 2.2. For each p ≥ 1 there is a commutative diagram of fine
resolutions

0 0 0y y y
0 −−−→ Ωp−1

X −−−→ Ap−1,0 ∂̄−−−→ Ap−1,1 ∂̄−−−→ · · ·y∧ds y∧ds y∧ds
0 −−−→ Ωp

XS
|X −−−→ Ap−1,0 ⊕Ap,0 ∂̄′−−−→ Ap−1,1 ⊕Ap,1 ∂̄′−−−→ · · ·y y y

0 −−−→ Ωp
X −−−→ Ap,0 ∂̄−−−→ Ap,1 ∂̄−−−→ · · ·y y y
0 0 0

where ∂̄′(ζ ∧ ds + ω) = (∂̄ζ + θ · ω) ∧ ds + ∂̄ω.

Proof. The commutativity of the diagram is clear and the exactness of the
top and bottom rows is Dolbeault’s lemma. To complete the proof of the
lemma it only remains to be shown that the middle row is exact. Using
the fact that ∂̄2 = 0 and ∂̄θ = 0 it is easy to check that ∂̄′ ◦ ∂̄′ = 0. By
definition, ∂̄αik = −∑ θij,kdz̄

j
k and θ|Uk =

∑
θij,k

∂
∂zi
k

⊗dz̄jk so that ∂̄′(dζik) =
∂̄′(dzik + αikds) = 0. Considering Ωp

XS
|X as a subsheaf of Ap−1,0 ∧ ds⊕Ap,0,

it then follows that

Ωp
XS
|X ⊆ ker(Ap−1,0 ∧ ds⊕Ap,0 ∂̄′−→ Ap−1,1 ∧ ds⊕Ap,1).
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For the opposite inclusion, let ζ ∧ ds + ω ∈ Ap−1,0(U) ∧ ds ⊕ Ap,0(U)
where U is a small polydisc in X and suppose ∂̄′(ζ ∧ ds + ω) = 0. Then
∂̄ω = 0 and ∂̄ζ = −θ ·ω so that ω ∈ Ωp

X(U). Let ω̃ be any form in Ωp
XS
|X(U)

which restricts to ω. Then the image of ω̃ in Ap−1,0(U) ∧ ds ⊕ Ap,0(U) is
∂̄′-closed and of the form ζ ′ ∧ ds + ω where ∂̄ζ ′ = −θ · ω. It then follows
that ζ− ζ ′ ∈ Ωp−1

X (U) and (ζ− ζ ′)∧ds + ω̃ defines an element of Ωp
XS
|X(U)

whose image Ap−1,0(U) ∧ ds⊕Ap,0(U) is ζ ∧ ds + ω.
Now suppose that q ≥ 1 and ζ ∧ ds + ω ∈ Ap−1,q(U) ∧ ds ⊕Ap,q(U) is

∂̄′-closed. Then ∂̄ω = 0 and ∂̄ζ = −θ · ω. By Dolbeault’s lemma, there is a
γ ∈ Ap,q−1(U) such that ∂̄γ = ω. Since ∂̄θ = 0, ∂̄ζ = −θ · ∂̄γ = ∂̄(θ · γ) so
by Dolbeault’s lemma there is a β ∈ Ap−1,q−1(U) such that ∂̄β = ζ − θ · γ.
Putting this together one obtains

∂̄′(β ∧ ds + γ) = (∂̄β + θ · γ) ∧ ds + ∂̄γ = ζ ∧ ds + ω.

Thus the middle row is also exact.

Proof of Theorem 2.1. The resolutions of Lemma 2.2 compute the coho-
mology groups of Ωd

X , Ωd+1
XS
|X and Ωd+1

X . Furthermore, in the long exact
sequence of cohomology groups for the sequence (2.2) the boundary map
Hd(Ωd+1

X ) −→ Hd+1(Ωd
X) is given by contraction with the Kodaira-Spencer

class θ. Thus a cohomology class ω ∈ Hd(Ωd+1
X ) extends to a cohomology

class ω̃ ∈ Hd(Ωd+1
XS
|X) if and only if θ · ω = 0. Lemma 2.2 also shows that in

this case ω̃ is represented by a form −ζ ∧ ds + ω for some ζ ∈ Ad,d(X,C)
with ∂̄ζ = θ · ω.

Consider the exact sequence of normal bundles

0 −→ NY |X −→ NY |XS −→ NX|XS |Y −→ 0.

Since s = 0 is the defining equation for X in XS and s2 = 0, then NX|XS |Y ∼=
OY · (∂/∂s). If YS is an infinitesimal deformation of Y in XS given by
η ∈ H0(NY |XS), then the image of η in NX|XS |Y corresponds to ∂/∂s. In
this situation, NY |XS ∼= NY |X ⊕ NX|XS |Y since the obstruction to splitting
the sequence is the image of ∂/∂s in H1(NY |X) ∼= Ext1(OY · (∂/∂s),NY |X).
Then locally η = η′ + ∂/∂s for some η′ ∈ NY |X and the pairing

Φ : H0(NY |XS)⊗Hd(Ωd+1
XS
|X) −→ Hd(Ωd

Y )

∫
Y−→ C

takes

η ⊗ ω̃ = (η′ + ∂/∂s)⊗ (−ζ ∧ ds + ω) −→ −
∫
Y

ζ +
∫
Y

η · ω.

This is up to a sign the same as the formula given by Griffiths in
[7, pp. 302-307] and completes that proof of Theorem 2.1.



COMPUTING THE INFINITESIMAL INVARIANTS... 381

3. Computation of the pairings.

In this section a general method for computing both the infinitesimal Abel-
Jacobi mapping and the infinitesimal invariant associated to a normal func-
tion will be given. As we have seen these invariants are both given by
contracting normal vector fields on a subvariety Y ⊆ X against forms on
X. The computation of these invariants will be reduced to a residue com-
putation at a finite number of points on the subvariety. This generalizes a
construction of Clemens in [4] for computing the infinitesimal Abel-Jacobi
mapping for curves.

