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EXPLICIT CAYLEY TRIPLES IN REAL FORMS OF G2, F4,
AND E6

Dragomir Ž. D– oković

We re-examine the problem of classifying the nilpotent
adjoint orbits in semisimple real Lie algebras. We present
the list of representatives of these orbits, as well as those of
related Cayley triples, in the case when the complexification
of the algebra is one of the exceptional complex Lie algebras
mentioned in the title.

1. Introduction.

The nilpotent adjoint orbits in non-compact real forms g of exceptional com-
plex Lie algebras gc have been classified in our papers [6, 7]. That classi-
fication is indirect because it makes use of the Sekiguchi bijection (see the
next section). Hence our classification is not as explicit as one would like it
to be. For instance the list of representatives of the nilpotent adjoint orbits
of g is missing. The main objective of this paper is the fill this gap when gc

is of the type G2, F4, or E6.
Let g be an arbitrary semisimple real Lie algebra (of finite dimension).

Let gc be the complexification of g, and G (resp. Gc) the adjoint group of
g (resp. gc). We fix a Cartan decomposition g = k ⊕ p of g, with Cartan
involution θ (extended also to gc). Let Kc be the connected Lie subgroup of
Gc corresponding to kc.

In Section 2 we describe the Sekiguchi bijection which gives the one-to-one
correspondence between the nonzero nilpotent G-orbits in g and the nonzero
nilpotent Kc-orbits in pc.

In Section 3 we sketch a new approach to the problem of classification of
nilpotent adjoint orbits in g. By using a theorem from our note [9], we are
able to select from the list of the nilpotent Gc-orbits O ⊂ gc those orbits
that possess real points, i.e., such that O ∩ g 6= ∅. Theorem 2 provides a
method of identifying the G-orbits into which O ∩ g splits.

In Section 4 we construct Chevalley systems for gc when the latter is
of type G2, F4, or E6. We also describe the action of the conjugation σ
corresponding to the real form g ⊂ gc. These data are necessary if one
wants to list the representatives of the nilpotent adjoint orbits in g.
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Finally, in Section 5 we list the representatives (E,H,F ) of the G-orbits
of the real Cayley triples (defined in Section 2) in g for each of the non-
compact real forms of G2, F4, and E6. The elements E listed there are the
representatives of the nonzero nilpotent G-orbits in g.

The following misprints have been detected in our paper [6]:

p. 511, Table VIII, orbit 1: Replace su(3) with su(4).
p. 514, Table XI, orbit 85: Replace 1 in column 6 with 7.
p. 516, Table XIII, orbit 16: Replace su(7) with so(7).
p. 520, Table XV, orbit 11: Replace 62 in column 4 with 63.

We also mention that in [4] (where some of the results of [6, 7] are quoted)
the Dynkin diagram of F4, in the table of nilpotent orbits in E6(−26) on p.
152, should have the arrow pointing in the other direction.

2. Cayley transformation and Sekiguchi bijection.

Let g be a real semisimple Lie algebra and gc its complexification. We fix
a Cartan involution θ of g and set k = (1 + θ)g and p = (1 − θ)g. Hence
g = k ⊕ p is the Cartan decomposition of g. We denote by G the adjoint
group of g and by K the connected Lie subgroup of G corresponding to k.
Similarly, Gc will denote the adjoint group of gc and Kc its connected Lie
subgroup corresponding to kc.

The involution θ of g extends uniquely to an involutive automorphism of
gc which we also denote by θ. Let σ be the conjugation of gc defined by g.
Thus we have σ(X) = X and σ(iX) = −iX for X ∈ g. Then σθ = θσ and
σu := θσ is the conjugation of gc corresponding to the compact real form
gu = k⊕ ip of gc.

We say that (E,H,F ) is a standard triple if {E,H,F} ⊂ gc, E 6= 0, and
they satisfy the relations

[H,E] = 2E, [H,F ] = −2F, [F,E] = H.

By adopting the terminology of [4], we say that H is the neutral, E nilpos-
itive, and F nilnegative element of this triple. (Our definition of standard
triples is different from the one in [4] where the last relation above is replaced
with [E,F ] = H.)

We say that a standard triple (E,H,F ) is a real Cayley triple if E,H,F
belong to g and θ(E) = F . In that case we have θ(H) = −H, i.e., H ∈ p.

A standard triple (E,H,F ) is called normal if H ∈ kc and E,F ∈ pc. We
say that a normal triple (E,H,F ) is a complex Cayley triple if σ(E) = −F .

Let (E,H,F ) be a real Cayley triple and write E = U + V with U ∈ k
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and V ∈ p. Since F = θ(E), we have F = U − V . It follows easily that

[H,U ] = 2V, [H,V ] = 2U, H = 2[U, V ].

If we define the elements:

E′ =
1
2

(H + iF − iE) =
1
2
H − iV,

H ′ = i(E + F ) = 2iU,

F ′ =
1
2

(−H + iF − iE) = −1
2
H − iV,

then (E′, H ′, F ′) is a complex Cayley triple and we refer to the map

(E,H,F ) 7→ (E′, H ′, F ′)

as the Cayley transformation. We also say that (E′, H ′, F ′) is the Cayley
transform of (E,H,F ).

The inverse (E′, H ′, F ′) 7→ (E,H,F ) of the Cayley transformation is given
by the formulae

U = − i
2
H ′, H = E′ − F ′, V =

i

2
(E′ + F ′)

i.e.,

E =
i

2
(−H ′ + E′ + F ′), H = E′ − F ′, F = − i

2
(H ′ + E′ + F ′).

