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BADLY ORDERED CYCLES OF CIRCLE MAPS

Llúıs Alsedà, Jaume Llibre and Micha l Misiurewicz

A cycle of a circle map of degree one is badly ordered if
it cannot be divided into blocks of consecutive points, such
that the blocks are permuted by the map like points of a cycle
of a rational rotation. We find the smallest possible rotation
intervals that a map with a badly ordered cycle of a given
rotation number and period can have. Moreover, we show
that if one of those intervals is contained in the interior of the
rotation interval of a map then the map has a corresponding
badly ordered cycle.

1. Introduction.

It is always very useful to be able to derive many consequences from a
few bits of information. This situation arises in one dimensional dynamics,
when knowing ordering of points along a cycle (a periodic orbit) we can
often say a lot about a system. Here we want to study what happens if
our system consists of iterations of a continuous degree one circle map and
the information we have is that there is a badly ordered cycle of a given
period and rotation number. The information we want to get is how large
the rotation interval of the map has to be. This is the most important
information. Once we know the rotation interval, we can estimate the set of
periods and topological entropy (see e.g. [1]).

To state our assumptions and results in a more rigorous way, we introduce
some notation in spirit of [1]. We will consider the circle S1 as {z ∈ C : |z| =
1} where C denotes the complex plane. Then we will denote by e : R −→ S1

the natural projection e(X) = exp(2πiX), where R denotes the real line.
A continuous map F : R −→ R is called a lifting of a continuous map
f : S1 −→ S1 if e◦F = f ◦e. It can be seen that if f is a continuous map of the
circle into itself of degree one and F is a lifting of f then F (X+1) = F (X)+1
for all X ∈ R and that F (X + k) = F (X) + k for all X ∈ R and k ∈ Z,
where Z denotes the set of all integers. In the sequel, the class of all liftings
of continuous maps of the circle into itself of degree 1 will be denoted by L.

We shall say that a point X ∈ R is periodic (mod. 1) of period s for a
map F ∈ L if F s(X) − X ∈ Z but F i(X) − X /∈ Z for i = 1, . . . , s − 1.
We note that if F is a lifting of f then X is periodic (mod. 1) for F if and

23

http://nyjm.albany.edu:8000/PacJ/
http://nyjm.albany.edu:8000/PacJ/1998/v184no1.html
http://nyjm.albany.edu:8000/PacJ/1998/
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only if e(X) is periodic for f and their periods are equal. Let X ∈ R and
let F ∈ L. The orbit (mod. 1) of X is defined to be the set {F n(X) + m :
for n ≥ 0 and m ∈ Z}. The orbit (mod. 1) P of a periodic (mod. 1) point of
period s will be called a cycle (mod. 1) of F of period s.

Next we shall introduce the notion of a badly ordered cycle which will
play a key role throughout the paper. To this end, we will introduce the
notions of a twist cycle and of a block structure.

Let P be a cycle (mod. 1) of a map F ∈ L. We say that P is twist if F |P
is increasing.

Let P = {Xi}i∈Z be a cycle (mod. 1) of a map F ∈ L of period p and let
Q = {Yi}i∈Z be a cycle (mod. 1) of a map G ∈ L of period q. Assume that
Xi < Xj and Yi < Yj if and only if i < j. We say that P has a block structure
over Q if p = nq for some n ∈ N and there is k ∈ Z such that P =

⋃
i∈Z Pi,

where Pi = {Xk+in, Xk+in+1, . . . , Xk+(i+1)n−1} for i ∈ Z and F (Pi) = Pj if
and only if G(Yi) = Yj.

Lastly, a cycle (mod. 1) will be called badly ordered if it has no block
structure over a twist cycle. We note that the notions of a twist cycle, block
structure and badly ordered cycle are independent of the lifting.

Next we shall introduce the notion of rotation interval of a map from L.
Let F ∈ L. For X ∈ R we define its rotation number as

lim sup
n→∞

F n(X)−X
n

,

and we denote it by ρ(X) or ρ
F

(X) (see [8]). We note that if X is a periodic
(mod. 1) point of F with period s such that F s(X) − X = r ∈ Z, then
ρ
F

(X) = limn→∞
Fn(X)−X

n
= r/s. Also, if Y belongs to the same cycle as X

then ρ(X) = ρ(Y ). Thus, if P is a cycle (mod. 1), in the sequel we shall also
talk about the rotation number of P .

The set of all rotation numbers of F will be denoted by LF . From [6] it
follows that LF is a closed interval on R (perhaps, degenerated to a single
point). Thus, from now on LF will be called the rotation interval of F.

In what follows we shall denote by N the set of all positive integers. If
r ∈ Z and s ∈ N are coprime and s > 1 then there exist numbers r1, r2 ∈ Z
and s1, s2 ∈ N such that

r = r1 + r2, s = s1 + s2, and rs1 − r1s = r2s− rs2 = 1 .(1)

Clearly, these numbers are unique and, by (1), we have r1/s1 < r/s < r2/s2.
The interval [r1/s1, r2/s2] is called the Farey interval for r/s.

In the above situation we define the two functions αr/s : Z+−→ [r1/s1, r/s)
and βr/s : Z+ −→ (r/s, r2/s2] by

αr/s(t) =
r1 + tr

s1 + ts
and βr/s(t) =

r2 + tr

s2 + ts
.
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Now we can state our main result.

Theorem A. Let r ∈ Z, s, n ∈ N be such that r and s are coprime. Assume
that F ∈ L has a badly ordered cycle (mod. 1) of period ns and rotation
number r/s. Then the rotation interval of F contains an interval of the form
[αr/s(m), βr/s(k)] for some non-negative integers m, k with m + k = n − 1
if s > 1 and of the form [r − 1

m
, r + 1

k
] for some positive integers m, k with

m+ k = n if s = 1.

It is known (see for instance [1]) how to obtain the set of periods and lower
bounds for the topological entropy of a map F ∈ L from the rotation interval
of F . Thus, one can obtain via Theorem A this type of information, knowing
only that a map has a badly ordered cycle of a given rotation number.