Let X be a smooth projective variety of dimension n embedded in a
smooth projective variety W of dimension m. Let Y be a smooth pro-
jective variety immersed as a subvariety of dimension d in X by a morphism
f : Y −→ X ⊆ W. Let XS be an infinitesimal deformation of X in an in-
finitesimal deformation WS of W . Throughout this section S will denote
either Spec(C[s]/s2) or Spec(C). In the later case XS and WS will be iden-
tified with X and W respectively. In any case, for k ≥ 2d + 1 there is a
natural pairing

Φ : ∧k−2dH0(NY |XS)⊗Hd(Ωk−d
XS
|X) −→ Hd(Ωd

Y ) ∼= C(3.1)

given by contraction. When S = Spec(C) this reduces to the infinitesimal
Abel-Jacobi mapping for Y . When S = Spec(C[s]/s2), k = 2d + 1 and Y
deforms with X in XS this is the pairing that gives the infinitesimal invariant
of a normal function.

Consider the commutative diagram of exact sequences

0 −−−→ TXS |X −−−→ TWS
|X −−−→ NXS |WS

|X −−−→ 0y y y
0 −−−→ NY |XS −−−→ NY |WS

−−−→ f∗NXS |WS
−−−→ 0.

(3.2)

The obstruction µ ∈ Ext1(NXS |WS
|X , TXS |X) to splitting the top row of (3.2)

determines the obstruction σ ∈ Ext1(f∗NXS |WS
,NY |XS) to splitting the bot-

tom row of (3.2) in the sense that applying the functor Hom(NXS |WS
|X , · ) to

the top row and Hom(f∗NXS |WS
, · ) to the bottom row gives a commutative

diagram

Hom(NXS |WS
|X ,NXS |WS

|X) −−−→ Ext1(NXS |WS
|X , TXS |X)y y

Hom(f∗NXS |WS
, f∗NXS |WS

) −−−→ Ext1(f∗NXS |WS
,NY |XS)
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such that µ is mapped to σ.
We wish to compute Φ for forms in the image of the composition

H0
(
Ωk
XS
⊗N⊗dXS |WS

|X
)
−→ H1

(
Ωk
XS
⊗ TXS ⊗N⊗(d−1)

XS |WS
|X
)
−→ · · ·

(3.3)

−→ Hd
(
Ωk
XS
⊗ T ⊗dXS

|X
) −→ Hd

(
Ωk−d
XS
|X
)

where each map

H i
(
Ωk
XS
⊗ T ⊗iXS

⊗N⊗(d−i)
XS |WS

|X
)
−→ H i+1

(
Ωk
XS
⊗ T ⊗(i+1)

XS
⊗N⊗(d−i−1)

XS |WS
|X
)

is the boundary map given by cup product with µ and the final map is given
by contraction.

Similarly, there is a composition of maps

H0
(
f∗
(
Ωk
XS
⊗N⊗dXS |WS

))
−→ H1

(
f∗Ωk

XS
⊗NY |XS ⊗ f∗N⊗d−1

XS |WS

)
−→

· · · −→ Hd
(
f∗Ωk

XS
⊗N⊗dY |XS

)
each given by cup product with σ. The commutativity of (3.2) then gives a
commutative diagram

H0
(
Ωk
XS
⊗N⊗dXS |WS

|X
)

−−−→ H0
(
f∗
(
Ωk
XS
⊗N⊗dXS |WS

))
yµ yσ

H1
(
Ωk
XS
⊗ TXS ⊗N⊗(d−1)

XS |WS
|X
)
−−−→H1

(
f∗Ωk

XS
⊗NY |XS ⊗ f∗N⊗(d−1)

XS |WS

)
yµ yσ
...

...yµ yσ
Hd

(
Ωk
XS
⊗ T ⊗dXS

|X
)

−−−→ Hd
(
f∗Ωk

XS
⊗N⊗dY |XS

)
y y⊗∧k−2dH0(NY |XS )

Hd
(
Ωk−d
XS
|X
) ⊗∧k−2dH0(NY |XS )−−−−−−−−−−−→ Hd(Ωd

Y )

(3.4)

where the final horizontal and vertical maps are given by contraction. This
reduces the computation of Φ for forms in the image of (3.3) to a computa-
tion involving objects defined on Y . In particular, this proves the following
generalization of [3, Lemma 1.3].

Proposition 3.1 If σ = 0 or equivalently the sequence

0 −→ NY |XS −→ NY |WS
−→ f∗NXS |WS

−→ 0
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splits, then Φ vanishes on the image H0(Ωk
XS
⊗N⊗dXS |WS

|X) in Hd(Ωk−d
XS
|X).

Let L1, . . . ,Ld be subline bundles of NXS |WS
|X and for each i, let Ti ⊆

NY |WS
denote the inverse image of f∗Li ⊆ f∗NXS |WS

. Then there is an exact
sequence

0 −→ NY |XS −→ Ti −→ f∗Li −→ 0.(3.5)

The obstruction σ to splitting the bottom row of (3.2) then restricts to the
obstruction σi ∈ Ext1(f∗Li,NY |XS) to splitting (3.5). This gives a commu-
tative diagram similar to (3.4) with N⊗(d−i+1)

XS |WS
replaced by Li⊗ · · ·⊗Ld and

the vertical column on the right replaced by the composition

H0(f∗(Ωk
XS
⊗ L1 ⊗ · · · ⊗ Ld)) σ1−→ H1(f∗Ωk

XS
⊗NY |XS ⊗ f∗(L2 ⊗ · · · ⊗ Ld))

σ2−→ · · · σd−→ Hd(f∗Ωk
XS
⊗N⊗dY |XS).

