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HYPERBOLIC REINHARDT DOMAINS IN C2

WITH NONCOMPACT AUTOMORPHISM GROUP

A.V. Isaev and S.G. Krantz

We give an explicit description of hyperbolic Reinhardt
domains D ⊂ C2 such that: (i) D has Ck-smooth boundary for
some k ≥ 1, (ii) D intersects at least one of the coordinate
complex lines {z1 = 0}, {z2 = 0}, and (iii) D has noncompact
automorphism group. We also give an example that explains
why such a setting is natural for the case of hyperbolic do-
mains and examples that indicate that the situation in Cn for
n ≥ 3 is essentially more complicated than that in C2.

0. Introduction and Results.

Let D be a Kobayashi-hyperbolic domain in Cn, n ≥ 2 (see [Ko] for termi-
nology). Denote by Aut(D) the group of holomorphic automorphisms of D.
The group Aut(D) with the topology of uniform convergence on compact
subsets of D (the compact-open topology) is in fact a Lie group (see [Ko]).

The present paper is motivated by results characterizing a domain by its
automorphism group (see e.g. [R], [W], [BP1], [BP2]). More precisely, we
assume that Aut(D) is noncompact in the compact-open topology. Most
of the known results deal with the case of bounded domains (see, however,
[B], [G]). In the present paper we consider possibly unbounded hyperbolic
domains. Our thesis is that (unbounded) hyperbolic domains have some of
the geometric characteristics of bounded domains. In particular, they are
tractable for our studies. But they also exhibit new automorphism group
action phenomena, and are therefore of special interest. We present some of
these new features in this work.

Here we assume that D is a Reinhardt domain, i.e. a domain which the
standard action of the n-dimensional torus Tn on Cn,

(1) zj 7→ eiφjzj, φj ∈ R, j = 1, . . . , n,

leaves invariant. In [FIK] we gave a complete classification of smoothly
bounded Reinhardt domains with noncompact automorphism group, and in
[IK] we extended this result to Reinhardt domains with boundary of any
finite smoothness Ck, k ≥ 1. One of the main steps for obtaining these
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classifications was to show that the noncompactness of Aut(D) is equivalent
to that of Aut0(D), the connected component of the identity in Aut(D). We
will now explain this point in more detail, as it will provide some motivation
for the results of the present paper.

Following [Sh], we denote by Autalg((C∗)n) the group of algebraic auto-
morphisms of (C∗)n, i.e. the group of mappings of the form

(2) zi 7→ λiz
ai1
1 . . . zainn , i = 1, . . . , n,

where λi ∈ C∗ ≡ C \ {0}, aij ∈ Z, and det(aij) = ±1. For a hyper-
bolic Reinhardt domain D ⊂ Cn, denote by Autalg(D) the subgroup of
Aut(D) that consists of algebraic automorphisms of D, i.e. automorphisms
induced by mappings from Autalg((C∗)n). It is shown in [Kr] that Aut(D) =
Aut0(D) ·Autalg(D), where the “ · ” denotes the composition operation in
Aut(D). Therefore if one can show that, for a hyperbolic Reinhardt domain
D, Autalg(D) is finite up to the action of Tn (see (1)), then the noncom-
pactness of Aut(D) is equivalent to that of Aut0(D) (see Proposition 1.1 in
[FIK] for the case of bounded domains). Next, as is shown in [Kr], Aut0(D)
admits an explicit description if D is mapped into its normalized form by a
mapping of the form (2). This normalized form was the main tool that we
used in [FIK], [IK].

Unfortunately, as the following example shows, for the case of hyperbolic
Reinhardt domains the group Autalg(D) may be essentially infinite, and
therefore the scheme used in [FIK], [IK], fails.

Example 1. Consider the Reinhardt domain D ⊂ C2

(3) D =
{

sin
(

log
|z1|
|z2|

)
< log |z1z2| < sin

(
log
|z1|
|z2|

)
+

1
2

}
.

