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A COMPARISON PRINCIPLE FOR QUASILINEAR
ELLIPTIC EQUATIONS AND ITS APPLICATION

Zhiren Jin and Kirk Lancaster

A comparison principle for a class of quasilinear elliptic
equations is proved. An application of the comparison prin-
ciple is given to prove the uniqueness of solutions of Dirichlet
problems for a class of elliptic equations with jump discontin-
uous boundary data. The comparison principle is improved
from the one given by Serrin. The uniqueness is proved by
reducing the equation to an associated elliptic equation by
viewing the graph of the solution from the side.

1. Introduction and Results.

Let Ω ⊂ Rn, n ≥ 2, be a bounded domain. We consider the quasilinear
elliptic Dirichlet problem

(P )

{
Qf ≡∑n

i,j=1 aij(x, f(x), Df(x))Dijf(x) = 0 on Ω;
f = φ on ∂Ω,

where (aij(x, t, p)) is a positive definite matrix in which each entry is a
smooth C2 function on Ω×R×Rn.

In this paper, we are mainly interested in a comparison principle in the
following form and its applications:

Let D be a set on ∂Ω. If f1 and f2 are two functions such that Qf1 ≤ 0,
Qf2 ≥ 0 in Ω, f1 ≥ f2 on ∂Ω \ {D}, when we can conclude that f1 ≥ f2 in
Ω?

The motivation is as follows: When Q is a general quasilinear elliptic
operator, it is well known that to solve (P ) for f ∈ C2(Ω)∩C0(Ω) for any φ,
the domain Ω must satisfy some geometric condition related to the structure
of the operator Q (for example, see [1] or [12]). One typical example is
when Q the minimal surface operator. Then (P ) is solvable for any φ for
f ∈ C2(Ω)∩C0(Ω) if and only if ∂Ω has non-negative mean curvature ([6]).
Thus for some domain Ω ∈ Rn, there are some functions φ for which (P )
does not have solutions f ∈ C2(Ω) ∩ C0(Ω). On the other hand, for any
domain Ω ∈ Rn and any φ ∈ C1(∂Ω), we may be able to produce a function
f ∈ C2(Ω) using, for example, the Perron process or a variational process
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such that f satisfies the equation Qf = 0 in Ω and f = φ on every point
on ∂Ω at which there is a barrier. Naturally we can think of f as a kind of
“approximate solution”. Then if we want to study the uniqueness of these
approximate solutions or the behavior of these approximate solutions near
the boundary of the domain, we will need a comparison principle in the form
mention above. In general, comparison principles for Q do not hold even if D
is empty and one does not have any additional information on the operator Q
and the domain Ω. The set D on the boundary ∂Ω should also play some role
in a comparison principle. A quick review of some well known cases may be
illuminating. We consider the simplest case in which D = {P} is a point on
∂Ω. When Q is the Laplace operator 4, the Phragmén-Lindelöf maximum
principle implies that if a function f satisfies 4f = 0 in Ω and f ≥ 0 on
∂Ω \ {P}, then f ≥ 0 on Ω \ {P} if f does not go to negative infinity very
quickly as the point approaches P from inside Ω. The comparison principle
in this case will not hold if the growth condition is removed (for example, see
[10]). On the other hand, if Q is the minimal surface operator and a function
f satisfiesQf = 0 in Ω, f ≥ 0 on ∂Ω\{P}, then f ≥ 0 in Ω\{P} (for example,
see [4]). Those two typical examples demonstrate that the structure of the
operator Q should play a crucial role in a comparison principle for the same
D. In this paper, we consider a comparison principle when D = {P} is a
point on ∂Ω, the operator Q is in the class of “strongly singularly elliptic”
operators (see definition below) and one of the functions to be compared is
a linear function. We shall then apply the comparison principle to prove a
uniqueness result for Dirichlet problems in a two dimensional domain with
jump discontinuous boundary data φ(x).

The class of “strongly singularly elliptic” operators is extended from the
class of “singularly elliptic” operator introduced by Serrin in [12]. One
feature of a singularly elliptic operator Q is that the behavior near a point
on ∂Ω of a solution f to Qf = 0 can be controlled by the behavior of f
on the rest of the domain. To state the definition of “strongly singularly
elliptic” operators, let p = (p1, p2, · · ·, pn) and

ε(x, t, p) =
n∑

i,j=1

aij(x, t, p)pipj.