Let Si be a subline bundle of Ti whose image in f∗NXS |WS
generically

generates Li and let Di be the effective divisor on Y given by the scheme
theoretic degeneracy locus of the morphism of line bundles Si −→ f∗Li. For
notational convenience, set N = NY |XS . Let S̃i = Si(Di) be the sheaf of
sections of Si which are holomorphic except for poles along the components
of Di of order not exceeding the multiplicity of the component. Let T̃i be
the subsheaf of Ti(Di) generated by Ti and S̃i and let Ñi be the kernel of the
map T̃i −→ f∗Li. Then there is a natural map

f∗Li −→ S̃i ⊆ T̃i
which gives the meromorphic inverse of Si −→ f∗Li and splits the exact
sequence

0 −→ Ñi −→ T̃i −→ f∗Li −→ 0.(3.6)

Let τi ∈ Ext1(Ñi/N ,N ) be the obstruction to splitting the exact sequence

0 −→ N −→ Ñi −→ Ñi/N −→ 0.(3.7)

Applying the functor Hom(f∗Li, · ) to the exact sequence (3.7) we obtain
an exact sequence

· · · −→ Hom(f∗Li, Ñi) −→ Hom(f∗Li, Ñi/N ) τi−→
Ext1(f∗Li,N ) −→ Ext1(f∗Li, Ñi) −→ · · · .

Since the sequence (3.6) splits the the obstruction σi ∈ Ext1(f∗Li,N )
to splitting (3.5) goes to zero in Ext1(f∗Li, Ñi). Then there is a σ′i ∈
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Hom(f∗Li, Ñi/N ) such that τi ◦ σ′i = σi. In fact, σ′i is represented by the
composition

f∗Li −→ T̃i −→ T̃i/Ti ∼= Ñi/N .
Assume that the Di intersect properly so that P = D1 ∩D2 ∩ · · · ∩Dd is

a possibly nonreduced set of points and set

D[i] = Di + · · ·+Dd

L[i] = Li ⊗ · · · ⊗ Ld
Ñ/N [i] = Ñi/N ⊗ · · · ⊗ Ñd/N

for i = 1, . . . , d. Then we have a commutative diagram

H0(f∗(Ωk
XS
⊗

L[1]))
σ1−−−→ H1(f∗Ωk

XS

⊗N ⊗ f∗L[2])yσ′1 y‖
H0(f∗Ωk

XS
⊗

Ñ1/N ⊗ f∗L[2])
τ1−−−→ H1(f∗Ωk

XS
⊗

N ⊗ f∗L[2])
σ2−−−→yσ′2 yσ′2

...
...yσ′d yσ′d

H0(f∗Ωk
XS
⊗

Ñ/N [1])
τ1−−−→ H1(f∗Ωk

XS
⊗

N ⊗ Ñ/N [2])
τ2−−−→ · · · τd−−−→ Hd(f∗Ωk

XS
⊗

N⊗d)y ⊗
∧k−2dH0(N )

y ⊗
∧k−2dH0(N )

y ⊗
∧k−2dH0(N )

H0
(

ΩdY (D[1])

Ωd
Y

(D[1])∗

)
−−−→ H1

(
ΩdY (D[2])

Ωd
Y

(D[2])∗

)
−−−→ · · · −−−→ Hd(Ωd

Y )

(3.8)

where Ωd
Y (D[i]) is the sheaf of meromorphic d-forms on Y which are allowed

to have poles along the divisors Di, . . . , Dd but are otherwise holomorphic
and Ωd

Y (D[i])∗ is the subsheaf of Ωd
Y (D[i]) consisting of those forms which are

holomorphic along at least one of the divisorsDi, . . . , Dd. The bottom row of
(3.8) can then be identified with the usual residue mapping for meromorphic
d-forms on Y at the points of P

H0

(
Ωd
Y (
∑d
i=1Di)∑d

j=1 Ωd
Y (
∑
i6=j Di)

)
ResP−−−→ C.
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For i = 1, . . . , d, let si be a nontrivial meromorphic section of Si and let
s̄i be the image of si in f∗Li. Then it follows that σ′i ∈ Hom(f∗Li, Ñi/N ) is
represented by

si/s̄i ∈ Hom(f∗Li, S̃i) ⊆ Hom(f∗Li, T̃i).

If ω ∈ Hd(Ωk−d
XS
|X) is the image of ω̃ ∈ H0(Ωk

XS
|X ⊗ L1 ⊗ · · · ⊗ Ld) under

the map given by (3.3) and η ∈ ∧k−2dH0(NY |XS) then combining the above
results we find that

Φ(η, ω) =
∑

Resp
(
η ∧ sd ∧ · · · ∧ s1

s̄1 · · · s̄d ⇀ f∗ω̃
)

(3.9)

where the sum is taken over all points p in the support of P = D1 ∩ D2 ∩
· · · ∩Dd.

A geometric method of obtaining such a setup in the case when XS has
codimension one in WS is to take d subvarieties Zi ⊆ WS each containing
Y in its smooth locus such that dimZi = dimY + 1 and the intersections
Zi · XS = Y + Yi have the property that Yi intersects Y properly along a
divisor Di whose support is contained in the smooth locus of Y . If NY |Zi
is invertible for each i, then in the above construction we can take Li =
NXS |WS

|X , Ti = NY |WS
and Si = NY |Zi for each i. If NY |Zi is not invertible

then Si can be taken to be any invertible subsheaf ofNY |Zi . This construction
also works if the Zi are only defined in a first order neighborhood of Y in WS

which amounts to choosing d global sections si of NY |WS
and taking Si to be

the subline bundle of NY |WS
generated by si. In fact, it was these examples

that initially motivated the above construction.
In the case when S = Spec(C), k = n and the pairing Φ given by (3.1) is

the usual infinitesimal Abel-Jacobi mapping we can produce sections of Ωn
X

via the isomorphism

Ωm
W ⊗ ∧m−nNX|W −→ Ωn

X .(3.10)

This isomorphism is given locally as follows. Let ρ be a meromorphic section
of ∧m−nTW whose image ρ̄ in ∧m−nNX|W is not zero. Then the isomorphism
given by (3.10) can be viewed as contraction with ρ/ρ̄. If we choose a
different ρ, then the results of the two contraction will agree where they are
both defined. This gives a convenient way to produce local representatives
of forms in H0(Ωn

X). Similarly, local representatives of forms in H0(f∗(Ωn
X))

can be obtained by contracting sections of H0(f∗(Ωm
W⊗∧m−nNX|W )) against

ρ/ρ̄ where ρ is now any meromorphic section of ∧m−nf∗TW whose image ρ̄
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in ∧m−nf∗NX|W is not zero. Consider the commutative diagram

H0(Ωm
W ⊗ ∧m−nNX|W ⊗ L[1]) −−−→ H0(f∗(Ωm

W ⊗ ∧m−nNX|W ⊗ L[1]))y y
H0(Ωn

X ⊗ L[1]) −−−→ H0(f∗(Ωn
X ⊗ L[1])).

