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PRODUCTS OF BLOCK TOEPLITZ OPERATORS

CAIXING GU AND DECHAO ZHENG

In this paper we characterize when the product of two
block Toeplitz operators is a compact perturbation of a block
Toeplitz operator on the Hardy space of the open unit disk.
Necessary and sufficient conditions are given for the commu-
tator of two block Toeplitz operators to be compact.

1. Introduction.

Let D be the open unit disk in the complex plane and 9D the unit circle. Let
do(w) be the normalized Lebesgue measure on the unit circle. We denote
by L*(C™) (L? for n = 1) the space of C"-valued Lebesgue square integrable
functions on the unit circle. The Hardy space H?(C™) (H? for n = 1) is
the closed linear span of C"-valued analytic polynomials. We observe that
L*(C") = L* ® C™ and H*(C™) = H?> ® C™, where ® denotes the Hilbert
space tensor product. Let M,,,, be the set of n X n complex matrices. L3,
denotes the space of M, ,-valued essentially bounded Lebesgue measurable
functions on the unit circle and H;, denotes the space of M, ,-valued
essentially bounded analytic functions in the disk.

Let P be the projection of L*(C™) onto H*(C™). For F € L2, , the block
Toeplitz operator Ty : H*(C™) — H?(C™) with symbol F is defined by the
rule Trh = P(Fh). The Hankel operator Hy : H?(C™) — L*(C™) © H*(C™)
with symbol F'is defined by Hrh = (I—P)(Fh). The block Toeplitz operator

Tr has the following matrix representation:

Ag AL Ay
A Ay A .-
Ay A, Ay -

where A; belongs to M,,«,. The word “block” refers to the fact that in the
above matrix representation the entries are not scalars but linear transfor-
mations on C™. In this paper the word “block” will often be omitted. For

more details on the block Toeplitz operators and Hankel operators, see [7],
[9] and [3].
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If we set H*(C") = H>®--- @ H?, then we see that the Toeplitz operator
Tr has the form
Tfu Tflz U Tf1n
Ty = ij21 TJ.’22 : Tf2n
Tfnl Tfn2 T Tfﬂn

and the Hankel operator Hr has the form

Hfu Hf12 Hfln
Hf21 Hf22 Hf2n

HF = . . . . ’
Hy, Hy, - Hy,
where
fll f12 fln
St fur -

Thus as in the scalar case, the block Toeplitz operators and Hankel operators
are connected by the following important relation:

TFG — TFTG = H;*HG

The map &: F — Ty, which is called the Toeplitz quantization, carries
L3, into the C*—algebra of bounded operators on H?(C™). It is a contrac-
tive *-linear mapping [7]. However it is not multiplicative in general. Indeed
Brown and Halmos [4] showed that for scalar functions f and g, TyT, = Ty,
if and only either f* or g is in H*°. It is not difficult to see that in the matrix
case TrTg = T still holds if either F* or G is in HZS ,,. But the converse
is not valid in the matrix case. We will characterize F' and G such that
TrTe = Trg; see Theorem 6 below for details. On the other hand, Douglas
[7] showed that £ is actually a cross section for a *-homomorphism from the
Toeplitz algebra, the C*—algebra generated by all bounded Toeplitz opera-
tors on H*(C™), onto L2%,,,. So modulo the commutator ideal of the Toeplitz
algebra, ¢ is multiplicative.

The main question to be considered in this paper is when the product

of two Toeplitz operators is a compact perturbation of a Toeplitz operator.
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This problem is connected with the spectral theory of Toeplitz operators;
see [7], [9] and [3]. It follows from a theorem of Douglas [7] that T=Tg
can be a compact perturbation of a Toeplitz operator only when it is a
compact perturbation of Trg. Thus it suffices to study when the semi-
commutator Trg — Tr1Tg is compact. When F' = f and G = g are scalar
functions, the problem was solved by Axler, Chang, and Sarason [2] and
Volberg [14]. Their beautiful result is that Ty, —T;T, is compact if and only
if H®[f] H*>[g] C H®+C(9D); here H*[g] denotes the closed subalgebra
of L*> generated by H*> and g.
Recently, Zheng [15] proved that T, — T}T, is compact if and only if

Y, |k | Hyh 1 = 0

here k. denotes the normalized reproducing kernel in H? for point evaluation
at z. If we write f = f. + f_ for each f € L where f, and f_ are in H?,
then the above condition is equivalent to

lim [f+ = Fe(2)F(2)lg- — 9-()F(2) =0,

where h(z) denotes the harmonic extension of h at z € D for h € L', via the
Poisson integral

h(z) = h(w)m

oD ’1 — wEP

do(w).

