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DILATIONS OF LIMIT ALGEBRAS AND
INTERPOLATING SPECTRUM

Allan P. Donsig

We show that limit algebras having interpolating spectrum
are characterized by the property that all locally contractive
representations have ∗-dilations. This extends a result for
digraph algebras by Davidson. It is an open question if such a
limit algebra is the limit of a direct system of digraph algebras
with interpolating digraphs, although a positive answer would
allow one to obtain one direction of our result directly from
Davidson’s. Instead, we give a ‘local’ construction of digraph
algebras with interpolating digraphs and use this to extend
representations.

Tree algebras (in the sense of Davidson, Paulsen, and Po-
wer) have been characterized by a commutant lifting prop-
erty among digraph algebras with interpolating digraphs. We
show that the analogous result holds for limit algebras, i.e.,
limit algebras with the analogous spectral condition are char-
acterized by the same commutant lifting property among the
limit algebras with interpolating spectrum.

Dilation theory for operator algebras has its origin in the Sz.-Nagy dilation
theorem, that every contractive operator on Hilbert space has a unitary
dilation [SN]. That is, given a contractive operator X on a Hilbert space
H, there a Hilbert space K containing H and a unitary operator U on K
so that Xn = PHUn|H for n ≥ 1. Ando’s theorem [An] extends this result
to two operators, i.e., any pair of commuting contractions has a unitary
dilation. This fails for three or more operators [Pa]. Closely related to
Ando’s theorem is the Sz.-Nagy-Foiaş commutant lifting theorem [SNF1],
that given a contraction T with unitary dilation U and a contraction X
commuting with T , there is a contractive dilation of X commuting with U .
For a unified treatment of these topics, see the monograph [SNF2].

From one point of view, these results are about dilating representations of
the disk algebra. By von Neumann’s inequality, each contraction T induces
a contractive representation of disk algebra, given by f 7→ f(T ). Conversely,
a contractive representation of disk algebra gives a contractive operator, the
image of the function f(z) = z. Thus, Sz.-Nagy’s theorem is equivalent to
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saying that every representation ρ of the disk algebra that is locally contrac-
tive, in the sense that ‖ρ(f)‖ ≤ 1 where f is the function f(z) = z, can be
dilated to a ∗-representation of the C∗-algebra C(T).

The seminal papers of Arveson [A1, A2] consider the general problem:
given a (nonselfadjoint) operator algebra, a subalgebra of a C∗-algebra, and
a representation of the operator algebra, when does the representation ex-
tend to a ∗-representation of the C∗-algebra? The necessary and sufficient
condition is that the original representation be completely contractive. To
define this, suppose ρ is the representation of the operator algebra A con-
tained in the C∗-algebra C. Then there is a unique C∗-norm on C ⊗Mn,
as Mn is finite dimensional, and this induces a norm on A ⊗Mn. Then ρ
is defined to be completely contractive if for all n, the maps ρ ⊗ 1Mn

are
contractive on A⊗Mn, with respect to this norm.

In [MM], McAsey and Muhly proved an analogue of Sz.-Nagy’s theo-
rem for analytic crossed products, which implies the theorem holds for finite
dimensional nest algebras, i.e., contractive representations of the upper tri-
angular matrix algebras admit dilations to the full matrix algebras. The
paper [PPW] shows that locally contractive representations of finite di-
mensional nest algebras admit dilations and extends the result to σ-weakly
continuous, contractive representations on infinite dimensional nest algebras,
by using the semi-discreteness property. Ando’s theorem and the Sz.-Nagy-
Foiaş commutant lifting theorem are proved for nest algebras in [PP1] using
similar methods. These results extend to CSL algebras under various con-
ditions on the CSL algebra: [PPS] shows that for finite dimensional CSL
algebras, a.k.a. digraph algebras, if the associated digraph is chordal, then all
locally contractive representations are completely contractive and so admit
dilations, and [DPP] shows that if the digraph is generated by a tree, then
the digraph algebra satisfies an appropriate analogue of Sz. Nagy-Foiaş com-
mutant lifting theorem. This last result extends to infinite dimensional com-
pletely distributive CSL algebras, provided the CSL algebra has properties
analogous to those of digraph algebras generated by a tree. This extension
is proved in much the same way as the extension argument of [PPW].

Recently, [D] has given necessary and sufficient conditions on the digraph
for a digraph algebra to have every locally contractive representation com-
pletely contractive. Digraphs satisfying these conditions, called interpolating
digraphs, include all chordal digraphs of course. Moreover, among all inter-
polating digraphs, those generated by trees are precisely the ones whose
associated algebras satisfy the analogue of the commutant lifting theorem.
Again, these results extend to suitable classes of completely distributive CSL
algebras.

A different analogue of the commutant lifting theorem is considered
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in [MS4] and characterized, for digraph algebras, by a ‘rooted’ tree property.
The papers [MS1-MS4] develop dilation theorems for various subalgebras
of groupoid C∗-algebras or of ‘coordinatized’ von Neumann algebras. This
framework is quite general and one usually needs some condition on the
subalgebra, such as triangularity, i.e., A∩A∗ is maximal abelian in the gen-
erated ∗-algebra, or that A+A∗ is dense, in the appropriate topology, in the
generated ∗-algebra.

