
pacific journal of mathematics
Vol. 184, No. 2, 1998

SMALL COMPOSITION OPERATORS ON
ANALYTIC VECTOR-VALUED FUNCTION SPACES

Peide Liu, Eero Saksman and Hans-Olav Tylli

Let φ be an analytic mapping of the unit disk D into itself.
We characterize the weak compactness of the composition op-
erator Cφ : f 7→ f ◦ φ on the vector-valued Hardy space H1(X)
(= H1(D,X)) and on the Bergman space B1(X), where X is a
Banach space. Reflexivity of X is a necessary condition for
the weak compactness of Cφ in each case. Assuming this, the
operator Cφ : H1(X)→ H1(X) is weakly compact if and only if
φ satisfies the Shapiro condition: Nφ(w) = o(1−|w|) as |w| → 1−,
where Nφ stands for the Nevanlinna counting function of φ.
This extends a previous result of Sarason in the scalar case.
Similarly, Cφ is weakly compact on B1(X) if and only if the
angular derivative condition lim|w|→1−(1− |φ(w)|)/(1− |w|) =∞
is satisfied. We also characterize the weak compactness of Cφ
on vector-valued (little and big) Bloch spaces and on H∞(X).
Finally, we find conditions for weak conditional compactness
of Cφ on the above mentioned spaces of analytic vector-valued
functions.

Introduction

Let φ : D → D be analytic, where D is the open unit disk in C. Recently
properties of the analytic composition operators

f 7→ f ◦ φ(1)

have been studied on the Hardy and Bergman spaces in numerous papers.
Among the prominent results we mention the characterization [13] of com-
pact composition operators on the Hardy space Hp (1 ≤ p < ∞) in terms
of the Nevanlinna counting function Nφ of φ (see below for the definition of
Nφ). Thus, Cφ : Hp → Hp is compact if and only if Nφ satisfies the Shapiro
condition: Nφ(w) = o(1 − |w|) as |w| → 1−. Likewise, Cφ is compact on
the Bergman space Bp [9] if and only if φ satisfies the angular derivative con-
dition: lim|z|→1−(1−|φ(z)|)/(1−|z|) =∞. Many other important properties
of Cφ have also been characterized, such as spectral properties, membership
in Schatten classes, closedness of the range and weak compactness. In addi-
tion, the same questions have been studied for composition operators acting
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on analytic functions defined on a domain in Cn. We refer to the recent
monographs [14] and [5] for an overview of the whole spectrum of present
knowledge concerning analytic composition operators.

The purpose of this paper is to initiate the study of analytic composition
operators on spaces of vector-valued analytic functions. Let X be a Banach
space and 1 ≤ p <∞. The X-valued Hardy spaces Hp(X) on the unit disk
D ⊂ C are defined as follows

(2) Hp(X) =
{
f : D → X

∣∣ f analytic, ‖f‖pHp(X)

:= sup
r<1

1
2π

∫ 2π

0

‖f(reiθ)‖pXdθ <∞
}
,

for p <∞ and in addition ‖f‖H∞(X) = supz∈D ‖f(z)‖X . The natural defini-
tions of the X-valued Bergman spaces Bp(X) and Bloch spaces will be given
later. Important parts of modern harmonic analysis have been extended
to the vector-valued case during the last 15 years, and at the same time
vector-valued harmonic analysis has had profound applications to classical
harmonic analysis (see e.g. the reviews [4] and [11]). We continue this line
of research by asking about basic properties of the vector-valued composi-
tion operators (1), where f now belongs to some of the previously mentioned
analytic vector-valued spaces.

We shall assume in the sequel that the Banach space X is infinite-dimens-
ional. In this case the operator Cφ is never compact. Namely, it fixes the
constant functions (if f(z) ≡ a ∈ X, then Cφf = f) and hence a copy of
X itself. However, the question of weak compactness of Cφ remains equally
interesting as an important ’smallness’ property, and in this paper we shall
concentrate on it.

A necessary condition for weak compactness of Cφ on X-valued spaces of
analytic functions is the reflexivity of X. Assuming this, Theorem 3 below
states that the operator Cφ is weakly compact on the Hardy space H1(X) if
and only if Nφ satisfies the Shapiro condition and, moreover, Cφ : B1(X)→
B1(X) is weakly compact if and only if φ satisfies the angular derivative
condition. The first mentioned criterion extends the result of Sarason [12]
stating that (in the scalar case) the weak compactness of Cφ : H1 → H1

implies that Cφ is compact, i.e. the Shapiro condition holds. We refer to the
remarks before Proposition 2 for the fact that the weak compactness of Cφ
is obvious on Hp(X) or Bp(X) for 1 < p <∞ and a reflexive space X.

