SEMICROSSED PRODUCTS OF THE DISK ALGEBRA: CONTRACTIVE REPRESENTATIONS AND MAXIMAL IDEALS

DALE R. BUSKE AND JUSTIN R. PETERS

Given the disk algebra $\mathcal{A}(\mathbb{D})$ and an automorphism α , there is associated a non-self-adjoint operator algebra $\mathbb{Z}^+ \times_{\alpha} \mathcal{A}(\mathbb{D})$ called the semicrossed product of $\mathcal{A}(\mathbb{D})$ with α . We consider those algebras where the automorphism arises via composition with parabolic, hyperbolic, and elliptic conformal maps φ of \mathbb{D} onto itself. To characterize the contractive representations of $\mathbb{Z}^+ \times_{\alpha} \mathcal{A}(\mathbb{D})$, a noncommutative dilation result is obtained. The result states that given a pair of contractions S, Ton some Hilbert space \mathcal{H} which satisfy $TS = S\varphi(T)$, there exist unitaries U, V on some Hilbert space $\mathcal{K} \supset \mathcal{H}$ which dilate S and T respectively and satisfy $VU = U\varphi(V)$. It is then shown that there is a one-to-one correspondence between the contractive (and completely contractive) representations of $\mathbb{Z}^+ \times_{\alpha} \mathcal{A}(\mathbb{D})$ on a Hilbert space \mathcal{H} and pairs of contractions S and T on \mathcal{H} satisfying $TS = S\varphi(T)$. The characters, maximal ideals, and strong radical of $\mathbb{Z}^+ \times_{\alpha} \mathcal{A}(\mathbb{D})$ are then computed. In the last section, we compare the strong radical to the Jacobson radical.

I. Introduction.

A semicrossed product of the disk algebra is an operator algebra associated to the pair $(\mathcal{A}(\mathbb{D}), \alpha)$, where $\mathcal{A}(\mathbb{D})$ is the disk algebra and α an automorphism of $\mathcal{A}(\mathbb{D})$. Any such α has the form $\alpha(f) = f \circ \varphi$ $(f \in \mathcal{A}(\mathbb{D}))$ for a linear fractional transformation φ . It is well-known there is a one-to-one correspondence between contractions (i.e., bounded linear operators T on some Hilbert space with $||T|| \leq 1$) and contractive representations of $\mathcal{A}(\mathbb{D})$. Here, analogously, there is a one-to-one correspondence between pairs S, Tof contractions satisfying the relation $TS = S\varphi(T)$ and contractive representations of the semicrossed product, denoted $\mathbb{Z}^+ \times_{\alpha} \mathcal{A}(\mathbb{D})$, associated to $(\mathcal{A}(\mathbb{D}), \alpha)$. This is meaningful since linear fractional transformations map contractions to contractions (cf. [Sz-NF]). The question of whether contractive representations of $\mathbb{Z}^+ \times_{\alpha} \mathcal{A}(\mathbb{D})$ can be dilated to representations of the C^* -crossed product $\mathbb{Z} \times_{\alpha} C(\mathbb{T})$ is equivalent to the following: given a pair of contractions S, T on some Hilbert space \mathcal{H} satisfying $TS = S\varphi(T)$ do there exist unitaries U, V on some Hilbert space $\mathcal{K} \supset \mathcal{H}$ which are dilations of S, T respectively, and satisfy $VU = U\varphi(V)$? This question, which is of interest in its own right, has an affirmative solution [Theorem II.4]. Furthermore, it marks the starting point in our study of semicrossed products of the disk algebra, by giving faithful representations of $\mathbb{Z}^+ \times_{\alpha} \mathcal{A}(\mathbb{D})$.

Section V deals with the characterization of the maximal ideal space. The character space, or equivalently the space of maximal ideals of codimension one, was easily obtained from the representation theory [Corollary III.11]. It turns out there are no maximal ideals of codimension greater than one – unless the automorphism (i.e., the linear fractional transformation) is elliptic of finite period, say K, in which case the maximal ideals have codimension either 1 or K^2 . Finally, these results, together with [**HPW**] are used to compare the strong radical with the Jacobson radical: the two radicals coincide except when α is elliptic and nonperiodic (that is, an irrational rotation). (Theorem VI.1.)

II. Dilating Noncommuting Contractions.

It is well-known that each contraction T on a Hilbert space \mathcal{H} can be dilated to a unitary U on a Hilbert space $\mathcal{K} \subseteq \mathcal{H}$ [Sz-NF]. That is, for $n \geq 1, T^n h = P_{\mathcal{H}} U^n h \forall h \in \mathcal{H}$. This result then yields the fact that the contractive representations of the disk algebra $\mathcal{A}(\mathbb{D})$ on \mathcal{H} are in a one-to-one correspondence with contractions on \mathcal{H} [DP], [Sz-NF]. Moreover, it shows that each contractive representation is completely contractive **[DP**]. Andô then generalized this result by showing that every commuting pair of contractions S and T on \mathcal{H} have a unitary dilation on some $\mathcal{K} \supseteq \mathcal{H}$ [A]. That is, there exist unitaries U and V on \mathcal{K} such that $\forall m \geq 1, n \geq 1, S^m T^n h = P_{\mathcal{H}} U^m V^n h$. Hence the contractive representations of the bidisk algebra $\mathcal{A}(\mathbb{D}^2)$ on \mathcal{H} are in one-to-one correspondence with commuting pairs of contractions on \mathcal{H} . Furthermore, each representation of $\mathcal{A}(\mathbb{D}^2)$ is completely contractive [**DP**]. Recently, Sebestyén showed that every anti-commuting pair of contractions have such a dilation $[\mathbf{S}]$. In this section we show that when φ is a conformal automorphism of $\mathbb D$ and S and T are contractions on \mathcal{H} satisfying $TS = S\varphi(T)$ then a unitary dilation exists. This result is then used to characterize the contractive representations of a semicrossed product. Proofs in this section closely resemble those in [S]. Lemma II.1 is directly lifted from [S].

Lemma II.1. Let \mathcal{K} and \mathcal{K}' be Hilbert spaces, $\mathcal{H} \subset \mathcal{K}$ and $\mathcal{H}' \subset \mathcal{K}'$ be subspaces and $X : \mathcal{H} \to \mathcal{K}'$ and $X' : \mathcal{H}' \to \mathcal{K}$ be given bounded linear transformations. Then, there exists an operator $Y : \mathcal{K} \to \mathcal{K}'$ extending Xso that Y^* extends X' if and only if $\langle Xh, h' \rangle = \langle h, X'h' \rangle \forall h \in \mathcal{H}, h' \in \mathcal{H}'$. Moreover, $||Y|| \le \max\{||X||, ||X'||\}.$

Suppose now that S and T are contractions on \mathcal{H} which satisfy $TS = S\varphi(T)$ for some linear fractional transformation φ of \mathbb{D} . Note that $\varphi(T)$ is a well-defined contraction by the functional calculus found in [Sz-NF]. Let U be the minimal isometric dilation of S acting on a Hilbert space \mathcal{K} containing \mathcal{H} . Then, U^* extends S^* , where $\mathcal{K} = \bigvee_{n=0}^{\infty} \mathcal{K}_n$ and $\mathcal{K}_n = \bigvee_{k=0}^n U^k(\mathcal{H})$.

Lemma II.2. Let S and T be contractions on \mathcal{H} such that $TS = S\varphi(T)$. If U is the minimal isometric dilation of S acting on \mathcal{K} , then there exists T_{φ} an operator on \mathcal{K} such that T_{φ}^* extends T^* , $||T_{\varphi}|| \leq 1$, and $T_{\varphi}U = U\varphi(T_{\varphi})$.

Proof. The proof is similar to [S]. At the *n*-th step of induction, Lemma II.1 is applied to the maps $U\varphi(T_{n-1})U^*|_{\mathcal{H}_{n-1}}: \mathcal{H}_{n-1} \equiv U(\mathcal{K}_{n-1}) \to \mathcal{K}_n$ and $T^*_{n-1}: \mathcal{K}_{n-1} \to \mathcal{K}_n$ and $\|T_n\| \leq 1$ since $\|\varphi(T_{n-1})\| \leq 1$. Supposing that $\varphi = \mu\varphi_a$ where $|\mu| = 1$ and $\varphi_a(z) = \frac{z-a}{1-\overline{az}}$, the conditions of Lemma II.1 are satisfied since $\langle x, [\mu\varphi_a(T_n)]^*y \rangle = \langle x, \overline{\mu}\varphi_{\overline{a}}(T^*_n)y \rangle = \langle x, \overline{\mu}\varphi_{\overline{a}}(T^*_{n-1})y \rangle = \langle x, [\mu\varphi_a(T_{n-1})]^*y \rangle$ for $x \in \mathcal{H}_{n-1}$ and $y \in \mathcal{K}_{n-1}$ [Sz-NF, I.4].

Lemma II.3. Let S and T be contractions on \mathcal{H} such that $TS = S\varphi(T)$. If U is the minimal unitary dilation of S acting on a Hilbert space \mathcal{K} , then there exists T_{φ} on \mathcal{K} which is a dilation of T with $||T_{\varphi}|| \leq 1$ and $T_{\varphi}U = U\varphi(T_{\varphi})$.