For an element X ∈ g we say that it is nilpotent if the linear operator
ad (X) is nilpotent. The group G (resp. Gc) acts on g (resp. gc) via the
adjoint representation.

Let O be a nonzero nilpotent G-orbit in g. Choose E0 ∈ O. By Jacobson-
Morozov Theorem, there exist H0, F0 ∈ g such that (E0, H0, F0) is a standard
triple. By [4, Theorem 9.4.1] there exists g ∈ G such that g · (E0, H0, F0) =
(E,H,F ) is a real Cayley triple. Let (E′, H ′, F ′) be the Cayley transform of
(E,H,F ). Finally let O′ := Kc ·E′ be the nilpotent Kc-orbit in pc through
E′. The map that assigns O′ to O is well defined and it was shown by J.
Sekiguchi [16] and the author [5] that it establishes a bijection between the
nonzero nilpotent G-orbits in g and the nonzero nilpotent Kc-orbits in pc.
Following [4], we shall refer to this map as the Sekiguchi bijection.
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3. An approach to the classification of nilpotent G-orbits in g.

Let a be a maximal abelian subspace of p, and m the centralizer of a in k.
Let h be a Cartan subalgebra of g such that h ⊃ a. Then

h = a⊕ (h ∩m)

and h ∩ m is a Cartan subalgebra of m. We recall that m is reductive in k.
The complexification hc is a Cartan subalgebra of gc.

Let Φ be the root system of (gc, hc). Each root α ∈ Φ is a complex linear
functional on hc which takes real values on the real form

h0 := a⊕ i(h ∩m)

of hc. Let ρ(α) denote the restriction of α ∈ Φ to the subspace a. We set

Φ0 := {α ∈ Φ : ρ(α) = 0}

and Φ1 := Φ \ Φ0. The set

Σ := {ρ(α) : α ∈ Φ1}

is a root system (not necessarily reduced) in the dual space of a.

We choose a base Π of Φ containing a base Π0 of Φ0, and we set Π1 :=
Π \Π0. Then the set

Θ := {ρ(α) : α ∈ Π1}
is a base of Σ.

Let CΠ ⊂ h0 (resp. CΘ ⊂ a) be the closed fundamental Weyl chamber of
Φ (resp. Σ) corresponding to the base Π (resp. Θ). Note that CΘ = a∩CΠ.

Let O ⊂ gc be a nonzero nilpotent Gc-orbit. Then we can choose a
standard triple (E,H,F ) such that E ∈ O and H ∈ CΠ. The neutral element
H of this triple is uniquely determined byO and is called the characteristic of
O. One usually identifies H by means of the labels α(H) , α ∈ Π. Hence the
Dynkin diagram of (Φ,Π) together with the labels α(H), α ∈ Π, determines
uniquely the orbit O. All the labels α(H), α ∈ Π, belong to {0, 1, 2}.

In the case where gc is one of the five simple exceptional Lie algebras
G2, F4, E6, E7, or E8, one can find the list of nonzero nilpotent orbits, i.e, the
corresponding labelled Dynkin diagrams in many places, eg. [3, 4, 10, 11].
In the case when gc is a simple classical Lie algebra see [4].

Theorem 2 of [9], when specialized to the real field R, gives the following
result.
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Theorem 1. Let O ⊂ gc be a nonzero nilpotent Gc-orbit and H ∈ CΠ its
characteristic. Then O ∩ g 6= ∅ if and only if H ∈ CΘ.

The condition H ∈ CΘ can be verified easily by using the Satake diagram
of G. Recall that the Satake diagram is obtained from the Dynkin diagram
of (Φ,Π) by colouring in black all vertices in Π0 and by joining by a curved
arrow two white vertices α, β ∈ Π1 whenever ρ(α) = ρ(β). The condition
H ∈ CΘ is satisfied if and only if all the weights α(H) = 0 for α ∈ Π0 and
α(H) = β(H) whenever α, β ∈ Π1 are joined by a curved arrow.

Let O ⊂ gc be a nonzero nilpotent Gc-orbit, and let H ∈ CΘ be its
characteristic. Then H defines the Z-gradation

g = ⊕
k∈Z g(k)

with
g(k) := {x ∈ g : [H,X] = kX}.

Let G(0)c (resp. G(0)) be the connected Lie subgroup of Gc (resp. G)
corresponding to the subalgebra g(0)c ⊂ gc (resp. g(0) ⊂ g). The pair
(G(0)c , g(2)c) is a prehomogeneous vector space, i.e., there exists a unique
G(0)c-orbit, say O(2)c, in g(2)c which is open (and dense) in g(2)c. Moreover
we have O(2)c = O ∩ g(2)c. It is known [12, Lemma 5] that the centralizer
ZGc(H) is connected, and so it coincides with G(0)c. Consequently, we have
ZG(H) = G ∩G(0)c and G(0) is the identity component of ZG(H).

Let O(2) := O(2)c∩g(2). This is a nonempty Zariski open subset of g(2),
and so it has only finitely many connected components in the Euclidean
topology. Each of these components is a G(0)-orbit.

Theorem 2. The map which assigns to a ZG(H)-orbit O1 ⊂ O(2) the
G-orbit containing O1 is a bijection from the set of ZG(H)-orbits in O(2) to
the set of G-orbits in O ∩ g.
Proof. Let E ∈ O ∩ g. By Jacobson-Morozov theorem there exist H ′, F ∈ g
such that (E,H ′, F ) is a standard triple. Since H ′ is a real semisimple
element there exists g ∈ G such that g ·H ′ ∈ a. Hence, without any loss of
generality, we may assume that H ′ ∈ a. We can choose an element w in the
Weyl group of Σ such that w ·H ′ ∈ CΘ. This Weyl group can be identified
with NG(a)/ZG(a). Hence we can replace H ′ with w ·H ′, i.e., we may assume
that H ′ ∈ CΘ and consequently H ′ = H. Then E ∈ O(2), and so the map
mentioned in the theorem is surjective.

