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SEMICROSSED PRODUCTS OF THE DISK ALGEBRA:
CONTRACTIVE REPRESENTATIONS AND MAXIMAL

IDEALS

Dale R. Buske and Justin R. Peters

Given the disk algebra A(D) and an automorphism α, there
is associated a non-self-adjoint operator algebra Z+ ×α A(D)
called the semicrossed product of A(D) with α. We consider
those algebras where the automorphism arises via composi-
tion with parabolic, hyperbolic, and elliptic conformal maps
ϕ of D onto itself. To characterize the contractive representa-
tions of Z+ ×α A(D), a noncommutative dilation result is ob-
tained. The result states that given a pair of contractions S, T
on some Hilbert space H which satisfy TS = Sϕ(T ), there exist
unitaries U, V on some Hilbert space K ⊃ H which dilate S and
T respectively and satisfy V U = Uϕ(V ). It is then shown that
there is a one-to-one correspondence between the contractive
(and completely contractive) representations of Z+×αA(D) on
a Hilbert space H and pairs of contractions S and T on H satis-
fying TS = Sϕ(T ). The characters, maximal ideals, and strong
radical of Z+ ×α A(D) are then computed. In the last section,
we compare the strong radical to the Jacobson radical.

I. Introduction.

A semicrossed product of the disk algebra is an operator algebra associated
to the pair (A(D), α), where A(D) is the disk algebra and α an automor-
phism of A(D). Any such α has the form α(f) = f ◦ ϕ (f ∈ A(D)) for
a linear fractional transformation ϕ. It is well-known there is a one-to-one
correspondence between contractions (i.e., bounded linear operators T on
some Hilbert space with ‖T‖ ≤ 1) and contractive representations of A(D).
Here, analogously, there is a one-to-one correspondence between pairs S, T
of contractions satisfying the relation TS = Sϕ(T ) and contractive repre-
sentations of the semicrossed product, denoted Z+ ×α A(D), associated to
(A(D), α). This is meaningful since linear fractional transformations map
contractions to contractions (cf. [Sz-NF]). The question of whether con-
tractive representations of Z+ ×α A(D) can be dilated to representations of
the C∗-crossed product Z ×α C(T) is equivalent to the following: given a
pair of contractions S, T on some Hilbert space H satisfying TS = Sϕ(T ) do

97

http://nyjm.albany.edu:8000/PacJ/
http://nyjm.albany.edu:8000/PacJ/1998/v185no1.html
http://nyjm.albany.edu:8000/PacJ/1998/


98 DALE R. BUSKE AND JUSTIN R. PETERS

there exist unitaries U, V on some Hilbert space K ⊃ H which are dilations
of S, T respectively, and satisfy V U = Uϕ(V )? This question, which is of
interest in its own right, has an affirmative solution [Theorem II.4]. Fur-
thermore, it marks the starting point in our study of semicrossed products
of the disk algebra, by giving faithful representations of Z+ ×α A(D).

Section V deals with the characterization of the maximal ideal space. The
character space, or equivalently the space of maximal ideals of codimension
one, was easily obtained from the representation theory [Corollary III.11].
It turns out there are no maximal ideals of codimension greater than one –
unless the automorphism (i.e., the linear fractional transformation) is elliptic
of finite period, say K, in which case the maximal ideals have codimension
either 1 or K2. Finally, these results, together with [HPW] are used to com-
pare the strong radical with the Jacobson radical: the two radicals coincide
except when α is elliptic and nonperiodic (that is, an irrational rotation).
(Theorem VI.1.)

II. Dilating Noncommuting Contractions.

It is well-known that each contraction T on a Hilbert space H can be
dilated to a unitary U on a Hilbert space K ⊆ H [Sz-NF]. That is,
for n ≥ 1, T nh = PHUnh ∀ h ∈ H. This result then yields the fact
that the contractive representations of the disk algebra A(D) on H are
in a one-to-one correspondence with contractions on H [DP], [Sz-NF].
Moreover, it shows that each contractive representation is completely con-
tractive [DP]. Andô then generalized this result by showing that every
commuting pair of contractions S and T on H have a unitary dilation on
some K ⊇ H [A]. That is, there exist unitaries U and V on K such that
∀ m ≥ 1, n ≥ 1, SmT nh = PHUmV nh. Hence the contractive represen-
tations of the bidisk algebra A(D2) on H are in one-to-one correspondence
with commuting pairs of contractions on H. Furthermore, each representa-
tion of A(D2) is completely contractive [DP]. Recently, Sebestyén showed
that every anti-commuting pair of contractions have such a dilation [S]. In
this section we show that when ϕ is a conformal automorphism of D and S
and T are contractions on H satisfying TS = Sϕ(T ) then a unitary dilation
exists. This result is then used to characterize the contractive representa-
tions of a semicrossed product. Proofs in this section closely resemble those
in [S]. Lemma II.1 is directly lifted from [S].

Lemma II.1. Let K and K′ be Hilbert spaces, H ⊂ K and H′ ⊂ K′ be
subspaces and X : H → K′ and X ′ : H′ → K be given bounded linear
transformations. Then, there exists an operator Y : K → K′ extending X
so that Y ∗ extends X ′ if and only if 〈Xh, h′〉 = 〈h,X ′h′〉 ∀ h ∈ H, h′ ∈ H′.
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Moreover, ‖Y ‖ ≤ max{‖X‖, ‖X ′‖}.
Suppose now that S and T are contractions on H which satisfy TS =

Sϕ(T ) for some linear fractional transformation ϕ of D. Note that ϕ(T ) is a
well-defined contraction by the functional calculus found in [Sz-NF]. Let U
be the minimal isometric dilation of S acting on a Hilbert space K containing
H. Then, U∗ extends S∗, where K =

∨∞
n=0Kn and Kn =

∨n
k=0 U

k(H).