For the block Toeplitz operators, we will show that Trg—TrT¢ is compact
if and only if

lim [|[|(F})" = (F)"(2) ()] ?[1G- = G- (2)P(2)] 2] = 0,

|z|—1

where we write F' = (fi;)nxn as F' = Fy + F_ with F}, = ((fi;), )nxn and
F_ = ((fij)_)nxna and
H(2) = (hij(2))nxn

if H = (hij)nxn. For a matrix A, we define |A|*> = AA*. Several other
equivalent conditions, in particular a condition in the spirit of the result of
Axler, Chang, and Sarason [2] and Volberg [14], will be given.

In [11] Gorkin and Zheng characterized when the commutator TyT, —
T,Ty is compact for scalar functions f and g. In this paper, by considering
block Toeplitz operators, we will give an unified approach for the study of
compactness of boths semi-commutators and commutators. Namely, by a
theorem of Douglas [7], we have that the commutator TxT; — T Tr of block
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Toeplitz operators Tr and T is compact if and only if /G = GF and the
semi-commutator Tgc — TgT¢ is compact, where

F -G G0
o= [0 =[5

see Theorem 7 below for details. Thus we will show the commutator TrTg —
TeTr is compact if and only if FG = GF and

- *(5 1/2
B = FXERE 6 6 e
lim
-G = (G4 () (G ()P
(Fy —Fi(2))(2) (G+) (G)*(2)]*(2)
1/2

2. A necessary condition for compactness.

In this section we will obtain a necessary condition for the compactness
of the semi-commutator Trg — TrT¢. This will also motivate a necessary
and sufficient condition for Trg — Tr1g to be zero. The question when
Trg — TrTg is zero will be discussed in the next two sections.

First we introduce an antiunitary operator V on L? by defining (Vh)(w) =
wh(w). The operator enjoys many nice properties such as V=1(I — P)V = P
and V = V~!. These properties leads easily to the relation V-'H;V = H;.

Let  and y be two vectors in L?. 2 ®y is the operator of rank one defined
by

(z@y)(f) = (fy)z.

Observe that the norm of the operator x ® y is ||z|2||y]|2-

For z in D, let k., be the normalized reproducing kernel ((kﬁw for point
evaluation at z, and ¢, the M&bius map on the unit disk,

¢. can also be viewed as a function on the unit circle. Let ®, denote the
function diag{¢.,---,¢.} € H:%,. The product Ty T;- is the orthogonal
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projection onto H? © {k.}. Thus 1 — T, T;- is the operator k. ® k. of rank
one. This leads to the following lemma.

Lemma 1. Let F = (fij)axn and G = (Gij)nxn be in LyS,,.. Then the
operator HpHg — Ty HpHcTs, is anti-unitary equivalent to

Z Hy k. ® Hy,, k.
j=1

Proof. Let F' = (fij)nxn and G = (gj)nxn- Then it is easy to check that

HpHe = (Z H?ﬂngk)
nxn

j=1

nxn

and

Ty HpHcTs, = (Z T;zH}jinjkTm) :
nxXn

=1

So the difference HpHg — Ty HpHcTy, is

(i [H;jngjk' - T;zH}kjngjkT¢zi|)

i1
J nXxn

Hence it is sufficient to check that
n
|:H}kjiH93k‘ - T;zH;jngjkT¢z:|

1

J

is anti-unitary equivalent to

> Hy k. ® Hy,, k..
=
Applying V and V! to the difference

n

> |H; H,y,, — Ty Hj H,, T, |
j=1
we have

vt i {H}k'j,;ngk - T;zH}sz‘ng"‘Td’z} v

j=1
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=V Z [H;jngjk o H;jmzngmz V.

j=1
Because V'H,;V = H3, the above equality simplifies to
= V71 Z [H;jngjk - H;jmzngk(bz} Vv

j=1

Zn: [HfﬂH;jk - H-fji¢2H;jk¢z:|

<.
I
—

I

Hy

Ji

(1-1.15) H;,.

<
Il
—

Since 1 =Ty T} =k, ® k., the right hand side of the above equation is
> Hyk.® Hy, k.
j=1

for all z in D. This completes the proof of the lemma. [l

Let trace be the trace on the trace class of operators on H? and tr denote
the trace on the n by n matrices.