Next let O1,O2 ⊂ O(2) be ZG(H)-orbits and assume that O1 and O2

are contained in the same G-orbit. Let E1 ∈ O1 and E2 ∈ O2. By our
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assumption, E2 ∈ G·E1. We can choose F1, F2 ∈ g(−2) such that (E1, H, F1)
and (E2, H, F2) are standard triples. By [2, Chapter 8, §11, Proposition 1],
there exists g ∈ G such that

g · (E1, H, F1) = (E2, H, F2).

Hence g ∈ ZG(H) and E2 = g · E1. Consequently O1 = O2, and so our map
is also injective.

This theorem reduces the classification problem for nilpotent G-orbits in
g to the problem of classifying the ZG(H)-orbits in O(2) for each of the
characteristics H satisfying σ(H) = H. In spite of its attractiveness, this
method is hard to apply in practise. We used it in order to check the (known)
classification in the case where g is the split real form of G2.

The general problem of classifying the nilpotent G-orbits in g, reduces
easily to the case where g is absolutely simple, i.e., gc is simple. If g is of
classical type, the classification is well known [17]. When g is a noncompact
real form of an exceptional algebra gc, the classification was obtained in our
papers [6, 7]. In fact we classified the nonzero nilpotent Kc-orbits in pc. In
view of Sekiguchi bijection, this provides indirectly also a classification of
the nonzero nilpotent G-orbits in g.

Let us recall the following basic theorem of Kostant and Rallis [13].

Theorem 3. Every nonzero nilpotent element E ∈ pc is the nilposi-
tive element of a normal triple. If (E,H,F ) and (E′, H ′, F ′) are normal
triples such that E = E′ or H = H ′, then there exists g ∈ Kc such that
g · (E,H,F ) = (E′, H ′, F ′).

Let t be a Cartan subalgebra of k , ∆ the root system of (kc, tc) and C∆ ⊂ it
the closed fundamental Weyl chamber corresponding to some base Γ of ∆.
Let O ⊂ pc be a nilpotent Kc-orbit. The above theorem implies that there
exists a normal triple (E,H,F ) with E ∈ O and H ∈ C∆. Furthermore the
neutral element H of this triple is uniquely determined by O and we refer
to it as the characteristic of O.

From now on we assume that gc is an exceptional simple complex Lie
algebra and that g is noncompact.

Assume first that k is semisimple. Then the Dynkin diagram of (∆,Γ) to-
gether with the labels α(H), α ∈ Γ, determines the characteristicH uniquely.
(The labels α(H) are nonnegative integers.)

Next assume that k is not semisimple. Then k = k0 ⊕ z where k0 is the
derived subalgebra of k and z is the 1-dimensional center of k. In this case the
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labels α(H), α ∈ Γ, determine only the component of H in tc ∩ kc0, and say
nothing about the component of H in zc. Since tc is also a Cartan subalgebra
of gc, the root system ∆̃ of (gc, tc) contains ∆ as a closed root subsystem.
Furthermore

rank (∆̃) = rank (∆) + 1.

In this case we can choose a root β ∈ ∆̃ such that Γ̃ = Γ ∪ {β} is a base of
∆̃ ([6]). This β is not unique: There are exactly two such choices. Once the
choice of β is made then the component of H in zc is uniquely determined
by the integer β(H). Hence the labels α(H), α ∈ Γ̃, determine H uniquely.

4. Structure constants and the action of σ.

In the next section we shall tabulate the representatives (E,H,F ) of K-
orbits of the real Cayley triples in g when gc is of type G2, F4, or E6. The
nilpositive elements E of these triples are the representatives of the nonzero
nilpotent G-orbits in g. In order to do this we have to choose a suitable
basis of gc and describe the action of σ in terms of that basis. This section
is devoted to that task.

Let n be the rank of gc and N the number of positive roots of (Φ,Π). We
start by enumerating the simple roots :

Π = {α1, α2, . . . , αn}

in the same way as in [1]. A positive root

α = k1α1 + k2α2 + · · ·+ knαn

will be also represented by the symbol k1k2 · · · kn. (Note that each ki is a
single digit.) The height of α is defined by

ht(α) = k1 + k2 + · · ·+ kn.

We extend the enumeration of simple roots to obtain an enumeration

α1, α2, . . . , αn, . . . , αN

of all positive roots such that ht(αi) ≤ ht(αj) for i < j. In particular αN
is the highest root of (Φ,Π). The negative root −αi will also be written as
α−i, 1 ≤ i ≤ N .

The extended Dynkin diagrams of G2, F4, and E6 are given in Fig. 1.
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G2 : <
α1 α2 α−6

F4 : >
α−24 α1 α2 α3 α4

E6 :
α1 α3 α4 α5 α6

α2

α−36

Figure 1.

The co-root Hαi will be now denoted by Hi. Hence

Π∨ := {H1, . . . , Hn}

is a base of the dual root system Φ∨ of Φ. A positive co-root Hi, i > 0, can
be written as

Hi = k′1H1 + · · ·+ k′nHn

where k′i are nonnegative integers. Thus we can represent Hi by the symbol
k′1k

′
2 · · · k′n.