Lemma II.2. Let S and T be contractions on H such that TS = Sϕ(T ).
If U is the minimal isometric dilation of S acting on K, then there exists Tϕ
an operator on K such that T ∗ϕ extends T ∗, ‖Tϕ‖ ≤ 1, and TϕU = Uϕ(Tϕ).

Proof. The proof is similar to [S]. At the n-th step of induction, Lemma
II.1 is applied to the maps Uϕ(Tn−1)U∗|Hn−1 : Hn−1 ≡ U(Kn−1) → Kn and
T ∗n−1 : Kn−1 → Kn and ‖Tn‖ ≤ 1 since ‖ϕ(Tn−1)‖ ≤ 1. Supposing that
ϕ = µϕa where |µ| = 1 and ϕa(z) = z−a

1−az , the conditions of Lemma II.1
are satisfied since 〈x, [µϕa(Tn)]∗y〉 = 〈x, µϕa(T ∗n)y〉 = 〈x, µϕa(T ∗n−1)y〉 =
〈x, [µϕa(Tn−1)]∗y〉 for x ∈ Hn−1 and y ∈ Kn−1 [Sz-NF, I.4].

Lemma II.3. Let S and T be contractions on H such that TS = Sϕ(T ). If
U is the minimal unitary dilation of S acting on a Hilbert space K, then there
exists Tϕ on K which is a dilation of T with ‖Tϕ‖ ≤ 1 and TϕU = Uϕ(Tϕ).

Proof. Let U+ be the minimal isometric dilation of S acting onK+;H ⊆ K+ ⊆
K. By Lemma II.2, there exists a dilation Tϕ+ of T to K+ with ‖Tϕ+‖ ≤ 1 and
Tϕ+U+ = U+ϕ(Tϕ+). By considering a sequence of polynomials pn → ϕ−1,
it follows from Tϕ+U+ = U+ϕ(Tϕ+) that ϕ−1(Tϕ+)U+ = U+Tϕ+. Taking
adjoints yields T ∗ϕ+U

∗
+ = U∗+ϕ

−1(Tϕ+)∗. Since U∗ is the unique minimal
isometric dilation of U∗+ it follows by Lemma II.2 and [Sz-NF, I.4] that
there exists an operator T ∗ϕ on K such that Tϕ extends Tϕ+, ‖T ∗ϕ‖ ≤ 1, and
T ∗ϕU

∗ = U∗ϕ−1(Tϕ)∗. Reasoning as above, TϕU = Uϕ(Tϕ).

Theorem II.4. Let S and T be contractions on H such that TS = Sϕ(T ).
Then there exists a pair of unitaries U and V such that V U = Uϕ(V ) and
SmT n = PHUmV n|H for every m,n ∈ N.

Proof. As in [S], let U0 be the minimal unitary dilation of S and T0 a con-
tractive dilation of T with T0U0 = U0ϕ(T0). Then let V be the minimal
unitary dilation of T0 and proceed to extend U0 to a unitary such that
V U = Uϕ(V ). The proof follows [S] after it is shown that U defined on

K =
∞∨
−∞

V n(K0) by U(V nk0) = ϕ−1(V )nU0k0 is isometric. However, since

V is the minimal unitary dilation of T0, it follows that ϕ−1(V ) is the mini-
mal unitary dilation of ϕ−1(T0) [Sz-NF, I.4.3] and so 〈U(V mh0), U(V nk0)〉 =
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〈ϕ−1(V )mU0h0, ϕ
−1(V )nU0k0〉 = 〈ϕ−1(T0)mU0h0, ϕ

−1(T0)nU0k0〉 =
〈U0T

m
0 h0, U0T

n
0 k0〉 = 〈V mh0, V

nk0〉.

III. The Semicrossed Product.

Example III.1. Let D be an operator algebra and α an automorphism of D.
Let (ρ,K) be a contractive representation of D and let H = H2(K), the space
of square summable elements in

⊕∞
0 K. Define a contractive representation

π of D on H by π(f)(ξ0, ξ1, ξ2, . . . ) = (ρ(f)ξ0, ρ(α(f))ξ1, ρ(α2(f))ξ2, . . . ). If
U+ is the unilateral shift on H, then U+π(α(f)) = π(f)U+∀ f ∈ D. Write
π = ρ̃ for the contractive representation constructed above.

Example III.2. The disk algebra A(D) can be considered as an operator
algebra acting (via multiplication) on the Hilbert space L2(T). Let α :
A(D) → A(D) be an (isometric) automorphism of A(D) so that α(f) =
f ◦ ϕ for some conformal mapping ϕ of D. Let U be the forward unilateral
shift on ⊕∞i=0L

2(T), U(ξ0, ξ1, ξ2, . . . ) = (0, ξ0, ξ1, . . . ). For f ∈ A(D), let
Df be the diagonal operator on ⊕∞i=0L

2(T) given by Df (ξ0, ξ1, ξ2, . . . ) =
(fξ0, α(f)ξ1, α

2(f)ξ2, α
3(f)ξ3, . . . ). Then UDα(f) = DfU ∀f ∈ A(D). We

let Aα denote the norm closed subalgebra of B (⊕∞i=0L
2(T)) generated by U

and Df , f ∈ A(D).
Note that UDα(f) = DfU so that Aα is commutative if and only if α

(and hence ϕ) is the identity. Further, we remark that every conformal map
of D onto itself has the form ϕ(z) = µϕa(z) where µ ∈ C, |µ| = 1, and
ϕa(z) = z−a

1−az (a ∈ D). We classify these as hyperbolic, parabolic, or elliptic
[B]. In the hyperbolic case, ϕa : D→ D has two distinct fixed points which
lie on ∂D. If ϕa is parabolic, it has a unique fixed point lying in ∂D. In the
elliptic case, ϕa has one fixed point in D (and one outside D).

By Lemma 10 of [HPW], the study of Aα can be reduced to three spe-
cific cases. If α is hyperbolic, parabolic, or elliptic, we can assume ϕ fixes
{−1, 1}, {1}, or {0} respectively.