Proof. Let U_+ be the minimal isometric dilation of S acting on $\mathcal{K}_+; \mathcal{H} \subseteq \mathcal{K}_+ \subseteq \mathcal{K}$. By Lemma II.2, there exists a dilation T_{φ_+} of T to \mathcal{K}_+ with $||T_{\varphi_+}|| \leq 1$ and $T_{\varphi_+}U_+ = U_+\varphi(T_{\varphi_+})$. By considering a sequence of polynomials $p_n \to \varphi^{-1}$, it follows from $T_{\varphi_+}U_+ = U_+\varphi(T_{\varphi_+})$ that $\varphi^{-1}(T_{\varphi_+})U_+ = U_+T_{\varphi_+}$. Taking adjoints yields $T_{\varphi_+}^*U_+^* = U_+^*\varphi^{-1}(T_{\varphi_+})^*$. Since U^* is the unique minimal isometric dilation of U_+^* it follows by Lemma II.2 and [Sz-NF, I.4] that there exists an operator T_{φ}^* on \mathcal{K} such that T_{φ} extends T_{φ_+} , $||T_{\varphi}^*|| \leq 1$, and $T_{\varphi}^*U^* = U^*\varphi^{-1}(T_{\varphi})^*$. Reasoning as above, $T_{\varphi}U = U\varphi(T_{\varphi})$.

Theorem II.4. Let S and T be contractions on \mathcal{H} such that $TS = S\varphi(T)$. Then there exists a pair of unitaries U and V such that $VU = U\varphi(V)$ and $S^mT^n = P_{\mathcal{H}}U^mV^n|_{\mathcal{H}}$ for every $m, n \in \mathbb{N}$.

Proof. As in [S], let U_0 be the minimal unitary dilation of S and T_0 a contractive dilation of T with $T_0U_0 = U_0\varphi(T_0)$. Then let V be the minimal unitary dilation of T_0 and proceed to extend U_0 to a unitary such that $VU = U\varphi(V)$. The proof follows [S] after it is shown that U defined on $\mathcal{K} = \bigvee_{-\infty}^{\infty} V^n(\mathcal{K}_0)$ by $U(V^nk_0) = \varphi^{-1}(V)^n U_0 k_0$ is isometric. However, since V is the minimal unitary dilation of T_0 , it follows that $\varphi^{-1}(V)$ is the minimal unitary dilation of $\varphi^{-1}(T_0)$ [Sz-NF, I.4.3] and so $\langle U(V^mh_0), U(V^nk_0) \rangle =$

$$\langle \varphi^{-1}(V)^m U_0 h_0, \varphi^{-1}(V)^n U_0 k_0 \rangle = \langle \varphi^{-1}(T_0)^m U_0 h_0, \varphi^{-1}(T_0)^n U_0 k_0 \rangle = \langle U_0 T_0^m h_0, U_0 T_0^n k_0 \rangle = \langle V^m h_0, V^n k_0 \rangle.$$

III. The Semicrossed Product.

Example III.1. Let \mathcal{D} be an operator algebra and α an automorphism of \mathcal{D} . Let (ρ, \mathcal{K}) be a contractive representation of \mathcal{D} and let $\mathcal{H} = H^2(\mathcal{K})$, the space of square summable elements in $\bigoplus_0^{\infty} \mathcal{K}$. Define a contractive representation π of \mathcal{D} on \mathcal{H} by $\pi(f)(\xi_0, \xi_1, \xi_2, \ldots) = (\rho(f)\xi_0, \rho(\alpha(f))\xi_1, \rho(\alpha^2(f))\xi_2, \ldots)$. If U_+ is the unilateral shift on \mathcal{H} , then $U_+\pi(\alpha(f)) = \pi(f)U_+ \forall f \in \mathcal{D}$. Write $\pi = \tilde{\rho}$ for the contractive representation constructed above.

Example III.2. The disk algebra $\mathcal{A}(\mathbb{D})$ can be considered as an operator algebra acting (via multiplication) on the Hilbert space $L^2(\mathbb{T})$. Let α : $\mathcal{A}(\mathbb{D}) \to \mathcal{A}(\mathbb{D})$ be an (isometric) automorphism of $\mathcal{A}(\mathbb{D})$ so that $\alpha(f) = f \circ \varphi$ for some conformal mapping φ of \mathbb{D} . Let U be the forward unilateral shift on $\bigoplus_{i=0}^{\infty} L^2(\mathbb{T})$, $U(\xi_0, \xi_1, \xi_2, \ldots) = (0, \xi_0, \xi_1, \ldots)$. For $f \in \mathcal{A}(\mathbb{D})$, let D_f be the diagonal operator on $\bigoplus_{i=0}^{\infty} L^2(\mathbb{T})$ given by $D_f(\xi_0, \xi_1, \xi_2, \ldots) =$ $(f\xi_0, \alpha(f)\xi_1, \alpha^2(f)\xi_2, \ \alpha^3(f)\xi_3, \ldots)$. Then $UD_{\alpha(f)} = D_f U \ \forall f \in \mathcal{A}(\mathbb{D})$. We let \mathfrak{A}_{α} denote the norm closed subalgebra of $B(\bigoplus_{i=0}^{\infty} L^2(\mathbb{T}))$ generated by Uand $D_f, f \in \mathcal{A}(\mathbb{D})$.

Note that $UD_{\alpha(f)} = D_f U$ so that \mathfrak{A}_{α} is commutative if and only if α (and hence φ) is the identity. Further, we remark that every conformal map of \mathbb{D} onto itself has the form $\varphi(z) = \mu \varphi_a(z)$ where $\mu \in \mathbb{C}, |\mu| = 1$, and $\varphi_a(z) = \frac{z-a}{1-\overline{az}} (a \in \mathbb{D})$. We classify these as hyperbolic, parabolic, or elliptic [**B**]. In the hyperbolic case, $\varphi_a : \overline{\mathbb{D}} \to \overline{\mathbb{D}}$ has two distinct fixed points which lie on $\partial \mathbb{D}$. If φ_a is parabolic, it has a unique fixed point lying in $\partial \mathbb{D}$. In the elliptic case, φ_a has one fixed point in \mathbb{D} (and one outside \mathbb{D}).

By Lemma 10 of [**HPW**], the study of \mathfrak{A}_{α} can be reduced to three specific cases. If α is hyperbolic, parabolic, or elliptic, we can assume φ fixes $\{-1, 1\}, \{1\}, \text{ or } \{0\}$ respectively.

Example III.3. For $f \in \mathcal{A}(\mathbb{D})$ and α as in Example III.2, the composition operator $C_{\varphi^{-1}}$ and the Toeplitz operator T_f on $H^2(\mathbb{D})$ satisfy $C_{\varphi^{-1}}T_{\alpha(f)} = T_f C_{\varphi^{-1}}$. We define \mathcal{B}_{α} to be the norm closed subalgebra of $B(H^2(\mathbb{D}))$ generated by $C_{\varphi^{-1}}$ and $T_f(f \in \mathcal{A}(\mathbb{D}))$ where $\alpha(f)(z) = f(\varphi(z))$.

Definition III.4. Let α be an automorphism of \mathcal{D}, ρ a contractive representation of \mathcal{D} on \mathcal{H} , and V a contraction (isometry) on \mathcal{H} . We say that (ρ, V) is a contractive (isometric) covariant representation of (\mathcal{D}, α) if $V\rho(\alpha(f)) = \rho(f)V \ \forall f \in \mathcal{D}$.

Remark III.5. Contractive (isometric) covariant representations of (\mathcal{D}, α) exist as exhibited by the examples above. However, unlike covariant representations of C^* -algebras, there are isometric covariant representations (ρ, V) satisfying $\rho(\alpha(f))V = V\rho(f)$ but not $\rho(\alpha(f))V^* = V^*\rho(f)$. (Examples III.1 and III.3 satisfy both conditions.)

Example III.6. Let α be an elliptic automorphism of $\mathcal{A}(\mathbb{D})$. Let ρ be a contractive representation of $\mathcal{A}(\mathbb{D})$ on $\ell^2(\mathbb{C})$ given by $\rho(z)(\xi_0, \xi_1, \xi_2, \ldots) = (0, \mu\xi_0, \mu^2\xi_1, \mu^3\xi_2, \ldots)$ and V the unilateral shift. Then $\rho(\alpha(f))V = V\rho(f)$ but $\rho(\alpha(f))V^* \neq V^*\rho(f)$.

Consider an automorphism α of $C(\mathbb{T})$ given by composition with the restricted Möbius transformation $\varphi|_{\mathbb{T}}$. If δ_n denotes the Kronecker delta on \mathbb{Z} , the algebra $\ell^1(\mathbb{Z}, C(\mathbb{T}), \alpha)$ consists of all formal sums $\sum_{-\infty}^{\infty} \delta_n \otimes f_n$ with $f_n \in C(\mathbb{T}), \sum_{-\infty}^{\infty} ||f_n|| < \infty$. An adjoint and multiplication can be defined (on simple tensors) by $(\delta_n \otimes f)^* = \delta_{-n} \otimes \alpha^{-n}(\overline{f})$ and $(\delta_n \otimes f)(\delta_m \otimes g) = \delta_{n+m} \otimes f \alpha^n(g)$.

