PACIFIC JOURNAL OF MATHEMATICS
Vol. 185, No. 1, 1998

SEMICROSSED PRODUCTS OF THE DISK ALGEBRA:
CONTRACTIVE REPRESENTATIONS AND MAXIMAL
IDEALS

DALE R. BUSKE AND JUSTIN R. PETERS

Given the disk algebra A(D) and an automorphism «, there
is associated a non-self-adjoint operator algebra Z* x, A(D)
called the semicrossed product of A(D) with a. We consider
those algebras where the automorphism arises via composi-
tion with parabolic, hyperbolic, and elliptic conformal maps
¢ of D onto itself. To characterize the contractive representa-
tions of Z* x, A(D), a noncommutative dilation result is ob-
tained. The result states that given a pair of contractions 5,7
on some Hilbert space H which satisfy 7'S = S¢(T'), there exist
unitaries U,V on some Hilbert space K D H which dilate S and
T respectively and satisfy VU = Up(V). It is then shown that
there is a one-to-one correspondence between the contractive
(and completely contractive) representations of Z* x, A(D) on
a Hilbert space ‘H and pairs of contractions S and T on H satis-
fying T'S = S¢(T). The characters, maximal ideals, and strong
radical of Z" x, A(D) are then computed. In the last section,
we compare the strong radical to the Jacobson radical.

I. Introduction.

A semicrossed product of the disk algebra is an operator algebra associated
to the pair (A(D), ), where A(D) is the disk algebra and a an automor-
phism of A(D). Any such « has the form a(f) = foe (f € A(D)) for
a linear fractional transformation (. It is well-known there is a one-to-one
correspondence between contractions (i.e., bounded linear operators 7' on
some Hilbert space with ||| < 1) and contractive representations of A(D).
Here, analogously, there is a one-to-one correspondence between pairs S, T
of contractions satisfying the relation T'S = S¢(T') and contractive repre-
sentations of the semicrossed product, denoted Z* x, A(D), associated to
(A(D), ). This is meaningful since linear fractional transformations map
contractions to contractions (cf. [Sz-NF]). The question of whether con-
tractive representations of Z* x, A(D) can be dilated to representations of
the C*-crossed product Z x, C(T) is equivalent to the following: given a
pair of contractions S, T on some Hilbert space H satisfying T'S = Sy (T') do
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there exist unitaries U,V on some Hilbert space K D H which are dilations
of S, T respectively, and satisfy VU = Ugp(V)? This question, which is of
interest in its own right, has an affirmative solution [Theorem II.4]. Fur-
thermore, it marks the starting point in our study of semicrossed products
of the disk algebra, by giving faithful representations of Z* x, A(D).

Section V deals with the characterization of the maximal ideal space. The
character space, or equivalently the space of maximal ideals of codimension
one, was easily obtained from the representation theory [Corollary III.11].
It turns out there are no maximal ideals of codimension greater than one —
unless the automorphism (i.e., the linear fractional transformation) is elliptic
of finite period, say K, in which case the maximal ideals have codimension
either 1 or K?. Finally, these results, together with [HP'W] are used to com-
pare the strong radical with the Jacobson radical: the two radicals coincide
except when « is elliptic and nonperiodic (that is, an irrational rotation).
(Theorem VI.1.)

II. Dilating Noncommuting Contractions.

It is well-known that each contraction 7" on a Hilbert space H can be
dilated to a unitary U on a Hilbert space X C H [Sz-NF|. That is,
for n > 1,T"h = PyU"h ¥V h € H. This result then yields the fact
that the contractive representations of the disk algebra A(D) on H are
in a one-to-one correspondence with contractions on H [DP], [Sz-NF].
Moreover, it shows that each contractive representation is completely con-
tractive [DP]. Andd then generalized this result by showing that every
commuting pair of contractions S and 7" on H have a unitary dilation on
some I O H [A]. That is, there exist unitaries U and V on K such that
Vm>1 n>1, S™T"h = P,U™V™h. Hence the contractive represen-
tations of the bidisk algebra A(D?) on H are in one-to-one correspondence
with commuting pairs of contractions on H. Furthermore, each representa-
tion of A(D?) is completely contractive [DP]. Recently, Sebestyén showed
that every anti-commuting pair of contractions have such a dilation [S]. In
this section we show that when ¢ is a conformal automorphism of D and S
and T are contractions on H satisfying T'S = Sy(T') then a unitary dilation
exists. This result is then used to characterize the contractive representa-
tions of a semicrossed product. Proofs in this section closely resemble those
in [S]. Lemma II.1 is directly lifted from [S].

Lemma II.1. Let K and K' be Hilbert spaces, H C K and H' C K’ be
subspaces and X : ' H — K' and X' : H — K be given bounded linear
transformations. Then, there exists an operator Y : K — K' extending X

so that Y* extends X' if and only if (Xh,h') = (h,X'h') ¥ h € H,h € H .
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Moreover, |[Y|| < max{|[X], [[X"|[}.