Example III.3. For f ∈ A(D) and α as in Example III.2, the composition
operator Cϕ−1 and the Toeplitz operator Tf on H2(D) satisfy Cϕ−1Tα(f) =
TfCϕ−1 . We define Bα to be the norm closed subalgebra of B(H2(D)) gen-
erated by Cϕ−1 and Tf (f ∈ A(D)) where α(f)(z) = f(ϕ(z)).

Definition III.4. Let α be an automorphism of D, ρ a contractive rep-
resentation of D on H, and V a contraction (isometry) on H. We say
that (ρ, V ) is a contractive (isometric) covariant representation of (D, α)
if V ρ(α(f)) = ρ(f)V ∀ f ∈ D.
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Remark III.5. Contractive (isometric) covariant representations of (D, α)
exist as exhibited by the examples above. However, unlike covariant repre-
sentations of C∗-algebras, there are isometric covariant representations (ρ, V )
satisfying ρ(α(f))V = V ρ(f) but not ρ(α(f))V ∗ = V ∗ρ(f). (Examples III.1
and III.3 satisfy both conditions.)

Example III.6. Let α be an elliptic automorphism of A(D). Let ρ be a
contractive representation of A(D) on `2(C) given by ρ(z)(ξ0, ξ1, ξ2, . . . ) =
(0, µξ0, µ

2ξ1, µ
3ξ2, . . . ) and V the unilateral shift. Then ρ(α(f))V = V ρ(f)

but ρ(α(f))V ∗ 6= V ∗ρ(f).

Consider an automorphism α of C(T) given by composition with the re-
stricted Möbius transformation ϕ|T. If δn denotes the Kronecker delta on
Z, the algebra `1(Z, C(T), α) consists of all formal sums

∑∞
−∞ δn ⊗ fn with

fn ∈ C(T),
∑∞
−∞ ‖fn‖ < ∞. An adjoint and multiplication can be defined

(on simple tensors) by (δn ⊗ f)∗ = δ−n ⊗ α−n(f) and (δn ⊗ f)(δm ⊗ g) =
δn+m ⊗ fαn(g).

A multiplication could also be defined by letting Z act on the left side
by (δn ⊗ f)(δm ⊗ g) = δn+m ⊗ αm(f)g. If the Banach space `1(Z, C(T), α)
is provided with this alternate multiplication, and the adjoint is left un-
changed, we obtain a new Banach algebra denoted `1(Z, C(T), α)op. The
Banach algebras `1(Z, C(T), α) and `1(Z, C(T), α)op are isomorphic [P1].

Define the Banach algebra `1(Z+,A(D), α) to be the subalgebra of
`1(Z, C(T), α)op consisting of elements of the form F =

∑
n≥0 δn ⊗ fn with

fn ∈ A(D) and ‖F‖1 =
∑
n≥0 ‖fn‖ <∞. Endow `1(Z+,A(D), α) with a mul-

tiplication (δn ⊗ f)(δm ⊗ g) = δn+m ⊗ αm(f)g so that it is a Banach algebra
without adjoint.

If (ρ, V ) is a contractive covariant representation of (A(D), α) on H, then
π : `1(Z+,A(D), α) → B(H) defined by π

(∑
n≥0 δn ⊗ fn

)
=
∑
n≥0 V

nρ(fn)
is a contractive representation. Denote this representation by π = V × ρ.

Proposition III.7. The correspondence (ρ, V ) ↔ V × ρ is a bijection
between the collection of contractive covariant representations of (A(D), α)
and contractive representations of `1(Z+,A(D), α).

Proof. By the preceding remarks, we need only show that π, a contractive
representation of `1(Z+,A(D), α) on H, gives rise to a contractive covariant
pair (ρ, V ) of (A(D), α) and that π = V × ρ. Define a contraction V on
H by V = π(δ1 ⊗ 1). Define a (contractive) representation ρ of A(D) by
ρ(f) = π(δ0 ⊗ f). Then (ρ, V ) is a contractive covariant representation of
(A(D), α) since ρ(f)V = π(δ0⊗f ·δ1⊗1) = π(δ1⊗α(f)) = π(δ1⊗1·δ0⊗α(f)) =
V ρ(α(f)). To complete the proof, note that π = V × ρ on a dense subset of
`1(Z+,A(D), α) and hence everywhere.
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Recall that the crossed product Z×αC(T) is the completion of `1(Z, C(T),
α) under the norm ‖F‖ = sup{‖π(F )‖ : π is a contractive representation of
`1(Z, C(T), α)} for F ∈ `1(Z, C(T), α) [MM].

Lemma III.8. The Banach algebra `1(Z+,A(D), α) admits a faithful con-
tractive representation.

Proof. Let ρ be the (faithful) representation of A(D) on L2(T) given by
multiplication. As in Example III.1, (ρ̃, U+) is a contractive covariant rep-
resentation of (A(D), α). Thus, U+ × ρ̃ is a contractive representation of
`1(Z+,A(D), α) on

⊕∞
0 L2(T). Suppose (U+ × ρ̃)(

∑
n≥0 δn ⊗ fn) = 0. Then∑

n≥0 U
nDfn = 0 in Aα and hence

(∑
n≥0 U

nDfn

)
(ξ0, 0, 0, . . . ) = (0, 0, 0, . . . )

∀ ξ0 ∈ L2(T). It follows that fk · ξ0 = 0 ∀ξ0 ∈ L2(T). By the faithfulness of
ρ, fk ≡ 0 ∀ k ≥ 0. Thus, U+ × ρ̃ is faithful.

With that motivation, we define an operator enveloping norm on `1(Z+,
A(D), α).

Definition III.9. For F ∈ `1(Z+,A(D), α), set ‖F‖ = sup{‖(V × ρ)(F )‖ :
(ρ, V ) is a contractive covariant representation of (A(D), α)}. Define the
semicrossed product of A(D) with α, denoted Z+ ×α A(D), to be the com-
pletion of `1(Z+,A(D), α) with respect to this norm.

