
pacific journal of mathematics
Vol. 184, No. 1, 1998

ON SPECIAL GENERIC MAPS INTO R3

Osamu Saeki and Kazuhiro Sakuma

Let f : M → Rp be a smooth map of a closed n-dimensional
manifold M into Rp (n ≥ p) which has only definite fold singu-
larities as its singular points. Such a map is called a special
generic map, which was first defined by Burlet and de Rham
for (n, p) = (3, 2) and later extended to general (n, p) by Porto,
Furuya, Sakuma and Saeki. In this paper, we study the global
topology of such maps for p = 3 and give various new results,
among which are a splitting theorem for manifolds admitting
special generic maps into R3 and a classification theorem of 4-
and 5-dimensional manifolds with free fundamental groups ad-
mitting special generic maps into R3. Furthermore, we study
the topological structure of the surfaces which arise as the
singular set of a special generic map into R3 on a given man-
ifold.

1. Introduction.

A special generic map is a smooth map of a closed n-dimensional manifold
into Rp (n ≥ p) all of whose singularities are the definite fold points. This
class of maps has been first studied by Burlet and de Rham [4], who have
classified those closed 3-dimensional manifolds which admit special generic
maps into R2. This result has been generalized to manifolds of arbitrary
dimensions which admit special generic maps into R2 by Porto and Furuya
[30] and Saeki [31]. These results imply that if a manifold of dimension
greater than or equal to three admits a special generic map into R2, then its
fundamental group must be a free group. Note also that Sakuma [34] and
Saeki [31], [32] have studied special generic maps of simply connected man-
ifolds into R3. In this paper, we consider special generic maps of nonsimply
connected manifolds into R3 in general and give various new results about
the global topology of such maps. We will see that the fundamental group
of a manifold admitting a special generic map into R3 is not a free group
any more in general, but that it behaves very much like a 3-manifold group.

In §2, we consider special generic maps of a manifold whose fundamen-
tal group is decomposed into a nontrivial free product. We show that then
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the manifold splits into a connected sum of two nonsimply connected man-
ifolds with corresponding fundamental groups both of which admit a spe-
cial generic map into R3. This corresponds to Kneser’s conjecture for 3-
dimensional manifolds (see, for example, [19]). Note that this type of split-
ting theorem does not hold in general for higher dimensional manifolds (see
[5], [6], [25]).

In §3, using the above splitting theorem, we classify those 4- and 5-
dimensional manifolds with free fundamental groups which admit special
generic maps into R3. This is a generalization of results in [34], [31], [32],
where simply connected manifolds admitting special generic maps into R3

have been studied. Using this classification theorem, we give some examples
of pairs of homeomorphic smooth 4-manifolds (M1,M2) such that M1 admits
a special generic map into R3 while M2 does not. Such an example has been
first given in [32], where the manifolds are simply connected. Here we give
examples of nonorientable manifolds with infinite cyclic fundamental groups,
using constructions due to Akbulut [1], [2], [3] and Kreck [23]. These exam-
ples show that the existence of a special generic map on a given manifold is
strongly related to its smooth structure; in other words, from the singularity
theoretical viewpoint, the existence of an exotic smooth structure is closely
related to the obstruction to the elimination of singularities other than the
definite fold ones (see [33]).

In §4, we study the fundamental groups of manifolds admitting special
generic maps into R3. Here we consider the quotient space (or the Stein
factorization) Wf of a special generic map f : M → R3. It is defined to
be the space of all connected components of the fibers of f and it is known
that it has a structure of a compact orientable 3-manifold with fundamental
group isomorphic to that of M [31]. Then we can obtain various properties
on π1(M) using results on 3-manifold groups [19]. In some cases, we can
even specify the diffeomorphism type of the source manifold. For example,
we show that if π1(M) is a surface group and dimM = 4, 5, 6 or 7, then M is
diffeomorphic to the connected sum of a smooth Sn−2-bundle over a surface,
some smooth Sn−2-bundles over S2 and a homotopy n-sphere (Theorem 4.3).

In §5, we give a necessary condition on the surfaces which arise as the
singular set of a special generic map into R3 on a given manifold M . More
precisely, when the fundamental group of M is indecomposable with respect
to free products, then the number of sphere components of the singular set
is an invariant of M ; in fact, it is determined by the L2-Betti numbers of
M (for the definition and some properties of the L2-Betti numbers, see [27],
[28], [17], for example).

In §6, we show that for an arbitrary pair of closed orientable (not necessar-
ily connected) surfaces (S1, S2), there exists a smooth closed 4-dimensional
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manifold M which admits special generic maps f1, f2 : M → R3 whose sin-
gular sets S(f1) and S(f2) are diffeomorphic to S1 and S2 respectively. In
this case, the fundamental group of M is decomposable in general. Further-
more we pose some questions concerning the number of equivalence classes
of special generic maps on a given manifold.

Throughout the paper, manifolds and maps are of class C∞ and the sym-
bol “∼=” denotes a diffeomorphism between manifolds or an appropriate iso-
morphism between algebraic objects.

The authors would like to express their sincere gratitude to Mahito Kobay-
ashi and Yasuhiro Hara for stimulating discussions. The authors also would
like to thank the referee for his/her useful comments and suggestions.

2. A Kneser type splitting theorem.

In this section, we prove the following.

Theorem 2.1. Let f : M → R3 be a special generic map of a closed
connected n-dimensional manifold. Suppose that π1(M) is isomorphic to a
nontrivial free product Γ1 ∗ Γ2. If n = 4, 5 or 6, then there exist two closed
n-dimensional manifolds M1 and M2 such that M is diffeomorphic to the
connected sum M1]M2, that π1(Mi) is isomorphic to Γi (i = 1, 2) and that
there exist special generic maps fi : Mi → R3 (i = 1, 2).