Theorem A in the case n = 1 was proved by Boyland and Hall in [4] (see
also Theorem 3.8.5 of [1]) and, for annulus homeomorphisms, by Boyland
in [3]. Moreover, in Proposition 3.8.6 of [1] it was proved that the estimate
of the rotation interval given by Theorem A in the case n = 1 is the best
possible. The next theorem extends this result to the general case.

Theorem B. Given s, n ∈ N and r ∈ Z with r and s coprime, and either
non-negative integers m, k with m+ k = n− 1 if s > 1, or positive integers
m, k with m + k = n if s = 1, there exists a map F ∈ L having a badly
ordered cycle (mod. 1) P of period ns and rotation number r/s, such that
the rotation interval of F is either [αr/s(m), βr/s(k)] if s > 1 or [r− 1

m
, r+ 1

k
]

if s = 1.

Remark 1.1. Notice that Theorem B does not cover the case s = 1, n = 1.
Fortunately, there are no badly ordered cycles (mod. 1) of period 1.

The following result is a kind of converse of Theorem A.

Theorem C. Let r ∈ Z, s, n ∈ N be such that r and s are coprime.
Assume that the rotation interval of a map F ∈ L contains in its interior an
interval of the form [αr/s(m), βr/s(k)] for some non-negative integers m, k
with m+ k = n− 1 if s > 1 and of the form [r− 1

m
, r+ 1

k
] for some positive

integers m, k with m + k = n if s = 1. Then F has a badly ordered cycle
(mod. 1) of period ns and rotation number r/s.

Theorem C is not the exact converse of Theorem A, since we assume that
the appropriate interval is contained in the interior of the rotation interval
of F . This cannot be helped, as the following example shows. The rotation
interval corresponding to a badly ordered cycle (mod. 1) of period 2 and
rotation number 1/2 is [0, 1]. Such a cycle (mod. 1) is badly ordered if and
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only if the map moves some of its points to the left. However, for every b > 0
there exists a map in L with rotation interval [0, b] that does not move any
point to the left. Hence, even for very large b, there will be no badly ordered
cycle (mod. 1) of period 2 and rotation number 1/2.

From Theorems A and C we immediately get the following two corollaries
which characterize the endpoints of the rotation interval of a map from L
in terms of the behavior of the corresponding cycles (mod. 1). Let A be a
subset of R. As usual Bd(A) will denote the boundary of A.

Corollary D. Let a ∈ Q and let F ∈ L. Assume that a ∈ LF . Then
a ∈ Bd(LF ) if and only if each cycle (mod. 1) of F with rotation number a
has a block structure over a twist cycle (mod. 1) of rotation number a.

The “if” part of Corollary D follows from Theorem C and the “only if”
part from Theorem A.

Corollary E. Let a ∈ Q and let F ∈ L. Assume that a ∈ LF . Then
LF = {a} if and only if each cycle (mod. 1) of F has a block structure over
a twist cycle (mod. 1) of rotation number a.

The “if” part of Corollary E is trivial and the “only if” part follows from
Corollary D.

To complete the picture, we notice that from Lemma 4.9 it follows that
if a cycle (mod. 1) is not badly ordered then there exists a map F ∈ L with
this cycle such that LF consists of one point. From this and Corollary E we
can get Theorem 3.12.20 of [1].

Theorem A and Corollary E improve results of MacKay and Tresser (see
[7]). Corollary D for cycles having period equal to the denominator of a
(with a written in irreducible form) has been proved in [2].

The paper is organized as follows. The proof of Theorem A is divided
into two parts, dynamical (Section 2) and number theoretical (Section 3).
Theorem B is proved in Section 4. Lastly, Theorem C is proved in Section 5.

Acknowledgements. The authors thank Phil Boyland and John Guaschi
for calling their attention to this problem and useful discussions. All au-
thors have been partially supported by the DGICYT grant number PB90–
0695, and the third author by the NSF grant DMS-9305899. This paper has
been made possible by an invitation of the third author by the Universitat
Autònoma de Barcelona.

2. Dynamical part of Theorem A.

The goal of this section is to prove the following result which is the dynamical
part of the proof of Theorem A.
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Proposition 2.1. Let F ∈ L, r ∈ Z and s, n ∈ N be such that r and s are
coprime. Assume that F has a badly ordered cycle of period ns and rotation
number r/s. Then, there exist a, c ∈ Z and b, d ∈ N such that a + c = nr,
b+ d = ns, a/b 6= r/s 6= c/d and both a/b and c/d belong to LF .

Standing Hypotheses. In the rest of this section we will assume that P
is a badly ordered cycle of a map F ∈ L of period ns and rotation number
r/s with n ∈ N and r and s coprime.

Let f denote the circle map of degree one which has F as a lifting and
set G = F s − r ∈ L. It is not difficult to see that G is a lifting of f s, the
cycle e(P ) of f decomposes into s cycles P̃1, P̃2, . . . , P̃s of f s of period n
each. Moreover, e−1(P̃i) is a cycle (mod. 1) of G of rotation number 0 for
each i ∈ {1, 2, . . . , s}. So, for each i ∈ {1, 2, . . . , s}, we have that e−1(P̃i)
decomposes into countable many cycles of G of period n. Hence, P is a
countable union of cycles of G of period n each. We shall denote the set of
all these cycles by Λ.

If Q ∈ Λ then we shall say that X,Y ∈ Q belong to the same component
of Q if every Z ∈ P which lies between X and Y belongs to Q. Thus, every
element of Λ is divided into components. Notice that each element of Λ has
only one component if and only if P has a block structure over a cycle of
period s.

Before proving Proposition 2.1 we need a technical lemma and some more
notation.

Lemma 2.2. There exist X,Y ∈ P belonging to different cycles of G such
that X < Y and F (X) > F (Y ).

Proof. Consider first the case when P has a block structure over a cycle
(mod. 1) R of F of period s. Since P is badly ordered, R is not twist. Thus,
there are points X̃, Ỹ ∈ R with X̃ < Ỹ such that F (X̃) > F (Ỹ ). We can
take X and Y from the blocks of P corresponding to X̃ and Ỹ respectively.
Then X < Y and F (X) > F (Y ). Since the blocks of P coincide with the
elements of Λ, the proof is complete in this case.