A multiplication could also be defined by letting \mathbb{Z} act on the left side by $(\delta_n \otimes f)(\delta_m \otimes g) = \delta_{n+m} \otimes \alpha^m(f)g$. If the Banach space $\ell^1(\mathbb{Z}, C(\mathbb{T}), \alpha)$ is provided with this alternate multiplication, and the adjoint is left unchanged, we obtain a new Banach algebra denoted $\ell^1(\mathbb{Z}, C(\mathbb{T}), \alpha)^{op}$. The Banach algebras $\ell^1(\mathbb{Z}, C(\mathbb{T}), \alpha)$ and $\ell^1(\mathbb{Z}, C(\mathbb{T}), \alpha)^{op}$ are isomorphic [**P1**].

Define the Banach algebra $\ell^1(\mathbb{Z}^+, \mathcal{A}(\mathbb{D}), \alpha)$ to be the subalgebra of $\ell^1(\mathbb{Z}, C(\mathbb{T}), \alpha)^{op}$ consisting of elements of the form $F = \sum_{n \ge 0} \delta_n \otimes f_n$ with $f_n \in \mathcal{A}(\mathbb{D})$ and $\|F\|_1 = \sum_{n \ge 0} \|f_n\| < \infty$. Endow $\ell^1(\mathbb{Z}^+, \mathcal{A}(\mathbb{D}), \alpha)$ with a multiplication $(\delta_n \otimes f)(\delta_m \otimes g) = \delta_{n+m} \otimes \alpha^m(f)g$ so that it is a Banach algebra without adjoint.

If (ρ, V) is a contractive covariant representation of $(\mathcal{A}(\mathbb{D}), \alpha)$ on \mathcal{H} , then $\pi : \ell^1(\mathbb{Z}^+, \mathcal{A}(\mathbb{D}), \alpha) \to B(\mathcal{H})$ defined by $\pi \left(\sum_{n\geq 0} \delta_n \otimes f_n\right) = \sum_{n\geq 0} V^n \rho(f_n)$ is a contractive representation. Denote this representation by $\pi = V \times \rho$.

Proposition III.7. The correspondence $(\rho, V) \leftrightarrow V \times \rho$ is a bijection between the collection of contractive covariant representations of $(\mathcal{A}(\mathbb{D}), \alpha)$ and contractive representations of $\ell^1(\mathbb{Z}^+, \mathcal{A}(\mathbb{D}), \alpha)$.

Proof. By the preceding remarks, we need only show that π , a contractive representation of $\ell^1(\mathbb{Z}^+, \mathcal{A}(\mathbb{D}), \alpha)$ on \mathcal{H} , gives rise to a contractive covariant pair (ρ, V) of $(\mathcal{A}(\mathbb{D}), \alpha)$ and that $\pi = V \times \rho$. Define a contraction V on \mathcal{H} by $V = \pi(\delta_1 \otimes 1)$. Define a (contractive) representation ρ of $\mathcal{A}(\mathbb{D})$ by $\rho(f) = \pi(\delta_0 \otimes f)$. Then (ρ, V) is a contractive covariant representation of $(\mathcal{A}(\mathbb{D}), \alpha)$ since $\rho(f)V = \pi(\delta_0 \otimes f \cdot \delta_1 \otimes 1) = \pi(\delta_1 \otimes \alpha(f)) = \pi(\delta_1 \otimes 1 \cdot \delta_0 \otimes \alpha(f)) =$ $V\rho(\alpha(f))$. To complete the proof, note that $\pi = V \times \rho$ on a dense subset of $\ell^1(\mathbb{Z}^+, \mathcal{A}(\mathbb{D}), \alpha)$ and hence everywhere. \Box Recall that the crossed product $\mathbb{Z} \times_{\alpha} C(\mathbb{T})$ is the completion of $\ell^{1}(\mathbb{Z}, C(\mathbb{T}), \alpha)$ under the norm $||F|| = \sup\{||\pi(F)|| : \pi \text{ is a contractive representation of } \ell^{1}(\mathbb{Z}, C(\mathbb{T}), \alpha)\}$ for $F \in \ell^{1}(\mathbb{Z}, C(\mathbb{T}), \alpha)$ [**MM**].

Lemma III.8. The Banach algebra $\ell^1(\mathbb{Z}^+, \mathcal{A}(\mathbb{D}), \alpha)$ admits a faithful contractive representation.

Proof. Let ρ be the (faithful) representation of $\mathcal{A}(\mathbb{D})$ on $L^2(\mathbb{T})$ given by multiplication. As in Example III.1, $(\tilde{\rho}, U_+)$ is a contractive covariant representation of $(\mathcal{A}(\mathbb{D}), \alpha)$. Thus, $U_+ \times \tilde{\rho}$ is a contractive representation of $\ell^1(\mathbb{Z}^+, \mathcal{A}(\mathbb{D}), \alpha)$ on $\bigoplus_0^{\infty} L^2(\mathbb{T})$. Suppose $(U_+ \times \tilde{\rho})(\sum_{n \ge 0} \delta_n \otimes f_n) = 0$. Then $\sum_{n \ge 0} U^n D_{f_n} = 0$ in \mathfrak{A}_{α} and hence $(\sum_{n \ge 0} U^n D_{f_n})(\xi_0, 0, 0, \ldots) = (0, 0, 0, \ldots)$ $\forall \xi_0 \in L^2(\mathbb{T})$. It follows that $f_k \cdot \xi_0 = 0 \ \forall \xi_0 \in L^2(\mathbb{T})$. By the faithfulness of $\rho, f_k \equiv 0 \ \forall \ k \ge 0$. Thus, $U_+ \times \tilde{\rho}$ is faithful. \Box

With that motivation, we define an operator enveloping norm on $\ell^1(\mathbb{Z}^+, \mathcal{A}(\mathbb{D}), \alpha)$.

Definition III.9. For $F \in \ell^1(\mathbb{Z}^+, \mathcal{A}(\mathbb{D}), \alpha)$, set $||F|| = \sup\{||(V \times \rho)(F)|| : (\rho, V) \text{ is a contractive covariant representation of } (\mathcal{A}(\mathbb{D}), \alpha)\}$. Define the semicrossed product of $\mathcal{A}(\mathbb{D})$ with α , denoted $\mathbb{Z}^+ \times_{\alpha} \mathcal{A}(\mathbb{D})$, to be the completion of $\ell^1(\mathbb{Z}^+, \mathcal{A}(\mathbb{D}), \alpha)$ with respect to this norm.

Since contractive representations ρ of $\mathcal{A}(\mathbb{D})$ on \mathcal{H} correspond bijectively with contractions on \mathcal{H} [Sz-NF], it follows from Proposition III.7 that there is a bijection between the contractive representations of $\ell^1(\mathbb{Z}^+, \mathcal{A}(\mathbb{D}), \alpha)$ and the contractive covariant representations of $(\mathcal{A}(\mathbb{D}), \alpha)$. Since $\ell^1(\mathbb{Z}^+, \mathcal{A}(\mathbb{D}), \alpha)$ is dense in $\mathbb{Z}^+ \times_{\alpha} \mathcal{A}(\mathbb{D})$, the contractive covariant representations of $(\mathcal{A}(\mathbb{D}), \alpha)$ give rise to all contractive representations of $\mathbb{Z}^+ \times_{\alpha} \mathcal{A}(\mathbb{D})$.

Theorem III.10. The contractive representations of $\mathbb{Z}^+ \times_{\alpha} \mathcal{A}(\mathbb{D})$ are in a one-to-one corespondence with pairs of contractions S and T satisfying $TS = S\varphi(T)$.

Corollary III.11. The character space of $\mathbb{Z}^+ \times_{\alpha} \mathcal{A}(\mathbb{D})$ is $\mathcal{M} = \{(z_0, \xi_0) \in \mathbb{C}^2 : |z_0| \leq 1, |\xi_0| \leq 1 \text{ and either } \xi_0 = 0 \text{ or } \varphi(z_0) = z_0\}.$

Proof. Any character γ (a contractive representation of $\mathbb{Z}^+ \times_{\alpha} \mathcal{A}(\mathbb{D})$ on \mathbb{C}) is determined by a pair $(z_0, \xi_0) \in \mathbb{C}^2$ satisfying $|z_0| \leq 1, |\xi_0| \leq 1$, and $z_0\xi_0 = \xi_0\varphi(z_0)$. However, $z_0\xi_0 = \xi_0\varphi(z_0)$ if and only if $\xi_0 = 0$ or z_0 is a fixed point of φ .

Proposition III.12. $\mathbb{Z}^+ \times_{\alpha} \mathcal{A}(\mathbb{D})$ is isomorphic to a non-self-adjoint sub-

algebra of $\mathbb{Z} \times_{\alpha} C(\mathbb{T})$.