Lemma 2. Let F' and G be in L™

von- Let T'= HyHg — Ty HpHgTs, .
Then

trace{T*T} = tr[|F_ — F_(2)]*(2)|G_ — G_(2)*(2)].
Proof. Let F' = (fij)uxn and G = (¢ij)nxn.- By Lemma 1, HjHg—

Ty HpHoTg, is anti-unitary equivalent to

Tl = (Z Hf]lkz ® ngkkz)
j=1

nxn

So we need to computer the trace of the operator 777;. It is easy to see that

;T = (Z (Z Hy, k. ® ngkk:z) <Z Hy k.®H,g, k:))
J I

J1

= (ZZZ<Hfu.7'1kz7Hfjjlkz>ngka ® Hgmkz> )
jiJ K
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where the second equality above follows from the fact that

(1 @ y1)" (22 @ Yo) = (T2, T1)Y1 @ Yo
Thus

trace{TyT,} = ZZZZ (Hy,, k., Hy,, k) (Hy, k., Hy k).
J1 J H
If we write fi; = (fij)+ + (fi;)- and gi; = (gi;)+ + (955) - for (fij)+, (9i)+ €
H? and (fi)-, (9i)- € zH?, then Hy k. = ((fi)- — (fij)-(2))k. and
H,, k. = ((9i)- — (9i;)—(2))k.. Therefore, by a change of the order of sum-
mations, we have

trace{T; T }

—ZZZZ (Fui)— = (i) = (2)kar [(Fi)— = (Fign)— (2)]k=)

JiJ H

(g0) - = (g) - (2)]Ez, [(gu) - = (gu) - (2)]k2)
= ZZ (Z (i) = (Fug )= (2)Ik= [(Fi50) - = (fjjl)(Z)]k?z>)

' <Z<[(9ﬂ)— = (g50)- ()K=, [(gu) - — (%l)—(@]’@)) :

l

Note that

(Z([(fml) = (Fuin) - (D)Ik=, [(Fi5) - = (fjjl)(Z)]kﬁ)

= [FL = F_(2)]*(2),

and similarly

l

= |G- = G_(2)](2).

<Z<[(9jl)— = (g50) - (2)ks; [(9u) - — (gul)—(z)]k2>>

nxn

Hence

trace{Ty T} =3 3 (IF- = F(2)]*(2))s(IG- = G-(2)(2))n
=D lIF- = F-()P()(IG- = G_(2)*(2))]
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— tl|F. — F_(2)P(2)|G- — G_(2)]*(2)]

Here we note that for a matrix A, |A|> = AA* and (A),; denotes the (¢, j)—th
entry of A. This completes the proof of this lemma. O

Theorem 3. Let F' and G be in L

nxn*

I [{IF- = F-()PR]6- = G-EPEI =0,

If HrHg is compact, then

Proof. Set H*(C™) = H* @ --- @ H?. Let (A4;;) :== HyHg be the operator-
valued n x n matrix representation of HjHg with respect to the above
decomposition of H*(C™). Since HjHg compact, each entry A;; of HyHg
is compact on H?, by Lemma 2 [15], we have

i ([ Ay — T3, AT || = 0.
Hence
N |1 He = T3 Hi HoTa. | = 0
By Lemma 1, HpHg — Ty HpHTy, is a finite rank operator. Therefore,
we have
éi‘rfl trace{(HpHg — Ty HpHeTy, )" (HpHg — Ty HpHeTy )} =0
because the norm of a finite rank positive operator is equivalent to its trace.

By Lemma 2, we obtain

lim [P = F(2) P(2)/G- = G- (2) ()] = 0,

|—>1

On the other hand,
tr[| o — F_(2)]*(2)|G- — G_(2)]*(2)]
= tr{[|F_ — FL (Z)IQ(Z)]”QHG— - G_(2)*
= tr{[|F- — F_(2)*(2)]*[|G- — G_(2)
AlIF- = Fo(2)P(2)] |
As is well-known, for all n x n matrices A,

tr A*A > C||A|?

(IF- = F-(2)]*(2)]"*}
2(2)]1/2

|
|
1G- = G-(2)P(2)]/?} ).

for some constant C' > 0. Hence we conclude
‘li‘gll H[IF- = F_(2)P(2)]'?[IG- = G_(2)*(2)]*}| =0

This completes the proof of the theorem. [l



PRODUCTS OF BLOCK TOEPLITZ OPERATORS 123

3. Finite sum of the product of Hankel operators.

In this section we will discuss when the finite sum of the products of Hankel
operators with scalar symbols is zero. This is needed in the next section for
characterizing F' and GG in L2, such that Trg = Tr1g.

nxn

Let M, . be the set of n x n matrices. Let A = [a;;] € M, <., define

[Alloc = sup |asl

1<ij<n

and (M,,«,); denotes the closed unit ball of M, , in the above norm. Let
P, be the set of n X n permutation matrices.