Now we consider the case when P has no block structure over any cycle
(mod. 1) of F of period s. Then there is an element Q of Λ with at least two
components. Suppose that whenever X,Y ∈ P belong to different cycles of
G and X < Y then F (X) < F (Y ) (we cannot have F (X) = F (Y ) since
P is a cycle) and we will arrive to a contradiction. Take X and Z from
different components of Q such that X < Z. Then there is Y ∈ P such
that X < Y < Z and Y /∈ Q. We have F (X) < F (Y ) < F (Z). Since
F is a bijection of P onto itself and commutes with G, the points F (X)
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and F (Z) belong to the cycle F (Q) ∈ Λ and F (Y ) belongs to a different
element of Λ. Thus, we can continue the same procedure and after s steps
we get F s(X) < F s(Y ) < F s(Z). Therefore G(X) < G(Y ) < G(Z). Hence,
G(X) and G(Z) belong to different components of Q and G(X) < G(Z).
So, if we choose one point from every component of Q in such a way that
X1 < X2 < . . . < Xj then G(X1) < G(X2) < . . . < G(Xj) and each of the
points G(Xi) belongs to a different component of Q. Thus for each i the
points Xi and G(Xi) belong to the same component of Q. This proves that
each component of Q is mapped by G into itself. Since Q has more than one
component and is a cycle of G, we get a contradiction. This completes the
proof of the lemma.

Let F ∈ L. We define

Fl(X) = inf{F (Y ) : Y ≥ X}, and

Fu(X) = sup{F (Y ) : Y ≤ X}.
It is not difficult to see that Fl, Fu ∈ L, are non-decreasing and that Fl ≤ F ≤
Fu. It is well known (see for instance [1]) that if G ∈ L is non-decreasing,
then

lim
n→∞

Gn(X)−X
n

exists for each X ∈ R and is independent of X. This number is called the
rotation number of G and denoted by ρ(G). Also it is well known that if
F ∈ L then LF = [ρ(Fl), ρ(Fu)] (see [1]).

Proof of Proposition 2.1. Let X and Y be the points from the statement
of Lemma 2.2. We define a map Φ : P → P as follows. For all k ∈ Z we
set Φ(X + k) = F (Y + k) and Φ(Y + k) = F (X + k). For all other points
Z ∈ P we set Φ(Z) = F (Z). Notice that for every T ∈ P and k ∈ Z we have
Φ(T + k) = Φ(T ) + k, so Φ is a restriction to P of a lifting Φ̃ of some degree
one map ϕ : S1 → S1. For ϕ the set e(P ) is the union of two cycles.

We have Y = F b(X) − a for some integers a and b with 0 ≤ b ≤ ns − 1.
However, F (X − a) = F (X) − a, so the signs of X − (X − a) and F (X) −
F (X − a) are the same. Therefore, by the choice of X and Y , b cannot
be 0. Thus, 1 ≤ b ≤ ns − 1. We have Φi(Y ) = F i(X) for i = 1, 2, . . . , b.
Therefore the rotation number of Y for Φ̃ is (F b(X)−Y )/b = a/b. Similarly,
we have Φi(X) = F b+i(X)−a for i = 1, 2, . . . , ns−b. Therefore the rotation
number of X for Φ̃ is (F ns(X) − a −X)/(ns − b) = (nr − a)/(ns − b). We
set c = nr − a and d = ns − b, and then the rotation number of X is c/d.
By the definition, we have a+ c = nr and b+ d = ns.

We claim that Fl(Z) ≤ Φ(Z) ≤ Fu(Z) for all Z ∈ P . This is clearly true
if Z is not of the form X + k or Y + k for k ∈ Z, since then Φ(Z) = F (Z).
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If Z = X + k then, since Y + k > X + k, we have Fl(Z) = Fl(X + k) ≤
Fl(Y + k) ≤ F (Y + k) = Φ(X + k) = Φ(Z). Since F (X) > F (Y ), we get
Φ(Z) = Φ(X + k) = F (Y + k) = F (Y ) + k < F (X) + k = F (X + k) ≤
Fu(X + k) = Fu(Z). If Z = Y + k then we get Fl(Z) ≤ Φ(Z) ≤ Fu(Z) in a
similar way.

Since Fl is non-decreasing and Fl|P ≤ Φ, the rotation number of Fl is
smaller than or equal to the rotation numbers of X and Y for Φ̃. That is,
ρ(Fl) ≤ a/b and ρ(Fl) ≤ c/d. Analogously, ρ(Fu) ≥ a/b and ρ(Fu) ≥ c/d.
Since the rotation interval of F is [ρ(Fl), ρ(Fu)], we see that both a/b and
c/d belong to it.

It remains to prove that a/b 6= r/s 6= c/d. In fact, it suffices to prove the
first inequality, since if c/d = r/s then a/b = (nr − c)/(ns− d) = r/s.

Suppose that a/b = r/s. Since r and s are coprime, we see that s divides
b. Therefore, since X and Y belong to different cycles of G we have that
F b(X) − rb/s = Gb/s(X) 6= Y . Hence a/b = (F b(X) − Y )/b 6= r/s. This
completes the proof.

3. Number theoretical part of Theorem A.

In the next lemma and corollary we assume that n, s, s1, s2, b, d ∈ N and
r, r1, r2, a, c ∈ Z are such that r and s are coprime, s > 1, [r1/s1, r2/s2] is
the Farey interval for r/s (that is, (1) is satisfied), a/b < r/s < c/d, and

a+ c = nr and b+ d = ns .(2)

The functions αr/s and βr/s are defined as in Section 1.
By (1) we have α′r/s(t) = (rs1 − r1s)/(s1 + ts)2 > 0. Thus, αr/s is in-

creasing. By (1), r1 + (−s1/s)r < 0, so lim
t↘−s1/s

αr/s(t) = −∞. Clearly,

lim
t→+∞αr/s(t) = r/s. Similarly, βr/s is decreasing, lim

t↘−s2/s
βr/s(t) = +∞, and

lim
t→+∞βr/s(t) = r/s.

Lemma 3.1. There exist non-negative integers m, k such that m+k ≤ n−1
and a/b ≤ αr/s(m), c/d ≥ βr/s(k).