If ω ∈ Hd(Ωn−d
X ) is the image of ω̃ ∈ H0(Ωm

W ⊗∧m−nNX|W ⊗L[1]) under the
composition

H0(Ωm
W ⊗ ∧m−nNX|W ⊗ L[1]) −→ H0(Ωn

X ⊗ L[1]) −→ Hd(Ωn−d
X )(3.11)

and η ∈ ∧n−2dH0(NY |X) then (3.9) can be rewritten

Φ(η, ω) =
∑

Resp

(
η ∧ sd ∧ · · · ∧ s1 ∧ ρ

s̄1 · · · s̄dρ̄ ⇀ f∗ω̃
)

(3.12)

where the si and s̄i are defined as before and ρ is any meromorphic section
of ∧m−nNY |W = ∧m−n(f∗TW/TY ) whose image ρ̄ in ∧m−nf∗NX|W does not
vanish at any of the points p ∈ P .

4. Nonvanishing results for KX nef.

In this section we will use the results of Section 3 to prove some nonvanishing
results for the infinitesimal Abel-Jacobi mapping for low degree curves on
projective varieties X with nef canonical bundle KX . These results depend
on the regularity theorem for space curves of Gruson, Lazarsfeld and Peskine
in [8]. Let ω denote the natural map ∧n−2H0(NC|X) −→ H0(∧n−2NC|X).

Theorem 4.1. Let X ⊆ Pm be a smooth projective variety of dimension
n with KX nef and let f : C −→ X ⊆ Pm be a smooth curve of genus g
and degree d on X with deg(NC|X) < 0. Assume that X is a divisor on a
smooth variety Z ⊆ Pm such that NC|Z is generated by global sections and
Ωn
X ⊗ NX|Z ∼= OX(k) for some positive integer k with d ≤ k + 2. Then the

infinitesimal Abel-Jacobi mapping Φ : ∧n−2H0(NC|X)/ kerω −→ H1(Ωn−1
X )∗

is injective.

Proof. In the construction of Section 3 take L = NX|Z ⊆ NX|Pm . Then (3.5)
is replaced by the exact sequence

0 −→ NC|X −→ NC|Z −→ f∗NX|Z −→ 0.

By our hypothesis, H0(Ωm
Pm ⊗ ∧m−nNX|Pm ⊗ NX|Z) ∼= H0(Ωn

X ⊗ NX|Z) ∼=
H0(OX(k)) and thus can be identified with a quotient of

{GΩ : G ∈ Sk}
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where Sk is the set of homogeneous polynomials of degree k on Pm and

Ω =
∑

(−1)jxjdx0 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm
is a nonzero global section of Ωm

Pm(m + 1) ∼= OPm . Denote by ωG the image
of GΩ in H1(Ωn−1

X ) under the mapping defined by (3.11) for each G ∈ Sk.
Fix an η ∈ ∧n−2H0(NC|X) whose image in H0(∧n−2NC|X) is nonzero. By

our hypothesis, deg(NC|X) < 0 so that NC|X cannot be semipositive . If we
denote by N+

C|X the subsheaf of NC|X generated by its global sections, then
NC|Z is semipositive implies that the exact sequence

0 −→ NC|X/N+
C|X −→ NC|Z/N+

C|X −→ f∗NX|Z −→ 0(4.1)

cannot split. In this situation, there is a global section s ∈ H0(NC|Z) whose
image s̄ ∈ H0(f∗NX|Z) is not zero and a simple point p1 in the zero locus
of s̄ such that η ∧ s does not vanish at p1. To see this pick s so that s̄ has
distinct zeros and does not vanish at any of the zeros of η. Since (4.1) does
not split there is a point p1 in the zero locus of s̄ such that s is not zero in
the geometric fiber of (NC|Z/N+

C|X) at p1. Since η ∈ ∧n−2H0(N+
C|X) does not

vanish at p1, then η ∧ s will not vanish at p1. Let l = deg(f∗NX|Z) and let
p2, . . . , pl be the other zeros of s̄. Let ρ be any global section of ∧m−nNC|Pm
whose image ρ̄ in ∧m−nf∗NX|Pm does not vanish at any of the pj. Then
(3.12) can be rewritten

Φ(η, ωG) =
∑

Respj

(
η ∧ s ∧ ρ

s̄ρ̄
⇀ f∗(GΩ)

)
for any G ∈ Sk. By construction η ∧ s ∧ ρ defines a global section of
∧m−1NC|Pm which does not vanish at p1.

Thus to complete the proof of the theorem we need to show that it is
possible to pick G ∈ Sk such that G vanishes at every pj, except p1 and does
not vanish at p1. Since C is smooth of degree d ≤ k + 2, then by the main
result of [8] the natural map

H0(OPm(k)) −→ H0(OC(k))

is surjective. Since deg(NC|X) = −KX · C + 2g − 2 < 0, then KX · C ≥
2g − 1. Also note that by the definitions of k and l, KX · C = dk − l. Thus
dk− (l−1) ≥ 2g. Since Sk cuts out a complete linear system on C of degree
dk and dk − (l − 1) ≥ 2g, then it follows from the Riemann-Roch theorem
that we can choose G to vanish at any l − 1 points of C and not vanish at
p1.