Suppose now that S and T are contractions on H which satisfy T'S =
S¢(T) for some linear fractional transformation ¢ of . Note that p(7T) is a
well-defined contraction by the functional calculus found in [Sz-NF]. Let U
be the minimal isometric dilation of S acting on a Hilbert space K containing
H. Then, U* extends S*, where K = \/7_ K, and K,, = Vi, U*(H).

Lemma I1.2. Let S and T be contractions on H such that T'S = S¢(T).
If U is the minimal isometric dilation of S acting on KC, then there exists T,
an operator on K such that T} extends T*, | T,|| < 1, and T,U = Up(T,).

Proof. The proof is similar to [S]. At the n-th step of induction, Lemma
I1.1 is applied to the maps Up(T,,—1)U*|x, _, : Hno1 = U(K,—1) — K, and
TF , : Khow — K, and ||T,]] < 1 since ||¢(T,-1)|] < 1. Supposing that

© = pp, where |u| = 1 and ¢,(2) = ==, the conditions of Lemma II.1
are satisfied since (z, [1pa(To)|'y) = (o, fipa(T2)y) = (o, pa(T:_,)y) —
(x, (oo (T _1)]*y) for z € H,,_; and y € K,,_; [Sz-NF, 1.4]. 1

Lemma I1.3. Let S and T be contractions on 'H such that T'S = Sp(T). If
U is the minimal unitary dilation of S acting on a Hilbert space K, then there
exists T, on IKC which is a dilation of T with ||T,| <1 and T,U = Up(T,).

Proof. Let U, be the minimal isometric dilation of S actingon IC, ; H C K, C
KC. By Lemma I1.2, there exists a dilation T;,, of T" to K} with |7, || < 1 and
T, .U, = Usp(T,y). By considering a sequence of polynomials p, — ¢,
it follows from T,,U; = Usp(T,y) that o' (T,4) Uy = U,T,,. Taking
adjoints yields T);, U = Ujp '(T,4)*. Since U* is the unique minimal
isometric dilation of U7 it follows by Lemma I1.2 and [Sz-NF, 1.4] that
there exists an operator T on K such that T, extends T, || T3] < 1, and

T;U* =U*p~!(T,)*. Reasoning as above, T,U = Up(T,). |

Theorem I1.4. Let S and T be contractions on H such that T'S = Sp(T).
Then there exists a pair of unitaries U and V such that VU = Up(V) and
S™T™ = Py U™V ™|y for every m,n € N.

Proof. As in [S], let Uy be the minimal unitary dilation of S and T, a con-
tractive dilation of T with ToUy = Uyp(Ty). Then let V' be the minimal
unitary dilation of Ty and proceed to extend U, to a unitary such that
VU = Up(V). The proof follows [S] after it is shown that U defined on

K= i; V™ (Ko) by U(V"ky) = ¢ H(V)"Uoky is isometric. However, since

V is the minimal unitary dilation of Ty, it follows that ¢ ~'(V') is the mini-
mal unitary dilation of ¢ ~(Tp) [Sz-NF, 1.4.3] and so (U(V™hy), U(V"ky)) =
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(" (V)™Uohg, o~ (V)" Upko) = (™Y (To)" Uohg, o~ (To)" Uoko) =
<U0T0mho, U()T(?k0> = (tho, Vnk()) |:|

ITI. The Semicrossed Product.

Ezample I111.1. Let D be an operator algebra and a an automorphism of D.
Let (p, K) be a contractive representation of D and let H = H?(K), the space
of square summable elements in @,° K. Define a contractive representation
m of D on H by 7(f)(£0,&1:&2,---) = (p(f)&o, pla(f))ér, p(az(f))g% c) IE
U, is the unilateral shift on H, then U n(a(f)) = n(f)UsV f € D. Write
w = p for the contractive representation constructed above.

Ezample T11.2. The disk algebra A(D) can be considered as an operator
algebra acting (via multiplication) on the Hilbert space L*(T). Let « :
A(D) — A(D) be an (isometric) automorphism of A(D) so that a(f) =
f o ¢ for some conformal mapping ¢ of . Let U be the forward unilateral
shift on @2, L3(T), U(&,&1,&,...) = (0,&,61,...). For f € A(D), let
Dy be the diagonal operator on @®5°,L*(T) given by D;(&o,&1,&2,...) =
(féo, ()&, @*(f)&a, @®(f)Es,...). Then UDyyy = DU Vf € A(D). We
let A, denote the norm closed subalgebra of B (¢52,L*(T)) generated by U
and Df,f S A(]D)

Note that UD, sy = D;U so that 2, is commutative if and only if «
(and hence ¢) is the identity. Further, we remark that every conformal map
of D onto itself has the form ¢(z) = up,(z) where p € C,|u| = 1, and
va(2) = ==(a € D). We classify these as hyperbolic, parabolic, or elliptic
[B]. In the hyperbolic case, ¢, : D — D has two distinct fixed points which
lie on 9D. If ¢, is parabolic, it has a unique fixed point lying in 9. In the
elliptic case, ¢, has one fixed point in D (and one outside D).