Proof. Since a/b < r/s, there is a unique γ ≥ −s1/s such that αr/s(γ) = a/b.
Simple computation gives γ = (as1 − br1)/(br − as). Similarly, there is a
unique δ ≥ −s2/s such that βr/s(δ) = c/d and we get δ = (dr2 − cs2)/(cs−
dr). Notice that br−as and cs−dr are positive, and since they are integers,
they are larger than or equal to 1. Moreover, by (1) and (2) we get

as1 − br1 = (nr − c)s1 − (ns− d)r1(3)

= n(rs1 − sr1)− (cs1 − dr1) = n− (cs1 − dr1).
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Assume first that γ and δ are non-negative. Then we set m = as1 − br1

and k = dr2 − cs2. Then m ≥ γ and k ≥ δ, so a/b = αr/s(γ) ≤ αr/s(m) and
c/d = βr/s(δ) ≥ βr/s(k). By (3) and (1) we get

m+ k = n− cs1 + dr1 + dr2 − cs2

= n− c(s1 + s2) + d(r1 + r2) = n− (cs− dr) ≤ n− 1.

If dr2 − cs2 < 0 then we set m = n − 1 and k = 0. Then clearly c/d >
r2/s2 = βr/s(0) = βr/s(k). Since r1/s1 < r/s < c/d, we have cs1 − dr1 ≥ 1,
so by (3), as1 − br1 ≤ n − 1. Therefore γ ≤ n − 1. Thus, a/b = αr/s(γ) ≤
αr/s(n− 1) = αr/s(m).

If as1 − br1 < 0 then we set m = 0 and k = n − 1. In a similar way as
above we get a/b < αr/s(m) and c/d ≥ βr/s(k).

Since αr/s is increasing and βr/s is decreasing, we obtain immediately the
following corollary.

Corollary 3.2. There exist non-negative integers m, k such that m+ k =
n− 1, a/b ≤ αr/s(m) and c/d ≥ βr/s(k).

Now we assume that s = 1. Then there is no Farey interval for r/s. In
this case we get the following simple result.

Lemma 3.3. If a/b, c/d and r/s are as above and s = 1 then a/b ≤
(br − 1)/b < r < (dr + 1)/d ≤ c/d.

Proof. Since a/b < r, we get a < br, so a ≤ br − 1. Similarly, c ≥ dr +
1.

Proof of Theorem A. By Proposition 2.1, we get a, c ∈ Z and b, d ∈ N such
that a+c = nr, b+d = ns, a/b 6= r/s 6= c/d and both a/b and c/d belong to
the rotation interval of F . If a/b > r/s then c/d = (nr − a)/(ns− b) < r/s,
so without loss of generality we may assume that a/b < r/s. Then c/d > r/s
and we use Corollary 3.2 if s > 1 and Lemma 3.3 if s = 1.

4. Proof of Theorem B.

We start by choosing r ∈ Z and n, s ∈ N such that r and s are coprime.
Then, we take a set P = {i/(ns) : i ∈ Z} ⊂ R. To prove Theorem B we
want to make P a badly ordered cycle of a map from L with the appropriate
rotation interval. If n = 1 then this is done in Proposition 3.8.6 of [1].
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Therefore we assume n > 1. We start by defining two maps Ψ0,Ψ1 : P → P
in several steps.

Let 1 ≤ u ≤ n−1. Then we define a permutation ζ of the set {0, 1, . . . , n−
1} as follows:

ζ(j) =


j + 1 if 0 ≤ j ≤ u− 2,
n− 1 if j = u− 1,
0 if j = u,
j − 1 if u+ 1 ≤ j ≤ n− 1.

It is not difficult to see that ζ is a cyclic permutation.
Next we define a map Ξ : P → P as follows. For each k ∈ Z we set

Ξ
(
i

ns
+ k

)
=


ζ(i)
ns

+ k +
r

s
if i ∈ {0, 1, . . . , n− 1},

i

ns
+ k +

r

s
otherwise.

Remark 4.1. For each k ∈ Z and X ∈ P we have that Ξ(X + k) =
Ξ(X) + k.

Let P ⊂ R be such that P ∩ [0, 1) is finite and X +m ∈ P for all X ∈ P
and m ∈ Z. Let Γ : P → P be a map such that Γ(X + 1) = Γ(X) + 1 for
each X ∈ P . A map F ∈ L will be called (P,Γ)-linear if F |P = Γ|P and F
is affine on each interval [X,Y ] such that X,Y ∈ P and (X,Y )∩P = ∅. We
note that we have defined Ξ in such a way that the set P is a cycle (mod. 1)
of the (P,Ξ)-linear map, of period ns which has a block structure over a
twist cycle of rotation number r/s. Moreover, it also has rotation number
r/s, as the next simple lemma shows.

For a set A ⊂ R and X ∈ R we will denote by X + A or A + X the set
{X + Y : Y ∈ A}.

Lemma 4.2. Let P and Q be cycles (mod. 1) of the maps F and G from
L respectively. Assume that P has a block structure over Q. Then ρ

F
(P ) =

ρ
G

(Q).

Proof. Assume that Q has period s and rotation number r/s, and P has
period ns. Let X ∈ P belong to a block R corresponding to Y ∈ Q. Then
F ns(X) belongs to the block corresponding to Gns(Y ) = Y + nr. Therefore
F ns(X) ∈ R + nr. Since the diameter of any block is smaller than 1 and
F ns(X) − X is an integer, we get F ns(X) = X + nr. Therefore ρ

F
(X) =

r/s.
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To define the maps we are looking for we first define the switch ΣX : P −→ P
at a point X ∈ P as follows:

ΣX(Y ) =


Y − 1/(ns) if Y = X + k, k ∈ Z,
Y + 1/(ns) if Y = X + k − 1/(ns), k ∈ Z,
Y otherwise.

Notice that Σ−1
X = ΣX .

Now we set Ψ0 = Σ0 ◦ Ξ ◦ Σ0 and Ψ1 = Σ1/s ◦ Ξ ◦ Σ1/s.

Remark 4.3. For each k ∈ Z and X,Y ∈ P we have ΣX(Y +k) = ΣX(Y )+
k. Therefore, for each k ∈ Z and Y ∈ P we have Ψ0(Y +k) = Ψ0(Y )+k and
Ψ1(Y + k) = Ψ1(Y ) + k. Hence the (P,Ψ0)-linear and (P,Ψ1)-linear maps
belong to L.