Proof. Consider the quotient map qf : M → Wf in the Stein factorization
of f : M → R3 [31] (see also [4] or [30]). Note that Wf is a compact
connected orientable 3-manifold with nonempty boundary ∂Wf . Set ∂Wf =
F1 ∪ · · · ∪ Fr, where Fj are the connected components.

First suppose that all the components Fj are incompressible in Wf . In this
case, by Kneser’s conjecture (for example, see [19, Chapter 7]), there exist
compact connected 3-manifolds W ′

1 and W ′
2 such that Wf is diffeomorphic

to the connected sum W ′
1]W

′
2 and that π1(W ′

i ) is isomorphic to Γi (i = 1, 2).
Since ∂Wf is nonempty, we may assume that ∂W ′

1 6= ∅. Set W1 = W ′
1

and W2 = W ′
2 − IntD3, where D3 is a 3-disk embedded in the interior of

W ′
2. Then it is easy to see that W ′

1]W
′
2 is diffeomorphic to the boundary

connected sum W1\W2. Set B = W1 ∩W2, which is a properly embedded
2-disk in Wf . We may assume that B is transverse to ∂Wf . Then we see
easily that B̃ = q−1

f (B) is an (n − 1)-dimensional submanifold of M which
admits a Morse function with exactly two critical points. Since n− 1 = 3, 4
or 5 by our assumption, we see that B̃ is diffeomorphic to the standard
(n − 1)-sphere. Set M ′

i = q−1
f (Wi) and set Mi = M ′

i ∪ Dn (i = 1, 2),
where we attach the n-dimensional disk Dn along the boundary. Note that
Mi are smooth closed n-dimensional manifolds. Then we see that M is
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diffeomorphic to the connected sum M1]M2. In order to construct special
generic maps fi : Mi → R3, we need the following.

Lemma 2.2. Let f, g : Sn → R2 be special generic maps of the standard
n-dimensional sphere Sn. If n = 3, 4 or 5, then there exist diffeomorphisms
H : Sn → Sn and h : Wf →Wg such that qg ◦H = h ◦ qf .

Proof. By [31], Wf and Wg are diffeomorphic to the 2-dimensional disk.
Let Cf (resp. Cg) be a closed collar neighborhood of ∂Wf (resp. ∂Wg)
in Wf (resp. in Wg). Set Mf = q−1

f (Wf − Cf ) and Mg = q−1
g (Wg − Cg).

Since qf |Mf
and qg|Mg

are projections of smooth Sn−2-bundles over Wf − Cf
(∼= D2) and Wg − Cg (∼= D2) respectively, there exist diffeomorphisms H1 :
Mf → Mg and h1 : Wf − Cf → Wg − Cg such that qg ◦ H1 = h1 ◦ qf on
Mf . Let πf : Cf → ∂Wf and πg : Cg → ∂Wg be natural projections and set
Nf = q−1

f (Cf ) and Ng = q−1
f (Cg). Then by [31], πf ◦ qf |Nf and πg ◦ qg|Ng are

projections of linear Dn−1-bundles over ∂Wf and ∂Wg respectively. (Here
a bundle is called linear if its structure group is reduced to an orthogonal
group.) Since they are orientable, they are necessarily trivial. Recall that the
natural inclusion SO(n− 1)→ Diff+(Sn−2) induces a homotopy equivalence
for n = 3, 4 and 5 [9], [38], [18], where Diff+(Sn−2) denotes the group
of orientation preserving diffeomorphisms of Sn−2. Then we see that the
diffeomorphisms H1 : Mf → Mg and h1 : Wf − Cf → Wg − Cg extend
to diffeomorphisms H : Mf ∪ Nf → Mg ∪ Ng and h : Wf − Cf ∪ Cf →
Wg − Cg ∪ Cg respectively with the desired properties. This completes the
proof.

Using the above lemma, we can easily construct special generic maps
fi : Mi → R3 whose quotient spaces Wfi are diffeomorphic to Wi (i = 1, 2)
(for example, see the argument in the proof of [31, Lemma 5.4]). Then by
[31, Proposition 3.9], π1(Mi) is isomorphic to π1(Wi) ∼= Γi.

Now suppose that Fj is not incompressible for some j. Then by Dehn’s
lemma, there exists a properly embedded 2-disk B in Wf such that c = ∂B
is an essential simple closed curve in Fj.

Case 1. When c does not separate Fj.
Let N be a regular neighborhood of B in Wf and set W ′

1 = Wf −N . Since
c does not separate Fj, the two 2-disks W ′

1 ∩ N lie in the same component
of ∂W ′

1. Then it is easy to see that Wf is diffeomorphic to the boundary
connected sum W ′

1\W
′
2, where W ′

2 is diffeomorphic to S1×D2. Consequently
π1(Wf ) is isomorphic to the free product π1(W ′

1)∗Z. Furthermore, by an ar-
gument similar to the above, we see that there exist two closed n-dimensional
manifolds M ′

1 and M ′
2 such that M is diffeomorphic to the connected sum
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M ′
1]M

′
2, that π1(M ′

i) is isomorphic to π1(W ′
i ) and that there exist special

generic maps f ′i : M ′
i → R3 with Wf ′

i
diffeomorphic to W ′

i (i = 1, 2).