The boundary of D is clearly C∞-smooth. The group Autalg(D) is not finite
up to the action of T2, since it contains all the mappings

z1 7→ eπkz1,

z2 7→ e−πkz2,

for k ∈ Z. This also shows, of course, that Aut(D) is noncompact.
To see that D is hyperbolic, consider the mapping f : D → C, f(z1, z2) =

z1z2. It is easy to see that f maps D onto the annulus A =
{
e−1 < |z| < e

3
2

}
which is a hyperbolic domain in C. The annuli

A1 =
{
e−

1
4 < |z| < e

1
2

}
,

A2 =
{
e−1 < |z| < e−

1
8

}
,

A3 =
{
e

1
4 < |z| < e

3
2

}
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obviously cover A, and each of the preimages Dj = f−1(Aj), j = 1, 2, 3, is
hyperbolic since Dj is contained in a union of bounded pairwise noninter-
secting domains. It then follows (see [PS]) that D is hyperbolic.

It should be noted here that the domain (3) does not intersect the co-
ordinate complex lines {z1 = 0}, {z2 = 0} (note that, for any hyperbolic
Reinhardt domain in Cn not intersecting the coordinate hyperplanes, one
has Aut(D) = Autalg(D) [Kr]). As the following proposition shows, in com-
plex dimension n = 2, the sort of pathology described in Example 1 above
cannot occur if the domain intersects at least one of the coordinate complex
lines.

Proposition A. Let D ⊂ C2 be a hyperbolic Reinhardt domain with C1-
smooth boundary, and let D intersect at least one of the coordinate complex
lines {zj = 0}, j = 1, 2. Then Autalg(D) is finite up to the action of T2.

In particular, for such a domain D, Aut(D) is noncompact if and only if
Aut0(D) is noncompact.

The above proposition allows us to use the description of Aut0(D) from
[Kr] to obtain the following classification result.

Theorem. Let D ⊂ C2 be a hyperbolic Reinhardt domain with Ck-smooth
boundary, k ≥ 1, and let D intersect at least one of the coordinate complex
lines {zj = 0}, j = 1, 2. Assume also that Aut(D) is noncompact. Then D
is biholomorphically equivalent to one of the following domains:
(i)

{
|z1|2 + |z2| 1α < 1

}
, where either α < 0, or α = 1

2m
for some m ∈ N,

or α 6= 1
2m

for any m ∈ N and 0 < α < 1
2k

;
(ii) {|z1| < 1, (1− |z1|2)α < |z2| < R(1− |z1|2)α} , where 1 < R ≤ ∞ and

α < 0;

(iii)
{
eβ|z1|

2
< |z2| < Reβ|z1|

2
}
, where 1 < R ≤ ∞, β ∈ R, β 6= 0, and, if

R =∞, β > 0.
If k <∞ and ∂D is not C∞-smooth, then D is biholomorphically equiva-

lent to a domain of the form (i) with α 6= 1
2m

for any m ∈ N and 0 < α < 1
2k

.
In case (i) the equivalence is given by dilations and a permutation of the

coordinates; in cases (ii) and (iii) the equivalence is given by a mapping of
the form

z1 7→ λzσ(1)z
a
σ(2),

z2 7→ µz±1
σ(2),

where λ, µ ∈ C∗, a ∈ Z and σ is a permutation of {1, 2}.
It is easy to see that the proof of Proposition A given in Section 1 below

can be extended to hyperbolic Reinhardt domains with C1-smooth boundary
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in Cn for any n ≥ 2 that intersect at least n − 1 coordinate hyperplanes.
However, as the following example suggests, in complex dimension n ≥ 3, an
explicit classification result analogous to the above theorem does not exist
if we do not impose extra conditions on the domain, even if the domain
contains the origin.

Example 2. Consider the domain D ⊂ C3 given by

D =
{
z : φ(z) ≡ |z1|2 + (1− |z1|2)2|z2|2ρ

(|z2|2(1− |z1|2), |z3|2(1− |z1|2)
)

+ (1− |z1|2)2|z3|2 − 1 < 0
}
,

(4)

where ρ(x1, x2) is a C∞-smooth function on R2 such that ρ(x1, x2) > c > 0
everywhere, and the partial derivatives of ρ are nonnegative for x1, x2 ≥ 0.