Our focus is on limit algebras, algebras which are norm limits of digraph
algebras. These algebras are contained in AF C∗-algebras and fit naturally
into the framework of groupoid C∗-algebras. The support of the operator
algebra in the groupoid can be realized as a topological binary relation, a
natural generalization of the digraph associated to digraph algebras. This
topological relation, called the spectrum, is a complete invariant for trian-
gular algebras, up to isometric isomorphism [P1]. The monograph [P3] is a
general reference for limit algebras.

In [T], Thelwall showed that a limit algebra with chordal spectrum can
be written as a limit of digraph algebras with chordal digraphs. By applying
the results of [PPW], it follows that every locally contractive representation
of a limit algebra with chordal spectrum is completely contractive.

In this paper, we show that a limit algebra has interpolating spectrum
if and only if every locally contractive representation is completely contrac-
tive. Unlike Thelwall’s result, we do not show that a limit algebra with
interpolating spectrum is the limit of a direct system of digraph algebras
with interpolating digraph. Thus, we cannot directly apply the conclusions
of [D]. Instead, we extend representations ‘locally’, adapting Thelwall’s work
to obtain digraph algebras with interpolating digraphs, and then using the
structure of Davidson’s ‘sloppy unitary dilation’.

The second notable result is that, just as finite dimensional tree algebras
are characterized by a commutant lifting property among digraph algebras
with interpolating digraphs, limit algebras with the analogous spectral con-
dition are characterized by the same property among limit algebras with
interpolating spectrum. This result follows from combining the interpolat-
ing spectrum result, a theorem of [PP2] relating tensor products and the
commutant lifting theorem, and a connection between interpolating digraphs
and tensor products of tree algebras established in [D].

Much of this work was done at Lancaster University and I would like
to thank the Department of Mathematics & Statistics for its hospitality; I
would like to thank Steve Power for helpful conversations and Ken Davidson
for his comments on a preliminary version of this paper.
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1. Limit Algebras and the Spectrum.

In this section, we relate the properties of finite-dimensional subalgebras to
properties of the limit algebra and of the spectrum. A digraph algebra, or
finite dimensional CSL algebra, is a subalgebra of the n × n matrices over
the complex numbers that contains the diagonal matrices. Given a digraph
algebra B, we use G(B) to denote associated digraph, i.e., the graph with
vertices the diagonal matrix units eii and an edge (eii, ejj) in the digraph if
and only if the matrix unit eji is in B.

Recall that a canonical masa D is a maximal abelian selfadjoint subalgebra
(masa) of C so that there is a nested sequence of finite dimensional C∗-
algebras (Ci) so that C = ∪iCi and for all i, Di = Ci ∩ D, is a masa in Ci
satisfying D = ∪iDi and

NDi(Ci) ⊆ NDi+1(Ci+1),

where NY (X) is{
x ∈ X : x is a partial isometry and xyx∗, x∗yx ∈ Y for all y ∈ Y }.

In general, we call A ⊂ C a regular subalgebra if D = A∩D is a masa in A
and ND(A) ⊆ ND(C).

We assume that A is a subalgebra of an AF C∗-algebra C and that A
contains a canonical masa D. This implies that A is a regular subalgebra
of C and also that the subalgebras Ci ∩ A are digraph algebras and regular
subalgebras of A.

Henceforth, let X be the maximal ideal space of D and for p a projection
in D, let p̂ denote {x ∈ X |x(p) = 1}. Each c ∈ ND(C) induces a partial
homeomorphism hc, from ĉc∗ to ĉ∗c, where hc(x) is d 7→ x(cdc∗). If ĉ denotes
the graph of hc in X ×X, then we can define

R(A) =
⋃{

ĉ : c ∈ ND(A)
}
.

We topologize R(A) by using as a basis of open sets ĉ for c ∈ ND(A). There
are partially defined maps α̃i : G(Ai+1)→ G(Ai), given by sending an edge
(a, b) to an edge (c, d) if the matrix unit associated to (a, b) appears in the
sum of matrix units that is the image of the matrix unit associated to (c, d).
With these maps we can write R(A) as an inverse limit, namely

R(A) = lim←−(G(Ai), α̃i).

We call R(A) the spectrum of A. It is a complete invariant for the pair
(A,D), up to isometric isomorphism; see [P1] or [P3, Chapter 7].
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Suppose we write A as lim−→(Aj, αj) and choose matrix units systems for
each Aj so that matrix units in Aj are sums of matrix units in Aj+1. Then
we can describe the spectrum of A in terms of the matrix unit systems,
which is convenient for computations with concrete examples; see [HP]
or [P3, Chapter 7]. Specifically, R(A) is the union of ê as e runs over the
matrix units in all the Aj and the topology has as a basis the set of ê as e
runs over the matrix units

Definition 1.1. Suppose Y is a finite subset of X. We call a finite-
dimensional regular subalgebra of A, say B, a covering algebra for R(A)|Y×Y
if

1. there is an isomorphism of digraphs φ : G(B)→ R(A)|Y×Y , and
2. we can identify G(B) with matrix units of B so that φ(e) ∈ ê for

e ∈ G(B).