Proposition 4  Let fr, = (fer, -+ 5 fin)? fork=1,... ,m and g = (g1, ...,
gn)’ € L?(C™). Let

Sen =frl1®g+-F+ fin®gn, k=1,...,m.

Then Sy, = 0 for all k = 1,... ,m if and only if there are a matriz A €
(M, xn)1 and a permutation matriz R such that

(R—A)fi,=0,k=1,....,m and A*g=0.

Proof. We first prove that Sy, = 0,k = 1,... ,m if and only if there are a
matrix Ay € (M,,x,): and a permutation o such that

I—-A)fro=0,k=1,...,m and Ajg, =0,

where fi, = (fro()s-- -+ from))” . For any A € (M,x,)1, any permutation o,
set

xk::(xkla"’;:Ek:n)T:(I_A)kaa kzl,...,m
and y:= (y1,...,yn)’ = A*g,,

then we have

Skn == Z fk‘Ui ®ga7~, == xk1®ga(1)+' . '+xkn®ga(n)+fka'(1)®yl+' . +fkcr(n)®yn

The sufficiency follows from the above relation. To prove the necessity we
use induction. It is clear that for n = 1, the result is true with A = 1 or
A = 0. Now assume the result is true for n — 1. Without loss of generality,
assume that

max gill2 = llg;ll2 >0
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for some j. Note that if S, =0,k =1,...,m, then

n

Skngj = Z<gj79i>fi =0, k=1,...,m.

i=1
That is
Jrj + Zajfki =0,

i#])
where a; = (9:,9;)/(9i, 9;), |a;] <1 for i # j. Now we rewrite Sy, as

Ky (fkj + Z(ijk:i) ®g; + kai ® (9: — a;9;)-

i i
From above analysis we have that

kai@(gi -a;9;)=0,k=1,...,m.
i#£]
By induction there exist A; € (M,,_1xn_1)1 and a permutation w of {1,...,

j—1,7+1,...,n} such that

(I_Al)(fkw(l),H- afkw(jfl)’fkw(j+1)a--- afkw(n))T = 07 k= 1’ , 1,

AT (o) = To()9u(i)s - -+ » Juli—1) — Gu(G-1) 9w (i)
- T
Go(j+1) — BuG1)Gw(i)s - -+ Ju(n) — GumYu(i)) = 0.

Let
0a
AO = s where a = [_aw(l); cee sy TOu(i—1)y TAu(G4+1)s - - - s —aw(n)} .
0A,

Take o to be such that o(1) = j,0(i) = w(i+1) for 2 < i < j—1 and
o(i) = w(i) for j+1 < i < n. It is easy to check that such A, and o are
what we need. Now let R be the permuation matrix such that f,, = Rf%
forall k=1,... ,m and A = R*Ay, then it is easy to check that for such A
and R

(R—A)fr=0,k=1,...,m and A*g=0

if and only if
(I —A)fro =0,k=1,...,m and A9, =0.

The proof is complete. [l
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Next we discuss when the finite sum of the products of Hankel operators
is zero.

Theorem 5.  Let fr, = (frry--- s fron) ' k=1,... . mandg = (g1, ,gn)"
for fij and g; in L*>°. Let

Tin:=Y Hj H,, k=1,...,m.
i=1

Then Ty, = 0 for all k = 1,... ,m if and only if there are a matriz A €
(M, xn)1 and a permutation matriz R such that

(1) (R—A)feeHS,k=1,...,m and A'ge HX,.

Proof. To prove the necessity, we recall the following identity proved in
Lemma 1.

(2) v Z(H}kkngi_T;szmHgiT@) 4

i=1

=Y Hyp k.®@Hgk.,, k=1,...,m.
=1
Therefore if >2i°, H}, H,y, = 0, then
> Hy k. ® Hg k. = 0.
i=1

In particular for z = 0 (i.e., kg = 1), by Proposition 4, the above equation
implies that there exist a matrix A € (M,,«,)1 and a permutation matrix R
such that

(R— A)[Hf,1,... ,H; 1]" =0, k=1,...,m
and A*[H,1,...,H, 1]" =0.

g1

That is (1) holds. To prove the sufficiency, as in the proof of Proposition 4,
we note that for any A € (M,,«,,)1, any permutation matrix R, if we set

LTp = (xkla s axkn)T = (R - A)fkd and Y= (yh cee 7yn)T = A*g(ﬂ
then we have

(3) Tp,=H;

Tr1

Hy, +---+H; H, +H; H, +---+H; H,,

k=1,...,m.

