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REAL ANALYTICITY OF THE CANONICAL VERSAL
DEFORMATIONS OF CR-STRUCTURES

Takao Akahori

Related to isolated singularities, Kuranishi initiated defor-
mation theory of CR structures. And this theory has been
improved in T. Akahori, 1981. In this paper, we show that
the canonical family, constructed in T. Akahori, 1981, is real
analytic. This result gives a direct proof of Miyajima’s theo-
rem about Isolated singularities and CR structures on their
links (see K. Miyajima, 1980).

Introduction.

The purpose of this paper is to prove the real analyticity of the versal family
of CR-structures, constructed in [A3]. Let (V, o) be an n dimensional normal
isolated singularity in (CN , o). We set

M = V ∩ S2N−1
ε (o)

where S2N−1
ε (o) is the ε - sphere in CN . Then we have a real odd dimen-

sional, compact manifold, which is obviously real analytic. Furthermore,
over this M , a CR-structure is naturally induced from V . By Rossi (see
[R]), this CR-structure (M,0 T ′′) determines the normal isolated singularity
(V, o) , uniquely. Kuranishi noted this point, and in order to study defor-
mation theory of isolated singularities, he initiated deformation theory of
CR-structures. This method is improved by [A3], [Mi 1], [Mi 2]. Namely,
in [A3], it is shown that there is a versal family in the sense of Kuranishi,
(M,φ(t) T ′′) which satisfies that φ(t) is a Ck element of 0T ′′ ⊗ (0T ′′)∗ valued
form, which depends on t , complex analytically, and φ(o) = 0. Later, Miya-
jima proved that φ(t) is actually of C∞ in [Mi 1] and discussed about the
extendability of our canonical versal family in [Mi 2]. Actually, our family
is versal only for deformations of tubular neighborhoods of the boundary M ,
and it was not clear that our family can be extended to the deformation of
tubular neighborhoods (see [A3]). Miyajima studied an algebraic geometric
approach and showed that our canonical versal family can be extended to a
deformation of tubular neighborhoods of the boundary (see [Mi 2], [Mi 3]).
In this paper, instead of his approach, we adopt the direct method. Namely,
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we take the compact real analytic CR manifold (for isolated singularities, this
is always possible). And we show that our canonical versal family for this
real analytic CR manifold, is also real analytic. Then, obviously, because of
real analyticity, by using the complexfication method, our family determines
a deformation of tubular neighborhoods of the boundary M , uniquely. Now
we see our proof.

By the construction, our φ(t) satisfies the following non-linear partial
differential equation.

�bφ(t) + ∂
∗
bR2(φ(t)) = �bL

(
q∑
i=1

βiti

)

t = (t1, .., tq), {βi}1≤i≤q is a base of H(1)
T ′ , q = dimC H(1)

T ′ , (for notations and
the construction, see [A3]). This nonlinear equations’ principal part is sub-
elliptic, and we note that in the nonlinear term, only Xφ(t), XY φ(t), where
X,Y in 0T ′′ + 0T ′′, terms appear. Of course if there is no nonlinear term in
this equation, the solution must be real analytic (M being real analytic, so
real analytic hypo-ellipticity holds) (see [Tar1], [Ko]). In our case, as the
non linear term is quite suitable (it doesn’t include XTφ(t) term and TTφ(t)
term, where X in 0T ′′ + 0T ′′ and T is the missing direction), it is natural
to expect the same result as in the elliptic case. Hence it is quite natural
to follow the Tartakoff’s method, which succeeded in the linear sub-elliptic
case. Following the Tartakoff’s method in the non linear case, we are forced
to control (XY φ(t))φ(t) term, where X,Y in 0T ′′+0T ′′. However, instead of
the standard L2 norm, if we use the ‖ ‖′′(m) norm (see Sect. 1 in this paper),
we have