Then:
Definition 1. An elliptic equation

(1) Qf ≡
n∑

i,j=1

aij(x, f,Df)Dijf = 0

is called strongly singularly elliptic if

(2) Trace(aij(x, t, p)) = 1 for x ∈ Ω, t ∈ R, p ∈ Rn,
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and there is a positive function Ψ(ρ) such that

(3) (ε(x, t, p))−1 ≥ Ψ(|p|) for |p| ≥ 1, x ∈ Ω, t ∈ R, p ∈ Rn,

and for any positive constant d, if ψd(ρ) = minρ−d≤t≤ρ+d Ψ(t), we have

(4)
∫ ∞ dρ

ρ2ψd(ρ)
<∞.

The comparison principle obtained in the paper is:

Theorem 1. Assume that
(a) g is a linear function and ω is a subdomain of Ω;
(b) f ∈ C2(Ω) ∩ C0(Ω \ {P}) satisfies Qf = 0 in Ω;
(c) the elliptic equation Qf = 0 is strongly singularly elliptic;
(d) there are positive constants µ > 0 and H > 0 such that for x ∈ Ω,

t ∈ R, |p| ≥ H,
ε(x, t, p) ≤ (1− µ)|p|2;

(e) f ≤ (≥) g on ∂ω \ {P}.
Then

f ≤ (≥) g on ω \ {P}.

Theorem 1 can be applied to investigate the uniqueness of solutions and
behavior of solutions near a point on the boundary. In this paper, we only
give an application of Theorem 1 to the study of the uniqueness of solutions.
An application of Theorem 1 to the investigation of the behavior of solutions
near a point on the boundary is given in another paper by authors [7]. To
apply Theorem 1 to prove a uniqueness result for Dirichlet problems with
boundary data φ(x) which have a jump discontinuity, we need to restrict
ourself to a bounded domain Ω in R2 with (0, 0) ∈ ∂Ω and an elliptic operator
Q given by

(5) Qf ≡ a(f, fx, fy)fxx + 2b(f, fx, fy)fxy + c(f, fx, fy)fyy

where a, b, c ∈ C1(R × R2) with ac − b2 > 0 in R3. We assume throughout
the paper that a(t, p, q)+c(t, p, q) = 1 for all (t, p, q) ∈ R3. We shall consider
the uniqueness of solutions of the Dirichlet problem (P ) when Q is given by
(5), φ is continuous on ∂Ω except at (0, 0) and φ has a jump discontinuity
at (0, 0).

One typical case is when Q is the minimal surface operator. In this case,
when φ is continuous on ∂Ω, the uniqueness of solutions to (P ) is well known
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(for example see [5], [12]). When φ is singular on ∂Ω, the uniqueness is
obtained in [3] (see also [9]). The uniqueness for the case that Q is the
constant mean curvature operator and φ has singularities on ∂Ω is proved
in [13]. The proofs of these results exploited the specific structure of the
minimal surface operator (or the constant mean curvature operator). When
the operator Q takes the general form given in (5), it is not clear how the
uniqueness of solutions can be deduced. We shall prove the uniqueness of
solutions for a special class of boundary data φ(x) satisfying the following
assumption.
Assumption (A). φ ∈ C0(∂Ω \ {(0, 0)}) and φ a has jump discontinuity
at (0, 0). If m < M are the two side limits of φ at (0, 0) along ∂Ω, the set

{(x, y, φ(x, y)) | (x, y) ∈ ∂Ω \ {(0, 0)} } ∪ {(0, 0, z) | m ≤ z ≤M }

can be projected bijectively onto a closed convex curve S on the yz plane.