Lemma 4.4. The set P is a cycle (mod. 1) of the (P,Ψ0)-linear and
(P,Ψ1)-linear maps with period ns and rotation number r/s.

Proof. We will prove that P is a cycle (mod. 1) of the (P,Ψ0)-linear map with
period ns and rotation number r/s. The other statement follows similarly.

Let us look for the smallest m ∈ N such that Ψm
0 (X) = X + k for some

k ∈ Z, where X = −1/(ns). Since Ψm
0 = Σ0◦Ξm◦Σ0 (recall that Σ−1

0 = Σ0),
Σ0(X) = 0, and Σ−1

0 (X+k) = k, the equation Ψm
0 (X) = X+k is equivalent

to the equation Ξm(0) = k. We have

Ξm(0) =
ζ l(0)
ns

+m
r

s
,

where l is the integer part of (m+ s− 1)/s. Thus our equation becomes

ζ l(0)
ns

+
mr

s
= k.

Since 0 ≤ ζ l(0) < n, the above equation has a solution if and only if ζ l(0) = 0.
Since ζ is a cyclic permutation on n elements, this means that l = nq for
some integer q. The equation is now mr/s = k. Since r and s are coprime,
we get m = ps for some integer p. Since (m + s − 1)/s = p + (s − 1)/s,
we have l = p, and therefore m = qns. The smallest positive m with this
property is m = ns. Since X ∈ P and the cardinality of P ∩ [0, 1) is ns, this
means that P is a cycle (mod. 1) of the (P,Ψ0)-linear map with period ns.
We have Ψns

0 (X) = nsr/s = nr, so ρΨ0
(P ) = r/s.

In the rest of the section we will denote n− u by l and we will use freely
the notation from the introduction.

Proposition 4.5. Assume that s > 1. Then, the rotation interval of the
(P,Ψ0)-linear map is [αr/s(l), βr/s(u−1)]. Similarly, the rotation interval of
the (P,Ψ1)-linear map is [αr/s(l − 1), βr/s(u)].
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To prove Proposition 4.5, we need two auxiliary lemmas.

Lemma 4.6. Let Ψ̃0 be defined as Ψ0, but with u and l interchanged and
r replaced by −r. Then the rotation interval of the (P,Ψ1)-linear map is
equal to minus the rotation interval of the (P, Ψ̃0)-linear map (that is, if the
rotation interval of the (P, Ψ̃0)-linear map is [x, y] then the rotation interval
of the (P,Ψ1)-linear map is [−y,−x]).

Proof. Let ∆ be a homeomorphism of the real line given by ∆(X) = (n −
1)/(ns) − X. Notice that ∆2 is the identity. If the permutation ζ̃ is like
ζ, but with u and l interchanged, then ζ̃ = ∆1 ◦ ζ ◦ ∆1, where ∆1(i) =
n − 1 − i. Therefore if the map Ξ̃ is like Ξ, but with u and l interchanged
and r replaced by −r then Ξ̃ = ∆ ◦ Ξ ◦∆. Furthermore, ∆ ◦Σ0 ◦∆ = Σ1/s.
Since Ψ̃0 = Σ0 ◦ Ξ̃◦Σ0, we get ∆◦ Ψ̃0 ◦∆ = Ψ1. Therefore for any k we have
∆ ◦ Ψ̃k

0 ◦∆ = Ψk
1 , so

Ψk
1(X)−X

k
=

∆((Ψ̃k
0 ◦∆)(X))−∆(∆(X))

k
= − Ψ̃k

0(∆(X))−∆(X)
k

.

When we take the limit superior as k →∞ of both sides, and then the min-
imum (respectively maximum) over all X ∈ P then we get at the left hand
side the left (respectively the right) endpoint of the rotation interval of the
(P,Ψ1)-linear map, and at the right hand side minus the right (respectively
minus the left) endpoint of the (P, Ψ̃0)-linear map.

Lemma 4.7. The following conditions are equivalent:

(i)
n− 1
ns

+
r

s
+ (u− 1)r = − 1

ns
+ k for some k ∈ Z,

(ii) s|(r + 1),
(iii) s2 = 1.

Proof. Condition (i) is equivalent to n − 1 + nr ≡ −1 (mod ns) which is
equivalent to 1 + r ≡ 0 (mod s) which, in turn, is equivalent to (ii). By (1),
(ii) is equivalent to (iii).

Proof of Proposition 4.5. Let F be the (P,Ψ0)-linear map. Let us describe
the maps Fu and Fl restricted to P . For k ∈ Z we have:

Fu

(
i

ns
+ k

)
=



k if i = −nr − 1,
1
ns

+ r
s

+ k if i = −1,
i+1
ns

+ r
s

+ k if 0 ≤ i ≤ u− 2,
n−1
ns

+ r
s

+ k if u− 1 ≤ i ≤ n− 2,
i
ns

+ r
s

+ k otherwise.
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Similarly,

Fl

(
i

ns
+ k

)
=



−1
ns

+ k if i = −nr,
−1
ns

+ r
s

+ k if i = 0,
r
s

+ k if 1 ≤ i ≤ u,
i−1
ns

+ r
s

+ k if u+ 1 ≤ i ≤ n− 1,
i
ns

+ r
s

+ k otherwise.

Now we define the sets P0, Pu and Pl as follows:

P0 = {i/(ns) + k : 0 ≤ i ≤ n− 1, k ∈ Z},
Pu = {i/(ns) : i ≡ −1 (mod n)},
Pl = {i/(ns) : n|i}.

In order to compute the rotation number of the map Fu let us investigate
this map closer. If X = i/(ns)+k with 0 ≤ i ≤ u−2 then F j

u(X) /∈ P0∪Pu for
j = 1, 2, . . . , s−1, but F s

u(X) ∈ P0. We get then F s
u(X) = (i+1)/(ns)+r+k.

