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COMPLETE MINIMAL SURFACES DERIVED FROM
CHEN-GACKSTATTER GENUS TWO EXAMPLE

F.J. López, F. Mart́ın and D. Rodŕıguez

In this paper we present a family of complete minimal
surfaces in R3 with one end, arbitrary even genus k, 4k sym-
metries and total curvature −4π(2k − 1). Furthermore if k 6= 6
they are the only examples satisfying these conditions. If
k = 2 our construction leads to the Chen-Gackstatter genus
two surface.

1. Introduction.

In 1982 Chen and Gackstatter [C-G] discovered two minimal surfaces with
finite total curvature in R3 and non-trivial topology. These examples have
only one end and the symmetry of the Enneper’s surface.

The first one is the only complete minimal torus in R3 with total curvature
−8π (see [B], [L1]). The second Chen-Gackstatter example has genus two,
total curvature −12π and only one end. D. Hoffman noted that these sur-
faces represented examples with the least absolute total curvature 4(k+ 1)π
for surfaces with fixed genus k, and conjectured that there should be such
examples of every genus. Recently Thayer [T] gave numerical evidence for
this conjecture, and Weber and Wolf [WW] and Sato [S] proved this con-
jecture using very different methods. Thus, the main issue here is to obtain
uniqueness results for these kind of surfaces.

On the other hand, the classical Chen-Gackstatter examples were gener-
alized in another way, first by Karcher [K], and later by Thayer [T], Sato
[S] (see Mart́ın and Rodŕıguez work [M-R] for a new approach including
uniqueness results), López [L2] and Weber and Wolf [WW]. These authors
have shown immersions with only one end and high topology and symmetry.

Except in the case of the Weber and Wolf method, which seems to be
very powerful, the other constructions have the same spirit of the Hoffman
and Meeks [H-M] generalization of the Costa surface [C]. Though this
last method is classical and explicit, it has the advantage of providing some
natural uniqueness results (see, for instance, [H-M]).

In this paper we use these ideas to show a new family of complete minimal
surfaces Mk of genus k, k ≥ 2, k even, that generalizes the Chen-Gackstatter
genus two example. Except in the case of k = 2 which corresponds to the
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312 F.J. LÓPEZ, F. MART́ıN AND D. RODŔıGUEZ

Chen-Gackstatter example, our examples do not lie in any of the families
of surfaces discovered by Thayer, Sato and Weber-Wolf. Furthermore, our
main achievement is to prove a uniqueness result for these surfaces under
some symmetry assumptions.

Summarizing, the surfaces Mk have the following properties:
(i) Mk is conformally equivalent to Mk − {P}, where Mk is a compact

Riemann surface of genus k and P ∈Mk.
(ii) Mk has total curvature −4(2k − 1)π.
(iii) Mk has 4k symmetries.
(iv) Mk intersects the (x1, x2)-plane in k straight lines meeting at equal

angles at the origin. Moreover the symmetry group Sym(Mk) is gen-
erated by a rotation by angle π/k around the x3-axis followed by a
symmetry with respect to the (x1, x2)-plane and a symmetry with re-
spect to the (x1, x3)-plane.

(v) M2 is the genus two Chen-Gackstatter example.
Moreover, if M is a complete minimal surface with one end, genus k 6=

6, 15, finite total curvature and ](Sym(M)) = 4k, then the total curvature
C(M) of M satisfies C(M) ≤ −4(2k−1)π, and the equality holds if and only
if k is even and M is , up to rigid motions and scaling, the surface Mk.

The most important consequence of this is the following uniqueness the-
orem for the Chen-Gackstatter genus two example:

The Chen-Gackstatter genus two surface is the only complete
minimal immersion in R3 of genus two, total curvature −12π
and eight symmetries.

The hypothesis k 6= 6, 15 above may seem to be unnatural. However, as
a consequence of elementary topological and algebraical arguments (see the
proof of Theorem 2 and Remark 1), it is in fact necessary.

This paper is laid out as follows:
In Section 2 we recall some basic facts about minimal surfaces, empha-

sizing the classical Weierstrass representation of minimal surfaces and the
results of Osserman and Jorge-Meeks.

In Section 3 we state our main existence result Theorem 1, and then we
obtain some technical lemmas in order to prove it.

Finally, in Section 4 we obtain the uniqueness result for the surfaces Mk

mentioned above.

2. Preliminaries.

In this section we briefly review some of the results about complete minimal
surfaces of finite total curvature.

Let x : M −→ R3 be a minimal immersion of an orientable surface M
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in three dimensional Euclidean space. Write C(M) the total curvature of x.
Using isothermal parameters, M has a conformal structure in a natural way
and we label (g, η) the Weierstrass data of x. Remember that the Gauss
map g of x is a meromorphic function on M , and η is a holomorphic 1-form
on M (for more details see [O]).

Moreover, x = Real
∫

(φ1, φ2, φ3) where

φ1 =
1
2
η(1− g2), φ2 =

i

2
η(1 + g2), φ3 = ηg(1)

are holomorphic 1-forms on M satisfying

3∑
j=1

| φj |2 6= 0.(2)

In particular, φj, j = 1, 2, 3, have no real periods on M .
In the remaining part of this section we suppose M is complete and

C(M) > −∞. Under these assumptions, A. Huber proved (see [H]) that
M is conformally diffeomorphic to a compact Riemann surface M punc-
tured in a finite number of points {P1, . . . , Pr} and R. Osserman [O] showed
that (g, η) extends meromorphically to M . Therefore, g has well defined
degree and C(M) = −4π deg(g).

Jorge and Meeks [J-M] proved that the asymptotic behavior of x around
an end Pi is determined by the number:

νi = Maximum{ord(φj, Pi), j = 1, 2, 3} − 1

where ord(φj, Pi) is the pole order of φj at Pi.
Moreover,

2 deg(g) = −χ(M) +
r∑
i=1

(νi + 1).(3)

Assume that M is not the covering of any minimal surface and write
Iso(M) the isometry group of M . Then, denote by Sym(M) the subgroup of
Iso(M) which consists of those isometries which are the restriction of a rigid
motion in R3 leaving x(M) invariant. Calabi proved that Iso(M) = Sym(M)
if and only if there exists j ∈ {1, 2, 3} such that φj is not exact. A complete
discussion about this subject can be found in [H-M].