To show that ∂D is smooth, we calculate

∂φ

∂z1

= z1

(
1− (1− |z1|2)

(
2|z2|2ρ+ (1− |z1|2)|z2|4 ∂ρ

∂x1

+ (1− |z1|2)|z2|2|z3|2 ∂ρ
∂x2

+ 2|z3|2
))

,(5)

∂φ

∂z2

= (1− |z1|2)2z2

(
ρ+ (1− |z1|2)|z2|2 ∂ρ

∂x1

)
,

∂φ

∂z3

= (1− |z1|2)2z3

(
(1− |z1|2)|z2|2 ∂ρ

∂x2

+ 1
)
.

It follows from (5) that not all the partial derivatives of φ can vanish simul-
taneously at a point of ∂D. Indeed, if ∂φ

∂z3
(p) = 0 at some point p ∈ ∂D

then, at p, either |z1| = 1 or z3 = 0. If |z1| = 1, then clearly ∂φ
∂z1

(p) 6= 0. If
|z1| 6= 1, z3 = 0, and, in addition, ∂φ

∂z2
(p) = 0, then z2 = 0, and therefore

|z1| = 1, which is a contradiction. Therefore, ∂D is C∞-smooth.
To show that D is hyperbolic, consider the holomorphic mapping

f(z1, z2, z3) = z1 from D into C. Clearly, f maps D onto the unit disc
∆ = {|z| < 1}, which is a hyperbolic domain in C. Further, the discs
∆r = {|z| < r} for r < 1 form a cover of ∆, and f−1(∆r) is a bounded open
subset of D for any such r. Thus, as in Example 1 above, we see that D is
hyperbolic (see [PS]).

Further, Aut(D) is noncompact since it contains the automorphisms

(6) (z1, z2, z3) 7−→
(
z1 − a
1− az1

,
(1− az1)z2√

1− |a|2 ,
(1− az1)z3√

1− |a|2
)

for |a| < 1.
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Examples similar to Example 2 can be constructed in any complex di-
mension n ≥ 3. They indicate that, most probably, there is no reasonable
classification of smooth hyperbolic Reinhardt domains with noncompact au-
tomorphism group for n ≥ 3 even in the case when the domains intersect at
least n−1 coordinate hyperplanes. Indeed, in Example 2 we have substantial
freedom in choosing the function ρ. We note that the boundary of domain
(4) contains a complex hyperplane z1 = α for any |α| = 1. It may happen
that, by imposing the extra condition of the finiteness of type in the sense
of D’Angelo [D’A] on the boundary of the domain, one would eliminate
the difficulty arising in Example 2 and obtain an explicit classification. It
also should be observed that any point of the boundary of domain (4) with
|z1| = 1, z2 = z3 = 0 is an orbit accumulation point for Aut(D) (see (6));
therefore, it is plausible that one needs the finite type condition only at such
points (cf. the Greene/Krantz conjecture for bounded domains [GK]).

The following example shows that for a Reinhardt domain in Cn that
intersects less than n − 1 coordinate hyperplanes, Proposition A may not
hold. This example is a modification of Example 1 above.

Example 3. Consider the Reinhardt domain D ⊂ C3

D =
{

sin
(

log
|z2|
|z3| + 2|z1|2

)
< log |z2z3| < sin

(
log
|z2|
|z3| + 2|z1|2

)
+

1
2

}
.

The domain D intersects exactly one coordinate hyperplane, namely {z1 =
0}. The boundary of D is clearly C∞-smooth. The group Autalg(D) is not
finite up to the action of T3, since it contains all the mappings

z1 7→ z1,

z2 7→ eπkz2,

z3 7→ e−πkz3,

for k ∈ Z. This also shows that Aut(D) is noncompact.
As in Example 1 above, to see that D is hyperbolic, consider the mapping

f : D → C, f(z1, z2, z3) = z2z3, the annuli A and Aj, j = 1, 2, 3 and Dj =
f−1(Aj) (here we use the notation from Example 1). To prove that D is
hyperbolic, it is sufficient to show each Dj is hyperbolic [PS].