Let X ⊆ Pm be a complete intersection of m − n hypersurfaces Y1, . . . ,
Ym−n in Pm. For each j, let kj denote the degree of Yj and let Zj = ∩i6=jYi.
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Then X has dimension n and when X is smooth the canonical bundle of X
is isomorphic to O(

∑
kj−m−1). We call such an X a complete intersection

of type (k1, . . . , km−n) in Pm. For complete intersections, Theorem 4.1 has
the following form:

Corollary 4.2. Let X be a generic complete intersection of type (k1, . . . ,
km−n) in Pm such that KX is nef or equivalently

∑
kj ≥ m+1. Let f : C −→

X ⊆ Pm be a smooth curve of genus g and degree d on X and assume there is
an i such that d ≤∑ kj−m+1+ki, d(m+1−∑ kj)+2g−2 < 0 and NC|Zi is
generated by global sections. Then Φ : ∧n−2H0(NC|X)/ kerω −→ H1(Ωn−1

X )∗

is injective.

Proof. Since X is a generic complete intersection we may assume that Zi is
smooth. Then the deg(NX|Zi) = ki and Ωn

X⊗NX|Zi ∼= OX(
∑
kj−m−1+ki).

Also notice that deg(NC|X) = −KX ·C+2g−2 = d(m+1−∑ kj)+2g−2 < 0
so that all the hypotheses of Theorem 4.1 are satisfied.

Remark. When the canonical bundle of X is not necessarily nef the basic
argument of Theorem 4.1 will still go through with some modification. For
example, it can be shown that if X is a smooth hypersurface of degree m
in Pm, m ≥ 4 and f : C −→ X ⊆ Pm is a smooth rational curve of degree
d ≤ m+ 1 such that the global sections of NC|X generate a subsheaf of rank
≥ m−3 then the infinitesimal Abel-Jacobi mapping is nonzero. For this and
related results see [17].

5. Rational curves on K-trivial complete intersection threefolds.

Let C be a smooth curve on a smooth threefold X. Then there is an exact
sequence

H0(TX) −→ H0(NC|X) −→ H1 −→ H1(TX) φ−→ H1(NC|X)(5.1)

where H1 is the first hypercohomology group of the map TX −→ NC|X and
classifies the first order infinitesimal deformations of the pair (C,X). When
C is rational and X has trivial canonical bundle, the map φ can be identified
with the infinitesimal Abel-Jacobi mapping via the commutative diagram

H1(TX) φ−−−→ H1(NC|X)yo yo Serre duality

H1(Ω2
X) Φ−−−→ H0(NC|X)∗.
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When C deforms generically with X to first order the mapping H1 −→
H1(TX) of (5.1) is surjective and the infinitesimal Abel-Jacobi mapping must
vanish. This gives the following vanishing result.

Lemma 5.1. Let X be a smooth threefold with trivial canonical bundle.
If C is a smooth rational curve on X, then C deforms generically with X to
first order if and only if the infinitesimal Abel-Jacobi mapping is zero.

If X is a smooth complete intersection threefold with trivial canonical
bundle, then it is easy to check that X is a complete intersection of type (5),
(2, 4), (3, 3), (3, 2, 2), or (2, 2, 2, 2). For the generic (5) and (2, 4) complete
intersection, the Zi in Corollary 4.2 can be taken to be P4 and a smooth
quadric fourfold respectively. Then NC|Z is then generated by global sections
since Zi is a homogeneous space. For the remaining cases the arguments
of [5, Lecture 21] show that when C deforms generically with X there is
an i such that NC|Zi is generated by global sections. Combining this with
Lemma 5.1 and Corollary 4.2 gives the following finiteness result for smooth
rational curves on such X.

Theorem 5.2. Let X be a generic complete intersection threefold with
trivial canonical bundle. Then X has only a finite number of smooth rational
curves of degree d if
(i) d ≤ 7 and X is of type (5)
(ii) d ≤ 6 and X is of type (2, 4)

(iii) d ≤ 5 and X is of type (3, 3)
(iv) d ≤ 4 and X is of type (2, 2, 3) or (2, 2, 2, 2).

This result in the case of quintic threefolds was originally proven by Katz
in [11] and recently strengthened by Johnsen and Kleiman in [10], and Nijsse
in [14] to d ≤ 9. A similar result for complete intersection threefolds was
also obtained independently by Huybrechts in [9]. Huybrechts method only
yields the result for d ≤ 4 in the (2, 4) complete intersection case.

Let S be the moduli space of all smooth complete intersection threefolds
of one of the types (5), (2, 4), (3, 3), (2, 2, 3), or (2, 2, 2, 2) and let Sd,a denote
the set of smooth threefolds X in S which admit a smooth rational curve
of degree d with normal bundle NC|X ∼= O(a) ⊕ O(−a − 2). Then Sd,a is a
locally closed, possibly empty, subvariety of S for each d and a ≥ −1.

Theorem 5.3. If d is as in the statement of Theorem 5.2, then the codi-
mension of Sd,a in S is ≥ a+ 1.
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Proof. Let X be a smooth threefold in Sd,a and let C be a smooth rational
curve on X with NC|X ∼= O(a) ⊕ O(−a − 2). By Theorem 4.1, for d in
the above range the infinitesimal Abel-Jacobi mapping Φ : H0(NC|X) −→
H1(Ω2

X)∗ is injective. Then its dual φ is surjective and since H0(TX) = 0
the sequence

0 −→ H0(NC|X) −→ H1 −→ H1(TX) φ−→ H1(NC|X) −→ 0

is exact. Since H1(NC|X) ∼= H0(NC|X) and so has dimension a+1 the image
of H1 in H1(TX) has codimension a+ 1. Thus C deforms to first order over
a codimension a + 1 subset of the tangent space to X in S. Since the rank
of H0(NC|X) can only drop as C moves generically with X, this shows that
Sd,a has codimension ≥ a+ 1 in S.

These results will also be valid for low degree rational curves on any
smooth threefold X with trivial canonical bundle if one can show that X is
a divisor in some smooth variety Z satisfying the hypothesis of Theorem 4.1.