Through the paper D(n) denotes the dihedral group of order 2n.
We will need the following topological remarks. Let M be a compact

Riemann surface of genus k > 0. Given c1, c2 ∈ H1(M,Z), we label c1 · c2 as
the intersection number of c1 and c2. Consider B = {a1, . . . , ak, b1, . . . , bk}
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a homology basis of M . Denote the intersection matrix of B by DB =
(di j)1≤i,j≤2k, where

di j =


ai · aj i, j ≤ k
ai · bj−k i ≤ k < j

ai−k · bj j ≤ k < i

bi−k · bj−k i, j > k.

By definition, B is a canonical homology basis if and only if

DB =

(
0 Ik
−Ik 0

)
.

For the details see [F-K].
We conclude these preliminaries by recalling the definitions of Euler beta

and gamma functions.
For v ∈ N and z ∈ C− {−1,−2, . . . }, the gamma function is given by

Γ(z) = lim
v→+∞

v!vz

z(z + 1)(z + 2) · · · (z + v)
.

Among classical properties of gamma function, we emphasize the following

Γ(z + 1) = zΓ(z), Γ(z)Γ(1− z) =
π

sin(πz)
,

22z−1Γ(z)Γ
(
z +

1
2

)
=
√
πΓ(2z).

For m,n ∈ C, Re(m) > 0, Re(n) > 0, the beta function is defined by

B (m,n) =
∫ 1

0

tm−1(1− t)n−1dt.

This is related to the gamma function according to

B (m,n) =
Γ(m)Γ(n)
Γ(m+ n)

.

A complete reference for these topics is, for instance, [Str].

3. The new family of examples.

In this section, we present a family of complete orientable minimal surfaces
with one end, arbitrary even genus k ≥ 2 and high symmetry. If k = 2, then
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this construction leads to the Chen-Gackstatter genus two example. We also
give an analytic uniqueness Theorem (Theorem 1) for these surfaces.

Let Mk a, k ∈ N, k even, k ≥ 2, a ∈ R+ − {1}, be the compact Riemann
surface:

Mk a =

{
(t, w) ∈ (C ∪∞)2 : w2 =

t(tk − ak)
tk − 1

}

and label ∞ = (∞,∞), 0 = (0, 0), e
2jπi
k = (e

2jπi
k ,∞), e

2jπi
k a = (e

2jπi
k a, 0),

j = 0, . . . , k − 1.
We want to define proper minimal immersions of Mk a = Mk a−{∞} into

R3, for every k ≥ 2 (k even) and for a ∈ R+−{1}, depending on k. Consider
the following Weierstrass data:

g = A tk/2−1w , ηg = Btk/2−1dt , A ∈ R, B ∈ C, |B| = 1

on Mk a. Then, defining φj, j = 1, 2, 3 as in (1), the inequality (2) is satisfied.
Therefore, as we have mentioned in Section 2, if φj, j = 1, 2, 3, have no real
periods, we get a minimal immersion x : Mk a → R3 as follows:

x = Real
∫

(φ1, φ2, φ3).

The main achievement of this section is the following:

Theorem 1. For each k ≥ 2, (k even), there exists only one a0 ∈ R+ −
{1}, depending on k, such that x : Mk a0 → R3 is well-defined for a suitable
choice of the constants A, B.

To prove this theorem, we need to introduce some notations, make some
topological comments and obtain several technical analytical lemmas.

The topological part consists of describing a homology basis that allows
us to simplify the period problem.

The analytical part consists of studying the behavior of the period func-
tions associated to the above Weierstrass data as functions of the parameter
a. This study includes the asymptotic behavior of these functions (Lemma
1), the classical bilinear relations (Lemma 2) and some other analytical prop-
erties (Lemmas 3, 4, 5, 6).

First, define the following mappings:

J, S : Mk a −→Mk a

J(t, w) =
(
e

2πi
k t, e

πi
k w
)

S(t, w) = (t, w).



316 F.J. LÓPEZ, F. MART́ıN AND D. RODŔıGUEZ

Note that J is holomorphic and has order 2k, and S is an antiholomor-
phic involution. So, they generate a group which is isomorphic to D(2k).
Moreover, J and S fix 0, ∞, and Jk fixes e

2jπi
k , e

2jπi
k a,= j = 0, . . . , k − 1.

Concerning to the topologycal part, we are looking for a homology basis
of Mk a. We distinguish two cases:
• Suppose a > 1. Let αj(s), βj(s), j = 1, 2, be the oriented simple closed

curves in the t-plane illustrated in Figure 1. We assume that α1(0) ∈ R,
α1(0) > a, α2(0) ∈ R, 1 > α2(0) > 0, β1(0) ∈ R, 0 > β1(0) > −1,
β2(0) ∈ R, a > β2(0) > 1. Let aj(s) be the unique lift of αj(s) to Mk a

satisfying w(aj(0)) ∈ R+, j = 1, 2. Denote in the same way as bj(s)
the corresponding lifts of βj(s) with initial conditions w(bj(0)) ∈ iR+,
j = 1, 2.

• Suppose 0 < a < 1. Now, αj(s), βj(s), j = 1, 2, are the oriented simple
closed curves in the t-plane of Figure 2. Here α1(0) ∈ R, α1(0) > 1,
α2(0) ∈ R, a > α2(0) > 0, β1(0) ∈ R, 0 > β1(0) > −a, β2(0) ∈ R,
1 > β2(0) > a. Let aj(s) be the unique lift of αj(s) to Mk a satisfying
w(aj(0)) ∈ R+, j = 1, 2. Denote in the same way as b1(s) the lift
of β1(s), with initial condition w(b1(0)) ∈ iR+. Define also b2(s) the
unique lift of β2(s) such that w(b2(s)) ∈ iR−.