The uniqueness result is:

Theorem 2. Assume
(1) the elliptic equation Qf = 0 is strongly singularly elliptic;
(2) there are positive constants µ > 0 and H > 0 such that for x ∈ Ω,

t ∈ R, |p| ≥ H,
ε(x, t, p) ≤ (1− µ)|p|2;

(3) the boundary data φ satisfying the assumption (A).
Then the solution of (P ) is unique in the class C2(Ω) ∩ C0(Ω \ {(0, 0)}).
It is natural to ask what kind of operator is in the class of “strongly

singularly elliptic” operators. One subclass of strongly singularly elliptic
operators is the class of elliptic operators with well defined genre, a concept
introduced in [1] and [12].
Definition 2. Q in (1) has genre λ if it satisfies (2) and there are positive
constants µ1 and µ2 such that for p ∈ Rn, |p| ≥ 1, t ∈ R, x ∈ Ω,

µ1|p|2−λ ≤ ε(x, t, p) ≤ µ2|p|2−λ.

From the definition, it is easy to see that the minimal surface operator
has genre λ = 2, the Laplace operator has genre λ = 0 and the operator Q
satisfies (1) and (2) in Theorem 2 if it has a well defined genre greater than
1.

The ideas of the proofs: Theorem 1 is proved by modifying the proof of a
similar result due to Serrin [12]. Theorem 2 is proved by observing that for
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any solution f(x, y) of (P ), we can view the graph of z = f(x, y) from the
side and obtain a new function x = g(y, z) for the same graph. Then the
discontinuity of φ at (0, 0) disappears for the function g(y, z). Furthermore
the function g(y, z) satisfies an elliptic equation. Then we apply the classical
comparison principle to the function g(y, z) and its elliptic equation.

2. A Comparison Principle in Rn.

In this section, we prove the comparison principle Theorem 1. The proof
requires a few lemmas. In [12] Serrin defined an elliptic operator Q to be
singularly elliptic if it satisfies Definition 1 with (4) only needed to hold for
ψ0(ρ) = Φ(ρ). The first lemma relates the class of strongly singularly elliptic
operators to that of singularly elliptic operators introduced by Serrin in
[12]. Roughly speaking, a strongly singularly elliptic operator is a singularly
elliptic operator such that it is still singularly elliptic after f replaced by f
plus a linear function.

Lemma 1. If (1) is strongly singularly elliptic, then for any vector b ∈ Rn

and constant c, the equation

(6)
n∑

i,j=1

aij(x, f + b · x+ c,Df + b)Dijf = 0

is also singularly elliptic as defined by Serrin in [12].

Proof. By the definition given by Serrin in [12], we need to verify that:
1) For all x ∈ Ω, t ∈ R, p ∈ Rn,

(7) Trace(aij(x, t+ b · x+ c, p+ b)) = 1.

2) There is a positive function g(ρ) such that for

ε1(x, t, p) ≡
n∑

i,j=1

aij(x, t+ b · x+ c, p+ b)pipj

and for all |p| ≥ 1, p ∈ Rn, x ∈ Ω, t ∈ R, we have

(8) (ε1(x, t, p))−1 ≥ g(|p|)

and

(9)
∫ ∞

1

dρ

ρ2g(ρ)
<∞.
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(7) follows easily from (2). For (8) and (9), we notice that

ε1(x, t, p) = ε(x, t+ b · x+ c, p+ b)

− 2
n∑

i,j=1

aij(x, t+ b · x+ c, p+ b)bi(pj + bj)

+
n∑

i,j=1

aij(x, t+ b · x+ c, p+ b)bibj.

(7) implies that all eigenvalues of (aij(x, t+ b · x+ c, p+ b)) are between 0
and 1. Then by Schwartz inequality, we have

(10) ε1(x, t, p) ≤ ε(x, t+b ·x+c, p+b)+ |b|(ε(x, t+b ·x+c, p+b))
1
2 + |b|2,

thus

(11) ε1(x, t, p) ≤ 3ε(x, t+ b · x+ c, p+ b) + 3|b|2.

There are two cases.
Case 1): ε(x, t+ b · x+ c, p+ b) < |b|2, then ε1(x, t, p) ≤ 6|b|2;
Case 2): ε(x, t+ b · x+ c, p+ b) ≥ |b|2, then ε1(x, t, p) ≤ 6ε(x, t+ b · x+ c,
p+ b).
In either case, for |p+ b| ≥ 1, we have

1
ε1(x, t, p)

≥ 1
6

min
{

1
|b|2 ,

1
ε(x, t+ b · x+ c, p+ b)

}
≥ 1

6
min

{
1
|b|2 ,Ψ(|p+ b|)

}
.