The above formula and the fact that H; is zero when b € H* prove the
sufficiency part of our theorem. |
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4. Zero semi-commutator or commutator.

Brown and Halmos [4] showed that the semi-commutator T}, — T}, T, is zero
exactly when either ¢ or 1 is analytic for the scalar functions ¢ and 2.
Halmos [12] also characterized when the commutator T,T,, — T,y is zero.
In this section, we will characterize when the semi-commutator Trg — TrTg
or the commutator TrTg — TgTF is zero for block Toeplitz operators with
matrix symbols F' and G.

Let E; be the n x n matrix unit with (j, j)-th entry equal to one and all
other entries equal to zero. Note that for a m x n matrix B, BE; is basically
the j-th column of B.

Theorem 6. Let F,G € L%, . The following are equivalent.

nxn*

(1) The semi-commutator TrTe — Tra(= —Hj. Hg) is zero.
(2) There ezist matrices A; € (Myuxn)1 and R; € P,, j =1,...,n such

that
(R —Aj))F* e HY, and AGE; € HY,, j=1,...,n.
) 20 \11/2 20_\11/2
[(F)" = (FD) )PE)PIG- - G-(2)P()]V* =0
for all z € D.

(4)
[[(F)* — (F+)*(Z)‘2(Z)]I/QHG_ _ G_(z)’2(z)}1/2 -0

for some z € D.

Proof. (1) <=(2). Let F' = (f;;) and G = (gi;). Since TrT—Tpe = H}.. He,
TrTg — Trg = 0 if and only if for each j =1,... ,n

ZH;Tingij =0, k=1,...,n.
i=1

By Theorem 5, this is equivalent to that for each j = 1,... ,n, there exist
matrix A; € (M,,x,)1 and R; € P, such that

(R; — A,)F* € H

nxn

and AJGE; € H.S

(1) = (3). Since TpTg — Treg = Hj. Hg, by Lemma 2, for all z € D, we
have
trace{[H}*HG - T;z [H;*Hg]T(pz]*[H;‘*HG — T;Z [H;‘*Hg]Tq)z]}
= tr[(|(F)" = (F) ()P ()(G- = G-(2)]*(2))]
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= trl[|(F})" = (F)"(2)*(2) i
2 1

VIG- - G-(2)P(2)
D) = (F) () (2)] ()]

) ]

PG = G- ()P (2)]?)7].

1(F)" = (F)* PG - G (2)P(2)]2 = 0.
This is obvious.

) )-
(4)3(1). For a given z € D, define a unitary operator U, on H? by
Gk, Let U, = dlag{Uz, ..., U,}. Then it is easy to check that

o
>
Il
:
%

Z/{:TFUZ - TFO¢Z .
Therefore
U;[Hp.Hg — Ty Hi.HeTs U,
= [H;'*O(szGOti?z - T;OH;*0¢ZHGO¢2T‘I>0]’
So it is sufficient to prove that H..Hg; = 0 if we assume that
[(F2)" = (F) (0)P(0)]*[|G- = G-(0)](0)]*/* = 0.
By Lemma 2, we have
trace{[H}*HG - T;OH;*HgT(pO]*[H;*HG — T‘;OH;*HgTq)O]}

= tr[[|[(Fy)" = (F) (0)2(0)]*[|G- = G_(0)]*(0)]"/?
S([I(F)* = (F) O) PG~ = G- (0)*(0)]/2)"].
So
Hp.Hg — Ty Hp. Ho T, = 0.

Thus it follows from a theorem [6] that there is a matrix valued function M
in LS, such that Hj.Hg = Ty. But by the Douglas theorem [7] we have

nxn

that M = 0. Hence Hy.Hg = 0. u

Next we study the commutator TrT — T Tr by reducing it to the semi-
commutator case. To see this, first note that

TrTe — 16Ty = Trlg — Tre + Tor — T6Tr + Tira-ar)
*(H;*HG — HZ:*HF) + T(FGfGF)-

o [r2) )
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A simple calculation gives that

Hj.Hg — HyHp 0

Hy He = 0 ol

Therefore, by the Douglas theorem [7], TrTg — TTr = 0 if and only if
Hj.He =0 and FG = GF. A straightforward computation shows that

(4) I(B)" = (B1) () (=)

(F) = Er@PE W )

—(((G)" = (G)*(2) - “()|2(2
-(F+ —F_,.(Z)))(Z) ’(G+) (G+) ( )’ ( )

6l -C@FE)

G- =G (2)](2)

(F- — F_(=))(G_)" :
Gy ())(2) IF- = F-(2)=)

This leads to the following result.