Figure 1. a > 1.
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Figure 2. 0 < a < 1.

In the following we identify d and its homology class [d], for any closed
curve d in Mk a. Then observe that

Jk/2∗ (bi) = ai, i = 1, 2.(4)

If we label aji = (J j)∗(ai), b
j
i = (J j)∗(bi) (i = 1, 2 ; j = 0, . . . , k

2
− 1), then

B =
{
aji , b

j
i i = 1, 2 j = 0, . . . ,

k

2
− 1

}
is a homology basis on Mk a and the intersection matrix DB is

aj1 aj2 bj2 bj1
ai1
ai2
bi2
bi1


0 0 I 0
0 E −G I

−I G E 0
0 −I 0 0


where E = (ei j)1≤i,j≤k/2, G = (gi j)1≤i,j≤k/2 are given:

ei j =


1 i < j
−1 i > j
0 i = j

, gi j = 1, ∀i, j

and I is the identity matrix of order k
2
.

Let τ1, τ2, σ1, σ2 be the following 1-forms on Mk a

τ1 =
dt

w
, τ2 = tk−2 w dt, σ1 =

dt

(tk − 1) w
, σ2 =

tk−1 dt

(tk − 1) w
.

Observe

φ1 =
B

2A
(τ1 −A2τ2)

φ2 =
i B

2A
(τ1 +A2τ2)
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and φ3 is exact.
So the period problem associated to (φ1, φ2, φ3) deals with the following

functions on R+ − {1}

f1(a) =
1
2

∫
b1

τ1, f2(a) =
1
2

∫
b2

τ1, g1(a) =
1
2

∫
b1

τ2, g2(a) =
1
2

∫
b2

τ2.

The 1-forms σ1 and σ2 and their period functions:

h1(a) =
1
2

∫
b1

σ1, h2(a) = −1
2

∫
b2

σ1, k1(a) = −1
2

∫
b1

σ2, k2(a) = −1
2

∫
b2

σ2

they will occur naturally by deriving the 1-forms τ1, τ2 and the functions
fi, gi, i = 1, 2, with respect to parameter a.

It is not hard to see that

J∗(τ1) = e
πi
k τ1, J

∗(τ2) = e
−πi
k τ2, J

∗(σ1) = e
πi
k σ1, J

∗(σ2) = e
−πi
k σ2.(5)

Observe that a > 1 yields fi(a), gi(a), hi(a), ki(a) > 0 i = 1, 2, and a < 1
implies f1(a), g1(a) < 0, f2(a), g2(a) > 0, hi(a), ki(a) > 0, i = 1, 2. From (4)∫

ai

τ1 = 2ifi(a),
∫
ai

τ2 = −2igi(a),∫
ai

σ2 = 2iki(a),
∫
ai

σ1 = (−1)i+12ihi(a), i = 1, 2.

In the remainder of this paper, we denote f3 = cot( π
2k

)f1 + 2f2, g3 =
cot( π

2k
)g1 + 2g2, h3 = cot( π

2k
)h1 − 2h2, k3 = cot( π

2k
)k1 + 2k2.

As we have mentioned above, to prove Theorem 1 we need to do a careful
analytical study of the functions fi, gi, i = 1, 2 and their derivates. For this,
the following technical lemmas will be useful.

Lemma 1. The asymptotic behavior of fi, gi, ki, i = 1, 2 at 0, 1, ∞ is
given as follows:
(i)

lim
a→0

f1(a)a
k−1

2 = −1
k
B

(
1
2
,
k − 1

2k

)
, lim

a→1

f1(a)
a− 1

=
π

2
,

lim
a→∞ f1(a)a−

1
2 =

1
k
B

(
1
2
,
k + 1

2k

)
, lim

a→0
f2(a)a

k−1
2 =

1
k
B

(
1
2
,

1
2k

)
,

lim
a→1

f2(a) = 2, lim
a→∞ f2(a)a

k
2 =

1
k
B

(
3
2
,

1
2k

)
.
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(ii)

lim
a→0

g1(a) = −1
k
B

(
1
2
,
3k − 1

2k

)
, lim

a→1

g1(a)
a− 1

=
π

2
,

lim
a→∞ g1(a)a

1−2k
2 =

1
k
B

(
3
2
,
k − 1

2k

)
, lim

a→0
g2(a)a

1−3k
2 =

1
k
B

(
3
2
,
2k − 1

2k

)
,

lim
a→1

g2(a) =
2

2k − 1
, lim

a→∞ g2(a)a−
k
2 =

1
k
B

(
1
2
,
2k − 1

2k

)
.

(iii)

lim
a→0

k1(a) =
1
k
B

(
1
2
,
k − 1

2k

)
, lim

a→∞ k1(a)a
1
2 =

1
k
B

(
1
2
,
k − 1

2k

)
,

lim
a→0

k2(a)a
1−k

2 =
1
k
B

(
1
2
,
2k − 1

2k

)
, lim

a→∞ k2(a)a
k
2 =

1
k
B

(
1
2
,
2k − 1

2k

)
,

where B is the classical Beta Function.

Proof. From the definition of f1 it follows that

f1(a) =
∫ a

1

√
tk − 1

t(ak − tk)dt.

Several changes of variables give

f1(a) =
∫ a

1

√
tk − 1

t(ak − tk)dt =
1
k

∫ ak

1

u
1−2k

2k

√
u− 1
ak − udu

=
1
k

(ak − 1)
∫ 1

0

((ak − 1)s+ 1)
1−2k

2k
√
s√

1− s ds.

Hence,

lim
a→1

f1(a)
a− 1

=
∫ 1

0

√
s

1− sds =
π

2
.