When |p + b| < 1 and |p| ≥ 1, it is easy to see that ε1(x, t, p) ≤ |p|2 from
(7). Thus

1
ε1(x, t, p)

≥ C1min
{

1
|b|2 ,Ψ(|p+ b|)

}
for |p| ≥ 1

for some constant C1 > 0. If we let d = |b|, then |p|−|b| ≤ |p+b| ≤ |p|+ |b|
and the definition of ψd(ρ) implies that for |p| ≥ 1,

(ε1(x, t, p))−1 ≥ g(ρ) where g(ρ) = C1min
{

1
|b|2 , ψd(ρ)

}
.

That is (8). Finally
1

ρ2g(ρ)
≤ c2

ρ2
+

c2

ρ2ψd(ρ)
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for some constant c2. Thus (9) follows from (4).

For singularly elliptic equations, the behavior of a solution near a point
on the boundary can be controlled by the behavior of the solution on the
rest of the domain. In [12] Serrin proved the following Proposition.

Proposition (Serrin [12]). Let P be a point on ∂Ω and f ∈ C2(Ω) ∩
C0(Ω\{P}) be a solution of (1). Assume that (1) is singularly elliptic and
there is a positive constant µ > 0 such that

(12) ε(x, t, p) ≤ (1− µ)|p|2 for x ∈ Ω, t ∈ R, p ∈ Rn.

Then for any given δ > 0, we have (r denotes the distance from x to P )

(13) f ≤ m = sup{f(x) | x ∈ ∂Ω ∩ {r ≥ a}}+ δ on Ω ∩ {r = a}
for all sufficient small values of a depending only on δ, the diameter of Ω,
and the structure of Equation 1.

In application, we usually can only verify that (12) holds for |p| large.
A careful inspection of Serrin’s proof of the Proposition tells us that (12) is
only needed for a bounded range of t if we know that f is bounded on Ω\{P}
a priori. Thus we obtain the following lemma from Serrin’s Proposition with
a modification of the proof of the Proposition given by Serrin in [12].

Lemma 2. Let P be a fixed point on ∂Ω and f ∈ C2(Ω) ∩ C0(Ω\{P}) be
a solution of (1). Assume that (1) is singularly elliptic, f ∈ L∞(∂Ω \ {P})
and there are positive constants µ > 0 and H > 0 such that

(14) ε(x, t, p) ≤ (1− µ)|p|2 for |p| ≥ H, x ∈ Ω, t ∈ R, p ∈ Rn.

Then for any given δ > 0, we have (r denotes the distance from x to P )

(15) f ≤ sup{f(x) | x ∈ ∂Ω ∩ {r ≥ a}}+ δ on Ω ∩ {r = a}
for all sufficient small values of a depending only on δ, the diameter of Ω,
and the structure of Equation 1.

Proof. For convenience, we let φ(x) be the restriction of f(x) on ∂Ω \ {P}.
Step I: There is a constant M such that |f(x)| ≤M on Ω \ {P}.

Set Ψ1(ρ) = ρ−2 if 0 < ρ < 1, Ψ1(ρ) = Ψ(ρ) if ρ ≥ 1, where Ψ(ρ) is given
in the Definition 1 satisfying by (3) and (4) (with ψ0(ρ) = Φ(ρ)). Then∫ ∞

0

dρ

ρ3Ψ1(ρ)
=∞.
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We set

(16) χ(α) =
∫ ∞
α

dρ

ρ3Ψ1(ρ)
.

It is clear that χ(α) is a monotonically decreasing function with range (0,∞).
Let η(β) be the inverse function of χ(α). Then η(β) is a positive, monoton-
ically decreasing function with range (0,∞), and

(17)
∫ ∞

0

χ(α)dα =
∫ ∞

0

η(β)dβ <∞.

We denote by τ the diameter of Ω and define

(18) h(r) =
∫ τ

r

η

(
µ log

t

a

)
dt

where r is the distance from x to the point P , µ is defined in (14) and a is
a small positive number to be determined later. Then it is straightforward
to verify that h(r) is a positive monotonically decreasing function, h(τ) = 0,
h′(a) = −∞, and

(19)
h′′

h′3
= −µΨ1(−h′)

r
.