Theorem 7. Let F,G € L¢S,,. The following are equivalent.

(1) The commutator TrTg — TcTr is zero.

(2) GF = FG and there exist matrices A; € (Mayx2n)1 and R; € Pa,,j =
1,...,n such that

(R; — Aj) [—FG*] € H3, ., and A] [g] E;eHy ., j=1,...,n.

(3) GF =FG. And

=0

for some z € D.
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We remark that as in Theorem 6, the matrix in the statement (3) of
Theorem 7 is zero for some z € D if and only if it is zero for all z € D.

An operator A is said to be normal if AA* — A*A = 0. We observe that
by taking G = F* in Theorem 7 and noting that T} = T, we have the
following characterization of normal block Toeplitz operators.

Corollary 8. Let FF e LS, ..
(1) Tg is normal.

(2) F*F = FF*. And there exist matrices A; € (Mapxon)1 and R; €
Py,5=1,... ,n such that

The following are equivalent.

*

3

F* .

and A; lF

F‘|Ej€H;.7;><n7 .]:17

(3) F*F=FF*. And

. *(2)]2( 2 _((F— _F_(Z)) v
[(F)" = (F)"(2)*(2) (Fy — Fi(2)))(2)
—(((Fy) = (F})*(2)) _F(2)]2(z
(F) = (P )z - FERE)

_ *(2(2 ((F—_F— Z)) v

() = (F)ERE) (k) e)

(O =) e - P o))

for some z € D.

Proof. Let |(By)* — (B4)*(2)|?(2) and |C_ — C_(2)|? be defined by (4) and
(5) with G = F*. The corollary follows from Theorem 7 by noting that

(Go) = (G1)'(z) = F- = F_(2), G- —G_(2) = (Fy)" — (F.)"(2).

5. A distribution function inequality.

Recall that a necessary condition for the compactness of the semi-commutator
Trg — TrT¢ is obtained in Theorem 3. Namely, the compactness of Trg —
TrT implies that

lim [|[[|(F})" = (F2)"(2) P(2)] 2[1G- = G- (2)P(2)]?]| = 0.

|z|—1
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To prove that the above condition is also a sufficient condition for the com-
pactness of Trg — TrTg, we need a certain distribution function inequality.
The distribution function inequality involves the Lusin area integral and the
Hardy-Littlewood maximal function. The idea to use distribution function
inequalities in the theory of Toeplitz operators and Hankel operators first
appeared in [2]. In this section we will get such a distribution function
inequality.

For w a point of 9D, we let I',, denote the angle with vertex w and opening
/2 which is bisected by the radius to w. The set of points z in I',, satisfying
|z — w| < € will be denoted by T, .. For h in L'(dD), we define the Lusin
area integral of A to be

1/2

A(h) (w) = l /F | grad h(z)2dA(2)

where h(z) means the harmonic extension of h on D and dA(z) denotes
the Lebesgue measure on the unit disk D. The Hardy-Littlewood maximal
function of the function h will be denoted Mh, and for r > 1, we let A, h =
[M|h|"]*/". For z € D, we let I, denote the closed subarc of D with center
777 and measure §(z) = 1—|z|. The Lebesgue measure of the subset E of 0D
will be denoted by |E|.

Let f; and g; (i = 1,...,n) be in L>(0D) and u and v be in H*(0D).
We define a generalized area integral to be

n

S grad(Hyu)grad(H,,v)

€ li=1

For [ > 2 and z € D, define

B.(u, v)(w) = /F dA(2).

n

Zi(z) = inf {Z(L’Ez 0¢. — P(x;0¢.)|li + [lyiod. — P(gio¢-)li) :

i=1

AG (Mnxn)b REPn}a

where

x = (zq1, - ,xn)T:(R—A)f and y = (y1,... ,yn)T:A*g,

n

Ti(2) =Y (lfiod. — P(fiod)lli+ llgi © 6= — P(gi 0 ¢.)|I1)-

i=1

We have the following distribution function inequality.
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Theorem 9 Let f; and g; be in L, i =1,--- ,n, and u and v in the Hardy
space H?. Let z be a point in D such that |z| > 1/2. Then for any | > 2,
for a > 0 sufficiently large and 6(z) =1 — |z|

Hw € L : Basto)(u,v)(w) < aZy(2)lu(2) inf A, (u)(w) inf Ar(v)(w)}‘

wel, wel,

> Col|L|

where C, depends only on | and a, lim, ... C, =1, and 1/l + 1/r =2/p for
somel<p<2andl <r<2.