Theorem 4 characterizes weak compactness of Cφ on the vector-valued
(big and little) Bloch-spaces B(X) and B0(X). This generalizes and ex-
tends [10, Theorems 1 and 3], where scalar composition operators on the
Bloch spaces were studied. As a special case of Theorem 4 we obtain that
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[10, Theorem 3] also holds for the big Bloch space B: Every weakly compact
composition operator on B is compact. Theorem 6 settles the case H∞(X).

Finally, Theorem 7 characterizes weak conditional compactness of Cφ on
(most of) the vector-valued spaces of analytic functions mentioned above.
The conditions for this turn out to be similar to those for weak compactness,
the difference being that instead of the reflexivity of X one has to assume
that `1 does not embed into X.

Results.

Throughout this paper φ stands for an analytic self-map of D and X is a
Banach space. We first recall the definitions of weakly compact operators
and the standard vector-valued analytic spaces that we shall consider. If E
is a Banach space the bounded linear operator T : E → E is weakly compact
if the image TBE of the unit ball BE is relatively compact in the weak
topology of E. Another way to state this is to demand that every bounded
sequence (xk) ⊂ E has a subsequence (xki) such that the sequence (Txki)
converges weakly (the equivalence of the stated conditions follows from the
Eberlein-Smulian theorem [18, II.c.3 ]).

The vector-valued Hardy spaces have already been defined in (2). The
definition of the X -valued Bergman spaces is analogous:

Bp(X) =
{
f : D → X

∣∣ f analytic, ‖f‖pBp(X) :=
1
π

∫
D

‖f(z)‖pXdA(z) <∞
}
,

where dA denotes the two-dimensional Lebesgue measure. The Bloch space
B(X) is defined in a natural manner:

B(X) =
{
f : D → X | f analytic, ‖f‖B(X)

:= ‖f(0)‖X + sup
z∈D

(1− |z|2)‖f ′(z)‖X <∞
}
.

The little Bloch space B0(X) is the closed subspace of B(X) consisting of
the analytic functions f with the property lim|z|→1(1 − |z|2)‖f ′(z)‖X = 0.
The completeness of these spaces is established exactly as in the scalar case.
We shall write, e.g., H1 = H1(C).

Consider next the boundedness of the operator Cφ on these vector-valued
spaces.

It is well known that for analytic f : D → X the norm z 7→ ‖f(z)‖X is
subharmonic. Namely, it may be expressed as the (continuous) supremum
of a family of subharmonic functions:

‖f(z)‖X = sup
x′∈BX′

|〈x′, f(z)〉|,
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where BX′ stands for the unit ball of the dual space X ′. Hence we may
apply the Littlewood subordination theorem in the well known manner (see
[5, Theorem 3.1]) to deduce that Cφ is contractive on the spaces Hp(X) and
Bp(X) (p ∈ [1,∞[) in the case that φ(0) = 0. In order to treat the general
case we note that it is enough to verify that Cφ is bounded whenever φ is
a conformal automorphism of the disk onto itself. In this case boundedness
is established by the simple change of variables φ(z) = w inside the integral
defining the norm of Cφf . However, in the case of Hardy spaces one first
applies the change of variables φ(z) = w to Cφ(f(rz)) and then lets r increase
to 1, using the subharmonicity of the norm ‖f(z)‖X . The reason for the extra
care is the fact that, contrary to the scalar case, the functions in Hp(X)
need not in general have radial boundary values a.e.. In fact, elements in
Hp(X) can be identified with X-valued Lp-functions on the boundary with
vanishing negative Fourier coefficients if and only if X has the so called
analytic Radon-Nikodým property (see for instance [2]). The boundedness
of Cφ on the Bloch spaces reduces to the scalar case treated in [10] by noting
that ‖f‖B(X) ≤ 2 supλ∈BX′ ‖λ ◦ f‖B. Summing up, we have established (the
non-trivial parts) of the following:

Proposition 1. Let X be a Banach space and φ : D → D be analytic.
The operator Cφ is bounded on the spaces B(X), Hp(X) and Bp(X) for
1 ≤ p ≤ ∞. Moreover, Cφ maps B0(X) into itself only if φ ∈ B0. In the case
where φ(0) = 0 the operator Cφ is actually a contraction on the Hardy and
Bergman spaces.