By Lemma 10 of [HPW], the study of 2, can be reduced to three spe-
cific cases. If « is hyperbolic, parabolic, or elliptic, we can assume ¢ fixes
{—1,1},{1}, or {0} respectively.

Ezample 111.3. For f € A(D) and « as in Example II1.2, the composition
operator Cy,-1 and the Toeplitz operator Ty on H?*(D) satisfy C,-1Ty ) =
T;Cy,-1. We define B, to be the norm closed subalgebra of B(H?*(D)) gen-
erated by C,-1 and Ty(f € A(D)) where a(f)(z) = f(p(2)).

Definition III.4. Let o be an automorphism of D, p a contractive rep-
resentation of D on H, and V a contraction (isometry) on H. We say
that (p,V) is a contractive (isometric) covariant representation of (D, «)

it Vp(a(f)) = p(f)V V [ €D.
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Remark IT1.5. Contractive (isometric) covariant representations of (D, «)
exist as exhibited by the examples above. However, unlike covariant repre-
sentations of C*-algebras, there are isometric covariant representations (p, V')
satisfying p(a(f))V = Vp(f) but not p(a(f))V* = V*p(f). (Examples ITI.1
and II1.3 satisfy both conditions.)

Ezample 111.6. Let « be an elliptic automorphism of A(D). Let p be a
contractive representation of A(D) on ¢?(C) given by p(z)(&,&1,&,...) =
(0, u&o, u?&1, u3&s, ... ) and V the unilateral shift. Then p(a(f))V = Vp(f)

but p(a(f))V* # V*p(f).

Consider an automorphism « of C(T) given by composition with the re-
stricted Mobius transformation ¢|p. If §, denotes the Kronecker delta on
Z, the algebra ¢'(Z,C(T), «) consists of all formal sums >-%_ 4, ® f, with
o € C(T), > |l fnll < c0. An adjoint and multiplication can be defined
(on simple tensors) by (6, ® f)* = d_, ® o (f) and (6, @ f)(6m ® g) =
5n+m ® fan(g)'

A multiplication could also be defined by letting Z act on the left side
by (6, @ )0 @ g) = dpsm @ @™ (f)g. If the Banach space ¢'(Z,C(T), o)
is provided with this alternate multiplication, and the adjoint is left un-
changed, we obtain a new Banach algebra denoted ¢*(Z,C(T), ). The
Banach algebras ¢'(Z,C(T), «) and ¢*(Z,C(T), «)°? are isomorphic [P1].

Define the Banach algebra ¢'(Z", A(D),«a) to be the subalgebra of
MZ,C(T), )’ consisting of elements of the form F = > .6, ® f, with
fo € AD) and ||F|ly = 3,0 || foll < co. Endow ¢(Z+, A(D), o) with a mul-
tiplication (8, @ f)(0m @ g) = Snym @ @ (f)g so that it is a Banach algebra
without adjoint.

If (p, V) is a contractive covariant representation of (A(D), «) on H, then
T (ZF, AD),0) — B(H) defined by 7 (5000 ® f2) = Soso V"pl(f2)
is a contractive representation. Denote this representation by m =V X p.

Proposition II1.7. The correspondence (p,V) < V X p is a bijection
between the collection of contractive covariant representations of (A(D), a)
and contractive representations of (*(Z*, A(D), o).

Proof. By the preceding remarks, we need only show that 7, a contractive
representation of ¢! (Z", A(D), «) on H, gives rise to a contractive covariant
pair (p,V) of (A(D),a) and that 7 = V x p. Define a contraction V' on
H by V = 7(6; ® 1). Define a (contractive) representation p of A(D) by
p(f) = m(do ® f). Then (p,V) is a contractive covariant representation of
(A(D), «) since p(f)V = w(do@f-6:®1) = (61 @a(f)) = 7(6:®@1-00@a(f)) =
Vp(a(f)). To complete the proof, note that m = V' x p on a dense subset of
01(z+, A(D), o) and hence everywhere. u
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Recall that the crossed product Z x, C(T) is the completion of ¢!(Z, C(T),
«) under the norm ||F|| = sup{||=(F)|| : 7 is a contractive representation of
M(2,C(T),a)} for F € (1(Z,C(T), ) [MM].

Lemma IIL.8. The Banach algebra ¢*(Z*, A(D), «) admits a faithful con-
tractive representation.