L’Hopital’s Rule implies that

lim
a−→0

h(a) = lim
a−→0

a

∫ τ
a

1

η(µ log t)dt = lim
a−→0

τη

(
µ log

τ

a

)
= 0.

Since
|h′(r)| = η

(
µ log

r

a

)
and η(β) −→ ∞ as β −→ 0+, for H given in the condition (14), there
is a constant c(H, η), such that η(β) ≥ H for 0 < β < c(H, η). Thus
η(µ log r

a
) ≥ H if 1 ≤ r

a
≤ ed with d = c(H, η)/µ. That is, for any number

a > 0,

(20) |h′(r)| = η

(
µ log

r

a

)
≥ H for a ≤ r ≤ aed.

Now we choose a number a1 such that a1e
d ≤ τ/2 and define ak+1 = ake

−d =
a1e
−kd for k = 1, 2, 3, · · ·. We set

h1(r) =
∫ τ

r

η

(
µ log

t

a2

)
dt;(21)

M = sup
r(x)=a1

{f(x)}+ sup
x∈∂Ω\{P}

{φ(x)};

w1(x) = h1(r(x)) +M.
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Then

Dw1(x) = h′1(r(x))
x

|x| .(22)

From (20), (22) and the definition of a1, a2, we have

(23) |Dw1(x)| = |h′1(r(x))| ≥ H for a2 ≤ r ≤ a1.

Then for any constant b, we have that on a2 ≤ r ≤ a1

L{w1 + b} ≡
n∑

i,j=1

aij(x,w1(x) + b,Dw1(x))Dijw1(x)

(24)

≤ ε1(x, h1 +M + b,Dh1)
h′′1
h′1

2 +

(
1− ε1(x, h1 +M + b,Dh1)

h′1
2

)
h′1
r

≤ ε1(x, h1 +M + b,Dh1)
h′′1
h′1

2 + µ
h′1
r
≤ 1

Ψ1(−h′1)
h′′1
h′1

2 + µ
h′1
r

= 0.

Here we have used (14), (19) and (23). Then Theorem 15.1 (on page 459)
in [12] implies that

f(x) ≤ w1(x) on a2 ≤ r ≤ a1.

In particular, since h1(r) is monotonically decreasing,

(25) f(x) ≤ h1(a2) +M on a2 ≤ r ≤ a1.

Now for a3 ≤ r ≤ a2, we set

h2(r) =
∫ τ

r

η

(
µ log

t

a3

)
dt(26)

and

w2(x) = h2(r(x)) +M + h1(a2).(27)

Similar to the argument with w1, since |Dw2(x)| = |h′2(r(x))| ≥ H for a3 ≤
r ≤ a2, we have that for any constant b, on a3 ≤ r ≤ a2

L{w2 + b} ≡
n∑

i,j=1

aij(x,w2(x) + b,Dw2(x))Dijw2(x) ≤ 0.

Once again Theorem 15.1 (on page 459) in [12] implies that

f(x) ≤ w2(x) on a3 ≤ r ≤ a2.
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In particular, since h2(r) is monotonically decreasing,

(28) f(x) ≤M + h1(a2) + h2(a3) on a3 ≤ r ≤ a2.

Combine (25) and (28), we get

f(x) ≤M + h1(a2) + h2(a3) on a3 ≤ r ≤ a1.

Repeating this process, we arrive at

f(x) ≤M +
∞∑
i=1

hi(ai+1) on 0 < r ≤ a1,

where

(29) hi(t) =
∫ τ

t

η

(
µ log

t

ai+1

)
dt, i = 1, 2, 3, · · ·.

If we can show

(30)
∞∑
i=1

hi(ai+1) <∞,

f(x) is bounded from above on 0 < r(x) ≤ a1. Since f(x) is bounded on
a1 ≤ r(x) ≤ τ , f(x) is bounded from above on Ω\{P}. In a similar manner,
we can show that f(x) is bounded from below on Ω \ {P}.