Case 2. When c separates Fj and B does not separate Wf .
In this case, using the same notation as above, we see that Wf is obtained

from W ′
1 by attaching a 1-handle N to distinct boundary components of

W ′
1. Set M ′

1 = q−1
f (W ′

1) and M ′
2 = q−1

f (N). Then we see that ∂M ′
1 consists

of two (n − 1)-spheres and that M ′
2 is diffeomorphic to Sn−1 × [−1, 1]. Set

M ′′
1 = M ′

1 ∪ Dn ∪ Dn, where we attach the two n-dimensional disks along
the boundaries. Then it is easy to see that M is diffeomorphic to the con-
nected sum M ′′

1 ]M
′′
2 , where M ′′

2 is diffeomorphic to S1 × Sn−1]Σ and Σ is a
homotopy n-sphere which admits a Morse function with exactly two critical
points. Since n = 4, 5 or 6, Σ is diffeomorphic to the standard n-sphere. Fur-
thermore, we can construct a special generic map f ′′1 : M ′′

1 → R3 such that
Wf ′′1 is diffeomorphic to W ′

1. We can also construct a special generic map
f ′′2 : M ′′

2 → R3, since M ′′
2 is diffeomorphic to S1 × Sn−1 (see [32, (5.3.5)]).

Note that π1(M) is isomorphic to the free product π1(W ′
1) ∗ Z.

Case 3. When B separates Wf .
In this case, using the above notation, Wf −N consists of two components

W ′
1 and W ′

2. Since c is essential in Fj, both W ′
1 and W ′

2 have non-spherical
boundary components, and hence their fundamental groups are nontrivial.
Furthermore it is easy to see that Wf is diffeomorphic to the boundary
connected sum W ′

1\W
′
2. Then by using an argument similar to the above, we

see that there exist two closed n-dimensional manifolds M ′
1 and M ′

2 such that
M is diffeomorphic to the connected sum M ′

1]M
′
2, that there exist special

generic maps of M ′
i into R3 (i = 1, 2), and that π1(M ′

i) is isomorphic to
π1(W ′

i ) (i = 1, 2).

Recall that the finitely generated group π1(M) has a free product decom-
position G1 ∗ · · · ∗Gs with each Gj being indecomposable and that the inde-
composable factors are unique up to order and isomorphism by the Kurosh
subgroup theorem (for example, see [19, Chapter 8]). By iterating the above
arguments, we see that there exist closed connected n-dimensional manifolds
M̃j (j = 1, 2, . . . , s) such that M is diffeomorphic to the connected sum
M̃1] · · · ]M̃s, that π1(M̃j) is isomorphic to Gj and that there exist special
generic maps f̃j : M̃j → R3 (j = 1, 2, . . . , s). Then the theorem follows
easily. This completes the proof.

Compare Theorem 2.1 with [5], [6], [25]. In particular, the 4-manifold M
in [25, Theorem 0.2] does not admit any special generic map into R3.
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Remark 2.3. Note that a uniqueness in the strong sense does not hold in
Theorem 2.1. For example, M = (S1 × S3)](T 2 × S2)](S2 × S2) admits a
special generic map into R3. The fundamental group π1(M) decomposes as
the free product Z ∗ (Z× Z) and M has two corresponding decompositions
M1]M2 and M ′

1]M
′
2, where M1 = S1 × S3,M2 = (T 2 × S2)](S2 × S2),M ′

1 =
(S1×S3)](S2×S2) and M ′

2 = T 2×S2. We do not know if a “uniqueness” in
a weaker sense holds in Theorem 2.1. Note that, for manifolds of dimension
four, a “stable uniqueness” for Kneser type splittings of a given manifold
is proved in [24] without any consideration on special generic maps on the
manifold.

Remark 2.4. If we ignore the existence of special generic maps on the
connected sum factors, we can obtain a similar splitting theorem for all n
with Θn−1 = 0, where Θm is the h-cobordism group of oriented homotopy
m-spheres. For example, this is valid for n = 7, 13. Furthermore, when
the manifold M is stably parallelizable, the same splitting theorem is valid
for all n with Θn−1(∂π) = 0, where Θm(∂π) is the h-cobordism group of
oriented homotopy m-spheres which bound compact parallelizable (m+ 1)-
dimensional manifolds. Note that Θn−1(∂π) = 0 if n(≥ 7) is odd or n = 14.

Problem 2.5. Is the quasi-equivalence class of special generic maps of Sn

(n ≥ 3) into R2 unique? (Here, two special generic maps are said to be
quasi-equivalent (see [32]) if their quotient maps are right-left equivalent
in the sense of Lemma 2.2.) Note that this is true for n = 3, 4 and 5 by
Lemma 2.2.

3. Manifolds with free fundamental groups admitting a special
generic map into R3.

In this section, we first give a complete list of 4- and 5-dimensional manifolds
with free fundamental groups admitting a special generic map into R3. Using
this result, we will see that the existence of a special generic map on a
given manifold is strongly related to the smooth structure especially for 4-
dimensional manifolds.

First, we prove the following.

Theorem 3.1. Let M be a closed connected n-dimensional manifold with
free fundamental group. We suppose that n = 4 or 5. Then M admits a
special generic map into R3 if and only if M is diffeomorphic to

(]r−εS1 × Sn−1)](]εS1×̃Sn−1)](]sS2 × Sn−2)](]δS2×̃Sn−2)]Σn
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for some ε, δ ∈ {0, 1} and s ≥ 0, where r is the rank of the free group
π1(M), the connected sum over the empty set is assumed to be the standard
n-sphere, S1×̃Sn−1 is the nonorientable Sn−1-bundle over S1, S2×̃Sn−2 is
the nontrivial Sn−2-bundle over S2, Σn is the standard n-sphere for n = 5,
and Σn = ∂(∆×D2) for some compact contractible 3-manifold ∆ for n = 4.