Proof. Let p be the (faithful) representation of A(D) on L*(T) given by
multiplication. As in Example II1.1, (p,U, ) is a contractive covariant rep-
resentation of (A(D),«). Thus, U, x p is a contractive representation of
MzZ+, A(D), ) on @y° L*(T). Suppose (Uy X p)(>,500n @ fn) = 0. Then
Ym0 U" Dy, = 0in %A, and hence (Enzo U”Dfn> (&,0,0,...) =(0,0,0,...)
V & € L*(T). Tt follows that f; - & = 0 V&, € L*(T). By the faithfulness of
0, fx =0V k>0. Thus, U, x p is faithful. Ul

With that motivation, we define an operator enveloping norm on ¢*(Z™,
A(D), a).
Definition IIL.9. For F € (Y(Z*, A(D), «), set || F|| = sup{|[(V x p)(F)] :
(p,V) is a contractive covariant representation of (A(D),a)}. Define the
semicrossed product of A(D) with «, denoted Z* x, A(D), to be the com-
pletion of ¢*(Z*, A(D), o) with respect to this norm.

Since contractive representations p of A(D) on H correspond bijectively
with contractions on H [Sz-INF], it follows from Proposition II1.7 that there
is a bijection between the contractive representations of £!(Z*, A(D), o) and
the contractive covariant representations of (A(D), o). Since *(Z*, A(D), o)
is dense in Z* x . A(D), the contractive covariant representations of (A(D), a)
give rise to all contractive representations of Z* x, A(D).

Theorem II1.10. The contractive representations of Z+ x, A(D) are in
a one-to-one corespondence with pairs of contractions S and T satisfying

TS = Sp(T).

Corollary II1.11. The character space of Zt x, A(D) is M = {(20,&) €
C%: 20| < 1,|&| <1 and either & =0 or v(20) = 20 }-

Proof. Any character v (a contractive representation of Z* x, A(D) on C)
is determined by a pair (zo, &) € C? satisfying |29 < 1,[&] < 1, and 2§y =
&op(z0). However, zo&y = £op(z0) if and only if £ = 0 or z is a fixed point
of . Ul

Proposition I11.12. Z* x, A(D) is isomorphic to a non-self-adjoint sub-
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algebra of Z %, C(T).

Proof. Since ¢*(Z*, A(D), «) can be considered to be a subalgebra of ¢*(Z,
C(T),~), there exists an embedding 2 of ¢}(Z", A(D),a) into Z x, C(T).
If, for F € (Y(Z", A(D), ), ||F| = [|«(F)||, then ¢ can be extended to an
isometric isomorphism 7: Z* x, A(D) — Z X, C(T) so that

MNZF, AD), @) — 7 x, C(T)

| Ji

Z* xq AD) ——— Z x,C(T)

L

commutes. Since every covariant representation (m, V') of (C(T), o) restricts
to a contractive covariant representation of (A(D), ), it follows that || F|| >
|o(F")||. We show |[o(F)| > ||F|| to complete the proof. If 7 is any contractive
representation of ¢*(Z*, A(D), «) on H, it is determined by two contractions
S =7(6®1) and T = w(dy®z) which satisfy T'S = S¢(T). By Theorem I1.4 ,
there exist unitaries U and V on K 2O H such that VU = Up(V) and S™T" =
Py U™V"|3, ¥ m,n € N. Then 7 can be extended to a contractive Banach
s-representation 7 of £*(Z, C(T), «)°? on K by defining 7 (307 0, ® fn) =
Yoneoo UM fn(V). Hence |[F|| < [[o(F)]- O

n=—oo

Recall that the semicrossed product norm (Definition II1.9) was defined
by taking a supremum over the collection of contractive covariant represen-
tations of (A(D),a). By Theorem II.4, we could equally well have defined
this norm by taking a supremum over the (smaller) collection of isometric co-
variant representations of (A(D), «). In fact, by Proposition IV.1, we could
also have defined this norm by taking a supremum over the pure isometric
covariant representations of (A(D), ). Moreover, as Corollary II1.14 shows,
this norm makes every representation of Z* x, A(ID) completely contractive.

The proof of the following proposition, which is used only in the subse-
quent corollary, is left to the reader.

Proposition II1.13. The C*-envelope of Z* x, A(D), C*(Z* x, A(D)),
is isometrically isomorphic to 7 x, C(T).

Corollary II1.14. FEvery contractive representation of Z X ., A(D) is com-
pletely contractive.