Covering algebras are far from being unique. Indeed, suppose B ⊂ A is a
covering algebra for R(A)|Y×Y , p ∈ B is a minimal diagonal projection and
y0 ∈ Y satisfies φ(p) = (y0, y0). For each clopen set S with y0 ∈ S ⊂ p̂, we
can replace p with the characteristic function of S and similarly compress
the other matrix units of B to obtain a new covering algebra. In particular,
if Y ⊂ Z ⊂ X, then it does not follow that a covering algebra for R(A)|Y×Y
is a subalgebra of a covering algebra for R(A)|Z×Z .

Lemma 1.2. If Y is a finite subset of X, then we can find a covering
algebra for R(A)|Y×Y .

Conversely, if B is a regular digraph subalgebra of A, then there is a finite
subset of X, call it Y , so that there is an injection from G(B) to R(A)|Y×Y .

Proof. Let A = lim−→(Ai, αi). As usual, we identify the Ai with subalgebras of
A when convenient.

Since the topology in R(A) separates points, we can find a k so that for
each diagonal matrix unit e in Ak, ê contains at most one point of Y . By
increasing k, we can arrange that each point of R(A)|Y×Y is in the graph of
some matrix unit in Ak. If we let B ⊂ Ak be the span of the matrix units
in Ak that contain a point in R(A)|Y×Y then it is easy to check that G(B)
is isomorphic to R(A)|Y×Y and that the edge associated to a matrix unit
in B is sent to a point in the graph of that matrix unit. Being a span of
normalizing matrix units, B is a regular digraph subalgebra of A.

Conversely, if B is a regular digraph subalgebra of A, then there is a
system of normalizing matrix units {eij} for C∗(B) so that B is the span of
the matrix units that it contains. Let y ∈ R(A) be an element of ê11 and let

Y = {hc(y) : c = e1j for some j with ejj ∈ B}.
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Clearly, there is a bijection between Y and the set of minimal diagonal
projections of B. It follows that there is an injection from G(B) into
R(A)|Y×Y .

2. Interpolating Digraphs and Algebras.

After recalling the definition of interpolating digraphs and Davidson’s char-
acterization of digraph algebras with interpolating digraphs, we prove the
main result, an analogous characterization for limit algebras with interpo-
lating spectrum.

The 2k-cycle algebras and their digraphs, D2k, are fundamental examples,
both for CSL algebras [GHL] and for limit algebras [P2, DoP]. The digraph
D2k has 2k vertices, {ui, vi | 1 ≤ i ≤ k}, with edges from ui to vi and to
vi+1 mod k, i.e.,

A(D4) =


∗ ∗ ∗
∗ ∗ ∗
∗
∗

 A(D2k) =



∗ ∗ ∗
∗ ∗ ∗

. . . ∗ . . .

∗ . . . ∗
∗ ∗ ∗
∗
∗

. . .
∗
∗



.

Let ϕk : A(D2k)→ A(D2k) be the endomorphism which sends each matrix
unit to itself, except the (1, k+ 1) matrix unit, which is sent to its negative;
these maps are locally contractive but not contractive, and so have no ∗-
dilation [D, DP].

By a subgraph of a digraph G, we mean a subset of the vertices of G,
together with all edges of G between these vertices. Recall that a digraph
is chordal if it does not contain a subgraph isomorphic to D2k for k ≥ 2,
i.e., every cycle in the digraph has a chord. Also, if G has a subgraph
isomorphic to D4, then call a vertex e an interpolating vertex if every edge
in the subgraph is a composition of edges through e, i.e., adding e gives the
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digraph for the following algebra:
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
e ∗ ∗
∗
∗

 .

Definition 2.1 [D]. A digraph G is called interpolating if:
1. Every subgraph of G isomorphic to D4 has an interpolating vertex.
2. G does not contain a subgraph isomorphic to D2k for k ≥ 3.

Clearly, all chordal digraphs are interpolating. The importance of inter-
polating digraphs is in the following theorem. For a digraph algebra A, a
representation ρ : A→ B(H) on a separable Hilbert space H is locally con-
tractive if ‖ρ(e)‖ ≤ 1 for all matrix units e ∈ A.

Theorem 2.2 [D, Corollary 3.5]. Let A be a digraph algebra. The fol-
lowing are equivalent:

1. A has an interpolating digraph,
2. every locally contractive endomorphism of A is contractive, and
3. every locally contractive representation has a unitary ∗-dilation.

If we think of the spectrum as the generalization of digraph for limit
algebras, then our result is an extension of Davidson’s.

Definition 2.3. LetA be a subalgebra of an AF C∗-algebra that contains a
canonical masa. We say R(A) is interpolating if for any finite subset Y ⊂ X,
R(A)|Y×Y is never isomorphic to D2n, n ≥ 3 and if it is isomorphic to D4,
then there is an interpolating vertex in X.