6. Some computations for hypersurfaces

In this section we will apply the results of Section 3 to obtain some formulas
for the infinitesimal invariant of normal functions associated to subvarieties
of hypersurfaces. There is an added difficulty in applying the results of Sec-
tion 3 in the case when S = Spec(C[s]/s2) in that the cohomology groups
H i(Ωn−i

XS
|X) are more difficult to compute. Let X be a smooth hypersur-

face of degree m in Pn+1, n ≥ 3 defined by a homogeneous polynomial F .
Then F + sG defines an infinitesimal deformation XG ⊆ Pn+1

S of X for any
homogeneous polynomial G of degree m. Let x0, . . . , xn+1 be homogeneous
coordinates for Pn+1 and let Fi denote the partial derivative ∂F/∂xi for
i = 0, . . . , n+ 1. Set:
S = the graded ring C[x0, . . . , xn+1]/(F )
J = the homogeneous ideal generated by F0, . . . , Fn+1

R = S/J , the Jacobian ring of F
Sa, Ja, Ra = the ath graded piece of S, J,R respectively.

Let Ω = ΩPn+1 =
∑

(−1)ixidx0 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn+1 and for each J =
(i0, . . . , ia), ij ∈ {0, . . . , n + 1}, let ΩJ = ∂/∂xia ⇀ · · · ⇀ ∂/∂xi0 ⇀ Ω and
FJ = Fi0 · · ·Fia . Then Ω is a nonzero global section of Ωn+1

Pn+1(n+2) ∼= OPn+1

and since X is smooth U = {Ui} where Ui = {Fi 6= 0} is an open cover X.
In [1], it is shown that R(a+1)m−n−2 can be identified with the primitive Čech
cohomology group Ha(U ,Ωn−a

X )◦ = Ȟa(Ωn−a
X )◦ via the map

H ∈ R(a+1)m−n−2 −→ ωH = {HΩJ/FJ}|J|=a+1.
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Lemma 6.1. The sections of Ȟ0(Ωn
XG
⊗OX(dm))/Ȟ0(Ωn−1

X ⊗OX(dm))
are in one to one correspondence with{

H ∈ R(d+1)m−n−2 : GH = 0 in R(d+2)m−n−2
}
.

Furthermore, if GH =
∑
KjFj for some Kj ∈ S(d+1)m−n−1, then{
HΩi − ∑

KjΩj,i ∧ ds
Fi

}
defines a Čech 0-cycle in Ȟ0(Ωn

XG
⊗OX(dm)) corresponding to H.

Proof. In the long exact sequence in cohomology for the exact sequence

0 −→ Ωn−1
X ⊗O(dm) ∧ds−→ Ωn

XG
|X ⊗O(dm) −→ Ωn

X ⊗O(dm) −→ 0,

the boundary map Ȟ0(Ωn
X⊗O(dm)) −→ Ȟ1(Ωn−1

X ⊗O(dm)) takes {HΩi/Fi}
to the 1-cocycle {GHΩi,j/FiFj}. As in [1], {GHΩi,j/FiFj} = 0 in Ȟ1(Ωn−1

X ⊗
O(dm)) if and only if GH ∈ J (d+2)m−n−2. Now suppose GH =

∑
KjFj ∈

J (d+2)m−n−2. It follows from the identity

0 = dF ∧ (Ωl,i,j ∧ ds) = FjΩl,i ∧ ds − FiΩl,j ∧ ds + FlΩi,j ∧ ds

that

δ

{∑
KlΩl,i ∧ ds

Fi

}
=
{
Kl(FiΩl,j − FjΩl,i) ∧ ds

FiFj

}
=
{∑

KlFlΩi,j ∧ ds
FiFj

}

=
{
GHΩi,j ∧ ds

FiFj

}
= δ

{
HΩi

Fi

}
.

Thus {(HΩi − ∑
KjΩj,i ∧ ds)/Fi} defines a Čech cocycle in Ȟ0(Ωn

XG
⊗

OX(dm)).

Let Y be a smooth variety of dimension d immersed as a subvariety of
X by a morphism f : Y −→ X. If H ∈ S(d+1)m−n−2 and GH =

∑
KjFj ∈

J (d+2)m−n−2, then by Lemma 6.1, {(HΩi − ∑
KjΩj,i ∧ ds)/Fi} defines a

Čech 0-cycle in Ȟ0(Ωn
XG
⊗ OX(dm)) ∼= H0(Ωn

XG
⊗ N⊗d

XG|Pn+1
S

|X). Denote by

ωH,K. the image of this Čech 0-cycle in Hd(Ωn−d
XG
|X). We wish to compute

Φ : ∧n−2dH0(NY |XG)⊗Hd(Ωn−d
XG
|X) −→ Hd(Ωd

Y )

for such forms ωH,K.. Let s1, . . . , sd be global sections of NY |Pn+1
S

whose
images s̄1, . . . , s̄d ∈ H0(f∗NXG|Pn+1

S
) have the property that the zero loci Di
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of s̄i intersect transversly at a reduced set of points P . Then by (3.9), if
η ∈ ∧n−2dH0(NY |XG)

Φ(η, ωH,K.) =
∑

Resp
(
η ∧ sd ∧ · · · ∧ s1

s̄1 · · · s̄d ⇀ f∗
(
HΩi − ∑

KjΩj,i ∧ ds
Fi

))(6.1)

where the sum is taken over all points p ∈ P .
Consider the exact sequences

0 −→ TY −→ f∗TPn+1
S
−→ NY |Pn+1

S
−→ 0,

0 −→ OY −→ f∗OPn+1(1)n+2 ⊕OY −→ f∗TPn+1
S
−→ 0.

If β0, . . . , βn+1 ∈ H0(f∗OPn+1(1)) and c ∈ H0(OY ) = C, then the above exact
sequences show that s =

∑
βj∂/∂xj+c∂/∂s defines a section of H0(NY |Pn+1

S
).

Let V denote the subspace of H0(NY |Pn+1
S

) given by all such s. It follows
that s =

∑
βj∂/∂xj + c∂/∂s ∈ H0(NY |XG) if and only if the image of s in

H0(f∗NXG|Pn+1
S

) is zero or equivalently
∑
βjf

∗Fj+cf∗G = 0 when considered
as an element of the graded ring A = ⊕kH0(f∗OPn+1(k)). For notational
convenience we will set g = f∗G, fi = f∗Fi, etc.