Proof. By a fundamental theorem of Arveson [Ar], a contractive representa-
tion p of Z* x , A(D) on H is completely contractive if and only if there exists
a triple (IC, p, X)) where p is a x-representation of C*(Z" x, A(D)) = Z x,
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C(T) on K and an isometry X : H — K such that p(F) = X*p(F)X VF €
Z* x, A(D). However, each contractive representation p of Z* x, A(D) on
‘H is completely determined by a pair of contractions S and T satisfying
TS = Sp(T). Let U and V be the pair of unitaries on K generated by The-

orem II.4 and take X : H — K to be the inclusion map. Define then p on a
dense subset of Z x, C(T) by p (X0, ® fn) = X2, U™ fu(V). a

IV. A Concrete Representation.

Proposition IV.1. Z* x, A(D) is completely isometrically isomorphic to
Ay

Proof. Let w : Z x,, C(T) — B (=, L*(T)) be defined on the dense sub-
set (1(Z,C(T),a) by >0, ® f, — 27 UM, where U is the bilat-
eral shift and My(..., & 1,&0,&1,...) = (.., (f)ér, f&o,a(f)&r, ... ). By
[Pe, 7.7.5], 7 is an isometry since 7(f) - & = f- & (£ € L*(T)) is faith-
ful. In fact, 7 is completely isometric as it is a *-homomorphism. Hence
T = T|z+x,am) is a complete isometry. Note that @;” L*(T) is invariant
under 7(Z* x4 A(D)) so that 7 : Z x, A(D) — B (@ L*(T)) defined on
a dense subset by T (ano 0n ® fn> =7 (Enzo On @ fn) |EBoo r2(ry 18 clearly
completely contractive onto its range 2,. It is completely isometric if the
induced map 7y : (Z* x, A(D)) ® M(C) — A, @ My(C) is isometric for all
k>1. Let F = (F;;) € (Z* x, A(D)) ® M;(C). We show that

17(F)

| = I@FEDN = [(TED)] « /s
8(60)

0

Define
05 (L*(T)) = {f = (&) o € éLQ(T) &, =0 for k< —N} )

Then each %, (L*(T)) is invariant under 7(Z* x A(D)) and Uy, £% (L*(T))
is dense in @@= _L*(T). Hence, Uys @Y % (L*(T)) is dense in
@Y™= L*(T)). It follows that
I(@(EF)I =sup  sup  [|(F(F))E]l
N>0 k
¢e@@ A (L3(1)
lel=1
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= sup sup (7 (F3))Eull
N30 &
ce@D & (12(T))
1
llell=1

where & = (UNE,UNE,,...,UNE,), U is the bilateral shift, and & €
(% L*(T). Thus,

(T (Fi)| = _sup (7 (F3;)nll
ne@ 3(L3 (1))

1
lInll=1

— || &(&wm)

0

O

Let us now reconsider the algebra B, defined in Example I11.3. In what
follows we discuss the isomorphism question regarding Z* x, .A(D) and B,, in
the case where « is elliptic and irrational. Recall that a change of variables
[HPW, Lemma 10| reduces the analysis to the case where ¢(z) = uz where
1 is not a root of unity.

Proposition IV.2. If «a is elliptic and nonperiodic, then A, is completely
isometrically isomorphic to B,,.

Proof. Let C denote the irrational rotation algebra, i.e. the C*-algebra gen-
erated by any two unitaries S and 7" satisfying 7'S = pST [Rf2], [Br]. In
particular, C can be realized as Z x,, C(T) or as the C*-algebra of operators
on B(L*(T)) generated by the composition operator C,-1 and multiplica-
tion operators M;(f € C(T)). Since ¢*(Z*, A(D),«) can be isometrically
embedded in ¢!(Z,C(T), u), it follows that p : 2, — C defined on a dense
subset by p (Eﬁ;o U"D fﬂ) =y, Co-1 My, is an isometric representation
on L*(T). Let pyzm) : Ao — B(H?*(D)) be given by py2(F) = p(F)|u2m)-
Then pg= is a contractive representation of 2, onto B,. To show that pge
is isometric, we show ||p(F)|| = ||p(F)|u2m|| VF € .. This follows as in
Proposition IV.1.

By Propositions IV.1 and II1.13, C*(2,) = Z x, C(T). Let m be a C*-
representation of C*(2,) on L*(T) defined by 7(U) = C,-1 and 7(Dy;) =
M; where U is the bilateral shift on &> _L?(T) and Dy(...,¢_1,&, &1, ...) =
(cya (e, o, alf)E,...). Let X : H*(D) — L*(T) be inclusion. Then
pu2(F) = X*n(F)X V F € 2,, and pg> is completely contractive.
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By the above comments and Proposition I11.13, C*(8,,) = Z x,C(T). Let
7’ be a C*-representation of C*(B,,) on &> L*(T) defined by 7'(Cp-1) = U
and 7'(M;) = D; where U and D; are as above. Let X : @&FL*(T) —
@®>, L*(T) be inclusion. Then p3(F) = X*7'(F)X V F € B, and p,: is

also completely contractive. [l

When « is elliptic and periodic we can construct a contractive, but not
faithful, representation of 2, onto B,.

Proposition IV.3. 7 : %, — B, determined by U — Cy,-1 and Dy — T}
s a contractive, surjective homomorphism.