Since contractive representations ρ of A(D) on H correspond bijectively
with contractions on H [Sz-NF], it follows from Proposition III.7 that there
is a bijection between the contractive representations of `1(Z+,A(D), α) and
the contractive covariant representations of (A(D), α). Since `1(Z+,A(D), α)
is dense in Z+×αA(D), the contractive covariant representations of (A(D), α)
give rise to all contractive representations of Z+ ×α A(D).

Theorem III.10. The contractive representations of Z+ ×α A(D) are in
a one-to-one corespondence with pairs of contractions S and T satisfying
TS = Sϕ(T ).

Corollary III.11. The character space of Z+ ×α A(D) is M = {(z0, ξ0) ∈
C2 : |z0| ≤ 1, |ξ0| ≤ 1 and either ξ0 = 0 or ϕ(z0) = z0}.

Proof. Any character γ (a contractive representation of Z+ ×α A(D) on C)
is determined by a pair (z0, ξ0) ∈ C2 satisfying |z0| ≤ 1, |ξ0| ≤ 1, and z0ξ0 =
ξ0ϕ(z0). However, z0ξ0 = ξ0ϕ(z0) if and only if ξ0 = 0 or z0 is a fixed point
of ϕ.

Proposition III.12. Z+ ×α A(D) is isomorphic to a non-self-adjoint sub-
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algebra of Z×α C(T).

Proof. Since `1(Z+,A(D), α) can be considered to be a subalgebra of `1(Z,
C(T), γ), there exists an embedding ı of `1(Z+,A(D), α) into Z ×α C(T).
If, for F ∈ `1(Z+,A(D), α), ‖F‖ = ‖ı(F )‖, then ı can be extended to an
isometric isomorphism ı̂ : Z+ ×α A(D)→ Z×α C(T) so that

`1(Z+,A(D), α) ι−−−→ Z×α C(T)

⊆
y yid

Z+ ×α A(D) −−−→
ι̂

Z×α C(T)

commutes. Since every covariant representation (π, V ) of (C(T), α) restricts
to a contractive covariant representation of (A(D), α), it follows that ‖F‖ ≥
‖ı(F )‖. We show ‖ı(F )‖ ≥ ‖F‖ to complete the proof. If π is any contractive
representation of `1(Z+,A(D), α) on H, it is determined by two contractions
S = π(δ1⊗1) and T = π(δ0⊗z) which satisfy TS = Sϕ(T ). By Theorem II.4 ,
there exist unitaries U and V on K ⊇ H such that V U = Uϕ(V ) and SmT n =
PHUmV n|H ∀ m,n ∈ N. Then π can be extended to a contractive Banach
∗-representation π̃ of `1(Z, C(T), α)op on K by defining π̃

(∑∞
n=−∞ δn ⊗ fn

)
=∑∞

n=−∞ U
nfn(V ). Hence ‖F‖ ≤ ‖ı(F )‖.

Recall that the semicrossed product norm (Definition III.9) was defined
by taking a supremum over the collection of contractive covariant represen-
tations of (A(D), α). By Theorem II.4, we could equally well have defined
this norm by taking a supremum over the (smaller) collection of isometric co-
variant representations of (A(D), α). In fact, by Proposition IV.1, we could
also have defined this norm by taking a supremum over the pure isometric
covariant representations of (A(D), α). Moreover, as Corollary III.14 shows,
this norm makes every representation of Z+×αA(D) completely contractive.

The proof of the following proposition, which is used only in the subse-
quent corollary, is left to the reader.

Proposition III.13. The C∗-envelope of Z+ ×α A(D), C∗(Z+ ×α A(D)),
is isometrically isomorphic to Z×α C(T).

Corollary III.14. Every contractive representation of Z+×αA(D) is com-
pletely contractive.

Proof. By a fundamental theorem of Arveson [Ar], a contractive representa-
tion ρ of Z+×αA(D) on H is completely contractive if and only if there exists
a triple (K, ρ̃, X) where ρ̃ is a ∗-representation of C∗(Z+ ×α A(D)) = Z ×α



104 DALE R. BUSKE AND JUSTIN R. PETERS

C(T) on K and an isometry X : H → K such that ρ(F ) = X∗ρ̃(F )X ∀F ∈
Z+ ×α A(D). However, each contractive representation ρ of Z+ ×α A(D) on
H is completely determined by a pair of contractions S and T satisfying
TS = Sϕ(T ). Let U and V be the pair of unitaries on K generated by The-
orem II.4 and take X : H → K to be the inclusion map. Define then ρ̃ on a
dense subset of Z×α C(T) by ρ̃

(∑∞
−∞ δn ⊗ fn

)
=
∑∞
−∞ U

nfn(V ).

IV. A Concrete Representation.

Proposition IV.1. Z+ ×α A(D) is completely isometrically isomorphic to
Aα.

Proof. Let π : Z ×α C(T) → B
(⊕∞
−∞ L

2(T)
)

be defined on the dense sub-
set `1(Z, C(T), α) by

∑∞
−∞ δn ⊗ fn 7→ ∑∞

−∞ U
nMfn where U is the bilat-

eral shift and Mf (. . . , ξ−1, ξ0, ξ1, . . . ) = (. . . , α−1(f)ξ−1, fξ0, α(f)ξ1, . . . ). By
[Pe, 7.7.5], π is an isometry since π(f) · ξ = f · ξ (ξ ∈ L2(T)) is faith-
ful. In fact, π is completely isometric as it is a ∗-homomorphism. Hence
π̃ ≡ π|Z+×αA(D) is a complete isometry. Note that

⊕∞
0 L2(T) is invariant

under π̃(Z+ ×α A(D)) so that
≈
π : Z+ ×α A(D) → B (

⊕∞
0 L2(T)) defined on

a dense subset by
≈
π
(∑

n≥0 δn ⊗ fn
)

= π̃
(∑

n≥0 δn ⊗ fn
)
|⊕∞

0
L2(T) is clearly

completely contractive onto its range Aα. It is completely isometric if the
induced map π̂k : (Z+ ×α A(D))⊗Mk(C)→ Aα ⊗Mk(C) is isometric for all
k ≥ 1. Let F = (Fij) ∈ (Z+ ×α A(D))⊗Mk(C). We show that

‖π̂(F )‖ = ‖(π̃(Fij))‖ =

∥∥∥∥∥∥∥(π̃(Fij))
∣∣
k⊕
1

(
∞⊕
0

L2(T)

)
∥∥∥∥∥∥∥ .