Note that the above theorem for the trivial fundamental group has been
proved in [31] and [32] (see also [34]). Furthermore, in the case where M
is orientable of dimension four and the quotient space Wf is homeomorphic
to a boundary connected sum of some solid tori, a similar result has been
obtained in [20].

Proof of Theorem 3.1. It is not difficult to see that the manifolds in the
above list admit a special generic map into R3 (see [31], [32]).

Conversely, suppose that M admits a special generic map f into R3.
In view of Theorem 2.1 together with the facts that S1×̃Sn−1]S1×̃Sn−1 ∼=
S1 × Sn−1]S1×̃Sn−1 and S2×̃Sn−2]S2×̃Sn−2 ∼= S2 × Sn−2]S2×̃Sn−2 ([32,
Lemma 2.2]), we may assume that π1(M) is the infinite cyclic group. Then
by [19, Chapter 5], we see that Wf is diffeomorphic to Σ]B1] · · · ]Bs]S1×D2

or Σ]B1] · · · ]Bt]S1 × S2, where Σ is a homotopy 3-sphere, Bi are the 3-
dimensional disks, s ≥ 0 and t ≥ 1. Thus Wf is diffeomorphic to ∆\(\s(S2×
I))\S1×D2 or ∆\(\t−1(S2×I))\(S1×S2−IntD3) respectively, where I = [0, 1]
and ∆ = Σ − IntD3 is a compact contractible 3-manifold. Corresponding
to the above decomposition of Wf , we have a connected sum decomposition
M = M1] · · · ]Mr as in the proof of Theorem 2.1, where r = s + 2 or t + 1
and each Mi admits a special generic map into R3 whose quotient space Wi

is diffeomorphic to ∆, S2 × I, S1 ×D2 or S1 × S2 − IntD3. If Wi
∼= ∆, then

Mi
∼= ∂(∆ × Dn−2), which is diffeomorphic to the standard 5-sphere when

n = 5. If Wi
∼= S2 × I, then Mi is diffeomorphic to an Sn−2-bundle over S2,

which is diffeomorphic to S2×Sn−2 or S2×̃Sn−2. If Wi
∼= S1×D2, then Mi is

diffeomorphic to an Sn−1-bundle over S1, which is diffeomorphic to S1×Sn−1

or S1×̃Sn−1. Finally, if Wi
∼= S1 × S2 − IntD3, then by using an argument

similar to that used in Case 2 of the proof of Theorem 2.1, we can show that
Mi is diffeomorphic to the connected sum Mi,1]Mi,2, where Mi,1 admits a
special generic map into R3 whose quotient space is diffeomorphic to S2× I
and Mi,2 is diffeomorphic to an Sn−1-bundle over S1. This completes the
proof.

Compare Theorem 3.1 with [8] for n = 4.
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Remark 3.2. When n = 6 or 7, we can show that if M admits a spe-
cial generic map into R3 with π1(M) free, then M is diffeomorphic to
M1] · · · ]Mr]N1] · · · ]Ns]Σn, where Mi is a smooth Sn−1-bundle over S1, Nj

is a smooth Sn−2-bundle over S2 and Σn is a homotopy n-sphere.

Problem 3.3. (1) Are there no repetitions in the list of Theorem 3.1 when
n = 5? (Compare this with the result in [32] for the simply connected case.)

(2) Classify the special generic maps as in Theorem 3.1 up to regular
equivalence or up to quasi-equivalence (see [32]).

(3) Is Σ4]S1×S3 (resp. Σ4]S1×̃S3) diffeomorphic to S1×S3 (resp. S1×̃S3)
in Theorem 3.1? See [31, Remark 6.5] or [35]. Note that Σ4]S1 × S3

is diffeomorphic to S1 × S3 if and only if Σ4 is diffeomorphic to S4 (see
[22, Proposition]).

In the following, we give some examples of pairs of homeomorphic smooth
4-manifolds (M1,M2) with the infinite cyclic fundamental group such that
M1 admits a special generic map into R3 while M2 does not. Such an
example for simply connected 4-manifolds has already been given in [32].

First, we recall the construction of the Akbulut manifold ([1], [2], [3],
[14]). Let Q4 be a Cappell-Shaneson’s exotic RP 4 (see [7]). Recall that Q4

is homeomorphic to RP 4 ([15]) and that Q4](]kS2 × S2) is not smoothly h-
cobordant to RP 4](]kS2 × S2) for any nonnegative integer k ([7]). Akbulut
[1] has found an embedding ϕ : RP 2 ↪→ Q4]S2 × S2 such that π1(Q4]S2 ×
S2 − ϕ(RP 2)) ∼= Z and that the normal bundle of ϕ is isomorphic to that
of a standardly embedded RP 2 in RP 4. Then we set M = (Q4]S2 × S2 −
IntN) ∪ S1×̃D3, where N is a closed tubular neighborhood of ϕ(RP 2) in
Q4]S2 × S2 and S1×̃D3 is the nontrivial (and hence nonorientable) D3-
bundle over S1. This is the so-called Akbulut manifold and it is known to be
an exotic S1×̃S3]S2×S2 (see [1], [2], [3], [14]). Then we have the following.

Theorem 3.4. Let M be the Akbulut manifold. Then for every nonnegative
integer k, M](]kS2 × S2) is homeomorphic to S1×̃S3](]k+1S2 × S2), while
M](]kS2 × S2) does not admit any special generic map into R3.