Proof. Let f; and g; be in L and u and v in H2. By our definition

n

> grad(Hj,u)grad(Hy,v)

=1

B.(u,v)(w) = /

w,e

dA(w).

For a fixed z € D, let x2;. denotes the characteristic function of the subset
21, of 0D and write Hy,u = u; + U2, Hyv = v;1 + vi2, where

uyg = (I — P)[(fi = P(f o ¢.)) o ¢.xar.ul,

Uiz = (I - P)[(fz - P(fz ° ¢2)) o ¢Z(1 - X2Iz)u]’

v = (I = P)[(g: — P(gi 0 ¢.)) © d-Xar.v],

vig = (I — P)[(9; — P(gi 0 ¢.)) 0 ¢.(1 — xar.)v].
Thus we have
(6) B (u,v)(w) < i(Ae(uil) + Ac(uiz))(Ac(vi1) + Ac(viz)).

From now on we use € to denote 20(z). Let i (1 <7 < n) be fixed. We first
recall the following estimates from [15] for the terms A.(u;;) and A (u;9)
(similarly A (v;1) and A (vs2)).

For | > 2, there are a positive constant C' and r € (1,2) such that

1/p

(7) {/I A (ug)Pdo(w) < C|IZ’1/PHfi o, — P(fiod.)|: u%Ieli Au(w)

for some p > 1 so that 1/l + 1/r =1/p.
Forl > 2, on I,

(8) Ac(u) < Cllfio¢. — P(fio )l u%lelf Apu(w),

for some C' >0 and 1/l +1/I' = 1.
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For completeness we give a proof here. We first write u;; = (I — P)u;
(j = 1,2) where

up = (fic — fic(2))xar.u,  uz = (fie — fi(2))(1 — xa2r.v)

and f;_ = (I — P)f;.

We first prove (7). Note that for | > 2, we can always find I’ > 2 and
p>1sothat [ =1'p and r = p% < 2. By the theorem of Marcinkiewicz
and Zygmund, the truncated Lusin area integral A, f(w) is LP-bounded for
1 < p<oo. Soforl > 2, we have

[ 14 = Py )Pdo(w)

z

gc/\mmwm)
oD

= C [ Vfie = fe @ Julw)Pdo(w)

1 , 1/U 1 p/r
<lrl [ [ 1) = fopaot)] |5 [ urdat)]
Let P(z,w) denote the Poisson kernel for the point z. Since
1 1/r
LQM - \u|rda(w)] < Au(w)
for each w € 2I,, and an elementary estimate shows that for w € 2I,,
P(z,w) > Til’ it follows that

1/p
[ AU = P)w)(w)ydotw)]
< CILP{ i = S P inf Avuto).

wel,

Thus (7) follows from the following identity.
(9) [fi- = fie @' N = | fio b2 = P(fi0 6:) -

Now we prove (8). For u,, we shall use a pointwise estimate of the norm
of the gradient of (I — P)u,. It is easy to see that

1 wlus(§)
S 2r ) 1—wé

(I = P)(uz)(w) do(§).

Thus

|gmu—mwm)gc/ﬁ@ﬁ#w@)
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[fi— (&) = fiu (2)]u(§)]
=¢ oD/21. |1 —wé|? do(8).

On the other hand, there is a constant C' > 0 so that

1—2¢
>
‘1—w£ =C

for all £ in 9D /21, and w in I,. Thus we obtain
()~ f (@]

aD/2I, |1 —Z¢?

|grad(I — P)uqs(w)| < C o(&).

Applying the Holder inequality yields
C ’ ’
| grad(I — P)us(w)| < 1_7‘2‘2[“(1‘7 = fie I () )]

Because the nontangential maximal function is bounded by a constant times
the Hardy-Littlewood maximal function, and because z belongs to I',, ., the
last factor on the right is no larger than CAyu(w), and again the desired
inequality is established by noting (9).