Notice that if we take ρ = ∂/∂xi, then(
ρ

ρ̄

)
⇀ f∗

(
HΩ −

∑
KjΩj ∧ ds

)
= f∗

(
HΩi − ∑

KjΩj,i ∧ ds
Fi

)
.

If ρ =
∑
βj∂/∂xj + c∂/∂s ∈ V ∩ H0(NY |XG) and g 6= 0, then it can be

verified that ρ ⇀ f∗(HΩ − ∑
KjΩj ∧ ds) = 0. As in Section 3 it then

follows that if ρ ∈ V ∩H0(NY |Pn+1
S

) and the image ρ̄ of ρ in H0(f∗NXG|Pn+1
S

)
is nonzero, then ρ/ρ̄ ⇀ f∗(HΩ − ∑

KjΩj ∧ ds) is a local representative of{
HΩi − ∑

KjΩj,i ∧ ds
Fi

}
∈ Ȟ0(Ωn

XG
⊗OX(dm)).

Thus we may take ρ = ∂/∂s and rewrite (6.1) as

Φ(η, ωH,K.) =
∑

Resp
(

(η ∧ sd ∧ · · · ∧ s1 ∧∑ kj∂/∂xj) ⇀ f∗Ω
gs̄1 · · · s̄d

)
(6.2)

whenever ρ̄ = g does not vanish at any of the points p ∈ P .
The formula (6.2) has a rather nice interpretation when Y = C is a

rational curve on a hypersurface threefold X. In this case C is defined by a
morphism

f([a, b]) = [α0(a, b), . . . , α4(a, b)]
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where each αi is a homogeneous polynomial of degree d in a, b, the homo-
geneous coordinates for P1. A variant of an argument in [2] for the reduced
case shows that in this case H0(NC|P4

S
) can be identified with

{∑βi∂/∂xi + c∂/∂s : βi ∈ H0(OP1(d)), c ∈ C}
{∑(l(αi)a + l′(αi)b)∂/∂xi : l, l′ ∈ H0(OP1(1))}

where (αi)a and (αi)b are the partial derivatives of αi with respect to a and
b respectively. If η ∈ H0(NC|XG), then η =

∑
γi∂/∂xi + ∂/∂s for some

γ0, . . . , γ4 ∈ H0(OP1(d)) satisfying
∑
γifi = −g. If s =

∑
βi∂/∂xi, then(

η ∧
∑

βj∂/∂xj ∧
∑

kl∂/∂xl
)
⇀ f∗Ω

=
∑

γiβjkl∂/∂xi ⇀ ∂/∂xj ⇀ ∂/∂xl ⇀ f∗Ω

=
∑
i,j,l

∑
m<n

sign(ijlmn) γiβjkl (αmdαn − αndαm)

= (1/d)
∑
i,j,l

∑
m<n

sign(ijlmn) γiβjkl ((αm)b(αn)a − (αn)b(αm)a)(bda− adb)

= (1/d) det(M)(bda− adb)

where M is the 5× 5 matrix

M =


γ0 · · · γ4

β0 · · · β4

k0 · · · k4

(α0)b · · · (α4)b
(α0)a · · · (α4)a

 .

Then (6.2) can be rewritten as

Φ(η, ωH,K.) = (1/d)
∑

Resp
(

det(M)(bda− adb)
g(
∑
βjfj + cg)

)
where the p are the distinct zeros of g. Similar formulas can be derived for
the infinitesimal Abel-Jacobi mapping for rational curves on hypersurfaces.

7. Some reduction results after Voisin

Let X be a smooth hypersurface of degree m in Pn+1 defined by a homoge-
neous polynomial F and for each homogeneous polynomial G of degree m
let XG ⊆ Pn+1

S be the infinitesimal deformation of X defined by F + sG. Let
Y be a smooth variety of dimension d immersed as a subvariety of X by a
morphism f : Y −→ X. Assume further that the image of Y is contained
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in a smooth hyperplane section Z = X ∩ Pn of X. By a change of coordi-
nates for Pn+1, we may assume that Pn = {xn+1 = 0}. Denote by F ′, G′

the restrictions of F,G to Pn. If Y deforms to first order with X in XG and
remains in a hyperplane section, then after a change of coordinates for Pn+1

S

we may assume that the deformation of Y lies in ZG′ ⊆ PnS, where ZG′ is
defined by F ′ + sG′.

In [16], Voisin shows that when X is a threefold and Y is an algebraic
one-cycle which deforms with X in a fixed hyperplane, the infinitesimal
invariant of the resulting normal function can be related to the infinitesimal
Abel-Jacobi mapping for Y ⊆ Z = X ∩ P3. The following theorem is a
generalization of this result for arbitrary n and d with n ≥ 2d+ 1.

Theorem 7.1. With the above assumptions and notation, let η ∈
∧n−2d−1H0(NY |Z) and assume η′ ∈ H0(NY |ZG′ ) represents the deformation
of Y in ZG′. If H is a homogeneous polynomial of degree m(d + 1)− n − 2
and GH =

∑
KjFj for some homogeneous polynomials Kj, then

ΦX(η ∧ η′, ωH,K.) = (−1)n+d+1ΦZ(η, ωK′
n+1

)

where K ′n+1 is the restriction of Kn+1 to Pn and ωH,K. ∈ Hd(Ωn−d
XG
|X) and

ωK′
n+1
∈ Hd(Ωn−d−1

Z ) are defined as in Section 6.

Proof. By (6.2)

ΦX(η ∧ η′, ωH,K.)