Proof. It is known that M is topologically s-cobordant to S1×̃S3]S2×S2 (cf.
[39, p. 159]) and hence by Freedman [15] it is homeomorphic to S1×̃S3]S2×
S2. Therefore we see that for every nonnegative integer k, M](]kS2× S2) is
homeomorphic to S1×̃S3](]k+1S2 × S2).

Suppose that M](]kS2×S2) were diffeomorphic to Σ]S1×̃S3](]k+1S2×S2)
for some homotopy 4-sphere Σ. Then it is easily seen that M](]kS2 × S2)
and S1×̃S3](]k+1S2 × S2) are smoothly s-cobordant, since every homotopy
4-sphere is h-cobordant to the standard 4-sphere. However, this contradicts
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a result in [3]; in fact, they differ by nontrivial normal invariant. Thus
M](]kS2 × S2) is not diffeomorphic to Σ]S1×̃S3](]k+1S2 × S2) for any ho-
motopy 4-sphere Σ. Then by Theorem 3.1, we see that M does not admit a
special generic map into R3. This completes the proof.

Remark 3.5. We note that for the Akbulut manifold M , M]S2×̃S2 is
diffeomorphic to S1×̃S3]S2 × S2]S2×̃S2 (see [2], [3]) and hence it admits
a special generic map into R3. Furthermore, the double cover M̃ of M is
diffeomorphic to S1×S3](]2S2×S2) [14] and hence admits a special generic
map into R3. The first fact shows that the following statement is not true in
general: for closed 4-dimensional manifolds M1 and M2, if M1 and M1]M2

admit special generic maps into R3, then so does M2.

We give another example as follows.

Theorem 3.6. Let K be a K3 surface. Then for every integer r with
r ≥ 0, S1×̃S3]K](]rS2 × S2) is homeomorphic to S1×̃S3](]r+11S2 × S2),
while S1×̃S3]K](]rS2×S2) does not admit any special generic map into R3.

Proof. As shown in [23, Lemma 1], S1×̃S3]K](]rS2 × S2) is homeomorphic
to S1×̃S3](]r+11S2×S2). Let us show that S1×̃S3]K](]rS2×S2) is not dif-
feomorphic to Σ]S1×̃S3](]r+11S2×S2) for any homotopy 4-sphere Σ. We use
the same notation as in [23]. Kreck [23] has shown that S1×̃S3]K](]rS2×S2)
is not diffeomorphic to S1×̃S3](]r+11S2 × S2) by showing that they are not
equivalent in ΩB

4 /Aut(B). It is not difficult to see that Σ4 represents zero in
ΩB

4 , since Σ4 bounds a compact smooth contractible 5-dimensional manifold.
Thus Σ4]S1×̃S3](]r+11S2×S2) and S1×̃S3]K](]rS2×S2) are not equivalent
to each other in ΩB

4 /Aut(B) and hence are not diffeomorphic to each other.
Hence by Theorem 3.1 we have the conclusion.

Remark 3.7. In the above examples, the manifolds are nonorientable. For
orientable manifolds, we have a candidate, which is a so-called Scharlemann
manifold. Let M ′ be a Scharlemann manifold [37]. It is known that M ′

is topologically s-cobordant and hence homeomorphic to S1 × S3]S2 × S2

by [15]. The authors do not know if the Scharlemann manifold M ′ admits
a special generic map into R3. However, since M ′ is stably parallelizable,
M ′ does admit a smooth map g : M ′ → R3 with only fold singularities by
a result of Èliašberg [10]. Therefore, it naturally arises the question from
the global singularity theoretical viewpoint whether one can eliminate the
indefinite fold singularities of g or not. This problem is closely related to
the smooth structure of the manifold. If we can prove that M ′ does not
admit any special generic map into R3, then we can show that M ′ is not
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diffeomorphic to S1 × S3]S2 × S2. (See also [36].) Note that M ′]S2 × S2

(resp. M ′]S2×̃S2) does admit a special generic map into R3, since it is
diffeomorphic to S1 × S3](]2S2 × S2) (resp. S1 × S3]S2 × S2]S2×̃S2) [13].

4. Fundamental groups of the source manifolds.

Let M be a closed n-dimensional manifold (n ≥ 4) which admits a special
generic map f : M → R3. In this section, we list up some results about the
fundamental group of M , using results of 3-manifold groups. Recall that
the quotient space Wf is a compact orientable 3-dimensional manifold with
fundamental group isomorphic to π1(M) (for example, see [31]).

There have been a lot of important results in the study of 3-manifold
groups. For example, refer to [19], [11, Theorem 3.3], [41, Theorem A]
[12], [26, §4] etc. Using these results, we can obtain a lot of properties of
the fundamental groups of those manifolds which admit special generic maps
into R3. For example, we can deduce the following result.

Proposition 4.1. Suppose that a closed n-dimensional manifold M (n ≥ 4)
admits a special generic map into R3 and let G be a subgroup of π1(M) which
is a finitely generated abelian group. Then G is isomorphic to Z,Z⊕Z,Z⊕
Z⊕ Z, or Z/pZ for some positive integer p.

The above proposition implies, for example, that the n-dimensional torus
T n (n ≥ 4) does not admit any special generic map into R3.

Remark 4.2. For a special generic map f : M → Rp of an n-dimensional
closed manifold M into Rp with n > p ≥ 4, there is no restriction on the fun-
damental group of M . In fact, for every pair (n, p) with n > p ≥ 4 and every
finitely presentable group π, there exists a closed n-dimensional manifold M
with fundamental group isomorphic to π which admits a special generic map
into Rp. This is proved by constructing a compact p-dimensional manifold
W immersed in Rp with fundamental group isomorphic to π and then by
constructing a special generic map whose quotient space is diffeomorphic to
W .