From here on we may and shall always assume in the proofs of our the-
orems that φ(0) = 0, since neither the results nor the conditions on φ will
change if φ is composed with a conformal self-map of D.

We start by considering composition operators on X-valued Bergman and
Hardy spaces. Assuming that Cφ is weakly compact on Bp(X) or on Hp(X)
we note that X is reflexive. Namely, because Cφ fixes constant functions we
see that Cφ fixes a copy of the space X itself. Hence, for p ∈ (1,∞) the ques-
tion of weak compactness of Cφ is trivial since the spaces Bp(X) and Hp(X)
are reflexive as closed subspaces of the reflexive Banach spaces Lp(D,X)
and Lp(∂D,X). For these facts, see [6, Corollary IV.2] and note that reflex-
ive Banach spaces possess the Radon-Nikodým property [6, Corollary III.13]
and consequently also the analytic Radon-Nikodým property (cf. [2]).

The following simple proposition is based on well-known properties of the
de la Vallée-Poussin summability kernels.

Proposition 2. Let X be a Banach space and let n ∈ N. Define the
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operator Vn by setting

Vnf(z) =
n∑
k=0

f̂kz
k +

2n−1∑
k=n+1

2n− k
n

f̂kz
k(3)

for analytic f : D → X with the Fourier expansion f =
∑∞
k=0 f̂kz

k. Then

‖Vnf‖H1(X) ≤ 2‖f‖H1(X)(4)

for all f ∈ H1(X). In addition, given ε > 0 and r ∈ (0, 1) there is n0 =
n0(ε, r) > 0 such that

‖f(z)− Vn0f(z)‖X ≤ ε‖f‖H1(X) for all |z| ≤ r and f ∈ H1(X).(5)

Moreover, if X is reflexive, then the operator Vn : H1(X)→ H1(X) is weakly
compact for all n ≥ 1. All the statements hold also if H1(X) is replaced by
one of the spaces H∞(X) and B1(X).

Proof. We commence with the Hardy space H1(X). Let f ∈ H1(X) and
assume first that f is continuous up to the boundary ∂D. Then Vn (viewed
as operating on boundary values) equals convolution with the de la Vallee-
Poussin kernel so that Vnf = (2K2n−1 − Kn−1) ∗ f, where Kn denotes the
Fejer kernel. Claim (4) follows since Kn is a summability kernel (see [7],
p. 12). In order to prove (5), let r ∈ (0, 1) and ε > 0. The Poisson integral
representation yields the estimate ‖f(z)‖X ≤ C(1− |z|)−1‖f‖H1(X), with C
independent of f. Choose n0 large enough so that 3Crn0(1−r)−1 ≤ ε. Given
f ∈ H1(X), write f − Vn0f = zn0g with ‖g‖H1(X) = ‖f − Vn0f‖H1(X) and
deduce that

‖(I−Vn0)f(z)‖X = |z|n0‖g(z)‖X ≤ Crn0(1− r)−1‖f − Vn0f‖H1(X)

≤ (ε/3)‖f − Vn0f‖H1(X),

for |z| ≤ r. This yields (5) in view of (4). In the case that f is not continuous
we denote fs(z) = f(sz) for 0 < s < 1 and observe that Vnfs = (Vnf)s. Hence
we get, e.g., that ‖(Vnf)s‖H1(X) ≤ 2‖fs‖H1(X) and by letting s increase to 1
we obtain (4) and (5) for f. The proof for H∞(X) is entirely similar.