Proof. The result follows by Proposition IV.1 and the fact that a contractive
representation of Z* x, A(D) is completely determined by two contractions
S and T satisfying T'S = So(T). [l

Remark IV.4.  Proposition IV.3 shows that algebraically 2,/ kerm =
B,. However, kerm # (0). For example, if f € A(D) then 0 = C-:T} +
C’fle,f =n7(UD; + UX**D_;). This algebraic isomorphism explains the
disparity in the character spaces of 2, and B, [H]| when « is periodic.

V. The Maximal Ideal Space.

In this section we show that the maximal ideal space of 2, is the same as the
character space except in the case where « is elliptic and periodic. We use an
ergodic argument for the nonperiodic elliptic case and a spectral argument
for the hyperbolic and parabolic cases. We then characterize the maximal
ideal space in the case where « is periodic.

Recall from Corollary IT1.11 that the maps y&°) : 2, — C (where |z| <
1, [&] < 1, and ¢(20) = 20 if & # 0) defined on a dense subset by
&) (i U'Dy,) = Y1y fi(20)& are the characters of 2,. We remark
that the multiplicative linear functionals of 2, could also be calculated by
using a technique similar to that found in [H] and [HH].

Remark V.I. When « is elliptic and ( is either parabolic or hyperbolic,
it is known that A, is not isomorphic to 2. This follows since the radical
in the elliptic case is {0} whereas in the other cases the radical is the non-
trivial set of quasinilpotents (Theorems 11 and 12 of [HPW]). Knowing the
characters of 2, allows us to conclude that A, 2 Az when « is parabolic
and ( is hyperbolic; for if such an isomorphism I' existed, it would induce a
homeomorphism 7 of the character spaces defined by 7(v)(F) = v(T'(F)).

To each FF € 2, we may associate a unique Fourier series, F' ~
Sooe UMDy, . We denote by m,(F) the nth Fourier coefficient of F. Some
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useful properties of these Fourier coefficients are listed in the following lemma
from [HPW].

Lemma V.2. Forn=0,1,2,..., there is a linear mapping 7, : A, — A(D)
satisfying

@) Nma (B < |IF|l, F €A

(ii) w(FG) = mo(F)mo(G) for F,G € U,.

(i) (% U’“ka) = {J;” Osns N}.

k=0 n>N
(iv) m(F)=0Vn>0=F=0.

Consider the case where « is either parabolic or hyperbolic. From Theo-
rem 12 of [HPW], the Jacobson radical is Rad (2,) = {F € ™A, : m(F) =0
and 7, (F')(z0) = 0 for ¢(29) = 20}. That is, the radical is precisely the set of
quasinilpotent elements. We show by way of contradiction that every maxi-
mal ideal M in %, contains the commutator ideal, denoted C, and hence is
of codimension one.

Lemma V.3. If B is a (unital) Banach algebra and M is a mazimal ideal
in B not containing the commutator ideal C, then B = M +C.

Proof. By the maximality of M, we can find by = mg + ¢ € (M +C) N
{beB:|b—1| < 1} where my € M and ¢, € C. Since by is invertible,
1=by"mo +by'co € M+ C and hence B= M +C. Ul

Proposition V.4. Let a be parabolic or hyperbolic. The maximal ideals of
. are precisely the kernels of its characters.

Proof. We show that any maximal ideal M contains the commutator ideal.
Suppose it does not. By the above lemma, 4 F € M and C € C such that
D, = F+ C. Since vV (C) = 0 it follows that vV (F) =1V 2z € D. Write
F = D; + G so that mo(G) = 0 and 7,(F) = 7,(G) for n > 1. Let 2z, be
a fixed point of ¢. Since v{&(C) = 0 it follows that {8 (F) = ~{9(D;) =
1V ¢ €D. Hence, v (F — D) = 307 mu(F)(2)€" = 0V & € D. Thus,
Tn(F)(20) = 0 for n > 1, and so mo(G) = 0 and 7,(G)(zp) = 0 for n > 1.
By the preceeding remarks, G € Rad (2,). Hence sp(G) = {0} so that
sp(F) = sp(D; + G) = {1} by the spectral mapping theorem. But then
F € M is invertible, contradicting the maximality of M. [l

We now consider the case where « is elliptic. Recall that we are assuming
w.l.o.g. that a(f) = f o ¢ where ¢(z) = pz for some |u| = 1. The structure
of 2, is closely tied to whether pu is a root of unity or not.
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By the special structure of o and the definition of 2, it is an easy calcula-
tion to show that & : 2, — 2, defined on a dense subset by & (>.;,U"Dy,)
= > U'Dyy,) is an isometric automorphism. If 4 is a Kth root of unity,
define #:2, — A, by F — L3S 'a"(F). Note that # is d-invariant.
Defining 2, to be the closed subalgebra of 2, generated by {U,D; : f is
a-invariant}, it is easy to verify that 2, is maximal abelian and # is a linear
projection onto 2. As in [P2, V.8] we can define a map # with similar
properties when « is nonperiodic by # (>.1_ U'Dy,) = > 1, UZ'Df fdm(s) =

T

> ieo U' Dy, (0)-

Proposition V.5. If « is nonperiodic, then 2, is the subalgebra of U, gen-
erated by {U, D1}. Furthermore, # is a linear projection onto the mazimal
abelian subalgebra Ay of A,.