=
∑

Resp∈P
(

(η ∧ η′ ∧ sd ∧ · · · ∧ s1 ∧∑ kj∂/∂xj) ⇀ f∗ΩPn+1

gs̄1 · · · s̄d
)

where g = f∗G and s1, . . . , sd are any global sections of NY |Pn+1
S

whose
images s̄1, . . . , s̄d ∈ H0(f∗NXG|Pn+1

S
) have the property that the zero loci

of the s̄i intersect transversly at a reduced set of points P . If we choose
s1, . . . , sd ∈ H0(NY |Pn

S
), then η, η′, s1, . . . , sd are all sections of NY |Pn

S
and it

follows that

(
η ∧ η′ ∧ sd ∧ · · · ∧ s1 ∧

∑
kj∂/∂xj

)
⇀ f∗ΩPn+1

= (η ∧ η′ ∧ sd ∧ · · · ∧ s1) ⇀ f∗(Kn+1∂/∂xn+1 ⇀ ΩPn+1).
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Consider the commutative diagram

0 0y y
0 −−−→ NY |Z −−−→ NY |Pn −−−→ f∗NZ|Pn −−−→ 0y y yo
0 −−−→ NY |ZG′ −−−→ NY |Pn

S
−−−→ f∗NZG′ |PnS −−−→ 0y y

0 −−−→ f∗NZ|ZG′ ∼−−−→ f∗NPn|Pn
Sy y

0 0

(7.1)

Since Y deforms with X in XG, then as in the proof of Theorem 2.1 the two
vertical exact sequences in (7.1) split. Referring to (7.1), η′ ∈ H0(NY |ZG′ )
has image ∂/∂s ∈ H0(f∗NPn|Pn

S
). Since the image of ∂/∂s in H0(f∗NZG′ |PnS)

is g = f∗G and the image of η′ in H0(f∗NZG′ |PnS) is zero, then it follows that
the image of η′ under the composition

H0(NY |ZG′ ) −→ H0(NY |Pn
S
) −→ H0(NY |Pn) −→ H0(f∗NZ|Pn)

is −g. If we denote by ρ the image of η′ in H0(NY |Pn), then the image ρ̄ of
ρ in H0(f∗NZ|Pn) will be −g. Also note that ∂/∂xn+1 ⇀ ΩPn+1 = (−1)nΩPn .
Thus

ΦX(η ∧ η′, ωH,K.)

=
∑

Resp∈P
(

(η ∧ η′ ∧ sd ∧ · · · ∧ s1 ∧∑ kj∂/∂xj) ⇀ f∗ΩPn+1

gs̄1 · · · s̄d
)

=
∑

Resp∈P
(

(η ∧ η′ ∧ sd ∧ · · · ∧ s1) ⇀ f∗(Kn+1∂/∂xn+1 ⇀ ΩPn+1)
gs̄1 · · · s̄d

)
= (−1)n+d+1

∑
Resp∈P

(
(η ∧ sd ∧ · · · ∧ s1 ∧ ρ) ⇀ f∗(Kn+1ΩPn)

s̄1 · · · s̄dρ̄
)

= (−1)n+d+1ΦZ(η, ωK′
n+1

)

by (3.12).

When n = 2d + 1 the infinitesimal Abel-Jacobi mapping for f : Y −→ Z
is given by pullback

ΦZ : Hd(Ωd
Z) f∗−→ Hd(Ωd

Y )

∫
Y−→ C.



396 RANDALL F. WESTHOFF

In this case Theorem 7.1 can be rewritten as

Corollary 7.2 If n = 2d+ 1 then with the notation of Theorem 7.1,

ΦX(η′, ωH,K.) = (−1)d
∫
Y

f∗ωK′
n+1
.

There are similar results for the infinitesimal Abel-Jacobi mapping asso-
ciated to subvarieties of hypersurfaces which are contained in a hyperplane
section. With the notation introduced earlier, assume that Y is contained
in a smooth hyperplane section Z = X ∩ Pn where Pn = {xn+1 = 0}. As-
sume that Y deforms to first order with Z in X or equivalently there is an
η′ ∈ H0(NY |X) whose image in H0(f∗NZ|X) is f∗L for some L ∈ H0(NZ|X) =
H0(OZ(1)).

Theorem 7.3 With the above assumptions and notation, let η ∈
∧n−2d−1H0(NY |Z) and let η′ ∈ H0(NY |X) be as above. If H is a homoge-
neous polynomial of degree m(d+ 1)− n− 2 , then

ΦX(η ∧ η′, ωH) = (−1)n+d+1ΦZ(η, ωLH′)

where H ′ is the restriction of H to Pn and ωH ∈ Hd(Ωn−d
X ) and ωLH′ ∈

Hd(Ωn−d−1
Z ) are defined as in Section 6.

Proof. By (3.12)

ΦX(η ∧ η′, ωH) =
∑

Resp∈P
(

(η ∧ η′ ∧ sd ∧ · · · ∧ s1 ∧ ρ) ⇀ f∗(HΩPn+1)
s̄1 · · · s̄dρ̄

)
where s1, . . . , sd, ρ are any global sections of NY |Pn+1 whose images s̄1, . . . ,
s̄d, ρ̄ ∈ H0(f∗NX|Pn+1) have the property that the zero loci of the s̄i intersect
transversly at a reduced set of points P and ρ̄ does not vanish at any p ∈ P .
As in the proof of Theorem 7.1 we may choose s1, . . . , sd, ρ̄ ∈ H0(NY |Pn), so
that η, s1, . . . , sd, ρ are all sections of NY |Pn . Then by our assumption on η′

and the fact that ∂/∂xn+1 ⇀ ΩPn+1 = (−1)nΩPn

(η ∧ η′ ∧ sd ∧ · · · ∧ s1 ∧ ρ) ⇀ f∗(HΩPn+1)

= (−1)d+1(η ∧ sd ∧ · · · ∧ s1 ∧ ρ) ⇀ f∗(LH∂/∂xn+1 ⇀ ΩPn+1)

= (−1)n+d+1(η ∧ sd ∧ · · · ∧ s1 ∧ ρ) ⇀ f∗(LHΩPn).

Thus

ΦX(η ∧ η′, ωH)

(−1)n+d+1
∑

Resp∈P
(

(η ∧ sd ∧ · · · ∧ s1 ∧ ρ) ⇀ f∗(LHΩPn)
s̄1 · · · s̄dρ̄

)
= (−1)n+d+1ΦZ(η, ωLH′)
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by (3.12).
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