Therefore F (u−1)s
u (0) = (u− 1)/(ns) + (u− 1)r. Hence

F (u−1)s+1
u (0) =

n− 1
ns

+
r

s
+ (u− 1)r.(4)

This point belongs to Pu and its images stay in Pu until some of them
becomes of the form (−nr−1)/(ns)+k or −1/(ns)+k. In the meantime we
just add r/s to get the next image. Since −1/(ns) + k = (−nr − 1)/(ns) +
k + r/s, we arrive to (−nr − 1)/(ns) + k first, unless already

n− 1
ns

+
r

s
+ (u− 1)r = − 1

ns
+ k.(5)

Suppose that (5) does not hold. Then we get to (−nr− 1)/(ns) + k from
(n− 1)/(ns) + r/s+ (u− 1)r in m steps, where

−nr − 1
ns

+ k =
n− 1
ns

+
r

s
+ (u− 1)r +

mr

s
,(6)

and m is the smallest non-negative integer satisfying (6) for some k ∈ Z.
This condition is equivalent to −nr−1 ≡ n−1 +nr+mnr (mod ns), which
is equivalent to n+2nr+mnr ≡ 0 (mod ns), which, in turn, is equivalent to
1 + (2 +m)r ≡ 0 (mod s). This gives us m+ 2 = s2, unless s2 = 1. However,
by Lemma 4.7, s2 = 1 is equivalent to (5), and we assumed that (5) does
not hold. Therefore m = s2 − 2.
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After one more step we get to k. Thus, in view of (4), it takes ((u− 1)s+
1) + (s2 − 2) + 1 = (u− 1)s+ s2 steps to get from 0 to k. Moreover, by (6)
we get

k =
n− 1
ns

+
r

s
+ (u− 1)r +

mr

s
+
nr + 1
ns

=
n− 1 + nr + (s2 − 2)rn+ nr + 1

ns
+ (u− 1)r

=
1 + s2r

s
+ (u− 1)r = r2 + (u− 1)r.

Therefore

ρ(Fu) =
(u− 1)r + r2

(u− 1)s+ s2

= βr/s(u− 1).(7)

Suppose now that (5) holds. Then Fu((n − 1)/(ns) + r/s + (u − 1)r) =
1/(ns) + r/s+ k. Since Fu(0) = 1/(ns) + r/s, we get

F (u−1)s
u

(
1
ns

+
r

s

)
=
n− 1
ns

+
r

s
+ (u− 1)r

and, hence

F (u−1)s+1
u

(
1
ns

+
r

s

)
=

1
ns

+
r

s
+ k,

where k = (n− 1)/(ns) + r/s+ (u− 1)r+ 1/(ns) = (n− 1 + nr+ 1)/(ns) +
(u−1)r = (r+1)/s+(u−1)r. By Lemma 4.7 we have s2 = 1, so r2s = r+1.
Therefore

F (u−1)s+s2
u

(
1
ns

+
r

s

)
=

1
ns

+
r

s
+ (r2 + (u− 1)r).

Thus we obtain again (7).
Now we compute the rotation number of Fl. If X = i/(ns) + k with

u+1 ≤ i ≤ n−1 then F j
l (X) /∈ P0∪Pl for j = 1, 2, . . . , s−1, but F s

l (X) ∈ P0.
We get then F s

l (X) = (i−1)/(ns)+r+k. Therefore F (l−1)s
l ((n−1)/(ns)) =

u/(ns) + (l− 1)r. Then F (l−1)s+1
l ((n− 1)/(ns)) = r/s+ (l− 1)r. This point

belongs to Pl and its image stays in Pl for the next s − 2 steps, when we
get F ls−1

l ((n − 1)/(ns)) = r/s + (l − 1)r + (s − 2)r/s = lr − r/s. After
one more step we get F ls

l ((n − 1)/(ns)) = lr − 1/(ns). Again we add r/s
in each step until, after m steps, we reach (n − 1)/(ns) + k for some k.
We have (n − 1)/(ns) + k = lr − 1/(ns) + mr/s, and m is the smallest
non-negative integer satisfying this equality with some k. We get n − 1 ≡
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−1 +mrn (mod ns), so mr ≡ 1 (mod s). Therefore m = s1. Thus,

F ls+s1
l

(
n− 1
ns

)
= lr − 1

ns
+
s1r

s
= lr +

s1rn− 1
ns

= lr +
(sr1 + 1)n− 1

ns
= lr + r1 +

n− 1
ns

.

Hence we get

ρ(Fl) =
lr + r1

ls+ s1

= αr/s(l).

This proves that the rotation interval of F is [αr/s(l), βr/s(u− 1)].
To find the rotation interval of the (P,Ψ1)-linear map, we take Ψ̃0 as in

Lemma 4.6. By the part of the proposition already proven, the rotation
interval of the (P, Ψ̃0)-linear map is [α−r/s(u), β−r/s(l− 1)]. By Lemma 4.6,
the rotation interval of the (P,Ψ1)-linear map is [−β−r/s(l − 1),−α−r/s(u)].
One can easily check that the Farey interval for (−r)/s is minus the Farey
interval for r/s, that is [(−r2)/s2, (−r1)/s1]. Therefore −β−r/s(l − 1) =
−(−r1 − (l − 1)r)/(s1 + (l − 1)s) = αr/s(l − 1) and −α−r/s(u) = −(−r2 −
ur)/(s2 + us) = βr/s(u). This completes the proof.

We also need to deal with the case s = 1. Notice that then Σ0 = Σ1/s, so
Ψ1 = Ψ0.

Proposition 4.8. Let s = 1. Then the rotation interval of the (P,Ψ0)-
linear map is [r − 1

l
, r + 1

u
].

Proof. Let F be the (P,Ψ0)-linear map. Let us describe Fu and Fl restricted
to P . We can assume that r = 0; then at the end we will have to add r to
both endpoints of the rotation interval to get the result in the general case.
For k ∈ Z we have:

Fu

(
i

n
+ k

)
=


i+1
n

+ k if 0 ≤ i ≤ u− 2,

k + 1 if u− 1 ≤ i ≤ n− 2,
1
n

+ k + 1 if i = n− 1.

We get Fu(0) = 1/n, Fu(1/n) = 2/n, . . . , Fu((u − 2)/n) = (u − 1)/n,
and Fu((u− 1)/n) = 1. Therefore ρ(Fu) = 1/u.