If gc is simply laced, say of type E6, then a positive root αi and its co-root
Hi will be represented by the same symbol. This is not the case if gc is triply
or doubly laced (say of type G2 or F4).
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In Tables 1-3 we list the positive roots αi and co-roots Hi for G2, F4, and
E6, respectively.

Table 1.
Positive roots of G2.

i αi Hi i αi Hi i αi Hi

1 10 10 3 11 13 5 31 11
2 01 01 4 21 23 6 32 12

Table 2.
Positive roots of F4.

i αi Hi i αi Hi i αi Hi

1 1000 1000 9 0120 0110 17 1221 2421
2 0100 0100 10 0111 0211 18 1122 1111
3 0010 0010 11 1120 1110 19 1231 2431
4 0001 0001 12 1111 2211 20 1222 1211
5 1100 1100 13 0121 0221 21 1232 2432
6 0110 0210 14 1220 1210 22 1242 1221
7 0011 0011 15 1121 2221 23 1342 1321
8 1110 2210 16 0122 0111 24 2342 2321

Table 3.
Positive roots of E6.

i αi, Hi i αi, Hi i αi, Hi i αi, Hi

1 100000 10 000110 19 011110 28 011211
2 010000 11 000011 20 010111 29 112210
3 001000 12 101100 21 001111 30 111211
4 000100 13 011100 22 111110 31 011221
5 000010 14 010110 23 101111 32 112211
6 000001 15 001110 24 011210 33 111221
7 101000 16 000111 25 011111 34 112221
8 010100 17 111100 26 111210 35 112321
9 001100 18 101110 27 111111 36 122321
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If σ(αi) = αj, we shall also write σ(i) = j. In this way σ defines an
involutory permutation of the set

(4.1) {±1,±2, . . . ,±N}.

In this notation, we have σ(Hi) = Hσ(i) for all i. We can choose nonzero
elements Xi ∈ gci , where gci := gcαi is the root space of αi, such that (see [2]):
(i) [X−i, Xi] = Hi for all i;
(ii) the linear map ω : gc → gc which is −1 on hc and satisfies ω(Xi) = X−i

for all i is an automorphism of gc.
If i + j = 0, then the bracket [Xi, Xj] is determined by (i). Assume now

that i+j 6= 0. If αi+αj is not a root then [Xi, Xj] = 0 and we set N(i, j) = 0.
If αi + αj = αk ∈ Φ, then we define N(i, j) by

[Xi, Xj] = N(i, j)Xk.

The conditions (i) and (ii) imply that N(i, j) is an integer. More precisely,
let p, q ≥ 0 be the largest integers such that

αj + pαi, αj − qαi ∈ Φ.

Assuming that αi + αj = αk ∈ Φ, i.e., p ≥ 1, we have

(4.2) N(i, j) = ε(i, j)(q + 1)

where ε(i, j) = ±1.
The Xi’s together with the H1, . . . , Hn form a basis of gc. All the brackets

of these basic elements are uniquely determined except for the signs ε(i, j).

The conditions (i) and (ii) do not determine the Xi’s uniquely. Different
choices of the Xi’s may produce different signs ε(i, j). As shown by J.
Kurtzke [14], the Xi’s can be chosen, not only to satisfy (i) and (ii), but also
(iii) ε(i, j) = 1 for 1 ≤ i ≤ n < j ≤ N ;
(iv) ε(i, j) = −ε(j, k) whenever αi, αj, αk are consecutively linked simple

roots in the Dynkin diagram.
For G2 and F4 we specify that ε(1, 2) = 1, and for E6 we specify that

ε(1, 3) = 1. All other ε(i, j) are then uniquely determined by (iii) and
(iv) (see [14]). In the Appendix we give the tables of the signs ε(i, j),
1 ≤ i, j ≤ N , for the complex simple Lie algebras G2, F4, and E6.

If Y ∈ hc and we replace the Xi’s with exp(ad Y )(Xi), then (i-iv) remain
valid. In fact the structure constants N(i, j) do not change at all. One can
choose such Y so that the new Xi’s satisfy also the condition
(v) σ(Xi) = ξiXσ(i), ξi = ±1, for all i.
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For details, see [15]. Furthermore one knows that ξi = 1 for all αi ∈ Φ0,
and ξ−i = ξi for all i. If αi + αj = αk, then

(4.3) ξkN(i, j) = ξiξjN(σ(i), σ(j))

holds. It follows that all the ξi’s can be computed provided that ξ1, . . . , ξn
are known.

For all non-compact real forms of G2, F4, and E6 we may choose ξi = 1
for 1 ≤ i ≤ n, with one exception: For the real form E6(−14) of E6 we can
set ξi = 1 for 1 ≤ i ≤ 5, while ξ6 = −1.

In order to pin down the action of σ on the Xi’s, we still need to deter-
mine the corresponding permutation of the set (4.1). This permutation is
determined by the Satake diagram of g (see [15]). For readers convenience
we shall describe this permutation below.

If g is split, then σ is the identity permutation. Assume now that g is not
split. Since σ induces an automorphism of Φ, it suffices to specify σ(i) for
1 ≤ i ≤ n. If the vertex αi in the Satake diagram of g is black, then we have
σ(i) = −i. For the white vertices of the Satake diagram, the action of σ is
given as follows:

F4(−20) : σ(4) = 19;
E6(2) : σ(1) = 6, σ(2) = 2, σ(3) = 5, σ(4) = 4, σ(5) = 3, σ(6) = 1;
E6(−14) : σ(1) = 21, σ(2) = 24, σ(6) = 18;
E6(−26) : σ(1) = 29, σ(6) = 31.