It remains to show (30). From (29), we have
∞∑
i=1

hi(ai+1) =
∞∑
i=1

∫ τ

ai+1

η

(
µ log

t

ai+1

)
dt

=
∞∑
i=1

ai+1

∫ τ/ai+1

1

η(µ log y)dy

=
∞∑
i=1

a1e
−id
∫ τeid/a1

1

η(µ log y)dy.

But ∫ ∞
1

e−xd
(∫ τexd/a1

1

η(µ log y)dy

)
dx

=
∞∑
1

∫ i+1

i

e−xd
(∫ τexd/a1

1

η(µ log y)dy

)
dx

≥
∞∑
1

e−(i+1)d

∫ τeid/a1

1

η(µ log y)dy

= e−d
∞∑
1

e−id
∫ τeid/a1

1

η(µ log y)dy.
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Thus we need only to show

(31)
∫ ∞

1

e−xd
(∫ τexd/a1

1

η(µ log y)dy

)
dx <∞.

By Fubini’s theorem, we exchange the order of integration to get∫ ∞
1

e−xd
(∫ τexd/a1

1

η(µ log y)dy

)
dx

=
∫ τed/a1

1

η(µ log y)
(∫ ∞

1

e−xddx
)
dy

+
∫ ∞
τed/a1

η(µ log y)

(∫ ∞
1
d log

a1y
τ

e−xddx

)
dy

=
∫ τed/a1

1

1
d
e−dη(µ log y)dy +

∫ ∞
τed/a1

τ

da1

η(µ log y)
1
y
dy

≤
∫ τed/a1

1

τ

da1y
η(µ log y)dy +

∫ ∞
τed/a1

τ

da1

η(µ log y)
1
y
dy

≤
∫ ∞

0

τ

da1µ
η(β)dβ <∞

here we have used (17). Thus (30) is true.

Step II: Proof of (15) from (14).

Let M be the number given in Step I. (2) implies all eigenvalues of
(aij(x, t, p)) are between 0 and 1. Thus for |p| ≤ H, x ∈ Ω, t ≤ 4M , there is
a positive constant µ1 > 0 such that:

All eigenvalues of the matrix (aij(x, t, p)) ≤ 1− µ1

for |p| ≤ H,x ∈ Ω, t ≤ 4M.

Combining this with condition (14), we have (for µ2 = min{µ, µ1})

(32) ε(x, t, p) ≤ (1− µ2)|p|2 for x ∈ Ω, |t| ≤ 4M, p ∈ Rn.

Let Ψ1(ρ), χ(α) and η(β) be the same as those defined in the proof of Step I.
Let h(r) be the function defined by formula (18) with the constant µ replaced
by µ2. Then h(r) has all the properties verified in Step I and satisfies the
equation (19) with the constant µ replaced by µ2. Now we choose a small a,
such that h(a) ≤M/4, then 0 ≤ h(r) ≤M/4 for a ≤ r ≤ τ . Set

(33) w(x) = h(r(x)) +M1, M1 = sup{φ(x) |x ∈ ∂Ω, r(x) ≥ a}.
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Then
|w(x)| ≤ h(r(x)) +M ≤M/4 +M = 5M/4,

and if b is a constant such that |b| ≤ 5M/2,

(34) |w(x) + b| ≤ 5M/4 + 5M/2 < 4M.

Thus from (19), (32) and (34), as we did in (24), we have

(35) L{w + b} ≡
n∑

i,j=1

aij(x,w(x) + b,Dw(x))Dijw(x) ≤ 0.

Now we fix a point x0 in Ω and set b = f(x0)− w(x0). Then |b| ≤ |f(x0)|+
|w(x0)| ≤M + 5M/4 < 5M/2. We can substitute this b into (35) to get

n∑
i,j=1

aij(x0, f(x0), Dw(x0))Dijw(x0) ≤ 0.

Since x0 is arbitrary, we further have

n∑
i,j=1

aij(x, f(x), Dw(x))Dijw(x) ≤ 0.

Then the proof of Theorem 1 on page 459 in [12] yields

f(x) ≤ w(x) on Ω ∩ {r ≥ a}.
That is

f(x) ≤ h(r(x)) + sup{φ(x) |x ∈ ∂Ω, r(x) ≥ a } on Ω ∩ {r ≥ a}.
Since h(a) −→ 0 as a −→ 0 and h(r) is monotonically decreasing, for any
given δ > 0, when a is small,

f(x) ≤ sup
r(x)≥a

{φ(x)}+ δ on Ω ∩ {r ≥ a}.