‖(XY φ(t))(φ(t))‖′′(m) ≤ Cm‖XY φ(t)‖′′(m)‖φ(t)‖′′(m), (n ≤ m)

and moreover, our norm dosen’t cause so much problem to control
‖T rφ(t)‖′′(m) and ‖W IT rφ(t)‖′′(m) where W in 0T ′′ + 0T ′′ (namely, the Tar-
takoff’s method is also valid in our norm). So we have our real analyticity
of our canonical family. For real analytic hypo-ellipticity, I don’t prove any
new particular result. However, our versal family of CR structures plays a
quite important role in CR geometry. So, it is my obligation to publish our
result, namely, by following the complete same method for the linear problem
as in [Tar 1], even though our equation is non-linear, our versal family is
real analytic.

1. CR-structures and Ej structures.

We consider an n dimensional isolated singularity (V, o) in (CN , o), and study
this singularity from the point of view of CR-geometry. For this, we set a
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real analytic function on CN ,

r(z) =
N∑
i=1

|zi|2 − ε,

where ε > 0 is chosen sufficiently small. Set

M = {x;x ∈ V, r(x) = 0}.
On M, a CR structure is naturally induced from CN . That is to say,

0T ′′ = {X;X ∈ C ⊗ TM ∩ T ′′CN |M}.
In this paper, instead of 0T ′′ , we use the notation 0T ′. Then, our 0T ′′

satisfies

1) 0T ′′ ∩ 0T ′ = 0,dimC(C ⊗ TM/(0T ′′ + 0T ′)) = 1

2) [Γ(M,0 T ′′),Γ(M, 0T ′′)] j Γ(M, 0T ′′).

The pair (M,0 T ′′) satisfies 1) and 2) is called a CR structure. Now in our
case, obviously, M is real analytic and also the induced CR structure is also
real analytic. Next we set a supplement real vector field ζ by

ζ = the dual vector of the real 1 form
√−1∂r.

So

(1.1) C ⊗ TM =0 T ′′ +0 T ′ + Cζ.

Next we recall Ej structures, introduced in [A3]. For this, we set T ′ =
0T ′ + Cζ. And set a first order differential opeator ∂T ′ from Γ(M,T ′) to
Γ(M,T ′ ⊗ (0T ′′)∗) by; for u in Γ(M,T ′),

∂T ′u(X) = [X,u]T ′

for X in Γ(M,0 T ′′), where [X,u]T ′ means the T ′-part of [X,u] according to
(1.1). And like the case for scalar valued forms, we have

∂
(p)

T ′ ; Γ(M,T ′ ⊗ ∧p(0T ′′)∗) −→ Γ(M,T ′ ⊗ ∧(p+1)(0T ′′)∗), p = 1, 2, ...

Now we set
Γp = Ker ∂

(p)

T ′ ∩ Γ(M, 0T ′ ⊗ ∧(p)(0T ′′)∗).

Then there is a subbundle Ep of 0T ′ ⊗ ∧p(0T ′′)∗ satisfying

E0 = 0,

Γp = Γ(M,Ep).
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And

∂
(p)

p Γ(M,Ep) ⊂ Γ(M,E(p+1))

Ker ∂
(1)

b −→ H(1)(M,T ′) −→ 0

Ker ∂
(p)

b

Im ∂
(p−1)

b

' H(p)(M,T ′), 2 ≤ p ≤ n− 1

where ∂
(p)

b = ∂
(p)

T ′ |Γ(M,Ei), dimRM = 2n − 1,dim0
C T

′′ = n − 1. (In [A1],
[A2] and [A3], we used different notations. However, in this paper, for the
reader’s convenience, we dare to use ∂

(p)

b .) And if n ≥ 4,

Γ(M,E1) ∂b−→ Γ(M,E2)
∂

(1)
b−−→ Γ(M,E3)

is a subelliptic complex and several important estimates are proved in [A3].
(From now on, we use the notation ∂b for ∂

(p)

b .) We recall this. For this, we
set a real 1 form θ by

θ|0T ′′+0T ′ = 0

θ(ζ) = 1.