Define

`2N(L2(T)) =

{
ξ = (ξk)∞k=−∞ ∈

∞⊕
−∞

L2(T) : ξk = 0 for k < −N
}
.

Then each `2N(L2(T)) is invariant under π̃(Z+×αA(D)) and
⋃
N≥0 `

2
N(L2(T))

is dense in
⊕∞
−∞ L

2(T). Hence,
⋃
N≥0

⊕k
1 `

2
N(L2(T)) is dense in⊕k

1(
⊕∞
−∞ L

2(T)). It follows that

‖(π̃(Fij))‖ = sup
N≥0

sup

ξ∈
k⊕
1

`2N (L2(T))

‖ξ‖=1

‖(π̃(Fij))ξ‖
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= sup
N≥0

sup

ξ∈
k⊕
1

`2N (L2(T))

‖ξ‖=1

‖(π̃(Fij))ξU‖

where ξU = (UNξ1, U
Nξ2, ..., U

Nξk), U is the bilateral shift, and ξi ∈
`2NL

2(T). Thus,

‖(π̃(Fij))‖ = sup

η∈
k⊕
1

`20(L2(T))

‖η‖=1

‖(π̃(Fij))η‖

=

∥∥∥∥∥∥∥(π̃(Fij))
∣∣
k⊕
1

(
∞⊕
0

L2(T)

)
∥∥∥∥∥∥∥ .

Let us now reconsider the algebra Bα defined in Example III.3. In what
follows we discuss the isomorphism question regarding Z+×αA(D) and Bα in
the case where α is elliptic and irrational. Recall that a change of variables
[HPW, Lemma 10] reduces the analysis to the case where ϕ(z) = µz where
µ is not a root of unity.

Proposition IV.2. If α is elliptic and nonperiodic, then Aα is completely
isometrically isomorphic to Bα.

Proof. Let C denote the irrational rotation algebra, i.e. the C∗-algebra gen-
erated by any two unitaries S and T satisfying TS = µST [Rf2], [Br]. In
particular, C can be realized as Z×µ C(T) or as the C∗-algebra of operators
on B(L2(T)) generated by the composition operator Cϕ−1 and multiplica-
tion operators Mf (f ∈ C(T)). Since `1(Z+,A(D), α) can be isometrically
embedded in `1(Z, C(T), µ), it follows that ρ : Aα → C defined on a dense
subset by ρ

(∑N
n=0 U

nDfn

)
=
∑N
n=0C

n
ϕ−1Mfn is an isometric representation

on L2(T). Let ρH2(D) : Aα → B(H2(D)) be given by ρH2(F ) = ρ(F )|H2(D).
Then ρH2 is a contractive representation of Aα onto Bα. To show that ρH2

is isometric, we show ‖ρ(F )‖ = ‖ρ(F )|H2(D)‖ ∀F ∈ Aα. This follows as in
Proposition IV.1.

By Propositions IV.1 and III.13, C∗(Aα) ∼= Z ×α C(T). Let π be a C∗-
representation of C∗(Aα) on L2(T) defined by π(U) = Cϕ−1 and π(Df ) =
Mf where U is the bilateral shift on ⊕∞−∞L2(T) and Df (..., ξ−1, ξ0, ξ1, ...) =
(..., α−1(f)ξ−1, fξ0, α(f)ξ1, ...). Let X : H2(D) → L2(T) be inclusion. Then
ρH2(F ) = X∗π(F )X ∀ F ∈ Aα, and ρH2 is completely contractive.



106 DALE R. BUSKE AND JUSTIN R. PETERS

By the above comments and Proposition III.13, C∗(Bα) ∼= Z×αC(T). Let
π′ be a C∗-representation of C∗(Bα) on ⊕∞−∞L2(T) defined by π′(Cϕ−1) = U
and π′(Mf ) = Df where U and Df are as above. Let X : ⊕∞0 L2(T) →
⊕∞−∞L2(T) be inclusion. Then ρ−1

H2(F ) = X∗π′(F )X ∀ F ∈ Bα and ρ−1
H2 is

also completely contractive.

When α is elliptic and periodic we can construct a contractive, but not
faithful, representation of Aα onto Bα.

Proposition IV.3. π : Aα → Bα determined by U 7→ Cϕ−1 and Df 7→ Tf
is a contractive, surjective homomorphism.

Proof. The result follows by Proposition IV.1 and the fact that a contractive
representation of Z+ ×αA(D) is completely determined by two contractions
S and T satisfying TS = Sϕ(T ).

Remark IV.4. Proposition IV.3 shows that algebraically Aα/ kerπ ∼=
Bα. However, kerπ 6= (0). For example, if f ∈ A(D) then 0 = Cϕ−1Tf +
CK+1
ϕ−1 T−f = π(UDf + UK+1D−f ). This algebraic isomorphism explains the

disparity in the character spaces of Aα and Bα [H] when α is periodic.

V. The Maximal Ideal Space.

In this section we show that the maximal ideal space of Aα is the same as the
character space except in the case where α is elliptic and periodic. We use an
ergodic argument for the nonperiodic elliptic case and a spectral argument
for the hyperbolic and parabolic cases. We then characterize the maximal
ideal space in the case where α is periodic.