It is easy to see that, for each j, Dj is contained in the union of non-
intersecting domains of the form

(7)
{
Ae−|z1|

2
< |z2| < Be−|z1|

2
, Ce|z1|

2
< |z3| < De|z1|

2
}
,

where 0 < A < B < ∞, 0 < C < D < ∞, therefore it is sufficient to show
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that any domain of the form (7) is hyperbolic. By the mapping

z1 7→ z1,

z2 7→ 1
z2

,

z3 7→ z3

domain (7) is equivalent to

(8)
{

1
B
e|z1|

2
< |z2| < 1

A
e|z1|

2
, Ce|z1|

2
< |z3| < De|z1|

2
}
.

Thus, we need only show that any domain G of the form (8) is hyperbolic.
Consider the mapping F : G → C2, F (z1, z2, z3) = (z2, z3). Clearly, S =
F (G) is the following hyperbolic domain in C2:

S =
{
|z2| > 1

B
, |z3| > C

}
.

The domains
Sr,R =

{
1
B
< |z2| < r,C < |z3| < R

}
for 1

B
< r < ∞, C < R < ∞ obviously cover S, and each F−1(Sr,R) is a

bounded subset of G. Therefore, G is hyperbolic, and hence D is hyperbolic
as well.

This work was initiated while the first author was an Alexander von Hum-
boldt Fellow at the University of Wuppertal. Research by the second author
was supported in part by NSF Grant DMS-9531967 and at MSRI by NSF
Grant DMS-9022140.

1. Proof of Proposition A.

We consider two cases.
Case 1. Suppose first that D intersects each of the coordinate complex lines
{zj = 0}, j = 1, 2. Then any element F ∈ Autalg(D) has the form

z1 7→ λzσ(1)(9)

z2 7→ µzσ(2)

where λ, µ ∈ C∗ and σ is a permutation of the set {1, 2}.
First let σ = id. We assume that mapping (9) is not of the form (1); hence

either |λ| 6= 1, or |µ| 6= 1. By passing to the inverse mapping if necessary,
we can also assume that |λ| < 1, or |µ| < 1.
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Let |λ| < 1. Take a point p ∈ D of the form p = (c, 0) and apply the
kth iteration F k of F to it: F k(p) = (λkc, 0). Since |λ| < 1, it follows that
λkc → 0 as k → ∞, and therefore (0, 0) ∈ D. Since ∂D is C1-smooth,
we actually obtain that (0, 0) ∈ D. Therefore, for some ε > 0, the disc
∆ε = {|z1| < ε, z2 = 0} lies in D. By applying the kth iteration of F−1 to ∆ε

and letting k →∞, we obtain (since |λ−k| → ∞) that the domain D contains
the entire complex line {z2 = 0} and therefore cannot be hyperbolic. The
case of |µ| < 1 is treated similarly. Hence, |λ| = |µ| = 1, and F is of the
form (1).

Suppose now that σ(1) = 2, σ(2) = 1. We will show that there exists no
more than one automorphism of the form (9) with this σ (up to mappings of
the form (1)). Let F1, F2 be two such automorphisms, with Fj for j = 1, 2
given by

z1 7→ λjz2,

z2 7→ µjz1,

where λj, µj ∈ C∗. Then, for the composition F1 ◦ F−1
2 , we find that

z1 7→ λ1

λ2

z1,

z2 7→ µ1

µ2

z2.

Hence, by the preceding argument, |λ1| = |λ2| and |µ1| = |µ2|; therefore F1

differs from F2 by a mapping of the form (1).

Case 2. Let D intersect only one of the coordinate complex lines, say {z1 =
0}. Then any element of Autalg(D) either has the form

z1 7→ λz1z
a
2 ,(10)

z2 7→ µz2,

or the form

z1 7→ λz1z
a
2 ,(11)

z2 7→ µz−1
2 ,

where λ, µ ∈ C∗, a ∈ Z. We will show that there is at most one element of
Autalg(D) of each of the forms (10) and (11).

Let Fj, j = 1, 2, be two automorphisms of the form (10) given by

z1 7→ λjz1z
aj
2 ,

z2 7→ µjz2,
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where λj, µj ∈ C∗, aj ∈ Z. Then for F = F1 ◦ F−1
2 we see that

z1 7→ λ1

λ2

µa2−a1
2 z1z

a1−a2
2 ,

z2 7→ µ1

µ2

z2.