Together with Lemma 1.2, the next lemma shows that a limit algebra with
interpolating spectrum contains many digraph algebras with interpolating
digraphs.

Lemma 2.4. Let A be a subalgebra of an AF C∗-algebra that contains a
canonical masa. If R(A) is interpolating and Y ⊂ X is finite, then there is
a finite set Z with Y ⊂ Z ⊂ X so that R(A)|Z×Z is interpolating.

Proof. Given that R(A) is interpolating, the only way that R(A)|Y×Y can
fail to be interpolating is if it contains some subgraph isomorphic to D4 with-
out containing an interpolating vertex. The following argument is adapted
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from [D, pp. 215-216]; the point is that we will add the needed interpolating
vertices so that any new 4-cycles also have interpolating vertices.

Claim 1. If B,C ⊂ Y with (b, c) ∈ R(A) for all b ∈ B and all c ∈ C, then
there is g ∈ Y with (b, g), (g, c) ∈ R(A) for all b ∈ B and all c ∈ C.

We prove the claim using induction on the sum of the cardinalities of B
and C. If B or C is a singleton, then we can set g equal to that single element;
if B and C both have cardinality two, then by the assumption on R(A), a
suitable g exists. Suppose now B = {b1, . . . , bn} and C = {c1, . . . , cm}. By
induction, we can find an interpolating point g1 for the sets {b1, . . . , bn−1}
and C. Again by induction, there is an interpolating point g for the sets
{g1, bn} and C. It is easy to check that g has the required properties, proving
the claim.

Let S be the collection of maximal pairs of subsets of Y , (B,C), with
(b, c) ∈ R(A) for all b ∈ B, c ∈ C. Clearly, S is a finite collection,
{S1, . . . , Sm}. Letting S1 = (B1, C1), Claim 1 implies that there is a g1 ∈ X
so that (b, g1), (g1, c) ∈ R(A) for all b ∈ B1, c ∈ C1. Next, we enlarge each
Si = (Bi, Ci), i > 1, as follows. If (g1, c) ∈ R(A) for all c ∈ Ci, then we add
g1 to Bi. If (b, g1) ∈ R(A) for all b ∈ Bi, then we add g1 to Ci. Otherwise,
Si is left unchanged. Note that we may add g1 to both Bi and Ci and that
the new sets are maximal pairs of subsets of Y ∪ {g1}.

Continuing in this way for the (possibly modified) S2, . . . , Sm, we obtain
g2, . . . , gm, and we set Z = Y ∪ {g1, . . . gm}. Note that we do not try to add
gj to Si, for i ≤ j.

Claim 2. R(A)|Z×Z is interpolating.

First, we show that (gi, gj) ∈ R(A) if and only if the (original) sets satisfy
Bi ⊂ Bj. By the maximality of Si and the choice of gi, it follows that
Bi = {b ∈ Y : (b, gi) ∈ R(A)}. If (gi, gj) ∈ R(A), then by transitivity

Bi = {b ∈ Y : (b, gi) ∈ R(A)} ⊂ {b ∈ Y : (b, gj) ∈ R(A)} = Bj.

Conversely, if Bi ⊂ Bj then by maximality Ci ⊃ Cj and so either gj has
been added to Bi or gi has been added to Cj. In either case, (gi, gj) ∈ R(A).

To prove the claim, suppose that R(A)|T×T is a 4-cycle, i.e., T = {x1, x2,
y1, y2} ⊆ Z with (xi, yj) ∈ R(A), i, j ∈ {1, 2}. If xi ∈ Y , let Ei = {xi}
and if xi = gj for some j, let Ei = Bj. If yi ∈ Y , let Fi = {yi} and if
yi = gj, let Fi = Cj. Then (E1 ∪ E2, F1 ∪ F2) is contained in some maximal
pair (Bk, Ck) in S. It is straightforward to verify that gk is interpolating for
R(A)|T×T .
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This lemma does not imply that if a limit algebra has interpolating spec-
trum, then a finite-dimensional regular subalgebra is contained in such a
subalgebra with interpolating spectrum. Indeed, this statement is equiva-
lent to showing that every limit algebra with interpolating spectrum that
has a presentation using digraph algebras with interpolating digraphs. How-
ever, if we work with finitely many algebras instead of only one, then the
corresponding statement is true and this is enough to build the required
representation.

Lemma 2.5. Suppose that A is a subalgebra of an AF C∗-algebra con-
taining a canonical masa D, that R(A) is interpolating, and that S ⊂ A
is a finite-dimensional regular subalgebra. Then there are finite-dimensional
regular subalgebras B1, . . . , Bm so that each G(Bi) is interpolating and the
D-bimodule generated by B1, . . . , Bm contains S. Moreover, there are or-
thogonal projections P1, . . . , Pm in the commutant of S so that PiS ⊆ Bi.
Proof. We suppose that G(S) is connected; the general case then follows by
considering the connected components of G(S).