And we set ω = −√−1dθ, and then we have the Levi metric. From this
metric, we define the volume element dv, and we set the L2 norm on Γ(M,Ep)
by

(u, v) =
∫
M

〈u, v〉dv for u, v in Γ(M,Ep)

where 〈 , 〉 means the hermitian inner product induced from Γ(M,0 T ′ ⊗
∧p(0T ′′)∗). We denote ∂

∗
b by the adjoint operator of ∂b on Γ(M,Ep) with

respect to the above metric. And we set the Laplacian

�b = ∂
∗
b∂
∗
b + ∂b∂

∗
b .

For u in Γ(M,Ep), we set

‖u‖′′2(m) =
m∑
i=0

‖�bu‖2,

(u, v)′′(m) =
m∑
i=0

(�ibu,�ibv) for u, v in Γ(M,Ep).

Then, we easily have:
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Lemma 1.1.

(∂bu, v)′′(m) = (u, ∂
∗
bv)′′(m) for u, v in Γ(M,Ep).

Namely, ∂
∗
b is also the adjoint operator of ∂b with respect to ‖‖′′(m). Fur-

thermore by the result(see Proposition 3.3 in [A2]) with the standard argu-
ment, we have:

Lemma 1.2. For u in Γ(M,Ep),

‖WWu‖′′(m) ≤ Cm‖u‖′′(m+1).

We must explain notations. Let {Ui, hi}i∈I be a finite set of local coordi-
nate neighborhoods of M. And let {ρ}i∈I be a partition of unity subordinate
to this covering. Let {Yj,k}1≤j≤n−1 be an orthonormal frame of 0T ′′ over Uk
according to the Levi metric defined by (1.1). With this preparation, the
above inequality means; for u supported in Uk,

‖Wα,kWβ,ku‖′′(m) ≤ Cm‖u‖′′(m+1),

where Wα,k,Wβ,k = Yj,k or Yj,k, 1 ≤ j ≤ n−1. And henceforth, for this Wα,k,
we use the abbreviation W. Assume that dimRM = 2n− 1 ≥ 7. Then:

Estimate (I).

‖u‖′ ≤ C{‖∂bu‖+ ‖∂∗bu‖+ ‖u‖}, for u in Γ(M,E2)

(for the notations and the proof, see Theorem 4.1 (new estimate) in [A3]).
Then by the standard argument, we have the Neumann operator Nb for the
above differential complex (Γp, ∂

(p)

b ). And so, we have the Kodaira-Hodge
type decomposition theorem for this complex, namely

u = Hbu+�bNbu, for u in Γ(M,E2),

where Hb means the projection of u into

{u; u in Γ(M,E2), ∂bu = 0, ∂
∗
bu = 0}.

Estimate (II).

‖u‖′′ ≤ C ′{‖�bu‖+ ‖u‖} for u in Γ(M,E2).

We note that ‖‖′′ norm is the same as ‖‖′′(0) norm introduced in this section.
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Estimate (III).

‖Wα,k(ρu)‖′′2(m) +K‖ρu‖′′2(m) ≤ Cm
{
‖∂b(ρu)‖′′2(m) + ‖∂∗b(ρu)‖′′2(m)

}
+C ′m‖ρu‖′′2(m),

where Wα,k = Yj,korY j,k, and ρ ∈ C∞ is supported in Uk. From now on, we
fix m, satisfying m ≥ n.

For our norm, we have:

Lemma 1.3. Let f, g be C∞ functions on M . Then,

‖fg‖′′(m) ≤ c′′m‖f‖′′(m)‖g‖′′(m).

The proof is standard (by using the Sobokev lemma with subelliptic esti-
mate for �b). So, we omit this.