We next assume that f ∈ B1(X). The uniform boundedness of the oper-
ators Vn follows easily by writing

‖f‖B1(X) = 2
∫ 1

0

‖fr‖H1(X)rdr(6)

and applying the H1(X)-boundedness together with the relation Vnfr =
(Vnf)r. Towards (5), suppose that r ∈ (1/2, 1) and ε > 0 are given and
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that f ∈ B1(X) with ‖f‖B1(X) ≤ 1. Set s =
√
r. Since (5) holds for H1(X)

we may choose n0 such that ‖g(z) − Vn0g(z)‖X ≤ 1
2
ε(1 − s)‖g‖H1(X) for

|z| ≤ s and all g ∈ H1(X). The subharmonicity of z 7→ ‖f(z)‖X yields
that ‖fr‖H1(X) increases with r, so that (6) yields a radius r′ ∈ (s, 1) with
‖fr′‖H1(X) ≤ 2(1 − s)−1. Hence, for |z| ≤ r we have that |z/r′| ≤ |z/s| ≤ s
and we may apply our assumption on n0 to the function fr′ and deduce that

‖f(z)− Vn0f(z)‖X = ‖fr′(z/r′)− Vn0fr′(z/r
′)‖X ≤ 1

2
ε(1− s)‖fr′‖H1(X) ≤ ε.

Finally, assume that X is reflexive. We fix n and denote Gn = (
⊕2n−1

0 X)`2 .
For any analytic function f : D → X with Fourier coefficients f̂(k), k ≥ 0,
define Snf = (f̂(0), f̂(1), . . . , f̂(2n − 1)) ∈ Gn and for any x = (x0, . . . ,
x2n−1) ∈ Gn set

(Rnx)(z) =
(
x0 + x1z + . . . xnz

n + xn+1

n− 1
n

zn+1 + . . .+ x2n−1

1
n
z2n−1

)(7)

for z ∈ D. It is clear that the operators Sn : Y → Gn and Rn : Gn → Y
are well-defined and bounded if Y is any of the spaces H1(X), H∞(X) or
B1(X). Hence the operator Vn = RnSn is weakly compact since it factorizes
through the reflexive space Gn (cf. [18, II.C.5]).

We recall the Stanton formula [16, Theorem 2] for continuous subhar-
monic functions u : D → R,

1
2π

∫ 2π

0

u(φ(reiθ))dθ = u(0) +
1

2π

∫
D

Nφ(r, w)d[∆u](w),

where r ∈ (0, 1) and the standing assumption φ(0) = 0 has been taken
into account. Above d[∆u](w) denotes integration with respect to the dis-
tributional Laplacian of u, which is a positive measure on D since u is
subharmonic. In addition, Nφ(r, ·) denotes the partial Nevanlinna counting
function of φ :

Nφ(r, w) =
∑

z∈φ−1(w), |z|≤r
log

(
r

|z|
)

(8)

for r ∈ (0, 1). The (standard) Nevanlinna counting function Nφ is defined as
Nφ(w) = Nφ(1, w) =

∑
z∈φ−1(w) log(1/|z|).

Let f : D → X be an analytic map. By applying the Stanton formula to
the subharmonic function z 7→ ‖f(z)‖X we obtain

1
2π

∫ 2π

0

‖f(φ(reiθ))‖Xdθ = ‖f(0)‖X +
1

2π

∫
D

Nφ(r, w)d[∆(‖f‖X)](w).(9)
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Since Nφ(r, w) increases monotonically to Nφ(w) as r increases to 1, an
application of the monotone convergence theorem yields

‖Cφf‖H1(X) = ‖f(0)‖X +
1

2π

∫
D

Nφ(w)d[∆(‖f‖X)](w).(10)

This formula can be viewed as a generalization of the well-known Littlewood-
Paley identity. The technique of applying the Stanton formula for the Hardy
spaces Hp with p 6= 2 was introduced by Shapiro and Sundberg [15], where
(10) appears in the scalar case.

We proceed to derive the corresponding formula for the Bergman norm.
Note first that 2

∫ 1

|z| r log(r/|z|)dr = B(|z|), where B(u) = log(1/u) − (1 −
u2)/2 for u ∈ (0, 1). Combining this observation with (8) we easily see that∫ 1

0

rNφ(r, w)dr =
∑

z∈φ−1(w)

B(|z|) =: NB
φ (w).