Fix a diagonal matrix unit in S, call it e. For each point x ∈ ê ⊆ X, let

Y (x) = {y ∈ X : (x, y) or (y, x) ∈ f̂ for some matrix unit f ∈ S}.
As R(A) is interpolating, by Lemma 2.4, there is a finite set Z(x) containing
Y (x) so that R(A)|Z(x)×Z(x) is interpolating. By Lemma 1.2, there is a
covering algebra, call it A(e), for each R(A)|Z(x)×Z(x). Let O(x) be the
graph of the matrix unit in A(x) that covers the point (x, x) ∈ ê. Then the
set {O(x) : x ∈ ê} is an open cover of ê and by the compactness of ê, it
admits a finite subcover, given by x1, . . . , xm, say. The bimodule generated
by A(x1), . . . , A(xm) includes e and all the other matrix units of S and by
construction each A(xi) has an interpolating digraph. Thus the A(xi) are
almost the required subalgebras.

If the O(xi) overlap, then we can split the algebras A(xi) so the O(xi)
are either disjoint or identical. Eliminating all but one algebra among those
with identical sets O(xi) and changing m if necessary, we have the required
algebras A(x1), . . . , A(xm).

Let Qi be the projection in Bi with graph O(xi). Let Pi be the sum of
f∗Qif over all f matrix units of C∗(S) with f∗f = e. Clearly, Pi commutes
with each matrix unit of S and so is in the commutant of S. By construction,
Pif ∈ A(xi) for each matrix unit f of S, so PiS ⊆ A(xi), as required. Since
the O(xi) are disjoint, it follows that the P (xi) are orthogonal.

If ρ is a representation of a digraph algebra A, then ρ being locally con-
tractive is equivalent to having ‖ρ(e)‖ ≤ 1 for all e ∈ ND(A) for some masa
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D ⊆ A. This motivates the following definition.

Definition 2.6. Let A be a subalgebra of an AF C∗-algebra so that A
contains a canonical masa D. A representation ρ : A → B(H) on a separable
Hilbert space H is locally contractive if, for all e ∈ ND(A),

‖ρ(e)‖ ≤ 1.

A major tool in the proof of Theorem 2.2 and an essential ingredient
here is the vertex elimination scheme for anti-symmetric interpolating di-
graphs [D, Corollary 2.5]. That is, for an anti-symmetric interpolating di-
graph, there is a vertex so that deleting this vertex, and all edges involving
this vertex, gives an interpolating sub-digraph. Moreover, this vertex has
at most one immediate successor and at most one immediate predecessor.
The result is that one can successively delete such vertices until one has the
empty graph and so readily prove theorems by induction on the number of
vertices.

We will also need the notion of a sloppy unitary dilation from [D], which
is used there in proving Theorem 2.2. The sloppy unitary dilation of a
contraction T ∈ B(H) is a unitary U ∈ B(K) where K = H+ ⊕H⊕H− and
H−,H+ are both countable direct sums of copies of H and where U has the
form

U =

X A B
0 T C
0 0 Y ∗


with

1. X, Y are isomorphic to S ⊗ IH where S is the unilateral shift,
2. the range of A has infinite codimension in (I −XX∗)H+, and
3. the domain of C has infinite codimension in (I − Y Y ∗)H−.

If V is another sloppy unitary dilation of T , then there is a unitary W =
W+ ⊕ I ⊕W− with WVW ∗ = U [D, Lemma 3.1].

Theorem 2.7. Let A be a unital subalgebra of an AF C∗-algebra that
contains a canonical masa D. Then the spectrum, R(A), is interpolating,
if and only if, every locally contractive representation of A has a unitary
∗-dilation.

Proof. Let X be the maximal ideal space of D; since A is unital, X is
compact.

(=⇒) Fix a presentation for A, i.e., A = lim−→(Ai, αi).
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Suppose ρ : A → B(H) is a locally contractive representation. If ρ is not
completely contractive, then a straightforward argument using the density
of ∪Ai in A shows that there is some n so that ρ|An is not completely
contractive. Thus, it suffices to show that for each n, ρ|An has a unitary
∗-dilation.

Fix n. By Lemma 2.5, we have regular subalgebras B1, . . . , Bm, with
each G(Bi) interpolating and An contained in the bimodule generated by
B1, . . . , Bm. There is some k so that Bi ⊆ Ak for all i. By possibly splitting
each Bi into several isomorphic algebras, we may assume that the matrix
units of each Bi are matrix units of Ak.

Next, we put ρ|Ak into a standard form. Let {eij} be the matrix units
of C∗(Ak). We may assume that each ρ(eii) is a projection of infinite rank
by adding, if necessary, infinitely many copies of the identity representation.
Thus we can identify ρ(eii)H for all i, call it H′, and so may regard ρ|Ak as
a representation on Ml(B(H′)) for some l.