In the following, we shall see that the fundamental group of the source
manifold often clarifies its diffeomorphism type.

Theorem 4.3. Let f : M → R3 be a special generic map of a closed
n-dimensional manifold with n = 4, 5, 6 or 7. Suppose that π1(M) has a
subgroup G of finite index which is isomorphic to π1(F ) for some closed
surface F not homeomorphic to S2 or RP 2. Then M is diffeomorphic to

M0](M1] · · · ]Mr)]Σn,
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where M0 is a smooth Sn−2-bundle over a closed surface, M1, . . . ,Mr are
smooth Sn−2-bundles over S2 and Σn is a homotopy n-sphere.

Proof. By [19, Theorem 10.6], we see that Wf is diffeomorphic to F1 ×
I](]rB3)]Σ3 or W1](]rB3)]Σ3, where F1 is a closed surface, I = [0, 1], B3 is
the 3-dimensional disk, Σ3 is a homotopy 3-sphere and W1 is a twisted I-
bundle over a closed surface F1. Thus Wf is diffeomorphic to F1× I\(\rS2×
I)\∆ or W1\(\rS2 × I)\∆, where ∆ = Σ − IntD3. Thus, using an argu-
ment similar to that used in the proof of Theorem 2.1, we see that M is
diffeomorphic to M0](M1] · · · ]Mr)]Σn, where M0 is a smooth Sn−2-bundle
over F1, the manifolds M1, . . . ,Mr are smooth Sn−2-bundles over S2 and
Σn = ∂(∆×Dn−2). This completes the proof.

Compare the above theorem with [8] when n = 4.

Remark 4.4. The above theorem is valid also for all n ≥ 8 with Θn−1 = 0.
Furthermore, we have Σn ∼= Sn for all n ≥ 5. These remarks are valid also
for Propositions 4.5, 4.6 and Theorem 4.7.

Proposition 4.5. Suppose that f : M → R3 is a special generic map of a
closed n-dimensional manifold with n = 4, 5, 6 or 7 and that S(f) contains a
component not homeomorphic to S2. If π1(M) is infinite and is a nontrivial
direct product, then M is diffeomorphic to M0](M1] · · · ]Mr)]Σn, where M0

is a smooth N -bundle over S1 for some closed (n− 1)-dimensional manifold
N admitting a special generic map into R2, the manifolds M1, . . . ,Mr are
smooth Sn−2-bundles over S2 and Σn is a homotopy n-sphere.

Proof. By [19, Chapter 11], we see that Wf is diffeomorphic to (F × S1)]
(]rB3)]Σ3, where F is a compact orientable surface and Σ is a homotopy
3-sphere. Since ∂Wf contains a component not homeomorphic to S2 by
our hypothesis, F has nonempty boundary. Thus Wf is diffeomorphic to
(F × S1)\(\rS2 × I)\∆, where ∆ = Σ − IntD3. Hence M is diffeomorphic
to M0](M1] · · · ]Mr)]Σn, where M0 is a smooth N -bundle over S1 for some
closed (n− 1)-dimensional manifold N admitting a special generic map into
R2 with the quotient space diffeomorphic to F , the manifolds M1, . . . ,Mr

are smooth Sn−2-bundles over S2 and Σn = ∂(∆ × Dn−2). This completes
the proof.

Recall that those closed (n − 1)-dimensional manifolds N which admit a
special generic map into R2 are classified in [4] and [31] (see also [30]).
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An argument similar to the above shows that the product of closed con-
nected orientable surfaces Σg and Σg′ of genera g and g′ respectively admits
a special generic map into R3 if and only if gg′ = 0.

Proposition 4.6. Let f : M → R3 be a special generic map of a closed
n-dimensional manifold with n = 4, 5, 6 or 7. Suppose that π1(M) is infinite
and that its center is a nontrivial, finitely generated noncyclic group. Then
M is diffeomorphic to M0](M1] · · · ]Mr)] Σn, where M0 is a smooth Sn−2-
bundle over T 2, the manifolds M1, . . . ,Mr are smooth Sn−2-bundles over S2

and Σn is a homotopy n-sphere.

Proof. By [19, Theorem 12.10], we see that Wf is diffeomorphic to T 2 ×
I](]rB3)] Σ for some homotopy 3-sphere Σ. Then the conclusion follows
from an argument similar to the above.

Theorem 4.7. Let f : M → R3 be a special generic map of a closed
n-dimensional manifold with n = 4, 5, 6 or 7 and that S(f) contains a com-
ponent not homeomorphic to S2. If π1(M) is infinite and solvable, then M is
diffeomorphic to M0](M1] · · · ]Mr)]Σn, where M1, . . . ,Mr are smooth Sn−2-
bundles over S2, Σn is a homotopy n-sphere and M0 is a smooth Sn−1-bundle
over S1, a smooth Sn−2-bundle over T 2 or a smooth Sn−2-bundle over the
Klein bottle.

Proof. By [12], we see that Wf is diffeomorphic to W1](]rB3)]Σ, where W1

is S1 ×D2, T 2 × I or the twisted I-bundle over the Klein bottle. Then the
conclusion follows from an argument similar to the above.

The deficiency of a finitely presentable group π is the maximum over all
differences g− r, where g and r are the numbers of generators and relations
respectively of a presentation of π (see, for example, [11]).