5. Explicit Cayley triples.

In Tables 4-10 we list the representatives (E,H,F ) of the G-orbits of real
Cayley triples in g. Here g is one of the non-compact real forms of G2, F4,
or E6. Thus g is one of the algebras:

G2(2), F4(4), F4(−20), E6(6), E6(2), E6(−14), E6(−26),

where the number in parentheses is the Cartan index of g, i.e, the difference
dim p− dim k.

The neutral element H is always chosen to be the characteristic of the
nonzero nilpotent orbit Gc ·E. By Theorem 1 we know that H ∈ a. We list
both: The labels αi(H), i = 1, . . . , n, and the coefficients k1, . . . , kn in

(5.1) H = k1H1 + · · ·+ knHn.

We tabulate only the neutral elements H and the nilpositive elements E.
The elements F can easily be computed because θ = σuσ and σ(E) = E.
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So, we have

(5.2) F = θ(E) = σuσ(E) = σu(E).

We recall that σu(Xi) = X−i for all i.

In order to avoid possible confusion, we have used the same numbering
of the nonzero nilpotent orbits as in our papers [6, 7]. That numbering was
also used in [4] where the trivial orbit is appropriately given the number 0.

Let us now sketch the method used to construct the Tables 4-10. By
Theorem 2 we know the characteristics H of the required representatives
of nonzero nilpotent G-orbits, or equivalently the neutral elements of the
representatives of K-orbits of real Cayley triples. Given such H, we denote
by I the set of indices i such that [H,Xi] = 2Xi. Then i > 0 for each i ∈ I
and the Xi’s for i ∈ I form a basis of the subspace g(2)c (see Section 3). For
each subset J ⊂ I let g(2, J)c be the (complex) subspace of g(2)c spanned
by the Xi’s with i ∈ J .

We search for all subsets J ⊂ I satisfying the following three conditions:
(i) g(2, J)c is stable under σ;
(ii) if i, j ∈ J , then αi − αj is not a root;
(iii) H belongs to the complex subspace spanned by all Hi with i ∈ J .
(More precisely, we only need to find the representatives of the orbits of the
Weyl group of Φ0 acting on the collection of all subsets J ⊂ I satisfying the
above three conditions.)

Given such J we set
E = Σi∈J ciXi

where ci are nonzero scalars chosen so that σ(E) = E, i.e., E ∈ g. For each
such E, there exists F ∈ g(−2) = g ∩ g(−2)c such that [F,E] = H. If there
are no subsets J ⊂ I having properties (i-iii), then one has to construct a
suitable E ∈ g(2) by a more elaborate procedure. In most cases the required
sets J exist.

After constructing several such Cayley triples (E,H,F ), we are faced with
the problem of identifying the orbits to which they belong. For that purpose
we have to pass to their Cayley transforms (E′, H ′, F ′). In fact we only need
the neutral elements H ′ = i(E + F ).

Let Oc = Gc · E. If Oc ∩ g is a single G-orbit, then the identification
problem mentioned above is trivial. Otherwise Oc ∩ g is a union of two or
three G-orbits. In most cases the invariant

inv := dimZkc(H ′)
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distinguishes these G-orbits. This invariant is listed in the last column of our
Tables 4-10. If this crude invariant fails to distinguish between the various G-
orbits in Oc∩g, we use the spectrum of the linear operator ad (H ′) restricted
to kc.

When g is of type E6(2) or E6(−14), there exist pairs of G-orbits, say O′ and
O′′ contained in the same nilpotentG-orbitOc which cannot be distinguished
even by this finer invariant. In these cases we have O′′ = −O′ and there
exists an outer automorphism of g which interchanges O′ and O′′ (see [8]).
Such pairs {O′,O′′} are recorded jointly on the same line in Tables 8 and 9,
and the nilpositive element is written as ±E. The two sign choices give two
different orbits. This ambiguity is caused by the fact that, in the two cases
mentioned above, the automorphism group of the Dynkin diagram of (kc, tc)
has order 2. In the other cases, this automorphism group is trivial.

The number ζ that occurs in Table 8 (orbits 12 and 13) is a primitive
cube root of 1.

By using the Tables 1-3 and those in the Appendix, one can verify that
our Tables 4-10 indeed give real Cayley triples. We give full details for the
orbit 36 of Table 8, where g is of the type E6(2).

In that case we have

E = 4X2 +
√

12(X1 +X6) +
√

7(X3 +X5) + i
√

15(X9 −X10).

As α3 + α4 = α9, it follows from (4.3) that

ξ9 ε(3, 4) = ξ3ξ4 ε(σ(3), σ(4)) = ε(5, 4).

By consulting Table 13, we find that ε(3, 4) = ε(5, 4) = −1, and so ξ9 = 1.
As

σ(X1) = X6, σ(X2) = X2, σ(X3) = X5,

and

σ(X9) = ξ9Xσ(9) = X10,

we conclude that σ(E) = E, i.e., E ∈ g. Hence (5.2) gives

F = 4X−2 +
√

12(X−1 +X−6) +
√

7(X−3 +X−5)− i
√

15(X−9 −X−10).

Clearly we have F ∈ g. It remains to verify that [F,E] = H, where

H = 12(H1 +H6) + 22(H3 +H5) + 16H2 + 30H4.
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A direct computation gives

[F,E] = 16[X−2, X2] + 12[X−1, X1] + 12[X−6, X6]

+ 7[X−3, X3] + 7[X−5, X5] + 15[X−9, X9] + 15[X−10, X10]

+ i
√

105([X−3, X9]− [X−5, X10]− [X−9, X3] + [X−10, X5])

= 16H2 + 12(H1 +H6) + 7(H3 +H5) + 15(H9 +H10)

+ i
√

105[(N(−3, 9)−N(−5, 10))X4 + (N(−10, 5)−N(−9, 3))X−4].