Finally in this section, we note that there is a real analytic real vector
field T on M satisfying

1) Tp /∈ 0T ′′p +0 T ′p for every point p of M ,

2) [T,Z] ≡ 0 mod 0T ′′ + 0T ′ for all Z ∈ Γ(M, 0T ′′ + 0T ′),

(see Proposition 1 in [Tar1]). So, using this T , we newly introduce a C∞

vector bundle decompostion

(1.2) C ⊗ TM =0 T ′′ +0 T ′ + C ⊗ T

and also introduce corresponding operators ∂T ′ ,∂
(p)

T ′ (as I mentioned before,
we use the notation ∂b for these operators). Then, the complete same results
hold, and the same estimates hold. From now on, we adopt this supplement
vector field T and use the Levi-form according to (1.2). And following [Tar1],
we use the notaion W = 0T ′′ + 0T ′.

2. The canonical versal family.

In this section, we recall the construction of the canonical versal family
([A3]). Namely, we set Γ(M,0 T ′ ⊗ (0T ′′)∗) valued power series

φ(t) =
∑

K=(k1,..,kq)

φKt
k1
1 ....t

kq
q

where t = (t1, .., tq) ∈ U ⊂ Cq , and U is a neighborhood of the origin, and
K is a multi index, q = dimC H(1)

T ′ . For brevity, we abbreviate this as follows.

φ(t) =
∑
K

φKt
K .
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Now we recall the construction of φ(t). By the Banach inverse mapping
theorem, we solve φ(t), namely φ(t) is the unique solution of the following.

φ(t) + ∂
∗
bNbR2(φ(t)) = L

(
q∑
i=1

βiti

)
, (t1, ..., tq) ∈ U ⊂ Cq,

where Nb is introduced in [A3], and {βi}1≤i≤q is a base of H(1)
T ′ . And by

[Mi 2], our φ(t) is of C∞. It is better to explain L, introduced in [A2]. For
v in Γ(M,T ′ ⊗ (0T ′′)∗), we set

Lv(X) = v(X)− ∂bθv(X), for X ∈ Γ(M, 0T ′′),

where T ′ = 0T ′ + C ⊗ T , and θv is an element of Γ(M,0 T ′) defined by

[θv, X]T = (v(X))T for X in Γ(M, 0T ′′),

where [θv, X]T (resp. (v(X))T ) means the C⊗T part of [θv, X] (resp. (v(X)))
according to (1.2).

3. The real analyticity.

As we recalled in Sect. 2, φ(t) satisfies

φ(t) + ∂
∗
bNbR2(φ(t)) = L

(
q∑
i=1

βiti

)
.

Hence we have

�bφ(t) +�b∂
∗
bNbR2(φ(t)) = �bL

(
q∑
i=1

βiti

)
,

namely

�bφ(t) + ∂
∗
bR2(φ(t)) = �bL

(
q∑
i=1

βiti

)
.(3.0.1)

First, by the real analyticity of the solution to �b, βi must be real analytic.
We show that this φ(t) is real analytic. We follow the Tartakoff’s line in
[Tar1] and we adopt his notations. Let po be the reference point of M .
Let U1(po) be a sufficiently small neighborhood of po in M, and U2(po) be
a neighborhood of po satisfying; U1(po) b U2(po). And we fix an integer m
satisfying; m ≥ n.
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Now we show that there are constants C1 and C2 which satisfy; there is a
ε > 0, and for every q , there is a C∞ function ψq supported in U2(po) and
ψq|U1(po) = 1 satisfying

(∗) ‖ψqOp(q)φ(t)‖′′(m) ≤ C1C
q
2q!, for any t in (0, ε).

Here Op(q) denotes the q-th order differential operator formed by T , Wj in
W . If this is proved, by the Sobolev lemma, for every q,

SupU1(po) |Op(q)φ(t)| ≤ c‖Op(q)φ(t)‖′′(m),U1(po), (by m ≥ n),

where ‖‖′′(m),U1(po) means the corresponding norm over U1(po). So

SupU1(po) |Op(q)φ(t)| ≤ c‖ψqOp(q)φ(t)‖′′(m)

≤ cC1C
q
2q!