By Lemma 4.6 and since Ψ1 = Ψ0, we have ρ(Fl) = −ρ(F̃u), where F̃ is
the (P, Ψ̃0)-linear map. Since r = 0 = −r, we have ρ(F̃u) = 1/l, and thus
ρ(Fl) = −1/l.
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The next result will allow us to prove that P is a badly ordered cycle of
the maps which are (P,Ψ0)-linear and (P,Ψ1)-linear.

Lemma 4.9. Let a ∈ Q and let F ∈ L. Assume that F has a cycle (mod. 1)
P such that F is (P, F |

P
)-linear and P has a block structure over a twist cycle

(mod. 1) of rotation number a. Then LF = {a}.

Proof. Let a = r/s with r and s coprime. Let Pi be the blocks of the block
structure of P over a twist cycle (mod. 1), numbered in such a way that if
X ∈ Pi and Y ∈ Pj with i < j then X < Y . Then, since the block structure
is over a twist cycle (mod. 1) of rotation number r/s, we have Pi + 1 = Pi+s
and F (Pi) = Pi+r.

Set Xi = minPi and Yi = maxPi. Define G on Q = {Xi : i ∈ Z} ∪ {Yi :
i ∈ Z} by G(Xi) = G(Yi) = Yi+r, and extend it to a Q-linear map. Clearly,
G ∈ L and G is non-decreasing. Therefore it has a unique rotation number.
Since {Yi : i ∈ Z} is a twist cycle (mod. 1) of G of rotation number r/s, we
have ρ

G
= r/s = a. Since F ≤ G and G is non-decreasing, the right-hand

endpoint of LF is not larger than ρ
G

(see e.g. [1]), that is not larger than a.
Similarly, we can show that the left-hand endpoint of LF is not smaller

than a. Therefore LF = {a}.

Proof of Theorem B. It follows from Lemmas 4.4 and 4.9, Propositions 4.5
and 4.8 and Proposition 3.8.6 of [1] (for the case n = 1).

5. Proof of Theorem C.

Before starting the proof of Theorem C we will introduce some notions and
preliminary results. The following lemma is well known (see for instance
[1]).

Lemma 5.1. Let F ∈ L and let P be a twist cycle (mod. 1) of F with
rotation number r/s. Assume that (r, s) = 1 and P = {Xi}i∈Z with Xi < Xj

if and only if i < j. Then P has period s and F (Xi) = Xi+r for each i ∈ Z.

A set P ⊂ R such that P ∩ [0, 1] is finite and has the property that
P +m = P for each m ∈ Z will be called finite (mod. 1).

Let P be finite (mod. 1) and let F ∈ L. An interval I ⊂ R will be called
P -basic if it is the closure of a component of R\P . A sequence (I0, I1, . . . , Ik)
of P -basic intervals such that F (Ii) ⊃ Ii+1 for i = 0, 1, . . . , k − 1 and Ik =
I0 + m with m ∈ Z will be called a loop of length k. Given such a loop,
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from Lemma 1.2.7 of [1] we see that there exists a point X ∈ I0 such that
F i(X) ∈ Ii for i = 1, 2, . . . , k − 1 and F k(X) = X +m.

Lemma 5.2. Assume that a < p1/q1 < p2/q2 < b, where a, b ∈ Q, and let
F ∈ L be such that [a, b] ⊂ LF . Then F has twist cycles (mod. 1) P and Q
of rotation numbers a and b respectively, such that
(i) each map G ∈ L such that G|P∪Q = F |P∪Q has a cycle (mod. 1) R of

G-rotation number (p1 + p2)/(q1 + q2) such that there is a point X ∈ R
with the property that Gq2(X) > X + p2,

(ii) there is a map F̃ ∈ L with F̃ |P∪Q = F |P∪Q and L
F̃

= [a, b].

Proof. Consider the family Fµ defined by

Fµ = (min(F, Fl + µ))u

for 0 ≤ µ ≤ µ1 = supx∈R(F − Fl)(x) (see [5] or [1]). It is not difficult to see
that F0 = Fl, Fµ1 = Fu and, for each 0 ≤ µ ≤ µ1, Fµ belongs to L, is non-
decreasing, and on parts where it is not locally constant coincides with F .
Therefore, since LF = [ρ(Fl), ρ(Fu)] and ρ(Fµ) depends continuously on µ
(see, for instance, [1, Lemma 3.7.12]) there are µa < µb such that ρ(Fµa) = a
and ρ(Fµb) = b. By Lemma 3.7.16 and Proposition 3.7.17 of [1] there are
twist cycles (mod. 1) P and Q of F such that F |P = Fµa |P and F |Q = Fµb |Q.
We have ρ(P ) = a and ρ(Q) = b.

There are points Y ∈ Q and Z ∈ P such that Y < Z and (Y, Z)∩(P∪Q) =
∅. If i ∈ {1, 2} then b > pi/qi, so the graph of (Fµb)

qi − pi lies above the
diagonal. Therefore if T ∈ Q then F qi(T ) > T + pi. Similarly, if T ∈ P then
F qi(T ) < T +pi. In particular, if we set V = F q2(Y )−p2 then V > Y . Since
there are no points of P ∪Q between Y and Z, and P ∩Q = ∅, we get V > Z.
Moreover, F q2(Y ) = V +p2 > Z+p2, F q2(Z) < Z+p2, F q1(Z) < Y +p1 and
F q1(V ) > V + p1 > Z+ p1. Therefore Y < Z < V , the points Y, Z, V belong
to P ∪Q, [Z + p2, V + p2] ⊂ F q2([Y, Z]) and [Y + p1, Z + p1] ⊂ F q1([Z, V ]).
Hence, for each map G ∈ L such that G|P∪Q = F |P∪Q there exists a loop
of (P ∪ Q)-basic intervals of length q1 + q2, beginning at [Y, Z] and ending
at [Y + p1 + p2, Z + p1 + p2], and such that the q2-th interval of this loop
(if [Y, Z] is 0-th) is contained in [Z + p2, V + p2]. This loop gives us a cycle
(mod. 1) R of G with the properties listed in (i). Notice that the inequality
Gq2(X) > X + p2 is strict since Z /∈ R, and Z /∈ R holds because Z ∈ P and
the G-rotation numbers of P and R are different.