Proof. Since $\ell^1(\mathbb{Z}^+, \mathcal{A}(\mathbb{D}), \alpha)$ can be considered to be a subalgebra of $\ell^1(\mathbb{Z}, C(\mathbb{T}), \gamma)$, there exists an embedding i of $\ell^1(\mathbb{Z}^+, \mathcal{A}(\mathbb{D}), \alpha)$ into $\mathbb{Z} \times_{\alpha} C(\mathbb{T})$. If, for $F \in \ell^1(\mathbb{Z}^+, \mathcal{A}(\mathbb{D}), \alpha), ||F|| = ||i(F)||$, then i can be extended to an isometric isomorphism $\hat{i} : \mathbb{Z}^+ \times_{\alpha} \mathcal{A}(\mathbb{D}) \to \mathbb{Z} \times_{\alpha} C(\mathbb{T})$ so that

commutes. Since every covariant representation (π, V) of $(C(\mathbb{T}), \alpha)$ restricts to a contractive covariant representation of $(\mathcal{A}(\mathbb{D}), \alpha)$, it follows that $||F|| \ge$ ||i(F)||. We show $||i(F)|| \ge ||F||$ to complete the proof. If π is any contractive representation of $\ell^1(\mathbb{Z}^+, \mathcal{A}(\mathbb{D}), \alpha)$ on \mathcal{H} , it is determined by two contractions $S = \pi(\delta_1 \otimes 1)$ and $T = \pi(\delta_0 \otimes z)$ which satisfy $TS = S\varphi(T)$. By Theorem II.4, there exist unitaries U and V on $\mathcal{K} \supseteq \mathcal{H}$ such that $VU = U\varphi(V)$ and $S^mT^n =$ $P_{\mathcal{H}}U^mV^n|_{\mathcal{H}} \forall m, n \in \mathbb{N}$. Then π can be extended to a contractive Banach *-representation $\tilde{\pi}$ of $\ell^1(\mathbb{Z}, C(\mathbb{T}), \alpha)^{op}$ on \mathcal{K} by defining $\tilde{\pi}(\sum_{n=-\infty}^{\infty} \delta_n \otimes f_n) =$ $\sum_{n=-\infty}^{\infty} U^n f_n(V)$. Hence $||F|| \le ||i(F)||$.

Recall that the semicrossed product norm (Definition III.9) was defined by taking a supremum over the collection of contractive covariant representations of $(\mathcal{A}(\mathbb{D}), \alpha)$. By Theorem II.4, we could equally well have defined this norm by taking a supremum over the (smaller) collection of isometric covariant representations of $(\mathcal{A}(\mathbb{D}), \alpha)$. In fact, by Proposition IV.1, we could also have defined this norm by taking a supremum over the pure isometric covariant representations of $(\mathcal{A}(\mathbb{D}), \alpha)$. Moreover, as Corollary III.14 shows, this norm makes every representation of $\mathbb{Z}^+ \times_{\alpha} \mathcal{A}(\mathbb{D})$ completely contractive.

The proof of the following proposition, which is used only in the subsequent corollary, is left to the reader.

Proposition III.13. The C^* -envelope of $\mathbb{Z}^+ \times_{\alpha} \mathcal{A}(\mathbb{D})$, $C^*(\mathbb{Z}^+ \times_{\alpha} \mathcal{A}(\mathbb{D}))$, is isometrically isomorphic to $\mathbb{Z} \times_{\alpha} C(\mathbb{T})$.

Corollary III.14. Every contractive representation of $\mathbb{Z}^+ \times_{\alpha} \mathcal{A}(\mathbb{D})$ is completely contractive.

Proof. By a fundamental theorem of Arveson [**Ar**], a contractive representation ρ of $\mathbb{Z}^+ \times_{\alpha} \mathcal{A}(\mathbb{D})$ on \mathcal{H} is completely contractive if and only if there exists a triple $(\mathcal{K}, \tilde{\rho}, X)$ where $\tilde{\rho}$ is a *-representation of $C^*(\mathbb{Z}^+ \times_{\alpha} \mathcal{A}(\mathbb{D})) = \mathbb{Z} \times_{\alpha}$ $C(\mathbb{T})$ on \mathcal{K} and an isometry $X : \mathcal{H} \to \mathcal{K}$ such that $\rho(F) = X^* \tilde{\rho}(F) X \ \forall F \in \mathbb{Z}^+ \times_{\alpha} \mathcal{A}(\mathbb{D})$. However, each contractive representation ρ of $\mathbb{Z}^+ \times_{\alpha} \mathcal{A}(\mathbb{D})$ on \mathcal{H} is completely determined by a pair of contractions S and T satisfying $TS = S\varphi(T)$. Let U and V be the pair of unitaries on \mathcal{K} generated by Theorem II.4 and take $X : \mathcal{H} \to \mathcal{K}$ to be the inclusion map. Define then $\tilde{\rho}$ on a dense subset of $\mathbb{Z} \times_{\alpha} C(\mathbb{T})$ by $\tilde{\rho}(\sum_{-\infty}^{\infty} \delta_n \otimes f_n) = \sum_{-\infty}^{\infty} U^n f_n(V)$.

IV. A Concrete Representation.

Proposition IV.1. $\mathbb{Z}^+ \times_{\alpha} \mathcal{A}(\mathbb{D})$ is completely isometrically isomorphic to \mathfrak{A}_{α} .

Proof. Let $\pi : \mathbb{Z} \times_{\alpha} C(\mathbb{T}) \to B\left(\bigoplus_{-\infty}^{\infty} L^{2}(\mathbb{T})\right)$ be defined on the dense subset $\ell^{1}(\mathbb{Z}, C(\mathbb{T}), \alpha)$ by $\sum_{-\infty}^{\infty} \delta_{n} \otimes f_{n} \mapsto \sum_{-\infty}^{\infty} U^{n}M_{f_{n}}$ where U is the bilateral shift and $M_{f}(\ldots, \xi_{-1}, \xi_{0}, \xi_{1}, \ldots) = (\ldots, \alpha^{-1}(f)\xi_{-1}, f\xi_{0}, \alpha(f)\xi_{1}, \ldots)$. By [**Pe**, 7.7.5], π is an isometry since $\pi(f) \cdot \xi = f \cdot \xi$ ($\xi \in L^{2}(\mathbb{T})$) is faithful. In fact, π is completely isometric as it is a *-homomorphism. Hence $\tilde{\pi} \equiv \pi|_{\mathbb{Z}^{+}\times_{\alpha}\mathcal{A}(\mathbb{D})}$ is a complete isometry. Note that $\bigoplus_{0}^{\infty} L^{2}(\mathbb{T})$ is invariant under $\tilde{\pi}(\mathbb{Z}^{+} \times_{\alpha} \mathcal{A}(\mathbb{D}))$ so that $\tilde{\tilde{\pi}} : \mathbb{Z}^{+} \times_{\alpha} \mathcal{A}(\mathbb{D}) \to B\left(\bigoplus_{0}^{\infty} L^{2}(\mathbb{T})\right)$ defined on a dense subset by $\tilde{\pi}\left(\sum_{n\geq 0} \delta_{n} \otimes f_{n}\right) = \tilde{\pi}\left(\sum_{n\geq 0} \delta_{n} \otimes f_{n}\right)|_{\bigoplus_{0}^{\infty} L^{2}(\mathbb{T})}$ is clearly completely contractive onto its range \mathfrak{A}_{α} . It is completely isometric for all $k \geq 1$. Let $F = (F_{ij}) \in (\mathbb{Z}^{+} \times_{\alpha} \mathcal{A}(\mathbb{D})) \otimes M_{k}(\mathbb{C})$. We show that

$$\|\widehat{\pi}(F)\| = \|(\widetilde{\pi}(F_{ij}))\| = \left\|(\widetilde{\pi}(F_{ij}))\right\| \bigoplus_{1}^{k} \left(\bigoplus_{0}^{\infty} L^{2}(\mathbb{T})\right)\right\|$$

Define

$$\ell_N^2(L^2(\mathbb{T})) = \left\{ \xi = (\xi_k)_{k=-\infty}^{\infty} \in \bigoplus_{-\infty}^{\infty} L^2(\mathbb{T}) : \xi_k = 0 \text{ for } k < -N \right\}.$$

Then each $\ell_N^2(L^2(\mathbb{T}))$ is invariant under $\widetilde{\pi}(\mathbb{Z}^+ \times_{\alpha} \mathcal{A}(\mathbb{D}))$ and $\bigcup_{N\geq 0} \ell_N^2(L^2(\mathbb{T}))$ is dense in $\bigoplus_{-\infty}^{\infty} L^2(\mathbb{T})$. Hence, $\bigcup_{N\geq 0} \bigoplus_1^k \ell_N^2(L^2(\mathbb{T}))$ is dense in $\bigoplus_1^k (\bigoplus_{-\infty}^{\infty} L^2(\mathbb{T}))$. It follows that

$$\|(\widetilde{\pi}(F_{ij}))\| = \sup_{\substack{N \ge 0\\ \xi \in \bigoplus_{1}^{k} \ell_{N}^{2}(L^{2}(\mathbb{T}))}} \sup_{\|(\widetilde{\pi}(F_{ij}))\xi\|}$$

$$= \sup_{N \ge 0} \sup_{\substack{\xi \in \bigoplus_{i=1}^{k} \ell_{N}^{2}(L^{2}(\mathbb{T})) \\ \|\xi\|=1}} \left\| \left(\widetilde{\pi}(F_{ij}) \right) \xi_{U} \right\|$$

where $\xi_U = (U^N \xi_1, U^N \xi_2, ..., U^N \xi_k)$, U is the bilateral shift, and $\xi_i \in \ell_N^2 L^2(\mathbb{T})$. Thus,

$$\|(\widetilde{\pi}(F_{ij}))\| = \sup_{\substack{\eta \in \bigoplus_{1}^{k} \ell_{0}^{2}(L^{2}(\mathbb{T})) \\ \|\eta\| = 1}} \|(\widetilde{\pi}(F_{ij}))\|_{\substack{\mu \in \bigoplus_{1}^{k} \left(\bigoplus_{0}^{\infty} L^{2}(\mathbb{T})\right)}} \|.$$

Let us now reconsider the algebra \mathcal{B}_{α} defined in Example III.3. In what follows we discuss the isomorphism question regarding $\mathbb{Z}^+ \times_{\alpha} \mathcal{A}(\mathbb{D})$ and \mathcal{B}_{α} in the case where α is elliptic and irrational. Recall that a change of variables [**HPW**, Lemma 10] reduces the analysis to the case where $\varphi(z) = \mu z$ where μ is not a root of unity.