To compute these structure constants, we use the fact that ε(i, j) = −ε(−i, k)
if αi + αj = αk, see [2, Chapter VIII, §2, Lemma 4]. Hence ε(−3, 9) =
−ε(3, 4) = 1 and ε(−5, 10) = −ε(3, 4) = 1 (see Tables 3 and 13). We
now apply (4.2), using Table 3 in order to compute the integer q, and
obtain that N(−3, 9) = N(−5, 10) = 1. Since N(β, α) = −N(α, β) and
N(−α,−β) = N(α, β), see [2, Chapter VIII, §2, Proposition 7], N(−9, 3) =
N(−10, 5) = −1. Since H9 = H3 + H4, H10 = H4 + H5 (see Table 3), we
deduce that indeed [F,E] = H.

In this example the set I is {1, 2, 3, 5, 6, 8, 9, 10} and there is no sub-
set J ⊂ I satisfying all three conditions (i-iii). We used the subset J =
{1, 2, 3, 5, 6, 9, 10} which satisfies the conditions (i) and (iii), but not (ii).

Table 4.

Cayley triples in G2(2).

αi(H) ki E inv

1 01 1,2 X6 2

2 10 2,3 X4 2

3 02 2,4 X2 +X4 2

4 02 2,4 X2 −X4 4

5 22 6,10 X1 +X2 2
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Table 5.

Cayley triples in F4(4).

αi(H) ki E inv

1 1000 2,3,2,1 X24 10

2 0001 2,4,3,2 X16 +X24 12

3 0001 2,4,3,2 X21 10

4 0100 3,6,4,2 X14 +X20 +X22 10

5 0100 3,6,4,2 X14 +X21 6

6 2000 4,6,4,2 X1 +X14 +X20 +X22 22

7 2000 4,6,4,2 X8 +X18 +X23 14

8 2000 4,6,4,2
√

2(X1 +X23) 10

9 0002 4,8,6,4
√

2(X4 +X19) 10

10 0010 4,8,6,3 X15 +
√

2(X9 +X20) 6

11 2001 6,10,7,4
√

3(X1 +X14) + 2X16 6

12 2001 6,10,7,4
√

3X8 + 2X16 6

13 0101 5,10,7,4
√

2(X10 +X15) +X14 4

14 1010 6,11,8,4
√

3X8 +X9 − 2X16 6

15 1010 6,11,8,4
√

3X8 +X9 + 2X16 4
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Table 5.
(continued)

αi(H) ki E inv

16 0200 6,12,8,4 X2 +
√

3X8 +X9 − 2X16 12

17 0200 6,12,8,4 X2 +
√

3X8 +X9 + 2X16 8

18 0200 6,12,8,4 X2 +
√

3X8 −X9 + 2X16 6

19 2200 10,18,12,6
√

10X1 +
√

6(X2 +X9 +X16) 10

20 2200 10,18,12,6
√

10X1 +
√

6(X2 +X13) 6

21 1012 10,19,14,8 2
√

2X4 +
√

5X8 + 3X9 4

22 0202 10,20,14,8 X2 + 2
√

2X4 +
√

5X8 + 3X9 8

23 0202 10,20,14,8 X2 + 2
√

2X4 +
√

5X8 − 3X9 4

24 2202 14,26,18,10
√

14X1 + 2
√

2X2 +
√

10X4 − 3
√

2X9 4

25 2202 14,26,18,10
√

14X1 + 2
√

2X2 +
√

10X4 + 3
√

2X9 6

26 2222 22,42,30,16
√

22X1 +
√

42X2 +
√

30X3 + 4X4 4

Table 6.

Cayley triples in F4(−20).

αi(H) ki E inv

1 0001 2,4,3,2 X21 16

2 0002 4,8,6,4
√

2(X4 +X19) 22
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Table 7.

Cayley triples in E6(6).

αi(H) ki E inv

1 010000 1,2,2,3,2,1 X36 18

2 100001 2,2,3,4,3,2 X23 +X36 16

3 000100 2,3,4,6,4,2 X24 +X30 +X34 12

4 020000 2,4,4,6,4,2
√

2(X2 +X35) 18

5 020000 2,4,4,6,4,2 X2 +X24 +X30 −X34 24

6 200002 4,4,6,8,6,4
√

2(X1 +X6 +X29 +X31) 16

7 120001 4,6,7,10,7,4
√

3(X2 +X24) + 2X23 10

8 110001 3,4,5,7,5,3
√

2(X17 +X31) +X23 10

9 220002 6,8,10,14,10,6
√

6(X1 +X21) + 2(X2 +X24) 10

10 001010 3,4,6,8,6,3 X15 +X23 +
√

2(X22 +X28) 10

11 100101 4,5,7,10,7,4 X24 +
√

2(X12 +X16 +X22 +X25) 8

12 000200 4,6,8,12,8,4 X4 +X15 + 2X23 +
√

3(X13 +X14) 12

13 020200 6,10,12,18,12,6
√

10X2 +
√

6(X4 +X15 +X23) 12

14 211012 8,10,14,19,14,8 2
√

2(X1 +X6) +
√

5(X13 +X14) 6
+3X15
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Table 7.
(continued)