Proof. Let F = Zj: U'Dy, € Uo. Then by a-invariance f; (u*-3) = f; (5)

VEeN 0<i< zn? so that analyticity, nonperiodicity of «, and the ergodic
theorem gives f; = f;(0) on D and hence D. Since # is clearly a linear
projection onto 2y, we need only show 2, is a maximal abelian subalgebra
of .. By definition, 2, is commutative. Suppose that F' € 2A,, F ~
Soor UMDy, commutes with o. Then FU = UF and a(f,) = f, Vn > 0.
Each f,, is then constant by the nonperiodicity of «. [l

The characters of 20y, which are easy to compute, will be used to charac-
terize the maximal ideals in 2. Since 2{y is a commutative Banach algebra,
its maximal ideal space corresponds in a one-to-one fashion with the kernels
of its characters. If «v is nonperiodic, then 20y = A(D) (given by U — z) and
its characters are determined by U +— & € D. Denote these by véfo). If a is
periodic with period K, there are more characters. In fact, if we denote by
7%0)7z0 the map determined by U +— & and D, — 2z, the maximal ideal space
of 2y can be computed as the characters of 2, were using the technique found
in [H] and [HH]. If y = min{f : ¢ = p*, 0 <k < K—1, 0 < § < 27}, then
My, = {véfo)’mwo :0<r <1, [£] <1, 0<6, <} is the set of characters
on Ap.

As in [P2, V.9], for an ideal Z C A, define Z = {F € A,: #(Ha&"(F)G) €
I VH,G € A,,n > 0}. Using # we can then construct a one-to-one corre-
spondence between the maximal ideals in 2, and the maximal a-invariant
ideals in A,,.

Proposition V.6. (i) If My C o is a mazimal ideal, then Mvo CA,is a
maximal &-invariant ideal in 2A,,.
(ii) If R is a mazimal &-invariant ideal, then #(R) C Ay is a mazimal
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ideal. Furthermore, R = #(R).

Let M be a maximal ideal in 2, Let (U) denote the closed ideal in 2,
generated by U. Then, M - (U) C &(M). Furthermore, &(M) maximal
implies &(M) is prime so that either (U) C &(M) or M C &(M).

Theorem V.7. If a is nonperiodic, the maximal ideal space of U, is
precisely the space of characters.

Proof. Let M be maximal in 2,. If M C &(M) then M = &(M). Thus,
M is a-invariant and M = #(M) ={F € A, : #(H&"(F)G) € kery ¥n >0
and H,G € 2, } for some v a character on 2. To show that M = ker *yég) for
some ¢ € D, we need only show M C ker 785). But F~% > U"D; ,FeM
implies 0 = Y(#(F) = 7 (X220 U Dy 0) = S0 ful0)E" = 1O (F) for
some & € D.

If (U) C &(M), then by applying a~! it follows that (U) C M. M/{(U)
is then a maximal ideal in 2A,/(U). But 2,/(U) = A(D). Hence, M/{U)
corresponds to a maximal ideal in A(ID); namely a kernel of point evaluation.
So, M/{U) = ker ¥ for some z € D. O

We now show that if a has period K, there are maximal ideals in 2,
of codimension 1 and K?2. Define Sk to be the K x K shift matrix given
by S;; = 1ifi—j =1 mod K and 0 otherwise and T'(f, ) to be the
K x K diagonal matrix given by T'(f,u);; = f(u/"'z). For |we| < 1 and
|z0] < 1, define p., w, : Ao — Mg (C) on a dense subset by Y05 U'Dy, +—
Yo wpSKT (fo, m)-

Lemma V.8. If|z] <1, |wo| <1, then p.yw, is a contractive representa-
tion.

Proof. This follows by Theorem III.10 since p,, ., is determined by two
contractions Sk and T'(z, u) satisfying T'(z, 1) Sk = Sxp(T(z, 1)). L

By the simplicity of Mg (C), ker p,, ., is @ maximal ideal in 2, if 2z # 0
and wqy # 0.

Lemma V.9. Ifz, # 0 and wy # 0, then p., ., 15 a contractive represen-
tation of A, onto Mk (C).

Proof. We need only show that if 2y # 0 and wy # 0, then p,, ., is onto. For
0<i,5 <K -—1,define
K=1

[T (p'z—2)

1 AR

fij(2) = K+i—j(mod K)  K—1
Wy

ll;ll (plzo — 20)
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Then, for 0 < k < K —1,

I1 (120 — 20)
1 I£K l'?o d K)
k o —(mo
flJ(IU/ ZO) - wKi—u(InodK) ) K-1
[T (u'20 — 20)
=1
1 fo i ki
= wé(+i_j(1110d K) 1 if k=1
1
= e Ry Okt
Hence, p.qw, is onto Mg (C) as E;j = .y, (UKTiZimed 5D, u

Theorem V.10. If « has period K and M is a mazimal ideal in A, then
M = ker p., ., for some zy,wy € D.