Using that lim
a→∞ f1(a) = lim

b→0
f1

(
1
b

)
we obtain

lim
a→∞ f1(a)a

−1
2 = lim

b→0

1− bk
k

∫ 1

0

((1− bk)s+ bk)
1−2k

2k
√
s√

1− s ds

=
1
k

∫ 1

0

s
1−k
2k (1− s)− 1

2ds =
1
k
B

(
1
2
,
k + 1

2k

)
.
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For computing the limit at 0 we need another change of variable. First, put
t = 1

x
in the expression of f1 and obtain

f1(a) = −
∫ 1

a

1

√
xk − 1

x
3
2

√
1− akxk dx = −1

k

∫ 1
ak

1

√
u− 1

u
1+2k

2k

√
1− akudu

=
a

1−k
2 (ak − 1)

k

∫ 1

0

√
s√

1− s(ak + s(1− ak)) 1+2k
2k

ds

then

lim
a→0

a
k−1

2 f1(a) = −1
k

∫ 1

0

s−
k+1
2k (1− s)− 1

2ds =
1
k
B

(
1
2
,
k − 1

2k

)
.

Similar arguments and changes of variables complete the above assertions
for gi and ki, i = 1, 2.

Lemma 2. The functions fi, gi, hi, ki, i ∈ {1, 3} satisfy:
(i) f1g3 + f3g1 = 4π(ak−1)

2k−1
,

(ii) f1k3 + f3k1 = 4π
k
,

(iii) g1h3 + g3h1 = 4π
k(2k−1)

,

(iv) h1k3 + h3k1 = 0.

Proof. Using classical bilinear relations we obtain

−~v1 ·D−1
B ·t ~v2 = 2πi Residue (fτ2,∞)

where

~v1 =
(∫

a0
1

τ1, . . . ,

∫
a
k/2−1
1

τ1,

∫
a0

2

τ1, . . . ,

∫
a
k/2−1
2

τ1,∫
b02

τ1, . . . ,

∫
b
k/2−1
2

τ1,

∫
b01

τ1, . . . ,

∫
b
k/2−1
1

τ1

)
~v2 =

(∫
a0

1

τ2, . . . ,

∫
a
k/2−1
1

τ2,

∫
a0

2

τ2, . . . ,

∫
a
k/2−1
2

τ2,∫
b02

τ2, . . . ,

∫
b
k/2−1
2

τ2,

∫
b01

τ2, . . . ,

∫
b
k/2−1
1

τ2

)

D−1
B =


E 0 −I −G
0 0 0 −I
I 0 0 0
G I 0 E


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and τ1 = df locally around ∞. Taking into account (4) and (5) we conclude
that

ki

[
cot

(
π

2k

)∫
b1

τ1

∫
b1

τ2 +
∫
b1

τ1

∫
b2

τ2 +
∫
b2

τ1

∫
b1

τ2

]
= 2πi

4k(ak − 1)
2k − 1

and using the definitions of the functions fi, gi, i ∈ {1, 3} it is not hard to
check (i). Applying the same argument to the pairs (τ1, σ2), (τ2, σ1) and
(σ1, σ2) we obtain the equalities (ii), (iii) and (iv), respectively.

Lemma 3. The following equalities hold:
(i) d fi

da
= 1

2a
fi + k

2a
hi,

(ii) d gi
da

= kak−1

2
ki,

(iii) d hi
da

= 1
2a(ak−1)

fi − k
2a
hi,

(iv) d ki
da

= 2k−1
2a(1−ak)

gi + k−1
2a
ki,

for i ∈ {1, 3}.

Proof. Formally,

d τ1

da
=

1
2a
τ1 +

k

2a
σ1 − 1

a
d

(
t

w

)
,

d τ2

da
= −ka

k−1

2
σ2,

d σ1

da
=

1
2a(ak − 1)

τ1 − k

2a
σ1 +

1
a(1− ak)d

(
t

w

)
,

d σ2

da
=

2k − 1
2a(ak − 1)

τ2 +
k − 1

2a
σ2 +

1
a(1− ak)d

(
tk

w

)
.

Integrating on the suitable curves, it is easy to deduce the statements of this
lemma.

Lemma 4. The following equations hold:
(i) h1f3 − h3f1 = 4π

k
a

1−k
2 ,

(ii) g1k3 − g3k1 = − 4π
k(2k−1)

a
k−1

2 .

Proof. From Lemma 3, we can check the following equations

d

da
(h1f3 − h3f1) =

1− k
2a

(h1f3 − h3f1),

d

da
(g1k3 − g3k1) =

k − 1
2a

(g1k3 − g3k1).
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If we integrate these ordinary differential equations then we obtain

h1(a)f3(a)− h3(a)f1(a) =

{
C1a

1−k
2 if a > 1

D1a
1−k

2 if 0 < a < 1

g1(a)k3(a)− g3(a)k1(a) =

{
C2a

k−1
2 if a > 1

D2a
k−1

2 if 0 < a < 1.

Hence,

(h1f3 − h3f1)(g1k3 − g3k1) =

{
C1 · C2 if a > 1
D1 ·D2 if 0 < a < 1.

Expanding and using (ii), (iii) and (iv) in Lemma 2 we conclude C1 · C2 =

D1 ·D2 = − 16π2

k2(2k − 1)
. But using Lemma 1 and the properties of Beta and

Gamma Functions, we get

C2 = lim
a→∞

g1(a)k3(a)− g3(a)k1(a)
a
k−1

2

= lim
a→∞ 2

g1(a)k2(a)− g2(a)k1(a)
a
k−1

2

=
2
k2

[
B

(
3
2
,
k − 1

2k

)
B

(
1
2
,
2k − 1

2k

)
−B

(
1
2
,
2k − 1

2k

)
B

(
1
2
,
k − 1

2k

)]
= − 4π

k(2k − 1)
,

D2 = lim
a→0

g1(a)k3(a)− g3(a)k1(a)
a
k−1

2

= lim
a→0

2
g1(a)k2(a)− g2(a)k1(a)

a
k−1

2

= − 2
k2
B

(
1
2
,
3k − 1

2k

)
B

(
1
2
,
2k − 1

2k

)
= − 4π

k(2k − 1)

and so, C1 = D1 = 4π
k

.