αi(H) ki E inv

15 011010 4,6,8,11,8,4 X15 + 2X23 +
√

3(X13 +X14) 8

16 111011 6,8,11,15,11,6
√

6(X7 +X16) +X15 + 2(X13 +X14) 6

17 121011 7,10,13,18,13,7 1√
7
(2
√

15X2 + 2
√

6X7 +
√

10X8 6
−5X12 +

√
42X15 + 7X16)

18 222022 12,16,22,30,22,12
√

12(X1 +X6) +
√

22X5 6
+ 1√

11
(2
√

14X2 + 4
√

2X3

+2
√

30X8 −
√

210X9)

19 200202 8,10,14,20,14,8 X4 + 3X15 + 2
√

2(X1 +X6) 8
+
√

5(X13 +X14)

20 222222 16, 22, 30, 42, 30, 16 4(X1 +X6) +
√

30(X3 +X5) 6
+
√

22X2 +
√

42X4

21 220202 10,14,18,26,18,10
√

10(X1 +X6) +
√

14X2 8
+
√

2(2X4 + 3X15)

22 200202 8,10,14,20,14,8 X4 − 3X15 + 2
√

2(X1 +X6) 10
+
√

5(X13 +X14)

23 000200 4,6,8,12,8,4 X4 −X15 + 2X23 +
√

3(X13 +X14) 14
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Table 8.

Cayley triples in E6(2).

αi(H) ki E inv

1 010000 1,2,2,3,2,1 X36 18

2 100001 2,2,3,4,3,2 X23 +X36 18

3 100001 2,2,3,4,3,2 X32 +X33 14

4 000100 2,3,4,6,4,2 X24 +X30 +X34 18

5 000100 2,3,4,6,4,2 X24 +X30 −X34 10

6 020000 2,4,4,6,4,2 −X2 +X24 +X30 +X34 36

7 020000 2,4,4,6,4,2 X2 +X24 +X30 −X34 20

8 020000 2,4,4,6,4,2
√

2(X2 +X35) 18

9,10 110001 3,4,5,7,5,3 ±[X22 +X23 +X25 + i(X26 −X28)] 12

11 200002 4,4,6,8,6,4
√

2(X1 +X6 +X29 +X31) 14

12,13 001010 3,4,6,8,6,3 ± 1√
3
[X15 +X19 −X23 +X24 −X27 16
−X30 +

√
2(X18 +X21 + ζX22

+ζ̄X25 + ζ̄X26 + ζX28)]

14 001010 3,4,6,8,6,3
√

2(X15 +X30) +X22 +X25 8

15 120001 4,6,7,10,7,4
√

3(X13 +X14)−X15 + 2X23 10

16 120001 4,6,7,10,7,4
√

3(X13 +X14) +X15 + 2X23 10
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Table 8.
(continued)

αi(H) ki E inv

17 100101 4,5,7,10,7,4
√

2(X12 +X16 +X22 +X25) +X24 6

18 011010 4,6,8,11,8,4
√

3(X13 +X14)−X15 + 2X23 10

19 011010 4,6,8,11,8,4
√

3(X13 +X14) +X15 + 2X23 6

20 000200 4,6,8,12,8,4 X4 +
√

3(X13 +X14)−X15 + 2X23 20

21 000200 4,6,8,12,8,4 −X4 +
√

3(X13 +X14) +X15 +2X23 12

22 000200 4,6,8,12,8,4 X4 +
√

3(X13 +X14) +X15 + 2X23 10

23 020200 6,10,12,18,12,6
√

10X2 +
√

6(−X4 +X15 +X23) 18

24 020200 6,10,12,18,12,6
√

10X2 +
√

6(X4 +X15 +X23) 10

25 220002 6,8,10,14,10,6
√

3(iX1 − iX6 +X18 +X21) 18
+
√

2(X2 +X8 +X19 −X24)

26 220002 6,8,10,14,10,6
√

3(iX7 − iX11 +X12 +X16) 10
+2(X13 +X14)

27, 28 111011 6,8,11,15,11,6 ±[
√

3(X7 +X11) + i
√

3(X12 −X16) 6
2(X13 +X14) +X15]

29,30 121011 7,10,13,18,13,7 ±[X7 +X11 + i
√

6(X12 −X16) 8
+
√

10X2 +
√

6X15]

31 211012 8, 10, 14, 19, 14, 8 3X15 + 2
√

2(X1 +X6) 6
+
√

5(X13 +X14)
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Table 8.
(continued)

αi(H) ki E inv

32 200202 8,10,14,20,14,8 X4 + 3X15 + 2
√

2(X1 +X6) 6
+
√

5(X13 +X14)

33 200202 8,10,14,20,14,8 −X4 + 3X15 + 2
√

2(X1 +X6) 12
+
√

5(X13 +X14)

34 220202 10,14,18,26,18,10
√

10(X1 +X6) +
√

14X2 6
+
√

2(2X4 + 3X15)

35 220202 10,14,18,26,18,10
√

10(X1 +X6) +
√

14X2 10
+
√

2(2X4 − 3X15)

36 222022 12,16,22,30,22,12 4X2 +
√

12(X1 +X6) 8
+
√

7(X3 +X5) +i
√

15(X9 −X10)

37 222222 16,22,30,42,30,16 4(X1 +X6) +
√

30(X3 +X5) 6
+
√

22X2 +
√

42X4
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Table 9.
Cayley triples in E6(−14).