Proof. As in the nonperiodic case, &@(M) is maximal and hence prime with
either M C &M) or (U) C a&(M). If (U) C &M), then since (U) is
a-invariant and o is periodic, (U) C & (M) = M. Thus, M = kerp.,

for some z, € D. Suppose then M C &(M) so that M = a(M). By
Proposition V.6, #(/\/l) = ker for some character v on 2y and hence M =

—_~——

#(M) = kery(g) for some ¢ € D and 2, = re’® where 0 < r < 1, 0 <
0<w,andz/J:mm{G:ei‘):,uk,()gkgf(—l, 0 < 6 < 27} Since
ker p., w, is maximal in 2,,, we need only show that ker p,, ,,, € M for some
zo, wo. But, ker p.; ¢ is G-invariant so that p.; o (&"(F)) = 0 ¥n > 0 and
F € kerp, ¢. Hence p.; ¢« (#(H&"(F)G)) = 0V n > 0and H,G € 2,
yielding 7 (#(Ha&"(F)G)) = 0 and F € M. O

1. VI. The Strong Radical.

Having computed the maximal ideal space of 2., we can now compute its
strong radical and compare it to its Jacobson radical. For the remainder «
will be fixed.

Theorem VI.1. Let2A; and Ag denote the Jacobson and strong radicals
of ™. respectively.
(i) If « is parabolic or hyperbolic, A; = As.
(i1) If « is elliptic and nonperiodic, A; C Asg.
(iii) If « is elliptic and periodic, 2A; = As = (0).
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Proof. From [HPW], the Jacobson radical is precisely the set of quasinilpo-
tents. If « is parabolic or hyperbolic, then A; = {F € A : 7o(F) = 0 and
T (F)(z0) = 0V n > 1 for z fixed by a}. Since the maximal ideals are
precisely the kernels of the characters in these cases, (i) follows as

As ={F €U, : Feker7” VzeDand F € kery$ V¢ €D
for zp fixed by a}

n>1

= {F :mo(F)=0and Y m,(F)(%)¢" =0V ¢ € D}
={F :7m(F)=0and 7,(F)(z0) =0V n > 1 for z fixed by a}
:Q[J.

If « is elliptic, 2A; = (0). When « is nonperiodic, g 2 (0) as UD, € g for
example. In fact, g = {F : m(F) = 0 and 7,(F)(0) =0 Vn > 1}. If a is
periodic of period K, we show 20g = (0) to complete the proof.

First, note that the Fourier series of F' € 2, is Cesaro summable [P2].

Hence,
KN-1
1

l
— > UmD,,m(F)> - FH =0.
=0 KN (m—O

Let F € g and € > 0 be given. We show that m(F) =0V [ > 0 so that
F = 0. Choose M such that if N > M we have

lim
N—oo

KN-1 4 ! N1
Z KN (Z UmDm(F)) - FH - Z UlD(kﬁ)MF) —-F|<e.
=0 m=0 1—0
Then,
KN—1 B
Pzo,w ( Z UZD(l,ﬁ)m(F) — F) < eV zp,w €D by Lemma V.8.
1=0
Since F' € AUg,

<eE.

KN-1
l
Prow < >. U Dummm)
=0

In particular, for 0 < k < K — 1 we have

= Kl+k
; <1 -2 >7rKl+;€(F)(zo)le+k

<eVzeDweT.

Fix Iy > 0. Note that

N-1
Kl+k .
§ 1— F +k
’JI‘/ 1=0 ( KN ) ﬂ-KH_k( )(ZO)w

dm(w) < eV z € D.
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It follows, since [ z'dm(z) =0 unless [ = —1, that
T

Kly+k

1-—-
T

|7 i1y (F) (20) ‘/w Ydm(w)

(1- LR B ) mrt e (F) o) dm(w)

IN

|w_Kl°_k_1| dm(w)

1:2;( - Ké;“) ik (F)(z0)w™ "

/
= /NZ:< — K;{;”) Triee(F)(20) w0~ dm(w)
/

N—1
Kl+k
_ / (1 ( )> rrctsn (F) (20w | dm(aw)
2 KN
=
<eV 2o € D
Klo+k 1

Choosing N > M large enough so that =2%* < 5 it follows that
|Tr1, 46 (F)(20)] is arbitrarily small V 2z, € D so that mg;,1(F) = 0 for

0 < k<K —1 and hence F = 0. |

Note added in proof (June 1997). Since this paper was submitted we have
learned that a proof of Corollary II1.14 has been found independently by
S.C. Power [Po2].
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