Recall from Corollary III.11 that the maps γ(ξ0)
z0

: Aα → C (where |z0| ≤
1, |ξ0| ≤ 1, and ϕ(z0) = z0 if ξ0 6= 0) defined on a dense subset by
γ(ξ0)
z0

(
∑n
i=0 U

iDfi) =
∑n
i=0 fi(z0)ξi0 are the characters of Aα. We remark

that the multiplicative linear functionals of Aα could also be calculated by
using a technique similar to that found in [H] and [HH].
Remark V.I. When α is elliptic and β is either parabolic or hyperbolic,
it is known that Aα is not isomorphic to Aβ. This follows since the radical
in the elliptic case is {0} whereas in the other cases the radical is the non-
trivial set of quasinilpotents (Theorems 11 and 12 of [HPW]). Knowing the
characters of Aα allows us to conclude that Aα 6∼= Aβ when α is parabolic
and β is hyperbolic; for if such an isomorphism Γ existed, it would induce a
homeomorphism τ of the character spaces defined by τ(γ)(F ) = γ(Γ(F )).

To each F ∈ Aα we may associate a unique Fourier series, F ∼∑∞
n=0 U

nDfn . We denote by πn(F ) the nth Fourier coefficient of F . Some
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useful properties of these Fourier coefficients are listed in the following lemma
from [HPW].

Lemma V.2. For n = 0, 1, 2, . . . , there is a linear mapping πn : Aα → A(D)
satisfying
(i) ‖πn(F )‖ ≤ ‖F‖, F ∈ Aα.
(ii) π0(FG) = π0(F )π0(G) for F,G ∈ Aα.

(iii) πn

(
N∑
k=0

UkDfk

)
=

{
fn 0 ≤ n ≤ N
0 n > N

}
.

(iv) πn(F ) = 0 ∀ n ≥ 0⇒ F ≡ 0.

Consider the case where α is either parabolic or hyperbolic. From Theo-
rem 12 of [HPW], the Jacobson radical is Rad (Aα) = {F ∈ Aα : π0(F ) = 0
and πn(F )(z0) = 0 for ϕ(z0) = z0}. That is, the radical is precisely the set of
quasinilpotent elements. We show by way of contradiction that every maxi-
mal ideal M in Aα contains the commutator ideal, denoted C, and hence is
of codimension one.

Lemma V.3. If B is a (unital) Banach algebra and M is a maximal ideal
in B not containing the commutator ideal C, then B =M+ C.

Proof. By the maximality of M, we can find b0 = m0 + c0 ∈ (M + C) ∩
{b ∈ B : ‖b − 1‖ < 1

2
} where m0 ∈ M and c0 ∈ C. Since b0 is invertible,

1 = b−1
0 m0 + b−1

0 c0 ∈M+ C and hence B =M+ C.

Proposition V.4. Let α be parabolic or hyperbolic. The maximal ideals of
Aα are precisely the kernels of its characters.

Proof. We show that any maximal ideal M contains the commutator ideal.
Suppose it does not. By the above lemma, ∃ F ∈ M and C ∈ C such that
D1 = F + C. Since γ(0)

z (C) = 0 it follows that γ(0)
z (F ) = 1 ∀ z ∈ D. Write

F = D1 + G so that π0(G) ≡ 0 and πn(F ) ≡ πn(G) for n ≥ 1. Let z0 be
a fixed point of ϕ. Since γ(ξ)

z0
(C) = 0 it follows that γ(ξ)

z0
(F ) = γ(ξ)

z0
(D1) =

1 ∀ ξ ∈ D. Hence, γ(ξ)
z0

(F − D1) =
∑∞
n=1 πn(F )(z0)ξn = 0 ∀ ξ ∈ D. Thus,

πn(F )(z0) = 0 for n ≥ 1, and so π0(G) ≡ 0 and πn(G)(z0) = 0 for n ≥ 1.
By the preceeding remarks, G ∈ Rad (Aα). Hence sp(G) = {0} so that
sp(F ) = sp(D1 + G) = {1} by the spectral mapping theorem. But then
F ∈M is invertible, contradicting the maximality of M.

We now consider the case where α is elliptic. Recall that we are assuming
w.l.o.g. that α(f) = f ◦ ϕ where ϕ(z) = µz for some |µ| = 1. The structure
of Aα is closely tied to whether µ is a root of unity or not.
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By the special structure of α and the definition of Aα, it is an easy calcula-
tion to show that α̃ : Aα → Aα defined on a dense subset by α̃ (

∑n
i=0 U

iDfi)
=
∑n
i=0 U

iDα(fi) is an isometric automorphism. If µ is a Kth root of unity,
define #:Aα → Aα by F 7→ 1

K

∑K−1
k=0 α̃

k(F ). Note that # is α̃-invariant.
Defining A0 to be the closed subalgebra of Aα generated by {U,Df : f is
α-invariant}, it is easy to verify that A0 is maximal abelian and # is a linear
projection onto A0. As in [P2, V.8] we can define a map # with similar
properties when α is nonperiodic by # (

∑n
i=0 U

iDfi) ≡
∑n
i=0 U

iD∫
T
fidm(z)

=∑n
i=0 U

iDfi(0).

Proposition V.5. If α is nonperiodic, then A0 is the subalgebra of Aα gen-
erated by {U,D1}. Furthermore, # is a linear projection onto the maximal
abelian subalgebra A0 of Aα.

Proof. Let F =
n∑
i=0

U iDfi ∈ A0. Then by α-invariance fi
(
µk · 1

2

)
= fi

(
1
2

)
∀ k ∈ N, 0 ≤ i ≤ n, so that analyticity, nonperiodicity of α, and the ergodic
theorem gives fi ≡ fi(0) on D and hence D. Since # is clearly a linear
projection onto A0, we need only show A0 is a maximal abelian subalgebra
of Aα. By definition, A0 is commutative. Suppose that F ∈ Aα, F ∼∑∞
n=0 U

nDfn , commutes with A0. Then FU = UF and α(fn) = fn ∀ n ≥ 0.
Each fn is then constant by the nonperiodicity of α.