That is (15).

Since the numbers a and δ in Lemma 2 can be made arbitrary small, we
obtain the following conclusion.

Lemma 3. Under the same assumptions as in Lemma 2, for φ(x) = f(x)
on x ∈ ∂Ω \ {P}, we have

inf
∂Ω\{P}

{φ} ≤ f(x) ≤ sup
∂Ω\{P}

{φ} for x ∈ Ω.
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We now can prove Theorem 1.

Proof of Theorem 1. Set f(x) = v(x) + g(x), g(x) = b · x + c, then v(x)
satisfies v(x) ≤ 0 on ∂ω \ {P} and

(36)
n∑

i,j=1

aij(x, v + b · x+ c,Dv + b)Dijv = 0.

Hence we only need to prove that v(x) ≤ 0 on ω \ {P}.
From (10) in the proof of Lemma 1 and assumption (d), for |p| > H, we

have
ε1(x, t, p) ≤ (1− µ)|p|2 + (3− 2µ)|p||b|+ (3− 2µ)|b|2.

Thus there is a T > 0, such that for some µ1 > 0,

ε1(x, t, p) ≤ (1− µ1)|p|2 for |p| > T, x ∈ ω, t ∈ R.

Finally the assumption (c) and Lemma 1 imply (36) is singularly elliptic.
Then we can apply Lemma 3 to v(x) on the subdomain ω to get v(x) ≤ 0 on
ω\{P} (note: Since v(x) ≤ 0 on ∂ω\{P}, we do not need v ∈ L∞(∂ω\{P})
in Lemma 3).

3. Uniqueness of Solutions.

In this section, we prove the uniqueness result Theorem 2. First we need
the following lemma. When Q is the minimal surface operator and φ is
continuous, the idea in the proof was used in [11].

Lemma 4. Suppose φ satisfies the assumption (A) and Q given in (5) is
strongly singularly elliptic. Then for any solution f of (P ) in C2(Ω)∩C0(Ω\
{(0, 0)}), fx(x, y) 6= 0 in Ω.

Proof. Suppose that for some (x0, y0) ∈ Ω, fx(x0, y0) = 0. Then the tangent
plane at (x0, y0) of the surface z = f(x, y) is given by

z = fy(x0, y0)(y − y0) + f(x0, y0).

This plane is perpendicular to the yz plane. Let

v(x, y) = fy(x0, y0)(y − y0) + f(x0, y0).

Then v(x0, y0) = f(x0, y0). Since the plane is perpendicular to the yz plane,
the assumption (A) implies that the tangent plane intersects the convex
curve S defined in the assumption (A) at exactly two distinct points. Thus
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v = ψ on ∂Ω \ {(0, 0)} at most at two points, say q1, q2 if they exist. Since
the graph of v is the tangent plane to the graph of f at (x0, y0, f(x0, y0)),
there are at least two curves γ1 and γ2 which intersect at (x0, y0), divide the
neighborhood of (x0, y0) into four distinct, disjoint, open, connected sectors
ω1, ω2, ω3, ω4 and f − v = 0 on γ1 and γ2 (e.g. see Lemma 1 in [8]). Then
there must exist four (possibly nondistinct) points p1, p2, p3, p4 arranged in
order around ∂Ω such that p1 and p3 are endpoints of (an extension of) γ1

and p2 and p4 are endpoints of (an extension of) γ2. On these extensions
of γ1 and γ2, we have f = v. Since f is discontinuous at (0, 0), we see that
{p1, p2, p3, p4} ⊆ {(0, 0), q1, q2}. Hence there must exist an open set U ⊂ Ω
such that f = v on ∂U \ {(0, 0)}. By Theorem 1, f = v in U . Thus f = v
in Ω by the unique continuation property for solutions of elliptic equation
([2]). That is, the graph of f is part of the tangent plane. This contradicts
the assumption (A). Thus fx(x, y) 6= 0 in Ω.

Now we prove Theorem 2.