Multiply (9) by 2r and integrate from 0 to 1 with respect to r in order to
obtain the exact formula

‖Cφf‖B1(X) = ‖f(0)‖X +
1

2π

∫
D

NB
φ (w)d[∆(‖f‖X)](w).(11)

However, we introduce an equivalent norm that is easier to handle. Note first
that B(1−s) = s2+s3/3+s4/4+. . . and −s log(1−s) = s2+s3/2+s4/3+. . .
for s ∈ (0, 1). Consequently (3/4)(1−u) log(1/u) ≤ B(u) ≤ (1−u) log(1/u).
Thus, by introducing a modified Nevanlinna counting function

Ñφ(w) =
∑

z∈φ−1(w)

(1− |z|) log(1/|z|),(12)

we arrive at an equivalent expression for the Bergman norm of Cφf :

‖Cφf‖B1(X) ∼ ‖f(0)‖X +
1

2π

∫
D

Ñφ(w)d[∆(‖f‖X)](w).(13)

Important special cases of the previous formulas are obtained if we choose
φ to be the identity map. In the first place

‖f‖H1(X) = ‖f(0)‖X +
1

2π

∫
D

log
(

1
|w|
)
d[∆(‖f‖X)](w),(14)

and for the Bergman norm there is the equivalence

‖f‖B1(X) ∼ ‖f(0)‖X +
1

2π

∫
D

(1− |w|) log
(

1
|w|
)
d[∆(‖f‖X)](w).(15)
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The following result extends and complements the scalar results of Mac-
Cluer and Shapiro [9], Shapiro [13] and Sarason [12].

Theorem 3.
(i) Cφ : B1(X) → B1(X) is weakly compact if and only if X is reflexive

and

lim
|w|→1−

(1− |φ(w)|)/(1− |w|) =∞.(16)

(ii) Cφ : H1(X) → H1(X) is weakly compact if and only if X is reflexive
and

Nφ(w) = o(1− |w|) as |w| → 1−.(17)

Proof. (i) If Cφ : B1(X) → B1(X) is weakly compact we have already
seen that X must be reflexive. Fix a vector x0 ∈ X with ‖x0‖X = 1 and
consider the subspace M ⊂ B1(X), where M = {x0f(z) | f(z) ∈ B1}.
Clearly Cφ : M →M and the map Cφ : M →M is ‘isomorphic’ to the scalar
composition operator Cφ : B1 → B1. Hence the scalar operator Cφ : B1 → B1

is weakly compact. Now B1 is isomorphic to `1 (see [18, III.A.11]) and every
weakly compact operator on `1 is actually compact, since `1 has the Schur
property [18, III.C.9]. Hence Cφ : B1 → B1 is compact and this forces φ to
satisfy the angular derivative criterion (16) according to [9, Theorem 3.5].

In order to prove the other direction, we modify ideas due to Shapiro
and Sundberg [15]. We assume the conditions of part (i) and consider the
operators Tn:

Tn = Cφ − CφVn : B1(X)→ B1(X),

where n ≥ 1 and Vn is the weakly compact operator provided by Proposition
2. It is enough to establish that the operator norm of Tn tends to zero as
n→∞, since the weakly compact operators form a closed ideal of L(B1(X))
(see [18, II.c.6]). Suppose thus that ε > 0 is given. Condition (16) yields
r ∈ (1/2, 1) so that 1− |w| ≤ ε(1− |φ(w)|) for |w| ∈ (r, 1). For these values
of w we may combine the Littlewood inequality Nφ(w) ≤ log(1/|w|) (see
[14, Corollary 10.4(b)]) with definition (12) and deduce that

Ñφ(w) ≤ ε(1− |w|)Nφ(w) ≤ ε(1− |w|) log(1/|w|)(18)

for |w| ≥ r. We next fix a cut-off function ψ that will be needed later in the
argument: Let ψ ∈ C∞0 (D) satisfy 0 ≤ ψ(z) ≤ 1, ψ(z) = 1 for |z| ≤ r and
ψ(z) = 0 for |z| ≥ (1 + r)/2. Proposition 2 yields n ∈ N such that

‖f(z)− Vnf(z)‖X ≤ min
{
ε, 1/ sup

w∈D
|∆ψ(w)|

}
‖f‖B1(X)(19)
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for z ∈ supp(ψ) and all f ∈ B1(X).
Assume next that f ∈ B1(X) is arbitrary. As (I−Vn)f(0) = 0 we may

invoke formula (13) in the form

‖Tnf‖B1(X) ∼ 1
2π

∫
r<|w|<1

Ñφ(w)d[∆(‖(I−Vn)f‖X)](w)

+
1

2π

∫
|w|≤r

Ñφ(w)d[∆(‖(I−Vn)f‖X)](w) =: A+B,

say. The first term is easily estimated using (18) and (15):

A ≤ 1
2π

∫
r<|w|<1

ε(1− |w|) log
(

1
|w|
)
d[∆(‖(I−Vn)f‖X)](w)