Therefore by Lemma 1 in [Tar1], we have that φ(t) is real analytic for any t
in (0, ε). And by the following lemma, it is shown that φ(t) is real analytic.

Lemma 3.1. Let u(x, t) is a Ck function on Rl×Cn (k ≥ 1), which is real
analytic with respect to x, and complex analytic with respect to t, separately.
Then, u(x, t) is real analytic on (x, t).

Proof. We consider the partial complexfication of Rl×Cn,C l×Cn. And for
a fixed t, we can naturally consider ũ(z, t) on C l × Cn for u(x, t). By the

assumption, our ũ(z, t) is complex analytically with respect to respectively

z and t. So by Osgood’s lemma, our ũ(z, t) is complex analutic with respect
to both variables. So u(x, t) must be real analytic.

For (∗), it suffices to show; there are constants C1 and C2 which satisfy;
there is a ε > 0, and for every q, there is a C∞ function ψq supported in
U2(po) and ψq|U1(po) = 1 satisfying

(∗∗) ‖ψqW IT rφ(t)‖′′(m) ≤ C1C
|I|+r
2 |I|!r!, for | t |< ε

(see Proposition 1 in [Tar2]). We see the proof of (∗∗). In order to see
this, we recall several lemmas which were shown in [Tar1], and use his
useful notations. Following [Tar1], Op(k, q) denotes a q-th order differential
operator formed by concatenating k W ’s and q − k T ′s.
Lemma 3.2 (Lemma 2 in [Tar1]). For k ≥ 1, any Op(k, q) may be written
sybolically

Op(k, q) = WOp(k − 1, q − 1) +
q∑
j=1

cj
(
q

j

)
a(j)Oo(k, q − j), i.e.
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if there is a W , we may commute it to the left modulo the indicated sum
of at most cj

(q
j

)
terms, c some integer depending only on n, of the form

a(j)Op(k, q − j).
Lemma 3.3 (Lemma 3 in [Tar1]). Let a denote any of a finite number of
real analytic functions and Z any of a finite number of real analytic vector
field. Let {a(q)} be recursively defined by

a(1) = any of the a’s

a(q+1) = a(1)a(q) or Za(q),

i.e., a(1)a(q) stands for one of the a’s times an expression of the form a(q).
Then locally there exists K such that for all α and for all q,

|Dαa(q)| ≤ KK(|α|+q)(|α|+ q)!.

Then, as for our norm, we immediately have:

Lemma 3.4.

‖Dαa(q)‖′′(m) ≤ K ′K ′(|α|+q+2m)(|α|+ q + 2m)!.

So by choosing a proper K, we have

‖Dαa(q)‖′′(m) ≤ KK(|α|+q)(|α|+ q)!.

Lemma 3.5 (Lemma 4 in [Tar1]).

[T r,�b] =
r∑
j=1

cj
(
r

j

){
Wa(j+1)W +Wa(j+2) + a(j+3)

}
T r−j.

Now we begin by estimating ‖ρWT pφ(t)‖′′(m) and ‖ρT pφ(t)‖′′(m). Namely
we show the following proposition. By a technical reason, we change the
estimate. The following estimate is not the same as in (∗∗). But by choosing
C1, C2 properly, it is equivalent to (∗∗) in the case | I |≤ 1.

Proposition 3.6. If we choose C1, C2 sufficiently large,

‖ρWT pφ(t)‖′′(m) and ‖ρT pφ(t)‖′′(m) ≤ C1C
p−2
2 (p− 2)! for every p ≥ 2.

Proof. Our problem is on a compact manifold without boundary. So, by fol-
lowing Tartakoff’s method in [Tar1], we can omit ρ. We show this estimate
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by induction on p. The case p = 2 is no problem if we choose C1 sufficiently
large. We assume p = k case. And show p = k+ 1 case. We recall the basic
estimate (Estimate (III) without ρ).