As ρ is locally contractive, each ρ(eij) is a contraction from the j-th
copy of H′ to i-th copy. By Theorem 2.2, each ρ|Bi can be dilated to a
∗-representation of C∗(Bi), call it σi. Moreover, these dilations have a com-
mon form. Let K′ be the `2 direct sum of countably many copies of H′ and
identify H′ with one of these copies, so that H′ ⊂ K′. Then we may assume
that the all ∗-dilations have a common range, namely Ml(B(K′)). Each ma-
trix unit of C∗(Ak) is in at most one of C∗(B1), . . . ,C∗(Bm), and if eij is in
one of these algebras, then its image is a unitary sending the j-th copy of K′
to the i-th copy.

Recall, by Lemma 2.5 that we have orthogonal projections P1, . . . , Pm in
the commutant of An with PiAn ⊆ Bi for each i. Since Pi are pairwise
orthogonal, so are their images, the ρ(Pi). Then we can define σ : An →
Ml(B(K′)) by

σ(a) =
m∑
i=1

ρ(Pi)σi(Pia)ρ(Pi).

The map σ is contractive, as an element a is the direct sum of the Pia as i
runs from 1 to m and the ρ(Pi) are pairwise orthogonal.

Finally, σ extends to a ∗-representation on C∗(A), if and only if, the partial
isometries σ(e), e a matrix unit, satisfy the same relations as the correspond-
ing matrix units. As each σi extends to a ∗-representation, the σi(Pie) do
satisfy the required relations. As the ρ(Pi) are pairwise orthogonal, each
σ(e) is the direct sum of the the σi(Pie) and so also satisfies these relations.

(⇐=) We suppose that R(A) is not interpolating and construct a locally
contractive representation of A that is not contractive and hence has no ∗-
dilation; this argument is an elaboration on one direction of [D, Theorem 2.2].
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By our supposition, there is a finite subset of X, say Y , so that R(A)|Y×Y
is a 4-cycle without an interpolating vertex in R(A), or is a 2k-cycle, k ≥ 3.
Suppose Y is {u1, . . . , uk, v1, . . . vk}, k ≥ 2, where (ui, vi) and (ui, vi+1) are
in R(A) (and vk+1 = v1). For each l, define Ui for i = 1, . . . , k by

Ui = {y ∈ X | (ui, y), (y, ui) ∈ R(A)},

and Vj similarly. For i, j = 1, . . . , k, let

Iij = {y ∈ X | (ui, y), (y, vj) ∈ R(A) and y /∈ Ui, Vi}.

Finally, we set H = {y ∈ X | (ui, y), (y, vj) for some i, j}, i.e., the union of
the Ui, the Vj and the Iij.

Note that H is countable, so we can introduce a separable Hilbert space
H with orthonormal basis {bh : h ∈ H}. We define a map φ : R(A)|H×H →
B(H) given by

φ(x, y) = α(x, y)bxb∗y,

where bxb∗y is the rank one operator z 7→ (z, by)bx and α is given by

α(a, b) =

{
−1 if (a, b) ∈ (U1 ∪ (I11 ∩ I1k))× (V1 ∪ (I11 \ I1k)),

1 otherwise.

It is straightforward to check that α(a, b)α(b, c) = α(a, c) and hence
φ(a, b)φ(b, c) = φ(a, c). Remark 5.6 below motivates this definition. If
H = Y , then φ is ϕk, the locally contractive but not completely contractive
representation defined at the start of this section. We can extend φ to R(A)
by sending elements outside R(A)|H×H to zero.

To define a representation Φ: A → B(H), we first define Φ on ND(A) by
sending such an element e to

Φ(e) = wot–
∑

(x, y) ∈ ê
φ(x, y).

As each φ(x, y) has orthogonal initial and final projections, this sum does
indeed converge in the weak operator topology. Being a partial isometry,
Φ(e) has norm at most 1.

Extend Φ by linearity to linear combinations of elements of ND(A). It
is not hard to check that this map is bounded and so we may extend by
continuity to obtain a locally contractive representation.

It remains only to show that Φ is not contractive. By Lemma 1.2, we
can find a covering algebra for R(A)|Y×Y , say B, with G(B) = D2k. As
the graph of each matrix unit contains a point of R(A)|Y×Y , it follows that
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compressing Φ|B by P =
∑
y∈Y byb

∗
y gives a representation isomorphic to ϕ2k.

Hence Φ|B is not contractive.

Remark 2.8. An example is the best motivation for the definition of the
maps α and φ in the previous proof. Suppose that k = 2 and A1 is the
following matrix algebra 

u1 ∗ ∗ ∗ ∗
u2 ∗ ∗ ∗
∗ ∗
∗ ∗ ∗
v1

v2


where we suppose that Y = {u1, u2, v1, v2}. To obtain an extension of ϕ2,
the (1,5) matrix unit must go to its negative. As the map is multiplicative,
for each of the pairs of matrix units, (1,3), (3,5) and (1,4), (4,5), one of the
pair must go to its negative. We send the (1, 3) and (4, 5) matrix units to
their negatives, corresponding to the sets U1 × (I11 \ I1k) and (I11∩I1k)× V1

in the definition of α.