Proof of Theorem 2. By Lemma 1, fx(x, y) 6= 0 in Ω. Then either fx(x, y) <
0 in Ω or fx(x, y) > 0 in Ω. Thus there is a function x = g(y, z) such that:

1) x = g(y, z) is defined on the domain D on yz plane where D is the
region bounded by the convex curve S;

2) x = g(y, f(x, y)) for (x, y) ∈ Ω.
We claim the function x = g(y, z) has the following properties:

Property 1: x = g(y, z) is continuous on D; g(0, z) = 0 for m ≤ z ≤M .
Property 2: x = g(y, z) is C2 on D, gz 6= 0;
Property 3: g(y, z) satisfies on D the equation

Lg ≡ c
(
z,

1
gz
,−gy

gz

)
gyy + 2

(
1
gz
b

(
z,

1
gz
,−gy

gz

)
− gy
gz
c

(
z,

1
gz
,−gy

gz

))
gyz

(37)

+

(
1
g2
z

a

(
z,

1
gz
,−gy

gz

)
− 2

gy
g2
z

b

(
z,

1
gz
,−gy

gz

)
+
g2
y

g2
z

c

(
z,

1
gz
,−gy

gz

))
gzz

= 0

and Equation 37 is elliptic where gz 6= 0.
Assuming the properties for the moment, if there are two solutions f1(x, y),

f2(x, y) to the problem (P ), we have two functions g1(y, z) and g2(y, z) with
above properties. By Property 1 and the definitions of g1(y, z) and g2(y, z),
we have g1(y, z) = g2(y, z) on S = ∂D. Since f1x(x, y) 6= 0 and f2x(x, y) 6= 0,
g1z(y, z) 6= 0 and g2z(y, z) 6= 0 on D. We also note that f1x(x, y) and f2x(x, y)
have the same sign which is determined = by φ(x), thus g1z(y, z) and g2z(y, z)
have the same sign. Now since the coefficients of the elliptic operator Lg do
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not contain the variable g, an application of a classical comparison principle
(e.g. [5]) shows that g1(y, z) = g2(y, z) on D. Thus f1(x, y) = f2(x, y) on =
Ω. This is the uniqueness desired.

Now we still need to prove the properties:

Property 1. First of all we observe that the assumption (A) implies that
the region D enclosed by the convex curve S is either in {(y, z) | y ≥ 0 } or
{(y, z) | y ≤ 0 }. We may assume that

(38) D ⊂ {(y, z) | y ≥ 0 }.

We define g(0, z) = 0 form ≤ z ≤M . Since the graph of f(x, y) is continuous
except at (0, 0), we only need to show that g(y, z) is continuous at each point
(0, z) for m ≤ z ≤ M . If this is not true, there is a sequence of (yk, zk)
such that yk −→ 0, zk −→ z1 as k −→ ∞ such that m ≤ z1 ≤ M and
|xk| = |g(yk, zk)| ≥ c1 > 0. We may assume xk −→ x1 6= 0. By (38), any
point of the form (x, 0) is in ∂Ω. Then (x1, 0) ∈ ∂Ω \ {(0, 0)} and zk =
f(xk, yk) −→ z1 = f(x1, 0). That is, (x1, 0, f(x1, 0)) is projected to (0, z1).
But the assumption (A) implies that (0, z1) is projected from (0, 0, z1). It
contradicts to fact that the projection in the assumption (A) is bijective.
Thus x = g(y, z) is continuous on D and g(0, z) = 0 for m ≤ z ≤M .

Property 2. This part follows directly from the smooth assumption that
f ∈ C2(Ω), the fact that fx 6= 0 and the implicit function theorem.

Property 3. This part follows from a direct computation: Indeed from the
formula x = g(y, f(x, y)) and chain rule, we have fy = − gy

gz
, fx = 1

gz
, and

fyy = − 1
gz

{
gyy − 2

gy
gz
gyz +

g2
y

g2
z

gzz

}
;

fxy = − 1
gz

{
1
gz
gzy − gy

g2
z

gzz

}
;

fxx = − 1
g3
z

gzz.

Substituting those into Qf = 0, we get (37). Finally it is easy to check
directly that (37) is an elliptic equation.
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