αi(H) ki E inv

1,2 010000 1,2,2,3,2,1 ±iX36 26

3,4 100001 2,2,3,4,3,2 ±i(X23 +X36) 30

5 100001 2,2,3,4,3,2 X27 −X35 18

6 020000 2,4,4,6,4,2
√

2(X17 −X31) 20

7,8 110001 3,4,5,7,5,3 ±[
√

2(X17 −X31) + iX23] 12

9 200002 4,4,6,8,6,4
√

2(X1 +X20 +X21 +X29) 30

10,11 120001 4,6,7,10,7,4 ±[
√

3(X2 +X24) + 2iX23] 18

12 220002 6,8,10,14,10,6
√

6(X1 +X21) + 2(X2 +X24) 10

Table 10.
Cayley triples in E6(−26).

αi(H) ki E inv

1 100001 2,2,3,4,3,2 X23 +X36 24

2 200002 4,4,6,8,6,4
√

2(X1 +X6 +X29 +X31) 24

6. Appendix.

In this appendix we give the tables of the signs ε(i, j) of the structure con-
stants N(i, j) for 1 ≤ i, j ≤ N and for the complex simple Lie algebras G2,
F4, and E6. The sign ε(i, j) occurs in the row i and column j. The column
numbers are abbreviated: Only the last digit is shown. When αi +αj is not
a root, then ε(i, j) is not defined and we have indicated this by writing a
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zero entry at such positions. In the Tables 12 and 13 we write “p” instead
of “+” and “n” instead of “−” (for typographical reasons).

Table 11.
ε(i, j) for G2.

1 2 3 4 5 6
1 0 + + + 0 0
2− 0 0 0 + 0
3− 0 0 − 0 0
4− 0 + 0 0 0
5 0 − 0 0 0 0
6 0 0 0 0 0 0

Table 12.
ε(i, j) for F4.

12345 67890 12345 67890 1234
1 0p000 p00pp 00p00 p0000 00p0
2 n0n00 0p000 p000p 00p00 0p00
3 0p0pp p0p0p 0p000 0p00p p000
4 00n00 p0pp0 p0ppp 0p0p0 0000
5 00n00 0p0n0 00n00 n0000 0p00
6 n0nn0 0pn00 0n00p 00p00 n000
7 0n00n n0n0n 0n0p0 0p0p0 0000
8 00nn0 pp00p 00n00 n0000 n000
9 n00np 00000 0n000 00p0p 0000

10 n0n00 0pn00 nn00n 000p0 0000
11 0n0n0 0000p 00000 n000p 0000
12 00n00 pp0pp 00p00 000p0 0000
13 n00np 00p00 0n00n 0n000 0000
14 000n0 0n000 00000 n0n00 0000
15 0n0n0 n000p 00p00 0n000 0000
16 n000p 00p00 p00p0 00000 0000
17 00nn0 0n000 00p0p 00000 0000
18 0n000 n00n0 000p0 00000 0000
19 000n0 0n00n 0n000 00000 0000
20 00n00 000n0 n0000 00000 0000
21 00n00 p0p00 00000 00000 0000
22 0n00n 00000 00000 00000 0000
23 n0000 00000 00000 00000 0000
24 00000 00000 00000 00000 0000
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Table 13.
ε(i, j) for E6.

12345 67890 12345 67890 12345 67890 123456
1 00p00 000p0 00p0p 000p0 p00pp 00p00 p00000
2 000n0 000pp 0p00p p0p00 p0p00 00000 0000p0
3 n00n0 00p0p 000p0 p000p 00000 p000p 00p000
4 0pp0p 0p000 p0000 000p0 0p00p 0p000 000p00
5 000n0 n0pp0 0pp00 0p000 00000 00p0p 0p0000
6 0000p 0000p 000pp 00pp0 0p0p0 p00p0 000000
7 000n0 00p0p 000p0 p000p 000n0 00n00 n00000
8 00n0n 0n000 n000p 00p00 p0p00 00000 000n00
9 nn00n 00000 n00p0 0000p 0n000 0n000 00p000

10 0nn00 nn000 00p00 0p000 0000n 0n000 0p0000
11 000n0 00pp0 0pp00 0p000 000n0 n00n0 000000
12 0n00n 00000 n00p0 000pp 0000p 00000 n00000
13 n000n 0000n n0000 n0p00 00p00 00000 00p000
14 00n00 nn0n0 0n000 00000 p0p00 00000 0p0000
15 nn000 n0n00 00000 0p00p 00000 0n00n 000000
16 0nn00 0n000 00p00 0p0p0 0p000 000n0 000000
17 0000n 0000n n000n n0000 n0000 00000 n00000
18 0n000 n0n00 00n00 0000p 0000p 00p00 000000
19 n00n0 n0000 0n000 n0000 00p00 0000n 000000
20 00n00 0n0n0 0n00n 00n00 00000 000n0 000000
21 nn000 00n00 000n0 0p000 0p000 p0000 000000
22 000n0 n00p0 00000 n0000 n0000 00p00 000000
23 0n000 00n00 00nn0 000n0 000n0 00000 000000
24 n0000 np000 p0000 00000 00p00 0p000 000000
25 n00n0 0000p 0n000 00n00 00000 p0000 000000
26 00n00 n0000 p0000 00000 n000n 00000 000000
27 000n0 000pp 0000p 00000 000n0 00000 000000
28 n000n 0p000 00000 00n00 0n000 00000 000000
29 00000 n0000 p0000 p000p 00000 00000 000000
30 00n0n 00000 0000p 000p0 00000 00000 000000
31 n0000 0p000 0p000 0p000 00000 00000 000000
32 0000n 0000n 000n0 00000 00000 00000 000000
33 00n00 000n0 00n00 00000 00000 00000 000000
34 000n0 00p00 00000 00000 00000 00000 000000
35 0n000 00000 00000 00000 00000 00000 000000
36 00000 00000 00000 00000 00000 00000 000000
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