‖Wu‖′′2(m) +K‖u‖′′2(m) ≤ cm
{∥∥∥∂bu∥∥∥′′2

(m)
+
∥∥∥∂∗bu∥∥∥′′2

(m)

}
+ CK,m‖u‖2

namely,

≤ cm
{

m∑
i=0

(
�ib∂bu,�ib∂bu

)
+

m∑
i=0

(
�ib∂

∗
bu,�ib∂

∗
bu
)}

+ CK,m‖u‖2.

So in the place of u in this equality, we put u = T k+1φ(t). Then, we have

‖W (T k+1φ(t))‖′′2(m) +K‖T k+1φ(t)‖′′2(m)

≤ cm
{

m∑
i=0

(
�ib∂b(T k+1φ(t)),�ib∂b(T k+1φ(t))

)

+
m∑
i=0

(
�ib∂

∗
b(T

k+1φ(t)),�ib∂
∗
b(T

k+1φ(t))
)}

+ CK,m‖T k+1φ(t)‖2

≤ cm
{

m∑
i=0

(
�ib�b(T k+1φ(t)),�ib(T k+1φ(t))

)}
+ CK,m‖T k+1φ(t)‖2.

(∗∗∗)

Furthermore

(�mb �bT k+1φ(t),�mb �bT k+1φ(t))

= (�mb T k+1�bφ(t),�mb T k+1�bφ(t)) + (�mb [�b, T k+1]φ(t),�mb T k+1φ(t))

= (�mb T k+1�bφ(t),�mb T k+1φ(t))

+

�mb W
k+1∑
j=1

a(j+1)WT k+1−jφ(t)

 ,�mb T k+1φ(t)

 , (by Lemma 3.5).

By the same way as in [Tar1], we can handle the second term of the above.
So we omit this. We will control the first term. We operate T k+1 on (3.0.1).
Then, we have

T k+1�bφ(t) + T k+1∂
∗
bR2(φ(t)) = T k+1�bL

(
q∑
i=1

βiti

)
.

And so by this equation, the first term of the above can be estimated by;∣∣∣∣∣
(
�mb T k+1�bL

(
q∑
i=1

βiti

)
,�mb T k+1φ(t)

)∣∣∣∣∣
+
∣∣∣(�mb T k+1∂

∗
bR2(φ(t)),�mb T k+1φ(t)

)∣∣∣ .
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The first term of this was already handled by [Tar1]. We see the second
term which didn’t appear in [Tar1]. The second term becomes∣∣∣(�mb T k+1R2(φ(t)),�mb ∂bT k+1φ(t)

)∣∣∣+ commutator terms

≤ (large constant)
∥∥�mb T k+1R2(φ(t))

∥∥2

+ (small constant)
∥∥∥�mb ∂bT k+1φ(t)

∥∥∥2

+ commutator terms.

To control commutator terms is not easy. But the method is standard. So
we omit this. For (small constant) ‖�mb ∂bT k+1φ(t)‖2,

(small constant)
∥∥∥�mb ∂bT k+1φ(t)

∥∥∥2

= (small constant)
∥∥∥∂bT k+1φ(t)

∥∥∥′′2
(m)

.

So this term can be absorbed in ‖W (T k+1φ(t))‖′′2(m), namely, the left hand
side of (∗∗∗). Therefore we can ignore this term for our estimate if we choose
C1, C2 properly. For the non-linear term T k+1R2(φ(t)):

Lemma 3.7. If we choose C1,C2 sufficiently large, we have

‖T k+1R2(φ(t))‖′′(m) ≤
(

1
4

)
C1C

k−1
2 (k − 1)!

+ (small constant)
∥∥W (T k+1φ(t))

∥∥′′2
(m)

+ (small constant)
∥∥(T k+1φ(t))

∥∥′′2
(m)

where (small constant) doesn’t depend on C1, C2.