Example 2.9. Another way one might prove the first direction of Theo-
rem 2.7 is to first show that an interpolating spectrum implies the algebra
has a presentation using digraph algebras with interpolating digraphs. It
would then be straightforward to apply the characterization for digraph al-
gebras to obtain the result. Indeed, replacing interpolating with chordal,
this is the method that Thelwall uses in showing chordal spectrum implies
contractive representations are completely contractive.

However, it is unclear how to construct the required presentation. The
essential step is, given a limit algebra A with interpolating spectrum and
a finite dimensional regular subalgebra A1 to construct another finite di-
mensional regular subalgebra A2 with A1 ⊂ A2 and G(A2) interpolating.
Lemma 2.5 is insufficient, as the algebra generated by the algebras B1, . . . ,
Bm of the lemma need not be interpolating.

Concretely, consider

A1 =



∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗
∗
∗


, and A2 =

D S12 S13

0 S22 S23

0 0 D



where each D is the 12× 12 diagonal matrices, S22 is a 4× 4 matrix and the
two-by-two block of Sij’s is given by the ∗-diagram in the following matrix.
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The inclusion from A1 to A2 is given by sending the (1,2) block of A1 to the
(1,3) block of A2, precisely, to the numbered images in the matrix. Then the
(1,1) and (2,2) blocks of A1 are sent to the (1,1) and (3,3) blocks of A2, so
that the resulting map from A1 to A2 is a homomorphism, albeit non-unital.



∗ ∗ 1 1 1 �∗ ∗ �∗ ∗
∗ 1 1 ∗ ∗
∗ 1 1 ∗ ∗
∗ ∗ 2 2 2 �∗ ∗ �∗ ∗
∗ 2 2 ∗ ∗
∗ 2 2 ∗ ∗

∗ ∗�∗ ∗ �∗ ∗ 3 3 3
∗ ∗ ∗ 3 3

∗ ∗ ∗ 3 3
∗ ∗ �∗ ∗ �∗ ∗ 4 4 4
∗ ∗ ∗ 4 4
∗ ∗ ∗ 4 4

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗



Observe that each of the 4-cycle of partial isometries in A1,

e1,4, e1,5, e2,5, e2,4 and e1,4, e1,6, e3,6, e3,4,

is a sum of four 4-cycles in A2 and each of these 4-cycles in A2 has an inter-
polating point. However, the algebra generated by these 4-cycles and their
interpolating points includes new 4-cycles that do not have interpolating
points, namely the two boxed 4-cycles in the diagram. What one needs is
some new construction that either does not introduce these new 4-cycles, or
more likely, also constructs interpolating points for them.

3. Tree Algebras.

We characterize, among the limit algebras with interpolating spectrum, those
which have a commutant lifting property or satisfy Ando’s theorem. We
say an algebra has the commutant lifting property if given a contractive
representation ρ and a contraction X commuting with the range of ρ, there
is a ∗-dilation π and a unitary U commuting with the range of π so that
X = PHU |H. An algebra satisfies Ando’s theorem if given a contractive
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representation of the algebra and a commuting representation of the disk
algebra, then there are commuting ∗-dilations; this is equivalent to a stronger
commutant lifting property, where U is required to be a power dilation of
X.

Recall that if A is a digraph algebra, then the reduced digraph associated
to a digraph algebra A, denoted Gr(A), is G(A)/ ≈ where pi ≈ pj if (pi, pj)
and (pj, pi) are edges of G(A). This digraph, Gr(A), is a partial order on
{p1, . . . , pn}/ ≈. The advantage of the reduced digraph is that its vertices
correspond to the summands of A ∩ A∗. Thus, Gr(A) gives the non-self-
adjoint structure of A whereas G(A) is also encumbered with information
about A ∩A∗.

Definition 3.1. A digraph algebra A is a tree algebra if each connected
component of Gr(A) is generated by a bilateral tree, a bilateral tree being
an undirected finite tree in the usual sense with arbitrary directions specified
for each edge.

In [DPP], tree algebras are shown to possess the commutant lifting prop-
erty and to satisfy Ando’s theorem. Further, in [D] it is shown that, for A
a digraph algebra with interpolating digraph, A is a tree algebra if and only
if it has the commutant lifting property.

The next theorem gives a local characterization of tree algebras, in terms
of the associated digraph. In particular, tree algebras have interpolating
digraphs.

Theorem 3.2. [DPP] For A a digraph algebra, A is a tree algebra if and
only if G(A) satisfies the following conditions:

1. If a subgraph of G(A) contains the following digraph, then it also con-
tains an edge between f1 and f2.

I

�

�

I
f1 f2

g

e

2. Every subgraph of G(A) isomorphic to D4 has an interpolating vertex,
and

3. G(A) does not contain a subgraph isomorphic to D2k for k ≥ 3.

Since the three conditions above are all local, we can extend them to the
spectrum of a limit algebra in the same way that we defined interpolating
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spectrum.