Proposition IV.2. If α is elliptic and nonperiodic, then \mathfrak{A}_{α} is completely isometrically isomorphic to \mathcal{B}_{α} .

Proof. Let C denote the irrational rotation algebra, i.e. the C^* -algebra generated by any two unitaries S and T satisfying $TS = \mu ST$ [**Rf2**], [**Br**]. In particular, C can be realized as $\mathbb{Z} \times_{\mu} C(\mathbb{T})$ or as the C^* -algebra of operators on $B(L^2(\mathbb{T}))$ generated by the composition operator $C_{\varphi^{-1}}$ and multiplication operators $M_f(f \in C(\mathbb{T}))$. Since $\ell^1(\mathbb{Z}^+, \mathcal{A}(\mathbb{D}), \alpha)$ can be isometrically embedded in $\ell^1(\mathbb{Z}, C(\mathbb{T}), \mu)$, it follows that $\rho : \mathfrak{A}_{\alpha} \to C$ defined on a dense subset by $\rho\left(\sum_{n=0}^N U^n D_{f_n}\right) = \sum_{n=0}^N C_{\varphi^{-1}}^n M_{f_n}$ is an isometric representation on $L^2(\mathbb{T})$. Let $\rho_{H^2(\mathbb{D})} : \mathfrak{A}_{\alpha} \to B(H^2(\mathbb{D}))$ be given by $\rho_{H^2}(F) = \rho(F)|_{H^2(\mathbb{D})}$. Then ρ_{H^2} is a contractive representation of \mathfrak{A}_{α} onto \mathcal{B}_{α} . To show that ρ_{H^2} is isometric, we show $\|\rho(F)\| = \|\rho(F)|_{H^2(\mathbb{D})}\| \forall F \in \mathfrak{A}_{\alpha}$. This follows as in Proposition IV.1.

By Propositions IV.1 and III.13, $C^*(\mathfrak{A}_{\alpha}) \cong \mathbb{Z} \times_{\alpha} C(\mathbb{T})$. Let π be a C^* representation of $C^*(\mathfrak{A}_{\alpha})$ on $L^2(\mathbb{T})$ defined by $\pi(U) = C_{\varphi^{-1}}$ and $\pi(D_f) = M_f$ where U is the bilateral shift on $\bigoplus_{-\infty}^{\infty} L^2(\mathbb{T})$ and $D_f(\dots,\xi_{-1},\xi_0,\xi_1,\dots) = (\dots,\alpha^{-1}(f)\xi_{-1},f\xi_0,\alpha(f)\xi_1,\dots)$. Let $X:H^2(\mathbb{D}) \to L^2(\mathbb{T})$ be inclusion. Then $\rho_{H^2}(F) = X^*\pi(F)X \forall F \in \mathfrak{A}_{\alpha}$, and ρ_{H^2} is completely contractive.

By the above comments and Proposition III.13, $C^*(\mathfrak{B}_{\alpha}) \cong \mathbb{Z} \times_{\alpha} C(\mathbb{T})$. Let π' be a C^* -representation of $C^*(\mathfrak{B}_{\alpha})$ on $\bigoplus_{-\infty}^{\infty} L^2(\mathbb{T})$ defined by $\pi'(C_{\varphi^{-1}}) = U$ and $\pi'(M_f) = D_f$ where U and D_f are as above. Let $X : \bigoplus_{0}^{\infty} L^2(\mathbb{T}) \to \bigoplus_{-\infty}^{\infty} L^2(\mathbb{T})$ be inclusion. Then $\rho_{H^2}^{-1}(F) = X^*\pi'(F)X \forall F \in \mathfrak{B}_{\alpha}$ and $\rho_{H^2}^{-1}$ is also completely contractive.

When α is elliptic and periodic we can construct a contractive, but not faithful, representation of \mathfrak{A}_{α} onto \mathcal{B}_{α} .

Proposition IV.3. $\pi : \mathfrak{A}_{\alpha} \to \mathcal{B}_{\alpha}$ determined by $U \mapsto C_{\varphi^{-1}}$ and $D_f \mapsto T_f$ is a contractive, surjective homomorphism.

Proof. The result follows by Proposition IV.1 and the fact that a contractive representation of $\mathbb{Z}^+ \times_{\alpha} \mathcal{A}(\mathbb{D})$ is completely determined by two contractions S and T satisfying $TS = S\varphi(T)$.

Remark IV.4. Proposition IV.3 shows that algebraically $\mathfrak{A}_{\alpha}/\ker \pi \cong \mathcal{B}_{\alpha}$. However, $\ker \pi \neq (0)$. For example, if $f \in \mathcal{A}(\mathbb{D})$ then $0 = C_{\varphi^{-1}}T_f + C_{\varphi^{-1}}^{K+1}T_{-f} = \pi(UD_f + U^{K+1}D_{-f})$. This algebraic isomorphism explains the disparity in the character spaces of \mathfrak{A}_{α} and \mathcal{B}_{α} [**H**] when α is periodic.

V. The Maximal Ideal Space.

In this section we show that the maximal ideal space of \mathfrak{A}_{α} is the same as the character space except in the case where α is elliptic and periodic. We use an ergodic argument for the nonperiodic elliptic case and a spectral argument for the hyperbolic and parabolic cases. We then characterize the maximal ideal space in the case where α is periodic.

Recall from Corollary III.11 that the maps $\gamma_{z_0}^{(\xi_0)} : \mathfrak{A}_{\alpha} \to \mathbb{C}$ (where $|z_0| \leq 1$, $|\xi_0| \leq 1$, and $\varphi(z_0) = z_0$ if $\xi_0 \neq 0$) defined on a dense subset by $\gamma_{z_0}^{(\xi_0)} (\sum_{i=0}^n U^i D_{f_i}) = \sum_{i=0}^n f_i(z_0) \xi_0^i$ are the characters of \mathfrak{A}_{α} . We remark that the multiplicative linear functionals of \mathfrak{A}_{α} could also be calculated by using a technique similar to that found in [H] and [HH].

Remark V.I. When α is elliptic and β is either parabolic or hyperbolic, it is known that \mathfrak{A}_{α} is not isomorphic to \mathfrak{A}_{β} . This follows since the radical in the elliptic case is $\{0\}$ whereas in the other cases the radical is the nontrivial set of quasinilpotents (Theorems 11 and 12 of [**HPW**]). Knowing the characters of \mathfrak{A}_{α} allows us to conclude that $\mathfrak{A}_{\alpha} \cong \mathfrak{A}_{\beta}$ when α is parabolic and β is hyperbolic; for if such an isomorphism Γ existed, it would induce a homeomorphism τ of the character spaces defined by $\tau(\gamma)(F) = \gamma(\Gamma(F))$.

To each $F \in \mathfrak{A}_{\alpha}$ we may associate a unique Fourier series, $F \sim \sum_{n=0}^{\infty} U^n D_{f_n}$. We denote by $\pi_n(F)$ the *n*th Fourier coefficient of F. Some

useful properties of these Fourier coefficients are listed in the following lemma from [**HPW**].

Lemma V.2. For n = 0, 1, 2, ..., there is a linear mapping $\pi_n : \mathfrak{A}_\alpha \to \mathcal{A}(\mathbb{D})$ satisfying

- (i) $\|\pi_n(F)\| \leq \|F\|, F \in \mathfrak{A}_{\alpha}.$
- (ii) $\pi_0(FG) = \pi_0(F)\pi_0(G)$ for $F, G \in \mathfrak{A}_{\alpha}$.

(iii)
$$\pi_n \left(\sum_{k=0}^N U^k D_{f_k} \right) = \begin{cases} f_n & 0 \le n \le N \\ 0 & n > N \end{cases}$$

(iv) $\pi_n(F) = 0 \ \forall \ n \ge 0 \Rightarrow F \equiv 0.$

Consider the case where α is either parabolic or hyperbolic. From Theorem 12 of [**HPW**], the Jacobson radical is Rad $(\mathfrak{A}_{\alpha}) = \{F \in \mathfrak{A}_{\alpha} : \pi_0(F) = 0$ and $\pi_n(F)(z_0) = 0$ for $\varphi(z_0) = z_0\}$. That is, the radical is precisely the set of quasinilpotent elements. We show by way of contradiction that every maximal ideal \mathcal{M} in \mathfrak{A}_{α} contains the commutator ideal, denoted \mathcal{C} , and hence is of codimension one.