Let D0 = D ∩ {z1 = 0}. Then, since ∂D is C1-smooth, dist(D0, {z2 =
0}) > 0. Clearly, F preserves D0. Suppose now that |µ1| < |µ2|. Then, by
considering the images of D0 under iterations of F , we see that dist(D0, {z2 =
0}) = 0 which contradicts the smoothness of ∂D. Similarly, if |µ1| > |µ2|,
then by applying iterations of F−1 to D0 we obtain the same contradiction.
Therefore, |µ1| = |µ2|.

By composing F2 with a mapping of the form (1), we can now assume
that µ1 = µ2 = µ and therefore F is given by

z1 7→ λ1

λ2

µa2−a1z1z
a1−a2
2 ,

z2 7→ z2.

The kth iteration of F then has the form

z1 7→
(
λ1

λ2

)k
z1

(
z2

µ

)k(a1−a2)

z2 7→ z2.

We now observe that there exist ε > 0 and a disc ∆̃ ⊂ C such that the bidisc
{|z1| < ε, z2 ∈ ∆̃} lies in D. Let ∆ε,c = {|z1| < ε, z2 = c} for c ∈ ∆̃. If for

some c ∈ ∆̃ we have
∣∣∣λ1
λ2

∣∣∣ · ∣∣∣ c
µ

∣∣∣(a1−a2)

> 1 then, by applying the iterations F k

to ∆ε,c and letting k → ∞, we see that the complex line {z2 = c} belongs
entirely to D; this conclusion contradicts the hyperbolicity of D. Similarly,

if for some c ∈ ∆̃,
∣∣∣λ1
λ2

∣∣∣ · ∣∣∣ c
µ

∣∣∣(a1−a2)

< 1, then applying iterations of F−1 to

∆ε,c yields the same contradiction. Therefore,
∣∣∣λ1
λ2

∣∣∣ · ∣∣∣ c
µ

∣∣∣(a1−a2) ≡ 1 in ∆̃, and
hence a1 = a2, |λ1| = |λ2|. Thus F1 differs from F2 by a mapping of the form
(1).

The case of mappings of the form (11) is treated analogously. This com-
pletes the proof of the proposition.

2. Proof of Theorem.

We will use the following description of Aut0(D) from [Kr]. Any hyperbolic
Reinhardt domain in Cn can — by a biholomorphic mapping of the form
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(2) — be put into a normalized form G written as follows. There exist
integers 0 ≤ s ≤ t ≤ p ≤ n and ni ≥ 1, i = 1, . . . , p, with

∑p
i=1 ni = n,

and real numbers αji , i = 1, . . . , s, j = t + 1, . . . , p, such that if we set zi =(
zn1+···+ni−1+1, . . . , zn1+···+ni

)
, i = 1, . . . , p, then G̃ := G

⋂{zi = 0, i = 1,
. . . , t} is a hyperbolic Reinhardt domain in Cnt+1 × · · · ×Cnp , and G can be
written in the form

G =


∣∣z1
∣∣ < 1, . . . , |zs| < 1,

(12)

 zt+1∏s
i=1

(
1− |zi|2

)αt+1
i ∏t

j=s+1 exp
(
−βt+1

j |zj|2
) , . . . ,

zp∏s
i=1

(
1− |zi|2

)αp
i ∏t

j=s+1 exp
(
−βpj |zj|2

)
 ∈ G̃

 ,
for some real numbers βkj , j = s + 1, . . . , t, k = t + 1, . . . , p. A normalized
form can be chosen so that Aut0(G) is given by the following formulas:

zi 7→ Aizi + bi

cizi + di
, i = 1, . . . , s,

zj 7→ Bjzj + ej, j = s+ 1, . . . , t,

zk 7→ Ck

∏t
j=s+1 exp

(
−βkj

(
2ej

T
Bjzj + |ej|2

))
zk∏s

i=1(cizi + di)2αk
i

, k = t+ 1, . . . , p,

where (
Ai bi

ci di

)
∈ SU(ni, 1), i = 1, . . . , s,

Bj ∈ U(nj), ej ∈ Cnj , j = s+ 1, . . . , t,

Ck ∈ U(nk), k = t+ 1, . . . , p.