≤ 2ε‖(I−Vn)f‖B1(X) ≤ 6ε‖f‖B1(X),

where the extra constant 2 comes from the fact that we used the equivalent
norm (15). In order to bound the second term we use the crude estimate
Ñφ(w) ≤ log(1/|w|), which follows from (12) and the Littlewood inequality,
and apply the substitution w = rw′:

B ≤ 1
2π

∫
|w|≤r

log
(

1
|w|
)
d[∆(‖(I−Vn)f‖X)](w)

≤ 1
2π

∫
D

log(1/|w′|)d[∆(‖(I−Vn)fr‖X)](w′) +

+
1

2π
r2 log

(
1
r

)∫
D

d[∆(‖(I−Vn)fr‖X)](w′) =: E + F.

According to (14) and (19) we obtain that E = ‖(I−Vn)fr‖H1(X) ≤
2ε‖f‖B1(X). The remaining term can be taken care of as follows:

F =
1

2π
log

(
1
r

)∫
rD

d[∆(‖(I−Vn)f‖X)](w)

≤ 1
2π

log(1/r)
∫
D

ψ(w)d[∆(‖(I−Vn)f‖X)](w)

=
1

2π
log(1/r)

∫
D

∆ψ(w)‖(I−Vn)f(w)‖Xdw ≤ 2ε‖f‖B1(X),

according to (19). We deduce that ‖Tnf‖B1(X) ≤ Cε‖f‖B1(X) with C inde-
pendent of ε and f, which finishes the proof.

(ii) For the necessity of the stated conditions we argue as above in part
(i). Here we apply the result of Sarason [12] stating that weakly com-
pact (scalar) composition operators Cφ : H1 → H1 are compact. Con-
dition (17) follows when this is combined with the Shapiro characteriza-
tion [13, Theorem 2.3] of compact composition operators on H2 and the



304 P. LIU, E. SAKSMAN AND H.-O. TYLLI

well-known fact that compactness of Cφ on Hp does not depend on p (cf.
[5, Theorem 3.12]).

The proof of the sufficiency follows the same outline as the one of part (i),
albeit being slightly simpler, as it now suffices to use the standard Nevanlinna
counting function. Hence we omit the details.

Recall that the Banach space E has the Dunford-Pettis property if for
every pair of weakly null sequences (x′n) ∈ E′ and (xn) ∈ E we have
limn→∞〈x′n, xn〉 = 0. As a consequence, it follows that if T : E → E and
S : E → E are weakly compact linear operators, then TS is compact. More-
over, T maps weakly null sequences to norm null sequences. We refer to
[18, III.D.33-34] for these facts. We will apply this useful concept when
dealing with vector-valued Bloch spaces in the proof of the following theo-
rem, which extends [10, Theorem 3 (see also Theorems 1 and 2)].

Theorem 4.
(i) Cφ : B(X)→ B(X) is weakly compact if and only if X is reflexive and

lim
a→1−

sup
{z∈D:|φ(z)|≥a}

(1− |z|2)|φ′(z)|
1− |φ(z)|2 = 0.(20)

(ii) Cφ : B0(X) → B0(X) is weakly compact if and only if X is reflexive
and

lim
|z|→1−

(1− |z|2)|φ′(z)|
1− |φ(z)|2 = 0.(21)

Proof. (i) We first prove the necessity. Exactly as in the proof of Theorem
3.(i) it suffices to show that condition (20) follows if the scalar operator
Cφ : B → B is weakly compact. For this purpose we produce a weakly
compact counterpart of the necessity argument of [10, Theorem 2]. Assume
thus that Cφ : B → B is weakly compact, but (20) does not hold. Then there
is a sequence (zn) in D and a constant ε > 0 so that |φ(zn)| → 1 as n→∞
together with

(1− |zn|2)|φ′(zn)|
1− |φ(zn)|2 ≥ ε for each n ≥ 1.(22)

Denote wn = φ(zn). By multiplying φ by a unimodular constant and extract-
ing a subsequence, if needed, we may also assume that wn → 1 as n → ∞
and |(w2n − w2n+1)/(1− w̄2nw2n+1)| ≥ 1/2 for all n ≥ 1. Define

fn(z) = log
(

1− w̄2nz

1− w̄2n+1z

)
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for n ≥ 1 and z ∈ D. Clearly fn ∈ B0 and a simple computation shows
that ‖fn‖B0 ≤ 4 for each n ≥ 1. Observe that for each k ≥ 1 it holds that
f̂n(k)→ 0 as n→∞. Hence, if g is a polynomial one obtains

lim
n→∞〈g, fn〉 = lim

n→∞

∫
D

g(z)fn(z)dA(z) = 0,

where the brackets refer to the duality B0
′ = B1 (see [19, Theorem 5.2.8]).