Lemma V.3. If \mathcal{B} is a (unital) Banach algebra and \mathcal{M} is a maximal ideal in \mathcal{B} not containing the commutator ideal \mathcal{C} , then $\mathcal{B} = \mathcal{M} + \mathcal{C}$.

Proof. By the maximality of \mathcal{M} , we can find $b_0 = m_0 + c_0 \in (\mathcal{M} + \mathcal{C}) \cap \{b \in \mathcal{B} : \|b - 1\| < \frac{1}{2}\}$ where $m_0 \in \mathcal{M}$ and $c_0 \in \mathcal{C}$. Since b_0 is invertible, $1 = b_0^{-1}m_0 + b_0^{-1}c_0 \in \mathcal{M} + \mathcal{C}$ and hence $\mathcal{B} = \mathcal{M} + \mathcal{C}$.

Proposition V.4. Let α be parabolic or hyperbolic. The maximal ideals of \mathfrak{A}_{α} are precisely the kernels of its characters.

Proof. We show that any maximal ideal \mathcal{M} contains the commutator ideal. Suppose it does not. By the above lemma, $\exists F \in \mathcal{M}$ and $C \in \mathcal{C}$ such that $D_1 = F + C$. Since $\gamma_z^{(0)}(C) = 0$ it follows that $\gamma_z^{(0)}(F) = 1 \forall z \in \overline{\mathbb{D}}$. Write $F = D_1 + G$ so that $\pi_0(G) \equiv 0$ and $\pi_n(F) \equiv \pi_n(G)$ for $n \geq 1$. Let z_0 be a fixed point of φ . Since $\gamma_{z_0}^{(\xi)}(C) = 0$ it follows that $\gamma_{z_0}^{(\xi)}(F) = \gamma_{z_0}^{(\xi)}(D_1) = 1 \forall \xi \in \overline{\mathbb{D}}$. Hence, $\gamma_{z_0}^{(\xi)}(F - D_1) = \sum_{n=1}^{\infty} \pi_n(F)(z_0)\xi^n = 0 \forall \xi \in \overline{\mathbb{D}}$. Thus, $\pi_n(F)(z_0) = 0$ for $n \geq 1$, and so $\pi_0(G) \equiv 0$ and $\pi_n(G)(z_0) = 0$ for $n \geq 1$. By the preceeding remarks, $G \in \text{Rad}(\mathfrak{A}_{\alpha})$. Hence $\text{sp}(G) = \{0\}$ so that $\text{sp}(F) = \text{sp}(D_1 + G) = \{1\}$ by the spectral mapping theorem. But then $F \in \mathcal{M}$ is invertible, contradicting the maximality of \mathcal{M} .

We now consider the case where α is elliptic. Recall that we are assuming w.l.o.g. that $\alpha(f) = f \circ \varphi$ where $\varphi(z) = \mu z$ for some $|\mu| = 1$. The structure of \mathfrak{A}_{α} is closely tied to whether μ is a root of unity or not.

By the special structure of α and the definition of \mathfrak{A}_{α} , it is an easy calculation to show that $\tilde{\alpha} : \mathfrak{A}_{\alpha} \to \mathfrak{A}_{\alpha}$ defined on a dense subset by $\tilde{\alpha} \left(\sum_{i=0}^{n} U^{i} D_{f_{i}} \right) = \sum_{i=0}^{n} U^{i} D_{\alpha(f_{i})}$ is an isometric automorphism. If μ is a Kth root of unity, define $\#: \mathfrak{A}_{\alpha} \to \mathfrak{A}_{\alpha}$ by $F \mapsto \frac{1}{K} \sum_{k=0}^{K-1} \tilde{\alpha}^{k}(F)$. Note that # is $\tilde{\alpha}$ -invariant. Defining \mathfrak{A}_{0} to be the closed subalgebra of \mathfrak{A}_{α} generated by $\{U, D_{f} : f \text{ is } \alpha$ -invariant}, it is easy to verify that \mathfrak{A}_{0} is maximal abelian and # is a linear projection onto \mathfrak{A}_{0} . As in [**P2**, V.8] we can define a map # with similar properties when α is nonperiodic by $\#(\sum_{i=0}^{n} U^{i} D_{f_{i}}) \equiv \sum_{i=0}^{n} U^{i} D_{\int_{T}^{T} f_{i} dm(z)} =$

$$\sum_{i=0}^{n} U^{i} D_{f_i(0)}.$$

Proposition V.5. If α is nonperiodic, then \mathfrak{A}_0 is the subalgebra of \mathfrak{A}_α generated by $\{U, D_1\}$. Furthermore, # is a linear projection onto the maximal abelian subalgebra \mathfrak{A}_0 of \mathfrak{A}_α .

Proof. Let $F = \sum_{i=0}^{n} U^{i}D_{f_{i}} \in \mathfrak{A}_{0}$. Then by α -invariance $f_{i}\left(\mu^{k} \cdot \frac{1}{2}\right) = f_{i}\left(\frac{1}{2}\right)$ $\forall k \in \mathbb{N}, 0 \leq i \leq n$, so that analyticity, nonperiodicity of α , and the ergodic theorem gives $f_{i} \equiv f_{i}(0)$ on \mathbb{D} and hence $\overline{\mathbb{D}}$. Since # is clearly a linear projection onto \mathfrak{A}_{0} , we need only show \mathfrak{A}_{0} is a maximal abelian subalgebra of \mathfrak{A}_{α} . By definition, \mathfrak{A}_{0} is commutative. Suppose that $F \in \mathfrak{A}_{\alpha}, F \sim$ $\sum_{n=0}^{\infty} U^{n}D_{f_{n}}$, commutes with \mathfrak{A}_{0} . Then FU = UF and $\alpha(f_{n}) = f_{n} \forall n \geq 0$. Each f_{n} is then constant by the nonperiodicity of α .

The characters of \mathfrak{A}_0 , which are easy to compute, will be used to characterize the maximal ideals in \mathfrak{A}_{α} . Since \mathfrak{A}_0 is a commutative Banach algebra, its maximal ideal space corresponds in a one-to-one fashion with the kernels of its characters. If α is nonperiodic, then $\mathfrak{A}_0 \cong \mathcal{A}(\mathbb{D})$ (given by $U \mapsto z$) and its characters are determined by $U \mapsto \xi \in \overline{\mathbb{D}}$. Denote these by $\gamma_{\mathfrak{A}_0}^{(\xi)}$. If α is periodic with period K, there are more characters. In fact, if we denote by $\gamma_{\mathfrak{A}_0,z_0}^{(\xi)}$ the map determined by $U \mapsto \xi$ and $D_z \mapsto z_0$, the maximal ideal space of \mathfrak{A}_0 can be computed as the characters of \mathfrak{A}_{α} were using the technique found in [**H**] and [**HH**]. If $\psi = \min\{\theta : e^{i\theta} = \mu^k, 0 \le k \le K - 1, 0 < \theta < 2\pi\}$, then $\mathcal{M}_{\mathfrak{A}_0} = \{\gamma_{\mathfrak{A}_0,re^{i\theta_0}}^{(\xi)} : 0 \le r \le 1, |\xi| \le 1, 0 \le \theta_0 < \psi\}$ is the set of characters on \mathfrak{A}_0 .

As in [**P2**, V.9], for an ideal $\mathcal{I} \subseteq \mathfrak{A}_0$ define $\tilde{\mathcal{I}} = \{F \in \mathfrak{A}_{\alpha} : \#(H\tilde{\alpha}^n(F)G) \in \mathcal{I} \ \forall H, G \in \mathfrak{A}_{\alpha}, n \geq 0\}$. Using # we can then construct a one-to-one correspondence between the maximal ideals in \mathfrak{A}_0 and the maximal $\tilde{\alpha}$ -invariant ideals in \mathfrak{A}_{α} .

Proposition V.6. (i) If $\mathcal{M}_0 \subseteq \mathfrak{A}_0$ is a maximal ideal, then $\widetilde{\mathcal{M}}_0 \subseteq \mathfrak{A}_\alpha$ is a maximal $\tilde{\alpha}$ -invariant ideal in \mathfrak{A}_α .

(ii) If \mathcal{R} is a maximal $\tilde{\alpha}$ -invariant ideal, then $\#(\mathcal{R}) \subseteq \mathfrak{A}_0$ is a maximal

ideal. Furthermore, $\mathcal{R} = \widetilde{\#(\mathcal{R})}$.

Let \mathcal{M} be a maximal ideal in \mathfrak{A}_{α} Let $\langle U \rangle$ denote the closed ideal in \mathfrak{A}_{α} generated by U. Then, $\mathcal{M} \cdot \langle U \rangle \subseteq \tilde{\alpha}(\mathcal{M})$. Furthermore, $\tilde{\alpha}(\mathcal{M})$ maximal implies $\tilde{\alpha}(\mathcal{M})$ is prime so that either $\langle U \rangle \subseteq \tilde{\alpha}(\mathcal{M})$ or $\mathcal{M} \subseteq \tilde{\alpha}(\mathcal{M})$.

Theorem V.7. If α is nonperiodic, the maximal ideal space of \mathfrak{A}_{α} is precisely the space of characters.