Lemma 5. The functions f1, f3, g1, g3 satisfy

(i)
d fi
d a

=
ak−1

2(ak − 1)
fi(a) + (−1)

i−1
2

(2k − 1)a−
k+1

2

2(ak − 1)
gi(a),

(ii)
d gi
d a

= (−1)
i−1

2
a

3(k−1)
2

2(ak − 1)
fi(a) +

(2k − 1)ak−1

2(ak − 1)
gi(a),

for i ∈ {1, 3}.

Proof. From Lemmas 2 and 4, observe that the functions hi, ki satisfy the
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following linear systems

f1k3 + f3k1 = 4π
k

g1k3 − g3k1 = − 4π
k(2k−1)

a
k−1

2


g1h3 + g3h1 = 4π

k(2k−1)

−f1h3 + f3h1 = 4π
k
a

1−k
2

 .
Solving and using (i) in Lemma 2, we obtain new expressions for k1, k3, h1,
h3 depending on f1, f3, g1, g3. Substituting them in the equalities (i) and
(ii) in Lemma 3 we conclude the proof.

Let us define ϕ : R+ − {1} −→ R,

ϕ(a) =
f3(a)
f1(a)

− g3(a)
g1(a)

.

As a consequence of the preceeding analysis we can state the following
lemma, which is fundamental in the proof of Theorem 1:

Lemma 6. The funtion ϕ vanishes at a unique point a0 ∈ R+ − {1}.
Proof. Firstly we study the asymptotic behavior of ϕ at 0, 1 and ∞. From
Lemma 1 we deduce that:

lim
a→0

ϕ(a) = 2 lim
a→0

f2(a)g1(a)− f1(a)g2(a)
f1(a)g1(a)

= −2
B
(

1
2
, 1

2k

)
B
(

1
2
, k−1

2k

) < 0

lim
a→1−

ϕ(a) =
16(k − 1)
(2k − 1)π

lim
a→1−

1
a− 1

= −∞

lim
a→1+

ϕ(a) =
16(k − 1)
(2k − 1)π

lim
a→1+

1
a− 1

= +∞

lim
a→+∞ϕ(a)a

k−1
2 = lim

a→+∞

(
1
a

f2(a)a k2

f1(a)a− 1
2
− g2(a)a− k2

g1(a)a
1−2k

2

)
= −B

(
1
2
, 2k−1

2k

)
B
(

3
2
, k−1

2k

) < 0

so, there exists a0 ∈]1,+∞[ such that ϕ(a0) = 0.
In fact, ϕ has only one zero on R+−{1}. To see this we need to compute

ϕ′(a) and so do a careful analysis of the behavior of ϕ. From Lemma 5, we
obtain:

ϕ′(a) = a−
k+1

2
(
a2k−1f2

1 (a)− (2k − 1)g2
1(a)

) f3(a)g1(a) + f1(a)g3(a)
2(ak − 1)f2

1 (a)g2
1(a)

and using (i) in Lemma 2 we deduce:

ϕ′(a) =
2πa−

k+1
2

(2k − 1)f2
1 (a)g2

1(a)

(
a

2k−1
2 f1(a) +

√
2k − 1 g1(a)

)
·
(
a

2k−1
2 f1(a)−√2k − 1 g1(a)

)
.
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Labeling
ρ : R+ − {1} −→ R

ρ(a) = a
2k−1

2 f1(a)−√2k − 1 g1(a)

using the properties of f1 and g1 described in page 318, we observe that ϕ′

ρ

is positive in ]1,+∞[ and negative in ]0, 1[. It follows from Lemma 1 that:

lim
a→0

ρ(a) =
√

2k − 1
k

B

(
1
2
,
3k − 1

2k

)
> 0,

lim
a→1

ρ(a) = 0, lim
a→1

ρ′(a) =
π(1−√2k − 1)

2
< 0,

lim
a→∞ ρ(a) = +∞.

Furthermore, if a1 ∈ R+ − {1} satisfies ρ(a1) = 0 then from Lemma 3

ρ′(a1) =
√

2k − 1(ak1 − (2k − 1))g1(a1)
2a1(ak1 − 1)

.

Hence, to obtain a contradiction, suppose that a1 ∈]0, 1[. This implies
ρ′(a1) < 0, and since ρ(1) = 0, ρ′(1) < 0 we deduce that there exists
another point a2 ∈]0, 1[ such that a2 > a1, ρ(a2) = 0 and ρ′(a2) > 0, which
is clearly absurd. Thus ρ(a) > 0, ∀a ∈]0, 1[.

Suppose a1 is the lowest root of ρ in ]1,+∞[. If a1 ∈]1, k
√

2k − 1[ then
ρ′(a1) < 0 which is contrary to the choice of a1 and the facts ρ(1) =
0, ρ′(1) < 0. Therefore ρ(a) < 0, ∀a ∈]1, k

√
2k − 1[. Assume that ρ has

at least three zeroes a1, a2, a3 in [ k
√

2k − 1,+∞[. Without loss of generality,
we can suppose a1 < a2 < a3 and these three points are the lowest roots of
ρ. Then a2, a3 ∈] k

√
2k − 1,+∞[ and so ρ′(a2), ρ′(a3) > 0 which is absurd.

Thus ρ has at most two zeroes in ]1,+∞[.
The above remarks imply ϕ′(a) < 0 ∀a ∈]0, 1[ and taking into account the

asymptotic behavior of ϕ at 0 and 1 we get ϕ(a) < 0 ∀a ∈]0, 1[. Analogously,
ϕ′ has at most two zeroes in ]1,+∞[. Assume that ϕ has at least two
zeroes in ]1,+∞[. According to the limits of this function at 1 and +∞ we
conclude that ϕ′ has at least three roots, which is absurd. This contradiction
completes the proof.

Proof of Theorem 1. The immersion x is well defined if and only if
Real (

∫
d φj) = 0, for every closed curve d in Mk a and j ∈ {1, 2, 3}. As

φj has only one singularity at ∞, then Residue(φj,∞) = 0, j = 1, 2, 3. So,
it suffices to prove:

Real
(∫

d

φj

)
= 0, j = 1, 2, 3
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for any closed curve, d, lying in the homology basis B of Mk a defined at the
beginning of this section.