The characters of A0, which are easy to compute, will be used to charac-
terize the maximal ideals in Aα. Since A0 is a commutative Banach algebra,
its maximal ideal space corresponds in a one-to-one fashion with the kernels
of its characters. If α is nonperiodic, then A0

∼= A(D) (given by U 7→ z) and
its characters are determined by U 7→ ξ ∈ D. Denote these by γ

(ξ)
A0

. If α is
periodic with period K, there are more characters. In fact, if we denote by
γ

(ξ)
A0,z0

the map determined by U 7→ ξ and Dz 7→ z0, the maximal ideal space
of A0 can be computed as the characters of Aα were using the technique found
in [H] and [HH]. If ψ = min{θ : eiθ = µk, 0 ≤ k ≤ K−1, 0 < θ < 2π}, then
MA0 = {γ(ξ)

A0,reiθ0
: 0 ≤ r ≤ 1, |ξ| ≤ 1, 0 ≤ θ0 < ψ} is the set of characters

on A0.
As in [P2, V.9], for an ideal I ⊆ A0 define Ĩ = {F ∈ Aα: #(Hα̃n(F )G) ∈

I ∀H,G ∈ Aα, n ≥ 0}. Using # we can then construct a one-to-one corre-
spondence between the maximal ideals in A0 and the maximal α̃-invariant
ideals in Aα.

Proposition V.6. (i) If M0 ⊆ A0 is a maximal ideal, then M̃0 ⊆ Aα is a
maximal α̃-invariant ideal in Aα.

(ii) If R is a maximal α̃-invariant ideal, then #(R) ⊆ A0 is a maximal
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ideal. Furthermore, R = #̃(R).

Let M be a maximal ideal in Aα Let 〈U〉 denote the closed ideal in Aα
generated by U . Then, M · 〈U〉 ⊆ α̃(M). Furthermore, α̃(M) maximal
implies α̃(M) is prime so that either 〈U〉 ⊆ α̃(M) or M⊆ α̃(M).

Theorem V.7. If α is nonperiodic, the maximal ideal space of Aα is
precisely the space of characters.

Proof. Let M be maximal in Aα. If M ⊆ α̃(M) then M = α̃(M). Thus,

M is α̃-invariant andM = #̃(M) ={F ∈ Aα : #(Hα̃n(F )G) ∈ ker γ ∀n ≥ 0
and H,G ∈ Aα} for some γ a character on A0. To show thatM = ker γ(ξ)

0 for
some ξ ∈ D, we need only showM⊆ ker γ(ξ)

0 . But F ∼∑∞n=0 U
nDfn , F ∈M

implies 0 = γ(#(F )) = γ
(∑∞

n=0 U
nDfn(0)

)
=
∑∞
n=0 fn(0)ξn = γ

(ξ)
0 (F ) for

some ξ ∈ D.
If 〈U〉 ⊆ α̃(M), then by applying α̃−1 it follows that 〈U〉 ⊆ M. M/〈U〉

is then a maximal ideal in Aα/〈U〉. But Aα/〈U〉 ∼= A(D). Hence, M/〈U〉
corresponds to a maximal ideal in A(D); namely a kernel of point evaluation.
So, M/〈U〉 = ker γ(0)

z for some z ∈ D.

We now show that if α has period K, there are maximal ideals in Aα
of codimension 1 and K2. Define SK to be the K × K shift matrix given
by Sij = 1 if i − j = 1 mod K and 0 otherwise and T (f, µ) to be the
K × K diagonal matrix given by T (f, µ)j,j = f(µj−1z0). For |w0| ≤ 1 and
|z0| ≤ 1, define ρz0,w0 : Aα →MK(C) on a dense subset by

∑KL−1
`=0 U `Df` 7→∑KL−1

`=0 w`0S
`
KT (f`, µ).

Lemma V.8. If |z0| ≤ 1, |w0| ≤ 1, then ρz0,w0 is a contractive representa-
tion.

Proof. This follows by Theorem III.10 since ρz0,w0 is determined by two
contractions SK and T (z, µ) satisfying T (z, µ)SK = SKϕ(T (z, µ)).

By the simplicity of MK(C), ker ρz0,w0 is a maximal ideal in Aα if z0 6= 0
and w0 6= 0.

Lemma V.9. If z0 6= 0 and w0 6= 0, then ρz0,w0 is a contractive represen-
tation of Aα onto MK(C).

Proof. We need only show that if z0 6= 0 and w0 6= 0, then ρz0,w0 is onto. For
0 ≤ i, j ≤ K − 1, define

fi,j(z) =
1

w
K+i−j(mod K)
0

·

K−1∏
l=0

l 6=K−i
(µlz − z0)

K−1∏
l=1

(µlz0 − z0)
.
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Then, for 0 ≤ k ≤ K − 1,

fi,j(µkz0) =
1

w
Ki−u(modK)
0

·

K−1∏
l=0

l 6=K−i(modK)

(µk+lz0 − z0)

K−1∏
l=1

(µlz0 − z0)

=
1

w
K+i−j(mod K)
0

{
0 if k 6= i
1 if k = i

}

=
1

w
K+i−j(mod K)
0

δk,i.

Hence, ρz0,w0 is onto MK(C) as Eij = ρz0,w0(UK+i−j(mod K)Dfi,j ).

Theorem V.10. If α has period K and M is a maximal ideal in Aα, then
M = ker ρz0,w0 for some z0, w0 ∈ D.