The above classification implies that Aut0(G) is noncompact only if t > 0.
Now let n = 2. Clearly there are the following possibilities for a hyperbolic

Reinhardt domain G̃ ⊂ C (see (12)):
(i) G̃ = {|z2| < R}, 0 < R <∞;

(ii) G̃ = {r < |z2| < R}, 0 < r < R ≤ ∞;
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(iii) G̃ = {0 < |z2| < R}, 0 < R <∞.
This observation allows us to list all normalized forms of hyperbolic Rein-

hardt domains in C2 with t > 0 as follows

G =
{|z1| < 1, |z2| < R(1− |z1|2)α

}
,

0 < R <∞, α ∈ R,(13)

G =
{|z1| < 1, r(1− |z1|2)α < |z2| < R(1− |z1|2)α

}
,

0 < r < R ≤ ∞, α ∈ R,(14)

G =
{|z1| < 1, 0 < |z2| < R(1− |z1|2)α

}
,

0 < R <∞, α ∈ R,(15)

G =
{
reβ|z1|

2
< |z2| < Reβ|z1|

2
}
,

0 < r < R ≤ ∞, β ∈ R, β 6= 0,(16)

where, if R =∞, β > 0,

G =
{

0 < |z2| < Reβ|z1|
2
}
,

0 < R <∞, β ∈ R, β < 0.(17)

We are now going to select only those among the normalized forms (13)-
(17) that can be the images of domains with Ck-smooth boundary under
normalizing mappings of the form (2). We will treat each of cases (13)-(17)
separately.
Domain of type (13). Observe first that, since the domain G contains the
origin, the normalizing mapping is linear (actually, it is given by dilations and
a permutation of the coordinates). Therefore, the domain G is a normalized
form of a Reinhardt domain with Ck-smooth boundary iff ∂G is also Ck-
smooth. Hence α 6= 0 (for otherwise G is a bidisc). If α > 0, then G has a
Ck-smooth boundary iff either α = 1

2m
, for some m ∈ N, or α 6= 1

2m
for any

m ∈ N and α < 1
2k

. If α < 0, then ∂G is C∞-smooth. It is also clear that,
for k < ∞, ∂G has Ck-smooth, but not C∞-smooth, boundary iff α 6= 1

2m

for any m ∈ N, and 0 < α < 1
2k

.
Domain of type (14). First of all, if α < 0, then ∂G is C∞-smooth. It
is also clear that, if α = 0, then G cannot be a normalized form of any
Reinhardt domain with everywhere Ck-smooth boundary for k ≥ 1.

Assume now that α > 0, and suppose first that R < ∞. Then ∂G is
C∞-smooth everywhere except at the points where |z1| = 1, z2 = 0. By
applying the transformation

z1 7→ z1,(18)

z2 7→ 1
z2

,
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we produce the following domain with C∞-smooth boundary{
|z1| < 1,

1
R

(1− |z1|2)−α < |z2| < 1
r

(1− |z1|2)−α
}
.

Let α > 0 and R =∞. We claim that in this case G cannot be a normal-
ized form of a Reinhardt domain with everywhere Ck-smooth boundary for
k ≥ 1. Indeed, this is easy to see if we notice that the general form (up to
permutation of the components) of any mapping (2) that is biholomorphic
on G is as follows

z1 7→ λz1z
a
2 ,(19)

z2 7→ µz±1
2 ,

where λ, µ ∈ C∗, a ∈ Z.
It is also easy to see that, for k <∞, no domain (14) can be a normalized

form of a Reinhardt domain with Ck-smooth, but not C∞-smooth, boundary.

Domain of type (15). By transformation (18), G is mapped into a domain
of the form (14) corresponding to the case R = ∞, so it can be treated as
above.

Domain of type (16). The boundary ∂G of G is C∞-smooth. Also, if
k <∞, then G cannot be a normalized form of any Reinhardt domain with
Ck-smooth, but not C∞-smooth, boundary; this assertion is proved by the
same argument as we used for domains of the form (14) above (see (19)).

Domain of type (17). By transformation (18), the domain G is mapped
into a domain of the form (16) corresponding to the case R = ∞, so it can
be treated as above.

The theorem is proved.
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