Since polynomials are dense in B1 and the sequence (fn) is bounded we
conclude that fn → 0 weakly in B0, and hence in B. However, B0 certainly
has the Dunford-Pettis property as B0

′ = B1 ≈ `1 has the Schur property.
This fact and the weak compactness of Cφ yield that the sequence (Cφfn)
is norm null in B. But this is impossible since using (22) we may estimate
that for each n ≥ 1

‖Cφfn‖B ≥ (1− |z2n|2)|(fn ◦ φ)′(z2n)|(23)

≥ ε(1− |w2n|2)
∣∣∣∣ −w̄2n

1− |w2n|2 +
w̄2n+1

1− w̄2n+1w2n

∣∣∣∣
= ε|(w̄2n − w̄2n+1)/(1− w2nw̄2n+1)| ≥ ε/2,

and we are done.
Towards the converse direction, assume that X is reflexive and (20) holds.

Define the operator Ṽn by setting Ṽnf(z) = f(0) +
∫ z

0 Vnf
′(w)dw, where Vn

is the operator provided by Proposition 1. Clearly Ṽnf is analytic and by
applying Proposition 1 and the maximum principle we see that

sup
|z|=r
‖(Ṽnf)′(z)‖X = sup

|z|=r
‖Vnf ′(z)‖X = sup

|w|=1

‖Vnf ′r(w)‖X ≤ 2‖f ′r‖H∞(X)

= 2 sup
|z|=r
‖f ′(z)‖X .

This yields that ‖Ṽn‖B(X)→B(X) ≤ 2 for all n. It suffices to show that the
norm ‖Cφ−CφṼn‖ can be made arbitrarily small by choosing n large enough.
Namely, the weak compactness of the boundedly supported Fourier multi-
plier Ṽn is established exactly as in the proof of Proposition 1. Condition
(20) yields r < 1 such that |φ′(z)|(1 − |z|2) ≤ ε(1 − |φ(z)|2)/3 if |φ(z)| ≥ r.
Proposition 1 in turn enables us to choose an integer n such that for all
h ∈ H∞(X) it holds that ‖(h − Vnh)(z)‖X ≤ ε(1 − r)‖h‖H∞(X) whenever
|z| ≤ √r. Hence for |z| ≤ r we arrive at the estimate

‖(f − Ṽnf)′(z)‖X ≤ sup
|z|≤√r

‖(f ′√r − Vnf ′√r)(z)‖X(24)

≤ ε(1− r)‖f ′√r‖H∞(X) ≤ ε‖f‖B(X)
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according to the definition of the Bloch norm. Suppose next that f ∈ B(X)
and z ∈ D are arbitrary and consider

A := (1− |z|2)‖(Cφg)′(z)‖X =
|φ′(z)(1− |z|2)|

1− |φ(z)|2 ‖g′(φ(z))‖X(1− |φ(z)|2),

where we have denoted g := f − Ṽnf. If |φ(z)| > r, the choice of r yields
that A ≤ (ε/3)‖g‖B(X) ≤ ε‖f‖B(X). On the other hand, for |φ(z)| ≤ r an
application of the Schwarz lemma and (24) shows that A ≤ ε‖f‖B(X). Hence
‖Cφ − CφṼn‖ ≤ ε and the proof of part (i) is finished.

(ii) The proof of the sufficiency of the stated conditions follows from that
of part (i) since (21) clearly implies (20). One only has to check that condi-
tion (21) yields that Cφ maps B0(X) inside B0(X), which is straightforward.
For the necessity one notes that weak compactness of Cφ on B0 implies (21)
according to [10, Theorems 1 and 3].

Madigan and Matheson [10, Theorem 3] observed that every weakly com-
pact composition operator on B0 is compact. This actually follows directly
from the general fact that every weakly compact operator on B0 is compact,
which is a consequence of the Gantmacher theorem [18, II.c.6.b] and the
Schur property of B′0. We record separately a special case of our Theorem
4 that complements [10, Theorem 3]. Recall that, contrary to the case of
B0, there are weakly compact operators on B that are not compact, since
B ≈ `∞ (see [18, Remark on p. 45]) .