If we put Φ = (φ1, φ2, φ3)t then J∗(Φ) = R · Φ, where R ∈ O(3) is the
matrix

R =

 cos(π/k) sin(π/k) 0
− sin(π/k) cos(π/k) 0

0 0 −1

 .
Hence using the last equality and (4), Real (

∫
d Φ) = ~0, ∀d ∈ B if and only if:

Real
(∫

b1

Φ
)

= Real
(∫

b2

Φ
)

= ~0.

Recall that φ3 is exact, φ1 = B
2A

(τ1 − A2τ2) and φ2 = iB
2A

(τ1 + A2τ2). Thus,
using the definitions of fi, i = 1, 2, the last equations hold if and only if
B2 = 1 and

f1(a) = A2g1(a)

f2(a) = A2g2(a)

for some A ∈ R, a ∈ R+−{1}. As fi(a), gi(a) ∈ R∗, ∀a ∈ R+−{1}, then the
existence of a, A satisfying the former is equivalent to solving the following
equation

f1(a)g3(a)− f3(a)g1(a) = 0(6)

and putting A2 =
f1(a)
g1(a)

> 0 (see page 318). Recalling the definition of the

function ϕ, this means that ϕ(a) = 0. Using Lemma 6 we conclude the
proof.

4. Uniqueness results.

In this section we obtain some uniqueness theorems for the surfaces arising
from Theorem 1. Throughout this section and for the sake of simplicity we
denote these surfaces as Mk instead of Mk a0 .

Let x : M −→ R3 be a complete orientable minimal surface with finite
total curvature and one end and label (g, η) as its Weierstrass data. From
Huber and Osserman theorems, there exist a compact Riemann surface M
and one point P ∈ M such that M is conformally equivalent to M − {P}.
We write k = genus(M) and assume that k ≥ 2.

As an easy consequence of Hurwitz’s Theorem (see [F-K]), the group
Sym(M) is finite, and so up to a suitable choice of the origin, it is given by
a linear group of isometries of R3.
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When R > 0, R being big enough, we get D = x−1({(x1, x2, x3) ∈ R3 :
x2

1 +x2
2 +x2

3 ≥ R})∪{P} is a conformal disc in M . Without loss of generality
D ≡ D(0, 1) and P ≡ 0. Since Sym(M) leaves D invariant and fixes 0, the
group ∆ = {S|D : S ∈ Sym(M)} is either cyclic or generated by a rotation
around 0 and a symmetry with respect to a straight line in C containing 0
(that is, ∆ is isomorphic to the dihedral group D(d

2
), where d = ](Sym(M))

is the cardinal of ∆).
Up to rotations, we can suppose g(P ) = ∞. We denote J ∈ Sym(M)

as a symmetry whose restriction J|D generates the subgroup of holomorphic
transformations of ∆. It is clear that ord(J) is either d or d/2. Observe
that J extends conformally to M and looked at as linear isometry it fixes
the x3-axis. If ord(J) > 2, this linear transformation is either a rotation
around the x3-axis or a rotation around the x3-axis followed by a symmetry
with respect to the (x1, x2)-plane. Without loss of generality, we suppose
the rotation determined by J is by angle 2π

ord(J)
. As the normal limit vector

of x at P is vertical, the x3-axis intersects x(M) in a finite set of points
and therefore J fixes a finite set of points of M . Define, for each Q ∈ M ,
the isotropy group HQ = {T ∈ 〈J〉 : T (Q) = Q}, and the orbit of Q:
orb(Q) = {Q, J(Q), . . . , Jord(J)−1(Q)}. Note that orb(P ) = {P}.

Theorem 2. Suppose ](Sym(M)) = 4k and k 6= 6, 15. Then C(M) ≤
−4π(2k− 1), and the equality holds if and only if k is even and x : M → R3

is, up to rigid motions and scaling, the minimal surface Mk given in Theorem
1.

Proof. Riemann-Hurwitz formula gives:

2− 2k = ord(J)χ

(
M

〈J〉

)
− ord(J) + 1−

∑
Q∈M

(µ(Q)− 1),

where µ(Q) = ](HQ).
Since ord(J) ∈ {2k, 4k}, then χ

(
M
〈J〉
)
> 0, and so χ

(
M
〈J〉
)

= 2 and M
〈J〉 =

C. Thus, ∑
Q∈M

(µ(Q)− 1) = ord(J) + 2k − 1.

In particular, there exist some points Q ∈ M such that µ(Q) > 1. Label
u : M → C = M/〈J〉 as the natural projection. The singular values of
u are denoted by {α1, . . . , αs} ⊂ C, s > 1, i.e., µ(Q) > 1 for each Q ∈
u−1({α1, . . . , αs}) and µ(Q) = 1 for each Q 6∈ u−1({α1, . . . , αs}). Choose
Qi ∈ u−1(αi) and define mi = ord(J)/µ(Qi), i = 1, . . . , s. It is clear that
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mi ∈ Z and 1 ≤ mi ≤ ord(J)/2, i = 1, . . . , s. Then,

HQi = {Jnmi : n = 0, 1, . . . , µ(Qi)− 1} ,
orb(Qi) = u−1(αi) =

{
Qi, J(Qi), . . . , Jmi−1(Qi)

}
and so, ∑

Q∈M
(µ(Q)− 1) =

s∑
i=1

(ord(J)−mi).

Hence, we deduce

s∑
i=1

(ord(J)−mi) = ord(J) + 2k − 1.(7)

From (7) it is obvious that s ≥ 2. Using mi ≤ ord(J)/2, i = 1, . . . , s, and
ord(J) ≥ 2k we get s < 4, i.e., s ∈ {2, 3}.