Proof. To estimate T k+1R2(φ(t)), it suffices to estimate T k+1{(Wφ(t))φ(t)}
because of the definition of R2(φ(t)) (see [A3]). Namely,

T k+1{(Wφ(t))φ(t)} = (T k+1(Wφ(t)))φ(t) +

(
k + 1

1

)
(T k(Wφ(t)))(Tφ(t))

+

(
k + 1
k

)
(T (Wφ(t)))(T kφ(t)) + (Wφ(t))(T k+1φ(t))

+
k−1∑
r=2

(
k + 1
r

)
(T r(Wφ(t)))(T k+1−rφ(t))).

Since φ(o) = 0, we can assume that ‖φ(t)‖′′(m), ‖Wφ(t)‖′′(m) and ‖Tφ(t)‖′′(m)

are sufficiently small if we choose ε sufficiently small (we are considering on
| t |< ε) (m is fixed). So the first term and the fourth term can be absorbed in
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(small constant) ‖W (T k+1φ(t))‖′′2(m) + (small constant) ‖T k+1φ(t)‖′′2(m) . The
second term and the third term are also no problem. In fact, if ‖φ(t)‖′′(m),
‖Wφ(t)‖′′(m) and ‖Tφ(t)‖′′(m) are sufficiently small and we choose C1, C2 prop-
erly with the assumption p = k case, these don’t bother us. We see how to
control the other term. By induction, we see

‖T l(Wφ(t))‖′′(m), ‖T lφ(t)‖′′(m) ≤ C1C
l−2
2 (l − 2)!, if k + 1 ≥ l ≥ 2.

l = 2 case is OK, if we choose C1 sufficiently large. We assume l = p − 1
case. Now we see p case. By m ≥ n∥∥∥∥∥

p−2∑
r=2

(
p

r

)
(T r(Wφ(t)))(T p−rφ(t))

∥∥∥∥∥
′′

(m)

(3.7.1)

≤
p−2∑
r=2

(
p

r

)
c′′m‖T r(Wφ(t))‖′′(m)‖T p−rφ(t)‖′′(m)

≤
p−2∑
r=2

(
p

r

)
c′′mC1C

r−2
2 (r − 2)!C1C

p−r−2
2 (p− r − 2)!

≤
p−2∑
r=2

(
p

r

)
c′′mC

2
1C

p−4
2 (r − 2)!(p− r − 2)!.

And
p−2∑
r=2

(
p

r

)
(r − 2)!(p− r − 2)! =

p−2∑
r=2

p(p− 1)(p− 2)!
r(r − 1)(p− r)(p− r − 1)

.

While if r ≤ [p
2
] , p− r ≥ p

2
, p− r − 1 ≥ p

2
. Hence

p−2∑
r=2

p(p− 1)(p− 2)!
r(r − 1)(p− r)(p− r − 1)

=
[ p2 ]∑
r=2

2p(p− 1)(p− 2)!
r(r − 1)(p− r)(p− r − 1)

≤
[ p2 ]∑
r=2

8
r(r − 1)p2

× p(p− 1)(p− 2)!

≤ 8
p− 1
p

(p− 2)!

≤ 8(p− 2)!

Hence
(3.7.1) ≤

(
8C1c

′′
m

C2

)
C1C

p−2
2 (p− 2)!
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So if we choose 8C1c
′′
m

C2
2
≤ 1, then we have our estimate. Therefore by summing

up these, we obtain the corresponding estimate for

‖T k+1φ(t)‖′′(m), ‖WT k+1φ(t)‖′′(m).

For ‖W IT pφ(t)‖′′(m), |I| ≥ 2 , following the Tartakoff’s method, namely us-
ing Ehrenpreis’s localizing function with careful study of the non-linear term
in the same way as in Lemma 3.7 (we have to estimate ‖W IT p(R2(φ(t)))‖′′2(m),
however this is proved in the same way), we have the real analyticity of
φ(t).
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