Corollary 5. Cφ : B → B is weakly compact only if it is compact.

In our last result about weak compactness we consider the operator Cφ
on H∞(X).

Theorem 6. Cφ : H∞(X) → H∞(X) is weakly compact if and only if X
is reflexive and

‖φ‖∞ < 1.(25)

Proof. (i) Assume first that X is reflexive and let φ ∈ H∞ with ‖φ‖∞ < 1.
We again show that ‖Cφ−CφVn‖H∞(X)→H∞(X) can be made arbitrarily small
once n is large enough. Given ε > 0, Proposition 2 yields an integer n such
that ‖f(w)−Vnf(w)‖X ≤ ε‖f‖H∞(X) whenever |w| ≤ ‖φ‖∞ and f ∈ H∞(X).
Hence we get the desired estimate

‖(Cφf − CφVnf)(z)‖X = ‖(f − Vnf)(φ(z))‖X ≤ ε‖f‖H∞(X)
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for all z ∈ D. For the converse, assume that Cφ : H∞(X) → H∞(X) is
weakly compact. Deduce as before that X is reflexive and the scalar oper-
ator Cφ : H∞ → H∞ is weakly compact. We invoke the beautiful result,
due to Ülger [17] and independently to Aron, Galindo and Lindström [1],
stating that every weakly compact homomorphism on H∞ is compact. In
our special cituation it follows that Cφ is compact on H∞, and hence that
‖φ‖∞ < 1, see [5, Exercise 3.2.2]. Alternatively, if one wants to avoid the
general result for homomorphisms, a direct argument can be obtained by
specializing to the case E = C in the proof of the implication (2) ⇒ (3) of
[1, Proposition 3].

Remark. If φ belongs to the disk algebra A0, then the above theorem holds
with the same proof also for the vector-valued ‘disk algebra’ A0(X), which is
the subspace of H∞(X) containing those functions that extend continuously
to the closed disk D.

We finally briefly consider another, somewhat related ’smallness’ property
of the composition operator Cφ. Given a Banach space E, recall that an
operator T ∈ L(E) is weakly conditionally compact (abbreviated T is w.c.c)
if any bounded sequence (xn) in E contains a subsequence (xnk) such that the
sequence (Txnk) is weakly Cauchy. Rosenthal’s `1-criterion (see [8, 2.e.5])
implies that T is not w.c.c if and only if T fixes a copy of `1 in E. Note
that if `1 does not embed into E, then every T ∈ L(E) is w.c.c. Hence
the set of w.c.c. operators on E is, in general, strictly larger than the set
of weakly compact operators on E. Our previous results have the following
counterparts.

Theorem 7. Assume that `1 does not embed in X. Then Cφ is w.c.c on
H1(X) if and only if φ satisfies the Shapiro condition (17). Analogously,
the conditions (16), (20) and (25) characterize when Cφ is w.c.c on B1(X),
B(X) and H∞(X), respectively.

Proof. The sufficiency of the stated conditions is established in each case
exactly as in the proofs of Theorems 3, 4 and 6. Namely, the operators Vn or
Ṽn are w.c.c in the case that `1 does not embed in X, since each summand in
(7) clearly factorizes through X. Towards the other direction, assume that
Cφ is w.c.c. on one of the spaces considered in the theorem. Clearly `1 cannot
embed in X while Cφ fixes a copy of X. Moreover, since the vector-valued
Cφ always carries a ’copy’ of the corresponding scalar operator, in order to
deduce the appropriate condition on φ, it is enough according to Theorems
3, 4 and 7.(i) to show that all w.c.c. operators on the spaces H1, B1,B and
H∞ are weakly compact. In the cases of H1 and B1 this follows immediately
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from the weak sequential completeness of the spaces L1(µ) (see [18, III.C.14]
and recall that H1 is a closed subspace of L1(∂D) and B1 ≈ `1). For H∞

(resp. B) one uses the deep result of Bourgain [3, Remark p. 45] (resp. of
Rosenthal [8, 2.f.4]) stating that every non-weakly compact operator on H∞

(resp. `∞) acts isomorphically on a copy of `∞, and hence on a copy of `1.
Recall here that B ≈ `∞ (see e.g. [18, Remark on p. 45]).
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