Definition 3.3. Let A be a subalgebra of an AF C∗-algebra that contains
a canonical masa. We say R(A) is locally generated by trees if for any finite
subset Y ⊂ X, the directed graph R(A)|Y×Y satisfies the three conditions
of Theorem 3.2.

Since R(A) is infinite, the conditions of Theorem 3.2 do not imply that
each connected component of R(A) is generated by a single tree; hence our
somewhat awkward term for a spectrum satisfying these conditions.

Recall from [PP2] the minimal operator norm on a tensor product of two
operator algebras. Given completely isometric isomorphisms τi : Ai → B(Hi)
for i = 1, 2, we have a norm on the algebraic tensor product of A1 and A2,
defined by

‖a1 ⊗ a2‖ = ‖τ1(a1)⊗ τ2(a2)‖B(H1⊗H2).

By [PP2, Theorem 2.2], this norm is independent of the choice of τ1 and τ2

and equals the spatial operator norm. In general this norm is not minimal
among the complete operator cross-norms [ER]. Since we will have no cause
to refer to other tensor product norms, here A1⊗A2 will always refer to the
completion of the algebraic tensor product with respect to this norm.

Our interest in this operator norm is motivated by the following pair of
results. Given algebras A1 and A2, and representations τi : Ai → B(H) so
that τ1(a1)τ2(a2) = τ2(a2)τ1(a1) for all a1 ∈ A1 and a2 ∈ A2, we use τ1 � τ2

to denote the representation of A1 ⊗A2 on H given by

(τ1 � τ2)(a1 ⊗ a2) = τ1(a1)⊗ τ2(a2).

A unital operator algebra A has the commutant lifting property if and only
if for all pairs of commuting completely contractive representations, τ1 of A
and τ2 of T2, the representation τ1 � τ2 of A ⊗ T2 has a ∗-dilation [PP2,
Propositions 2.5 and 2.6]. An operator algebra A satisfies Ando’s theorem
if and only if for all n and for all pairs of commuting completely contractive
representations, τ1 of A and τ2 of Tn, the representation τ1 � τ2 of A ⊗ Tn
has a ∗-dilation [PP2, Theorem 3.2].

If Ai, Bi are operator algebras and Ai is a subalgebra of Bi for i = 1, 2,
then the natural inclusion of A1 ⊗ A2 into B1 ⊗ B2 is a complete isome-
try [PP2, Corollary 2.3]. In particular, if A = lim−→(Ai, αi) then as the αi are
∗-extendible, they are complete isometries and so the injection

Ai ⊗ Tn αi⊗Id−−−→ Ai+1 ⊗ Tn
is a complete isometry (and hence ∗-extendible). This map is easily seen
to be regular and so we have a limit algebra lim−→(Ai ⊗ Tn, αi ⊗ Id), which is
isomorphic to A⊗ Tn.
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With these results, we can now prove the main theorem of this section.
The arguments are adaptations of those in [D, Section 4].

Theorem 3.4. Let A be a unital subalgebra of an AF C∗-algebra that
contains a canonical masa D and suppose that R(A) is interpolating. The
following are equivalent:

1. The spectrum, R(A), is locally generated by trees,
2. A satisfies Ando’s theorem, and
3. A has the commutant lifting property.

Proof. (1 =⇒ 2) To show A satisfies Ando’s theorem, it suffices to show
that for every n we can lift a representation τ1�τ2 of A⊗Tn. By the previous
discussion,

A⊗ Tn = lim−→(Ai ⊗ Tn, αi ⊗ Id),

and so R(A⊗Tn) = R(A)⊗G(Tn). Lemma 4.4 and Theorem 4.6 of [D] show
that a digraph is a tree digraph if and only if its tensor product with each
G(Tn) is interpolating. It follows that R(A⊗Tn) is interpolating if and only
if R(A) is locally generated by trees. By Theorem 2.7, each representation
of A⊗ Tn, and in particular, each representation of the form τ1 � τ2, has a
∗-dilation.

(2 =⇒ 3) This is immediate from the formulation above of both conditions
in terms of tensor products.

(3 =⇒ 1) Suppose the spectrum is not locally generated by trees.
In the proof of [D, Theorem 4.6], Davidson shows that for a digraph alge-

bra A with interpolating digraph, if A is not a tree algebra, then the digraph
of A ⊗ T2 is not interpolating. It follows that if the spectrum of A is not
locally generated by trees, then the spectrum of A⊗ T2 is not interpolating.

Hence by Theorem 2.7, A ⊗ T2 has a locally contractive representation,
say τ , that does not have a ∗-dilation. Let λ1 be the inclusion of A in A⊗T2

and λ2 be the inclusion of T2 in A⊗ T2. Then letting τi = τ ◦ λi for i = 1, 2,
we have τ1 � τ2 = τ .

Since A and T2 have interpolating spectrum, the locally contractive rep-
resentations τ1 and τ2 are completely contractive. Thus we have a repre-
sentation of A ⊗ T2 of the form τ1 � τ2 that has no ∗-dilation. By Paulsen
and Power’s result mentioned above, it follows that A does not have the
commutant lifting property.
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