Proof. Let \mathcal{M} be maximal in \mathfrak{A}_{α} . If $\mathcal{M} \subseteq \tilde{\alpha}(\mathcal{M})$ then $\mathcal{M} = \tilde{\alpha}(\mathcal{M})$. Thus, \mathcal{M} is $\tilde{\alpha}$ -invariant and $\mathcal{M} = \widetilde{\#}(\mathcal{M}) = \{F \in \mathfrak{A}_{\alpha} : \#(H\tilde{\alpha}^{n}(F)G) \in \ker \gamma \ \forall n \geq 0$ and $H, G \in \mathfrak{A}_{\alpha}\}$ for some γ a character on \mathfrak{A}_{0} . To show that $\mathcal{M} = \ker \gamma_{0}^{(\xi)}$ for some $\xi \in \overline{\mathbb{D}}$, we need only show $\mathcal{M} \subseteq \ker \gamma_{0}^{(\xi)}$. But $F \sim \sum_{n=0}^{\infty} U^{n}D_{f_{n}}, F \in \mathcal{M}$ implies $0 = \gamma(\#(F)) = \gamma\left(\sum_{n=0}^{\infty} U^{n}D_{f_{n}(0)}\right) = \sum_{n=0}^{\infty} f_{n}(0)\xi^{n} = \gamma_{0}^{(\xi)}(F)$ for some $\xi \in \overline{\mathbb{D}}$.

If $\langle U \rangle \subseteq \tilde{\alpha}(\mathcal{M})$, then by applying $\tilde{\alpha}^{-1}$ it follows that $\langle U \rangle \subseteq \mathcal{M}$. $\mathcal{M}/\langle U \rangle$ is then a maximal ideal in $\mathfrak{A}_{\alpha}/\langle U \rangle$. But $\mathfrak{A}_{\alpha}/\langle U \rangle \cong \mathcal{A}(\mathbb{D})$. Hence, $\mathcal{M}/\langle U \rangle$ corresponds to a maximal ideal in $\mathcal{A}(\mathbb{D})$; namely a kernel of point evaluation. So, $\mathcal{M}/\langle U \rangle = \ker \gamma_z^{(0)}$ for some $z \in \overline{\mathbb{D}}$.

We now show that if α has period K, there are maximal ideals in \mathfrak{A}_{α} of codimension 1 and K^2 . Define S_K to be the $K \times K$ shift matrix given by $S_{ij} = 1$ if $i - j = 1 \mod K$ and 0 otherwise and $T(f, \mu)$ to be the $K \times K$ diagonal matrix given by $T(f, \mu)_{j,j} = f(\mu^{j-1}z_0)$. For $|w_0| \leq 1$ and $|z_0| \leq 1$, define $\rho_{z_0,w_0} : \mathfrak{A}_{\alpha} \to \mathcal{M}_K(\mathbb{C})$ on a dense subset by $\sum_{\ell=0}^{KL-1} U^{\ell} D_{f_{\ell}} \mapsto$ $\sum_{\ell=0}^{KL-1} w_0^{\ell} S_K^{\ell} T(f_{\ell}, \mu)$.

Lemma V.8. If $|z_0| \leq 1$, $|w_0| \leq 1$, then ρ_{z_0,w_0} is a contractive representation.

Proof. This follows by Theorem III.10 since ρ_{z_0,w_0} is determined by two contractions S_K and $T(z,\mu)$ satisfying $T(z,\mu)S_K = S_K\varphi(T(z,\mu))$.

By the simplicity of $\mathcal{M}_K(\mathbb{C})$, ker ρ_{z_0,w_0} is a maximal ideal in \mathfrak{A}_{α} if $z_0 \neq 0$ and $w_0 \neq 0$.

Lemma V.9. If $z_0 \neq 0$ and $w_0 \neq 0$, then ρ_{z_0,w_0} is a contractive representation of \mathfrak{A}_{α} onto $\mathcal{M}_K(\mathbb{C})$.

Proof. We need only show that if $z_0 \neq 0$ and $w_0 \neq 0$, then ρ_{z_0,w_0} is onto. For $0 \leq i, j \leq K - 1$, define

$$f_{i,j}(z) = \frac{1}{w_0^{K+i-j(\text{mod } K)}} \cdot \frac{\prod_{\substack{l=0\\ l\neq K-i}}^{K-1} (\mu^l z - z_0)}{\prod_{l=1}^{l\neq K-i} (\mu^l z_0 - z_0)}.$$

Then, for $0 \le k \le K - 1$,

$$f_{i,j}(\mu^{k}z_{0}) = \frac{1}{w_{0}^{K_{i}-u(\text{mod }K)}} \cdot \frac{\prod_{\substack{l=0\\l\neq K-i(\text{mod }K)}}{\prod_{\substack{l=1\\l=1}}^{K-1} (\mu^{l}z_{0}-z_{0})}$$
$$= \frac{1}{w_{0}^{K+i-j(\text{mod }K)}} \begin{cases} 0 & \text{if } k\neq i\\ 1 & \text{if } k=i \end{cases}$$
$$= \frac{1}{w_{0}^{K+i-j(\text{mod }K)}} \delta_{k,i}.$$

Hence, ρ_{z_0,w_0} is onto $\mathcal{M}_K(\mathbb{C})$ as $E_{ij} = \rho_{z_0,w_0}(U^{K+i-j \pmod{K}}D_{f_{i,j}}).$

Theorem V.10. If α has period K and \mathcal{M} is a maximal ideal in \mathfrak{A}_{α} , then $\mathcal{M} = \ker \rho_{z_0, w_0}$ for some $z_0, w_0 \in \overline{\mathbb{D}}$.

Proof. As in the nonperiodic case, $\tilde{\alpha}(\mathcal{M})$ is maximal and hence prime with either $\mathcal{M} \subseteq \tilde{\alpha}(\mathcal{M})$ or $\langle U \rangle \subseteq \tilde{\alpha}(\mathcal{M})$. If $\langle U \rangle \subseteq \tilde{\alpha}(\mathcal{M})$, then since $\langle U \rangle$ is $\tilde{\alpha}$ -invariant and α is periodic, $\langle U \rangle \subseteq \tilde{\alpha}^{K}(\mathcal{M}) = \mathcal{M}$. Thus, $\mathcal{M} = \ker \rho_{z_{0},0}$ for some $z_{0} \in \overline{\mathbb{D}}$. Suppose then $\mathcal{M} \subseteq \tilde{\alpha}(\mathcal{M})$ so that $\mathcal{M} = \tilde{\alpha}(\mathcal{M})$. By Proposition V.6, $\#(\mathcal{M}) = \ker \gamma$ for some character γ on \mathfrak{A}_{0} and hence $\mathcal{M} =$ $\widetilde{\#(\mathcal{M})} = \ker \gamma_{\mathfrak{A}_{0},z'_{0}}^{(\xi')}$ for some $\xi' \in \overline{\mathbb{D}}$ and $z'_{0} = re^{i\theta}$ where $0 \leq r \leq 1, 0 \leq$ $\theta < \psi$, and $\psi = \min\{\theta : e^{i\theta} = \mu^{k}, 0 \leq k \leq K - 1, 0 < \theta < 2\pi\}$. Since $\ker \rho_{z_{0},w_{0}}$ is maximal in \mathfrak{A}_{α} , we need only show that $\ker \rho_{z_{0},w_{0}} \subseteq \mathcal{M}$ for some z_{0}, w_{0} . But, $\ker \rho_{z'_{0},\xi'}$ is $\tilde{\alpha}$ -invariant so that $\rho_{z'_{0},\xi'}(\tilde{\alpha}^{n}(F)) = 0 \ \forall n \geq 0$ and $F \in \ker \rho_{z'_{0},\xi'}$. Hence $\rho_{z'_{0},\xi'}(\#(H\tilde{\alpha}^{n}(F)G)) = 0 \ \forall n \geq 0$ and $H, G \in \mathfrak{A}_{\alpha}$ yielding $\gamma_{z'_{0}}^{(\xi')}(\#(H\tilde{\alpha}^{n}(F)G)) = 0$ and $F \in \mathcal{M}$.

1. VI. The Strong Radical.

Having computed the maximal ideal space of \mathfrak{A}_{α} , we can now compute its strong radical and compare it to its Jacobson radical. For the remainder α will be fixed.

Theorem VI.1. Let \mathfrak{A}_J and \mathfrak{A}_S denote the Jacobson and strong radicals of \mathfrak{A}_{α} respectively.

- (i) If α is parabolic or hyperbolic, $\mathfrak{A}_J = \mathfrak{A}_S$.
- (ii) If α is elliptic and nonperiodic, $\mathfrak{A}_J \subsetneq \mathfrak{A}_S$.
- (iii) If α is elliptic and periodic, $\mathfrak{A}_{I} = \mathfrak{A}_{S} = (0)$.