Given Q ∈M whose normal vector g(Q) is vertical, it is clear that:

orb(Q) ⊂ g−1(g(Q)).(8)

In order to see this, observe that g ◦ J = θg, θord(J) = 1. Furthermore, if Q
is a fixed point of Jmi the multiplicity of Q as zero or pole of g is:
• If Jmi is a rotation around the x3-axis,

ord(J)
mi

li − 1, where li ∈ N.(9)

• If Jmi is a rotation around the x3-axis followed by a symmetry with
respect to the (x1, x2)-plane,

ord(J)
2mi

l̃i − 1, where l̃i ∈ N, l̃i odd.(10)

We distinguish two cases: ord(J) = 2k, ord(J) = 4k.
First case: ord(J) = 2k.
From (7) once again, s = 3.
At this point, we can describe the underlying complex structure of M .

Up to a Möbius transformation, we put u(P ) = ∞, u(Q1) = 0, and label
u(Q2) = c, u(Q3) = b; c, b ∈ C− {0}, b 6= c.

Since d = 2 ord(J) = 4k, there exists an antiholomorphic transformation
S ∈ Sym(M) satisfying S2 = Id, J ◦ S ◦ J = S and so Sym(M) ∼= D(2k).
It is clear that S fixes P and S(orb(Qi)) = orb(Qj), i, j ∈ {1, 2, 3}. Since
S has order two, we can suppose without loss that S(orb(Q1)) = orb(Q1).
Thus, S induces an antiholomorphic automorphism S̃ of the u-plane M/〈J〉
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that fixes ∞, 0 and satisfies u ◦ S = S̃ ◦ u. It is straightforward to check
that, up to a change of variables, S̃(u) = u.

If we define N = M − (orb(Q1) ∪ orb(Q2) ∪ orb(Q3)), then

u|N : N → C− {0, c, b}

is a 2k-fold unbranched cyclic covering, and the conformal structure of N
determines that of M . Let βi(t), i = 1, 2, 3 be counterclockwise circuits
around 0, a and b respectively, and label β̃i(t), i = 1, 2, 3 as its respective
lifts to N . Since Jmi(Qi) = Qi, i = 1, 2, 3, the end points of β̃i(t) will dif-
fer by a deck transformation of the form Jhimi , where hi ∈ {1, . . . , 2k/mi},
and gcd(hi, 2k/mi) = 1, i = 1, 2, 3. Furthermore, the choice of J gives
hi ≡ ±1 mod(2k/mi), i = 1, 2, 3. Without loss of generality, we put
hi ∈ {1,−1}, i = 1, 2, 3. The integers {h1, h2, h3} determine the induced
map from Π1(C−{0, c, b}) into Z2k whose kernel corresponds to u∗(Π1(N)).
Consider now the complex curve:

M 1 =
{
(u,w) ∈ (C ∪ {∞}) : w2k = um1h1(u− c)m2h2(u− b)m3h3

}
.

The cyclic covering defined by the u-projection of M1 has the same prop-
erties of u|N described above, and so they are equivalent, that is to say, up
to conformal transformations:

M = M 1, J(u,w) = (u, θ w), where θ = e
πi
k .

We denote [g]0, [g]∞ as the zero and polar divisor of g, respectively. It is
evident that Deg([g]0) = Deg([g]∞) = deg(g). For more details see [F-K].

If mi < k, ∀i ∈ {1, 2, 3} then mi ≤ 2k
3

(recall that mi is a divisor of

2k). Hence,
3∑
i=1

mi ≤ 2k, which contradicts (7). So, at least one of them is

equal to k. Without loss of generality we suppose m3 = k. Then, we have
m1 +m2 = k+ 1. If m1,m2 ≤ k/2 we obtain m1 +m2 ≤ k, which is absurd.
Therefore, we can assume that m2 ∈ {k, 2k

3
} and so we get two possibilities:

(i) m1 = k
3

+ 1, m2 = 2k
3

, m3 = k.
(ii) m1 = 1, m2 = m3 = k.

Firstly, we study the case (i). In this situation k is a multiple of 3 and
2k is a multiple of 1 + k/3. Hence, k ∈ {3, 6, 15}. Our hypothesis implies
k = 3, m1 = m2 = 2, m3 = 3. If orb(Qi) ⊂ g−1(∞), orb(Qj) ⊂ g−1(0),
{i, j} = {1, 2}, and as J2 is a rotation, and using (8), (9) and (10) then we
get deg(g) = Deg([g]∞) = 4 + mg(∞) + 3l1, deg(g) = Deg([g]0) = 4 + 3l2,
where l1, l2 ∈ N and mg(∞) is the multiplicity of g at∞. It is easy to deduce
that l1, l2 > 0 and so deg(g) > 5. If orb(Q1)∪ orb(Q2) is contained in either
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g−1(0) or g−1(∞), then similar arguments lead to deg(g) ≥ 8+6l > 5, l ∈ N.
A discussion about the excluded cases k = 6, 15 can be found in Remark 1
below.

Now consider case (ii).
First suppose k is odd.
Assume that J is a rotation. If orb(Q1) ⊂ g−1(∞) then using (8) and (9)

we get:

deg(g) = Deg([g]∞) = 2k − 1 +mg(∞) + 2lk > 2k − 1, l ∈ N.

If orb(Q1) ⊂ g−1(0), then using similar arguments, we have

deg(g) = Deg([g]0) ≥ 2k − 1 + 2kl, l ∈ N.

If deg(g) = Deg([g]0) = 2k−1 then l = 0 and so orb(Q2)∪orb(Q3) ⊂ g−1(∞).
Hence from (8) and (9) deg(g) = Deg([g]∞) ≥ 2k+mg(∞), which is absurd.

Suppose now J is a rotation followed by a symmetry and suppose orb(Q1) ⊂
g−1(0), then using once again (8) and (10) we obtain deg(g) = Deg([g]0) =
k − 1 + 2lk, l ∈ N. Jorge-Meeks formula (3) implies l > 0. If orb(Q1) ⊂
g−1(∞), from (8) and (10) Deg([g]0) is a multiple of 2k. In both cases
deg(g) > 2k − 1.