Proposition 4.8. Let f : M → R3 be a special generic map of a closed n-
dimensional manifold with n ≥ 4. Let Wf denote the quotient space, which
is a compact 3-manifold, and let

Wf = W1] · · · ]Wr

be its prime decomposition. Then the deficiency of π1(M) is equal to s(Wf )+
t(Wf ) − χ(Wf ), where s(Wf ) is the number of prime factors Wi with non-
empty boundary, t(Wf ) is the number of prime factors Wi homeomorphic to
S1 × S2 and χ denotes the Euler characteristic. In particular, the integer
s(Wf ) + t(Wf ) − χ(S(f))/2 is an invariant of M when n is odd, and the
integer s(Wf ) + t(Wf ) is an invariant of M when n is even.
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Proof. This is a direct consequence of [28, Theorem 6.3] and [31, Proposi-
tion 3.9].

Corollary 4.9. Let f : M → R3 be a special generic map of a closed n-
dimensional manifold with n ≥ 4 and with π1(M) a free group of rank r.
Then we have s(Wf ) + t(Wf ) − χ(S(f))/2 = r. In particular, when n is
even, we have s(Wf ) + t(Wf ) = χ(M)/2 + r.

5. Number of sphere components in the singular set and L2-Betti
numbers.

It is known that the singular set of a generic map of a manifold M with
dimM ≥ 3 into R3 is a smooth 2-dimensional submanifold of M . Given such
a manifold M , it is difficult to say something general about the topological
structure of those 2-dimensional submanifolds which arise as the singular set
of a generic map into R3 on M (e.g. the number of connected components,
their orientability, the genus of each component, etc.), since it heavily de-
pends on the choice of the generic map (for example, see the next section).
However, in the case of special generic maps into R3, the authors have ob-
tained several results concerning the relationship between the Betti numbers
of the source manifold and the topology of the singular set (see [31], [35]).
They are some inequalities concerning the Betti numbers of the source man-
ifold and the singular set and they hold only when the fundamental group of
the source manifold is very “close to” being trivial (see [31], [32], [34], [35]).
In this section, we consider the L2-Betti numbers of the source manifold in
stead of the ordinary Betti numbers and obtain some equalities concerning
the L2-Betti numbers of the source manifold and the number of sphere com-
ponents in the singular set of a special generic map. For the definition of
the L2-Betti numbers, see [27] or [17], for example. Recall that the L2-Betti
numbers are homotopy invariants for finite CW complexes, which are defined
by using the Hilbert spaces arising from the chain complex of the universal
covering space.

Theorem 5.1. Let f : M → R3 be a special generic map of a closed
connected n-dimensional manifold with n ≥ 4. Suppose that π1(M) is inde-
composable with respect to free products and that S(f) contains a component
not homeomorphic to S2. Then we have

b
(2)
0 (M) = 0,

b
(2)
1 (M) = −1

2
χ(S(f)) + ]{S ∈ π0(S(f)) : S ∼= S2},
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b
(2)
2 (M) =

{
2]{S ∈ π0(S(f)) : S ∼= S2} if n = 4,
]{S ∈ π0(S(f)) : S ∼= S2} if n ≥ 5,

b(2)
p (M) = 0 (3 ≤ ∀p ≤ n− 3),

where ]{S ∈ π0(S(f)) : S ∼= S2} denotes the number of components S of
S(f) diffeomorphic to S2 and b

(2)
i (M) denotes the i-th L2-Betti number of

M .

For the proof of this theorem, we need the following.

Lemma 5.2. Let f : M → N be a special generic map of a closed n-
dimensional manifold into a p-dimensional manifold. If p ≤ (n+ 1)/2, then
Wf has the homotopy type of a finite CW complex which is obtained by
attaching cells of dimension greater than or equal to n− p+ 2 to M .

Proof. By [31], M is homeomorphic to the boundary of a topological Dn−p+1-
bundle E overWf . SinceWf is a compact smooth manifold, it has a structure
of a finite CW complex. Furthermore, we may assume that it has a unique
0-cell and that it lies in ∂Wf . Since Wf has the homotopy type of a finite
CW complex of dimension p−1 and we have p−1 ≤ n−p by our assumption,
we see that there exists a section for the topological Sn−p-bundle associated
with E. Then, using this section together with the CW complex structure
of Wf , we can first construct a finite CW complex structure for ∂E, which is
homeomorphic to M . Then we can construct a finite CW complex structure
for E by attaching cells of dimension greater than or equal to n−p+2 to ∂E.
Since E has the same homotopy type as Wf , we have the conclusion.

Corollary 5.3. Let f : M → N be a special generic map of a closed n-
dimensional manifold into a p-dimensional manifold. If p ≤ (n+ 1)/2, then
b

(2)
i (Wf ) = b

(2)
i (M) for all i with i ≤ n− p.

Proof of Theorem 5.1. It is easy to show that Wf is diffeomorphic to
W ′](]rB3)]Σ, where W ′ is an irreducible sufficiently large 3-manifold (i.e.
Haken) and Σ is a homotopy 3-sphere. Since b(2)

i (Wf ) = b
(2)
i (W ′](]rB3)) for

all i, the conclusion follows from [27, Lemma 6.4] and Corollary 5.3 when
n ≥ 5. When n = 4, we have the result for b(2)

0 (M) and b
(2)
1 (M) since these

numbers depend only on the fundamental group (see [28, Lemma 1.2]). We
can obtain the result for b(2)

2 (M) by using the facts that χ(M) = 2b(2)
0 (M)−

2b(2)
1 (M) + b

(2)
2 (M) and that χ(M) = χ(S(f)) ([16], [31], [35]). This com-

pletes the proof.
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Remark 5.4. In Theorem 5.1, the condition that S(f) contains a compo-
nent not homeomorphic to S2 is assured when the Euler characteristic of
the source manifold is nonpositive and n is even, for example. This follows
from the fact that the Euler characteristic of M coincides with that of the
singular set if n is even [16], [31], [35].