110

Proof. From [**HPW**], the Jacobson radical is precisely the set of quasinilpotents. If α is parabolic or hyperbolic, then $\mathfrak{A}_J = \{F \in \mathfrak{A} : \pi_0(F) \equiv 0 \text{ and } \pi_n(F)(z_0) = 0 \forall n \geq 1 \text{ for } z_0 \text{ fixed by } \alpha\}$. Since the maximal ideals are precisely the kernels of the characters in these cases, (i) follows as

$$\begin{aligned} \mathfrak{A}_{S} &= \{F \in \mathfrak{A}_{\alpha} : F \in \ker \gamma_{z}^{(0)} \ \forall \ z \in \overline{\mathbb{D}} \text{ and } F \in \ker \gamma_{z_{0}}^{(\xi)} \ \forall \xi \in \overline{\mathbb{D}} \\ & \text{for } z_{0} \text{ fixed by } \alpha \} \\ &= \left\{F : \pi_{0}(F) \equiv 0 \text{ and } \sum_{n \geq 1} \pi_{n}(F)(z_{0})\xi^{n} = 0 \ \forall \ \xi \in \overline{\mathbb{D}} \right\} \\ &= \{F : \pi_{0}(F) \equiv 0 \text{ and } \pi_{n}(F)(z_{0}) = 0 \ \forall \ n \geq 1 \text{ for } z_{0} \text{ fixed by } \alpha \} \\ &= \mathfrak{A}_{J}. \end{aligned}$$

If α is elliptic, $\mathfrak{A}_J = (0)$. When α is nonperiodic, $\mathfrak{A}_S \supseteq (0)$ as $UD_z \in \mathfrak{A}_S$ for example. In fact, $\mathfrak{A}_S = \{F : \pi_0(F) \equiv 0 \text{ and } \pi_n(F)(0) = 0 \forall n \geq 1\}$. If α is periodic of period K, we show $\mathfrak{A}_S = (0)$ to complete the proof.

First, note that the Fourier series of $F \in \mathfrak{A}_{\alpha}$ is Cesàro summable [P2]. Hence,

$$\lim_{N \to \infty} \left\| \sum_{l=0}^{KN-1} \frac{1}{KN} \left(\sum_{m=0}^{l} U^m D_{\pi_m(F)} \right) - F \right\| = 0.$$

Let $F \in \mathfrak{A}_S$ and $\varepsilon > 0$ be given. We show that $\pi_l(F) \equiv 0 \ \forall \ l \geq 0$ so that F = 0. Choose M such that if $N \geq M$ we have

$$\left\|\sum_{l=0}^{KN-1} \frac{1}{KN} \left(\sum_{m=0}^{l} U^m D_{\pi_m(F)}\right) - F\right\| = \left\|\sum_{l=0}^{KN-1} U^l D_{(1-\frac{l}{KN})\pi_l(F)} - F\right\| < \varepsilon.$$

Then,

$$\left\|\rho_{z_0,w}\left(\sum_{l=0}^{KN-1} U^l D_{(1-\frac{l}{KN})\pi_l(F)} - F\right)\right\| < \varepsilon \ \forall \ z_0, w \in \overline{\mathbb{D}} \ \text{ by Lemma V.8.}$$

Since $F \in \mathfrak{A}_S$,

$$\left\|\rho_{z_0,w}\left(\sum_{l=0}^{KN-1} U^l D_{(1-\frac{l}{KN})\pi_l(F)}\right)\right\| < \varepsilon.$$

In particular, for $0 \le k \le K - 1$ we have

$$\left|\sum_{l=0}^{N-1} \left(1 - \frac{Kl+k}{KN}\right) \pi_{Kl+k}(F)(z_0) w^{Kl+k}\right| < \varepsilon \ \forall \ z_0 \in \overline{\mathbb{D}}, w \in \mathbb{T}.$$

Fix $l_0 \geq 0$. Note that

$$\int_{\mathbb{T}} \left| \sum_{l=0}^{N-1} \left(1 - \frac{Kl+k}{KN} \right) \pi_{Kl+k}(F)(z_0) w^{Kl+k} \right| dm(w) < \varepsilon \,\,\forall \,\, z_0 \in \overline{\mathbb{D}}.$$

It follows, since $\int_{\mathbb{T}} z^l dm(z) = 0$ unless l = -1, that

$$\begin{aligned} \left| 1 - \frac{Kl_0 + k}{KN} \right| |\pi_{Kl_0 + k}(F)(z_0)| \left| \int_{\mathbb{T}} w^{-1} dm(w) \right| \\ &= \left| \int_{\mathbb{T}} \left(1 - \frac{Kl_0 + k}{KN} \right) \pi_{Kl_0 + k}(F)(z_0) w^{-1} dm(w) \right| \\ &= \left| \int_{\mathbb{T}} \sum_{l=0}^{N-1} \left(1 - \frac{(Kl + k)}{KN} \right) \pi_{Kl+k}(F)(z_0) w^{K(l-l_0)-1} dm(w) \right| \\ &\leq \int_{\mathbb{T}} \left| \sum_{l=0}^{N-1} \left(1 - \frac{(Kl + k)}{KN} \right) \pi_{Kl+k}(F)(z_0) w^{Kl+k} \right| |w^{-Kl_0 - k - 1}| dm(w) \\ &= \int_{\mathbb{T}} \left| \sum_{l=0}^{N-1} \left(1 - \frac{(Kl + k)}{KN} \right) \pi_{Kl+k}(F)(z_0) w^{Kl+k} \right| dm(w) \\ &\leq \varepsilon \ \forall \ z_0 \in \overline{\mathbb{D}}. \end{aligned}$$

Choosing $N \geq M$ large enough so that $\frac{Kl_0+k}{KN} < \frac{1}{2}$ it follows that $|\pi_{Kl_0+k}(F)(z_0)|$ is arbitrarily small $\forall z_0 \in \overline{\mathbb{D}}$ so that $\pi_{Kl_0+k}(F) \equiv 0$ for $0 \leq k \leq K-1$ and hence F = 0.

Note added in proof (June 1997). Since this paper was submitted we have learned that a proof of Corollary III.14 has been found independently by S.C. Power [**Po2**].

References

- [A] T. Andô, On a pair of commutative contractions, Acta Sci. Math., 24 (1963), 88-90.
- [Ar] W.B. Arveson, Subalgebras of C*-algebras, Acta Math., 123 (1969), 141-224.
- [Br] B. Brenken, Representations and automorphisms of the irrational rotation algebra, Pacific J. Math., 111 (1984), 257-282.
- [B] R.B. Burkel, Iterating analytic self-maps of the disk, Monthly, 88(6) (1981), 396-407.
- [Bus] D. Buske, Hilbert modules over semicrossed products of the disk algebra, Dissertation, Iowa State University, Ames, 1997.
- [DMP] R.G. Douglas, P.S. Muhly and Carl Pearcy, *Lifting commuting operators*, Michigan Math. J., 15 (1968), 385-395.
- [DP] R.G. Douglas and V. Paulsen, *Hilbert modules over function algebras*, Pitman Longman, 1989.
- [HH] D. Hadwin and T. Hoover, Operator algebras and the conjugacy of transformations, J. Funct. Anal., 77 (1988), 112-122.

- [Ho] K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, NJ, 1962.
- [H] T. Hoover, Isomorphic operator algebras and conjugate inner functions, Mich. J. Math., 39 (1992), 229-237.
- [HPW] T. Hoover, J. Peters and W. Wogen, *Spectral properties of semicrossed products*, Houston J. Math., **79**(4) (1993), 649-660.
- [MM] M.J. McAsey and P.S. Muhly, Representations of non-self-adjoint crossed products, Proc. London Math. Soc., 47(3) (1983), 128-144.
- [Pe] G. Pederson, C^{*}-algebras and their automorphism groups, Academic Press, London/New York, 1979.
- $\label{eq:point} [P1] \quad J. \mbox{ Peters}, Semi-crossed \ products \ of \ C^*-algebras, J. \ Funct. \ Anal., {\bf 59} \ (1984), 498-534.$
- [P2] _____, The ideal structure of certain nonselfadjoint operator algebras, Trans. Amer. Math. Soc., 305(1) (1988), 333-352.
- [P3] _____, Invertibility and topological stable rank for semi-crossed product algebras, Rocky Mountain J. of Math., 20(2) (1990), 511-526.
- [Po1] S.C. Power, Classification of analytic crossed product algebras, Bull. London Math. Soc., 24 (1992), 368-372.
- [Po2] _____, Completely contractive representations for some doubly generated antisymmetric operator algebras, to appear.
- [Rf1] M.A. Rieffel, Irrational rotation C*-algebras, 1978, Abstacts of Short Communication, International Congress of Mathematicians.
- $[Rf2] \qquad \underbrace{\ \ }_{415-429.}, C^* \text{-}algebras \ associated \ with \ irrational \ rotations, Pacific J. Math., \textbf{93} (1981), \\ 415-429.$
 - [S] Z. Sebestyén, Anticommutant lifting and anticommuting dilation, Proc. Amer. Math. Soc., 121 (1994), 133-136.
- [Sz-NF] B.Sz. Nagy and C. Foias, Harmonic analysis of operators on Hilbert space, North-Holland, Amsterdam, 1970.
 - [Wa] P. Walters, Ergodic theory-introductory lectures, Lect. notes in Math., 458, Springer, 1975.

Received December 21, 1996 and revised July 30, 1997. The second author was partially supported by a grant from National Science Foundation.

ST. CLOUD STATE UNIVERSITY ST. CLOUD, MN 56301 *E-mail address*: DBuske@stcloudstate.edu

IOWA STATE UNIVERSITY AMES, IA 50011 *E-mail address*: peters@iastate.edu