Assume now that k is even. If J is a rotation, the same proof of the case
when k is odd gives deg(g) > 2k − 1. Now, suppose J is a rotation followed
by a symmetry. If orb(Q2)∪orb(Q3) is contained in either g−1(0) or g−1(∞),
then (8) and (9) imply deg(g) ≥ 2k. When {g(Q2), g(Q3)} = {0,∞}, taking
into account that the multiplicity ofQ1 as either zero or pole of g is k−1+2lk,
l ∈ N (see (10)) we get:

deg(g) ≥ 2k − 1

and the equality holds if and only if l = 0 and

[g]0 = Qk−1
1 Qi · · ·Jk−1(Qi), [g]∞ = P k−1Qj · · ·Jk−1(Qj)

where {i, j} = {2, 3}. Up to changes of variables and relabelings, we can
suppose i = 3 and j = 2. Labeling u = tk, i.e., t = w2(u− c)/(u− b), up to
a biholomorphism, we obtain:

M =

{
(t, w) ∈ C2

: w2 =
t(tk − b)
tk − c

}

g = Atk/2−1w, ηg = B tk/2−1 dt.

Up to scaling and rigid motions, A ∈ R, B ∈ C, |B| = 1 .
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There exist two possibilities: S(orb(Q2)) = orb(Q3) and S(orb(Qi)) =
orb(Qi), i ∈ {2, 3}. In the first case, S̃(c) = c = b and without loss of
generality we can suppose

S(t, w) = (t, t/w).

Looking at the Weierstrass data above, S does not correspond to any
symmetry of the surface. We deduce then that S(orb(Qi)) = orb(Qi), i ∈
{1, 2, 3} and so c, b ∈ R − {0} and S(t, w) = (t, w). Up to a change of
variables, we can assume that c = 1.

If b > 0, making a = k
√
b > 0, Theorem 1 leads to the surface Mk.

If b < 0, write a = k
√−b > 0. We label γ1 as an oriented simple closed

curve in the t-plane whose winding numbers around 0 and 1 are −1 and
around ae

(2j+1)πi
k , e

2lπi
k , are 0, j = 0, . . . , k−1, l = 1, . . . , k−1. Furthermore

we assume that γ1 satisfies γ1(0) ∈ R, γ1(0) > 1. In the same way we label
γ2 as an oriented simple closed curve in the t-plane whose winding numbers
around 0, aeπik are −1 and the winding numbers around ae

(2j+1)πi
k , e

2lπi
k ,

are 0, j = 1, . . . , k − 1, l = 0, . . . , k − 1. Suppose Arg(γ2(0)) = π
k

and
|γ2(0)| > a. Let ci be the lift of γi to M , i = 1, 2, with initial conditions
Arg(w(c1(0))) = 0, Arg(w(c2(0))) = π

2k
. Using the same notation as in

Theorem 1, we write τ1 = dt
w

and τ2 = tk−2wdt. Hence, it is not hard to
check that∫

c1

τ1 = 2iF1,

∫
c1

τ2 = −2iG1,

∫
c2

τ1 = −2ie
πi
2kF2,

∫
c2

τ2 = −2ie−
πi
2kG2

where Fj, Gj > 0, j = 1, 2. If we suppose φ1, φ2 has no real periods then

B

A

∫
cj

τ1 = AB

∫
cj

τ2, j = 1, 2.

If j = 1 then B2 = 1 and similarly j = 2 implies B2 = −1, which is absurd.
Second case: ord(J) = 4k.
Taking into account (7) then s = 2 and m1 + m2 = 2k + 1. It is obvious

that m1,m2 ≤ k leads to a contradiction. Since 4k is a multiple of mi,
i = 1, 2, without loss of generality m1 ∈ {2k, 4k

3
}. Hence m1 is even and so

Jm1 is a rotation. If Q is a fixed point of Jm1 then the multiplicity of Q
as zero or pole of g is ord(J)

m1
l1 − 1, where l1 ∈ N (see (9)). Taking (8) into

account one has

deg(g) ≥ ord(J) l1 −m1 ≥ ord(J)−m1 ≥ 2k > 2k − 1.

This completes the proof.
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Remark 1. If k ∈ {6, 15} then it is possible to find algebraic curves M
of genus k, different to Mk, and Weierstrass data (g, η) on M − {P} with
suitable symmetry such that deg(g) ≤ 2k − 1. The analysis of the period
problem associated to the following Weierstrass data is a little different to
the one in Section 3, and it is still open.

For k = 6, consider (M = M − {P}, gi, ηi), i=1,2, where

M =
{

(u,w) ∈ C ∪ {∞} : w12 =
u3(u− 1)4

(u− b)6

}
, b ∈ R− {0, 1}, P = (∞,∞)

g1 = A
w5(u− b)2

u(u− 1)
, η1g1 = B

u(u− 1)2

w6(u− b)3
du

g2 = A
w(u− b)
(u− 1)

, η2g2 = B
u(u− 1)2

w6(u− b)3
du.

For k = 15, take (M = M − {P}, g, η), where

M =
{

(u,w) ∈ C ∪ {∞} : w30 =
u6(u− b)15

(u− 1)10

}
, b ∈ R− {0, 1}, P = (∞,∞)

g = A
w14(u− 1)4

u2(u− b)7
, ηg = B

u3(u− b)7

w15(u− 1)5
du.

Corollary 1. The only complete orientable genus two minimal surface in
R3 with total curvature −12π and eight symmetries is the Chen-Gackstatter
example.

Proof. From Huber Theorem [H], M is conformally equivalent to M−{P1, ...,
Pr}, where M is a compact genus 2 Riemann surface. Furthermore from
Jorge-Meeks formula (3) r ∈ {1, 2}. If r = 1 then ν1 = 3 and r = 2 gives
ν1 = ν2 = 1. The second possibility leads to the catenoid (see [Sch]) which is
absurd. From Theorem 2 the first one corresponds to the Chen-Gacksttater
genus two example.
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