Remark 5.5. Theorem 5.1 shows that the number of sphere components
of the singular set is independent of the special generic map.

Compare Theorem 5.1 with the results obtained in [17].

6. Realizing arbitrary two surfaces as singular sets.

Recall that for a special generic map f : M → R3 of a closed 4-dimensional
manifold, the Euler characteristic of the singular set S(f) of f is equal to
that of M (see [16], [31, Proposition 3.5] and [35, Corollary 2.7]).

Theorem 6.1. Let S1 and S2 be closed (not necessarily connected) ori-
entable surfaces with the same Euler characteristic. Then there exist a closed
connected orientable 4-manifold M and special generic maps fi : M → R3

(i = 1, 2) such that the singular set S(fi) of fi is diffeomorphic to Si.

In the following, for a compact n-dimensional manifold N with nonempty
boundary, we define the spun manifold spunN of N to be the closed (n+1)-
dimensional manifold ∂(N × D2). Note that spun manifolds are usually
defined for closed manifolds. More precisely, for a closed n-dimensional
manifold N , spunN is usually defined to be ∂(N◦ ×D2), where N◦ = N −
IntDn (see [40], for example). Here we define the spun manifold in a slightly
different manner.

Proof of Theorem 6.1. Suppose that S1 is diffeomorphic to Σg1 ∪ · · · ∪ Σgk

and that S2 is diffeomorphic to Σh1 ∪ · · · ∪ Σhl , where Σg denotes a closed
connected orientable surface of genus g. We may assume that l ≥ k(≥ 1).
Note that χ(S1) = χ(S2) is equivalent to

k∑
i=1

(1− gi) =
l∑

j=1

(1− hj),(1)

where χ denotes the Euler characteristic. Set

L1 = (\g1S1 ×D2)] · · · ](\gkS1 ×D2)](]l−kS1 × S2)

and
L2 = (\h1S1 ×D2)] · · · ](\hlS1 ×D2).



190 OSAMU SAEKI AND KAZUHIRO SAKUMA

Here, when g = 0, we regard \gS1×D2 = D3 and ]gS1×S2 = S3. Note that
∂L1
∼= S1 and ∂L2

∼= S2. Then we have

L1
∼= (\g1S1 ×D2)\((\g2S1 ×D2)− IntD3)\ · · · \((\gkS1 ×D2)− IntD3)

\(\l−k(S1 × S2 − IntD3))

and
(\gS1 ×D2)− IntD3 ∼= (S2 × I)\(\gS1 ×D2).

Then we have spun(L1) = ∂(L1×D2) ∼= (]GS1×S3)](]k−1S2×S2)](]l−kS2×
S2)](]l−kS1 × S3) ∼= (]G+l−kS1 × S3)](]l−1S2 × S2) ∼= spun(L2), where G =∑k
i=1 gi (see the equation (1)). Thus, putting M = spun(L1) ∼= spun(L2),

we see that there exist special generic maps f1 : M → R3 and f2 : M → R3

such that Wf1 = L1 and Wf2 = L2. (Note that L1 and L2 are parallelizable.
See [31, Proposition 2.1].) Then S(f1) ∼= ∂L1

∼= S1 and S(f2) ∼= ∂L2
∼= S2.

This completes the proof.

Remark 6.2. By a similar argument, we can show that for any finite set of
closed orientable surfaces S1, . . . , Sr with the same Euler characteristic, there
exist a closed connected 4-manifold M and special generic maps fi : M → R3

(i = 1, . . . , r) such that the singular set S(fi) of fi is diffeomorphic to Si.

Remark 6.3. In Remark 5.5, we have seen that if π1(M) is indecompos-
able with respect to free products, then the number of sphere components
is independent of special generic maps as long as the singular set contains a
component not homeomorphic to S2. Thus, when π1(M) is indecomposable,
we do not have results like Theorem 6.1. Note that the manifold constructed
in the proof of Theorem 6.1 has free fundamental groups which are decom-
posable in general.

Definition 6.4. Let M be a closed connected n-dimensional manifold and
p an integer with n > p > 0. We denote by q(M,p) the number of quasi-
equivalence classes of special generic maps of M into Rp (see [32, Defini-
tion 4.1]).

Recall that for a closed connected 3-manifold M , the number q(M, 2) is
always finite by [4].

Theorem 6.5. For a positive integer p, let l(p) denote the number of home-
omorphism classes of 3-dimensional lens spaces with π1

∼= Z/pZ. Then for
M = spun(L(p, 1)− IntD3), we have q(M, 3) ≥ l(p).
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Proof. Let L(p, q) be the lens space of type (p, q). Then by [29], [21], the
diffeomorphism type of M = spun(L(p, q) − IntD3) does not depend on q.
Thus, by using techniques of [31], we can construct a special generic map
f : M → R3 such that Wf is diffeomorphic to L(p, q) − IntD3. Since the
homeomorphism class of Wf is an invariant of the quasi-equivalence class of
f , we have the conclusion. This completes the proof.

Note that in Theorem 6.5, the singular set is always diffeomorphic to the
2-sphere by [31, Corollary 3.14, Proposition 3.15] and [35, Theorem B].

Problem 6.6. Does there exist a closed connected 4-manifold M such that
q(M, 3) =∞? Note that q(S5, 4) =∞ by virtue of [31, §4].

For further related problems, see [32, §5].
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