Now we prove (ii). Set F̃ = max(min(Fµb , F ), Fµa). Clearly, F̃ ∈ L.
Since Fµb |Q = F |Q and Fµa ≤ Fµb , we get F̃ |Q = F |Q. One can check
by inspection that for every x, y, z ∈ R, if x ≤ z then max(min(z, y), x) =
min(max(x, y), z). Therefore, for F̃ we also have the formula F̃ =
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min(max(Fµa , F ), Fµb). Then we get F̃ |P = F |P in a similar way as for
Q. Thus F̃ |P∪Q = F |P∪Q.

From Theorem 3.7.20 of [1] we have Fµa ≤ F̃ ≤ Fµb , so the rotation
interval of F̃ is contained in [a, b]. However, P and Q are cycles (mod. 1) of
F̃ , and they have rotation numbers a and b, respectively. Therefore L

F̃
=

[a, b].

Notice that the above lemma does not say what the period of R is. The
only thing we know is that this period divides q1 + q2. However, the exact
knowledge of the period of R is not necessary for proving the next two
lemmas.

Lemma 5.3. Under the assumptions of Lemma 5.2, assume additionally
that p1 = r1 +mr, p2 = r2 + kr, q1 = s1 +ms, q2 = s2 + ks, where k,m are
non-negative integers with m + k = n − 1, and n, r, s, r1, r2, s1, s2 are as in
the definition of αr/s and βr/s (in particular, s > 1). Then the cycle (mod. 1)
R from Lemma 5.2 is badly ordered.

Proof. Assume that R is not badly ordered. Then R has a block structure
over a twist cycle S of a map ϕ ∈ L. In view of Lemma 4.2 we see that
ρ
ϕ
(S) = ρ

F
(R) = (p1 + p2)/(q1 + q2) = (nr)/(ns) = r/s. Let Ri denote

the blocks of R from the definition of a block structure. Without loss of
generality we may assume that for each Y ∈ Ri and Z ∈ Rj we have Y < Z
if and only if i < j and that X ∈ R0 (where X is the point from Lemma 5.2).
Then, by Lemma 5.1, F (Ri) = Ri+r for each i ∈ Z. Hence, F q2(X) ∈ Rq2r.
On the other hand we note that, since F q2(X)− p2 > X, we have F q2(X) ∈
Ri + p2 with i ≥ 0. Consequently, Rq2r = Ri + p2. Since S has period s and
is twist, we have Ri + p2 = Ri+p2s. Thus, q2r = p2s + i which implies that
r/s ≥ p2/q2. But, since p2/q2 = (r2 + kr)/(s2 + ks) and r/s < r2/s2 we get
that r/s < p2/q2, a contradiction. Therefore R is badly ordered.

Lemma 5.4. Under the assumptions of Lemma 5.2, assume additionally
that p1 = q1r− 1 and p2 = q2r + 1 for some r ∈ Z. Then the cycle (mod. 1)
R from Lemma 5.2 is badly ordered.

Proof. Suppose that R is not badly ordered. Since p1 + p2 = (q1 + q2)r, the
rotation number of R is an integer, so by Lemmas 4.2 and 5.1, R has a block
structure over a cycle (mod. 1) of period 1. The diameter of each block has
to be smaller than 1. The block to which X belongs (where X is the point
from Lemma 5.2) consists of all the points of the form F n(X)− nr, n ∈ Z.
However, F q2(X)−q2r > X+p2−q2r = X+1, so the diameter of this block
is larger than 1, a contradiction. Therefore R is badly ordered.
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The last ingredient of the proof of Theorem C is the comparison of the
intervals appearing in the statement of Theorem A for various values of n.

Lemma 5.5. If either [αr/s(m′), βr/s(k′)] ⊂ [αr/s(m), βr/s(k)] or
[r − 1

m′ , r + 1
k′ ] ⊂ [r − 1

m
, r + 1

k
], then m′ + k′ ≥ m+ k.

Proof. As it was observed at the beginning of Section 3, the function αr/s is
increasing and βr/s is decreasing. Therefore if [αr/s(m′), βr/s(k′)] ⊂ [αr/s(m),
βr/s(k)] then m′ ≥ m and k′ ≥ k. Hence, m′ + k′ ≥ m+ k. The proof when
[r − 1

m′ , r + 1
k′ ] ⊂ [r − 1

m
, r + 1

k
] is similar.

Now we are ready to prove Theorem C.

Proof of Theorem C. If s > 1 then we set p1 = r1 + mr, p2 = r2 + kr,
q1 = s1 + ms and q2 = s2 + ks, where r1, r2, s1, s2 are as in the definition
of αr/s and βr/s. If s = 1 then we set q1 = m, q2 = k, p1 = q1r − 1 and
p2 = q2r+1. Notice that then [p1/q1, p2/q2] is the interval from the statement
of the theorem, contained in the interior of LF . Then we choose a, b ∈ Q
such that a < p1/q1 < p2/q2 < b and [a, b] ⊂ LF and we apply Lemma 5.2.
By Lemmas 5.3 (if s > 1) and 5.4 (if s = 1), the cycle (mod. 1) R that we
obtain, is badly ordered. It remains to prove that its period is q1 + q2 = ns.
This is not necessarily true under the assumptions we made up to now, but
we will show that with more careful choice of a and b it will hold.

The period of R divides ns, and since the rotation number of R is r/s with
r and s coprime, it is a multiple of s. Therefore it is ls for some l ≤ n. Look
at the map F̃ from Lemma 5.2. It has a cycle with the same properties as
R. By Theorem A, the rotation interval of F̃ (which is [a, b] by Lemma 5.2)
contains an interval of the form [αr/s(m′), βr/s(k′)] for some non-negative
integers m′, k′ with m′ + k′ = l − 1 if s > 1 and of the form [r − 1

m′ , r + 1
k′ ]

for some positive integers m′, k′ with m′ + k′ = l if s = 1. There is only
finitely many choices for l,m′, k′, so by choosing a sufficiently close to p1/q1

and b sufficiently close to p2/q2 we can eliminate those choices for which the
assumptions of Lemma 5.5 are not satisfied. Hence by Lemma 5.5, l ≥ n.
This means that l = n, so the period of R is ns.
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