Proof. As in the nonperiodic case, α̃(M) is maximal and hence prime with
either M ⊆ α̃(M) or 〈U〉 ⊆ α̃(M). If 〈U〉 ⊆ α̃(M), then since 〈U〉 is
α̃-invariant and α is periodic, 〈U〉 ⊆ α̃K(M) = M. Thus, M = ker ρz0,0
for some z0 ∈ D. Suppose then M ⊆ α̃(M) so that M = α̃(M). By
Proposition V.6, #(M) = ker γ for some character γ on A0 and henceM =

#̃(M) = ˜ker γ(ξ′)
A0,z′0

for some ξ′ ∈ D and z′0 = reiθ where 0 ≤ r ≤ 1, 0 ≤
θ < ψ, and ψ = min{θ : eiθ = µk, 0 ≤ k ≤ K − 1, 0 < θ < 2π}. Since
ker ρz0,w0 is maximal in Aα, we need only show that ker ρz0,w0 ⊆M for some
z0, w0. But, ker ρz′0,ξ′ is α̃-invariant so that ρz′0,ξ′(α̃

n(F )) = 0 ∀n ≥ 0 and
F ∈ ker ρz′0,ξ′ . Hence ρz′0,ξ′(#(Hα̃n(F )G)) = 0 ∀ n ≥ 0 and H,G ∈ Aα
yielding γ(ξ′)

z′0
(#(Hα̃n(F )G)) = 0 and F ∈M.

1. VI. The Strong Radical.

Having computed the maximal ideal space of Aα, we can now compute its
strong radical and compare it to its Jacobson radical. For the remainder α
will be fixed.

Theorem VI.1. Let AJ and AS denote the Jacobson and strong radicals
of Aα respectively.
(i) If α is parabolic or hyperbolic, AJ = AS.
(ii) If α is elliptic and nonperiodic, AJ ( AS.

(iii) If α is elliptic and periodic, AJ = AS = (0).
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Proof. From [HPW], the Jacobson radical is precisely the set of quasinilpo-
tents. If α is parabolic or hyperbolic, then AJ = {F ∈ A : π0(F ) ≡ 0 and
πn(F )(z0) = 0 ∀ n ≥ 1 for z0 fixed by α}. Since the maximal ideals are
precisely the kernels of the characters in these cases, (i) follows as

AS = {F ∈ Aα : F ∈ ker γ(0)
z ∀ z ∈ D and F ∈ ker γ(ξ)

z0
∀ξ ∈ D

for z0 fixed by α}

=

F : π0(F ) ≡ 0 and
∑
n≥1

πn(F )(z0)ξn = 0 ∀ ξ ∈ D


= {F : π0(F ) ≡ 0 and πn(F )(z0) = 0 ∀ n ≥ 1 for z0 fixed by α}
= AJ .

If α is elliptic, AJ = (0). When α is nonperiodic, AS ) (0) as UDz ∈ AS for
example. In fact, AS = {F : π0(F ) ≡ 0 and πn(F )(0) = 0 ∀n ≥ 1}. If α is
periodic of period K, we show AS = (0) to complete the proof.

First, note that the Fourier series of F ∈ Aα is Cesàro summable [P2].
Hence,

lim
N→∞

∥∥∥∥∥
KN−1∑
l=0

1
KN

(
l∑

m=0

UmDπm(F )

)
− F

∥∥∥∥∥ = 0.

Let F ∈ AS and ε > 0 be given. We show that πl(F ) ≡ 0 ∀ l ≥ 0 so that
F = 0. Choose M such that if N ≥M we have∥∥∥∥∥

KN−1∑
l=0

1
KN

(
l∑

m=0

UmDπm(F )

)
− F

∥∥∥∥∥ =

∥∥∥∥∥
KN−1∑
l=0

U lD(1− l
KN )πl(F ) − F

∥∥∥∥∥ < ε.

Then,∥∥∥∥∥ρz0,w
(
KN−1∑
l=0

U lD(1− l
KN )πl(F ) − F

)∥∥∥∥∥ < ε ∀ z0, w ∈ D by Lemma V.8.

Since F ∈ AS, ∥∥∥∥∥ρz0,w
(
KN−1∑
l=0

U lD(1− l
KN )πl(F )

)∥∥∥∥∥ < ε.

In particular, for 0 ≤ k ≤ K − 1 we have∣∣∣∣∣
N−1∑
l=0

(
1− Kl + k

KN

)
πKl+k(F )(z0)wKl+k

∣∣∣∣∣ < ε ∀ z0 ∈ D, w ∈ T.

Fix l0 ≥ 0. Note that∫
T

∣∣∣∣∣
N−1∑
l=0

(
1− Kl + k

KN

)
πKl+k(F )(z0)wKl+k

∣∣∣∣∣ dm(w) < ε ∀ z0 ∈ D.
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It follows, since
∫
T
zldm(z) = 0 unless l = −1, that

∣∣∣∣1− Kl0 + k

KN

∣∣∣∣ |πKl0+k(F )(z0)|
∣∣∣∣∣∣
∫
T

w−1dm(w)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
T

(
1− Kl0 + k

KN

)
πKl0+k(F )(z0)w−1dm(w)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
T

N−1∑
l=0

(
1− (Kl + k)

KN

)
πKl+k(F )(z0)wK(l−l0)−1dm(w)

∣∣∣∣∣∣
≤
∫
T

∣∣∣∣∣
N−1∑
l=0

(
1− (Kl + k)

KN

)
πKl+k(F )(z0)wKl+k

∣∣∣∣∣ ∣∣w−Kl0−k−1
∣∣ dm(w)

=
∫
T

∣∣∣∣∣
N−1∑
l=0

(
1− (Kl + k)

KN

)
πKl+k(F )(z0)wKl+k

∣∣∣∣∣ dm(w)

< ε ∀ z0 ∈ D.
Choosing N ≥ M large enough so that Kl0+k

KN
< 1

2
it follows that

|πKl0+k(F )(z0)| is arbitrarily small ∀ z0 ∈ D so that πKl0+k(F ) ≡ 0 for
0 ≤ k ≤ K − 1 and hence F = 0.

Note added in proof (June 1997). Since this paper was submitted we have
learned that a proof of Corollary III.14 has been found independently by
S.C. Power [Po2].
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