Now we can estimate the products A.(u;;)Ac(vij), j = 1,2 by using (7)
and (8). By Holder inequality, we have

[ ) A o) o (w)

z

1/2

<[[ ntras] [ [ (4. paotm)

I.

z

By using estimate (7) for integral of A (u;1) or A.(v;;1) and estimate (8) for
integral of A (u;2) or A (vs), we get that for [ > 2, there is r with 1 <r < 2
such that

[ / [A(uij) Ac(vi)) P/ 2do (w)} 2/p

z

< OILP7||fi 0 ¢ — P(fi0 ¢:)lillgi © 6= — P(gi o d2)|l
(10) . nelf A u(w) ug Ayv(w)

for some p > 1 so that 1/I+1/r = 2/p, and a constant C depends on only [.
Now we are going to finish the proof by summing up the estimates as
above. From (6) we have

z j=1 j=1

2/p n o 2 2/p
{/I B(u,v)P/2da(w)] / <C (/I ZZ[Aﬁ(uij)(w)Ae(Uij)(w)]p/2) '
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By estimate (10), we have

(11)
/I B(u,v)??do(w)

< C|L| (Zufi o ¢, — P(fi0¢.)|7*|lgio 6. — P(g; 0 Mﬁ”)
=1

wel,

p/2
: (in; Asu(w) inf Asv(w)> ,
wel,
Next for any A € (M,,«,): and any permutation matrix R € P,, let
T = (:L‘la"' a$n)T - (R—A)f and Yy = (yl’... 7yn)T — A*g’

where f = (f1, -+, fu)T and g = (g1, ,9,)". We apply the above inequal-
ity (11) to the vector-valued functions x and y. We note that the B.(u,v)
corresponding to f and g is the same as the B, (u,v) corresponding to x and
y; more precisely,

B (u,v)(w)

L. z

Z grad(Hs,u)grad(H,,v)| dA(w)
i=1
_ /F -

By formula (11), we have

Z (grad(Hmiu)grad(Hgiv) + grad(Hfiu)grad(Hyiv)) | dA(w).

i=1

/Iz B(u,v)??do(w)

p/2
< C|L,] (inf Agu(w) inf Asv(w))
wel, wel,

' (Zum o ¢. — P(w:06.)["]lg: 0 6. — P(gi 0 6.)[1/*

+ 1 fiod. — P(fi 0 )|V ?|lyi 0 6. — Plyi o @)Hf/‘"))-

Therefore

2/

p
< C’IZF/LDEl(Z)FZ(Z)'iIel; Au(w) inf Ago(w).

wel,

[ /I B (wv)do(w)
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Next for a fixed z in D and a > 0, let E(a) be the set of points in I, where

B (u,v) < aZ)(2)T'(2) in; Ash(w) inf Agv(w).

wel, wel,
Then
I,/ E(a)|*PaZ,(2)T(2) 112; Ash(w) 12;' Asv(w)
2/p
<|[ Bwoydow
I,
< C|LJ*PE1(2)Ty(2) 12; Ash(w) 1161; Av(w).
So

IL/B(a)| < Ca??|L.

Therefore for a sufficient large a > 0, we have
|B(a)] = (1 - Ca™?)|L].

Let C, =1 — Ca~?/2. This completes the proof of the theorem. |

6. Compact finite sum of products.

Before proceeding to our main results in this section, we need to introduce
some notations involving the maximal ideal space of an algebra. Let M
be the maximal ideal space of H*, which is defined to be the set of mul-
tiplicative linear maps from H* onto the field of complex numbers. Each
multiplicative linear functional ¢ € M has norm 1 (as an element of the
dual of H*). If we think of M has a subset of the dual space H> with
weak-star topology then M becomes a compact Hausdorff space. For z € D
the evaluation functional f — f(z) is a multiplicative functional. So we can
think of D as a subset of M. The Carleson corona theorem tells us that D
is dense in M.

By using the Gelfand transform, we can think of H> as a subset of C'(M),
the continuous, complex-valued functions on the maximal ideal space of H.
Explicitly, for f € H*, we extend f from D to M by defining

for every 7 € M. Note that this definition is consistent with our earlier
identification of D with a subset of M.

By the Hahn-Banach theorem each 7 € M extends to a linear functional
7" on L*. In fact, there is a unique representing measure du supported
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on M(L*>), the maximal ideal space of L, such that for each g € L,
7(9) = Jaupp(r) 9241 A subset of M (L) will be called a support set, denoted
by supp 7, if it is the (closed) support set of the representing measure for
the extension of a functional 7 in M(H>™ + C).

For f € L>, we let H*°[f] denote the closed subalgebra of L generated by
H® and the function f. If f = (f1,..., f,)T, we still use H*°[f] to denote the
closed subalgebra of L*> generated by H* and functions fi,..., f,. Recall
that

n

Es(z) = inf {Z(sz 0¢. — P(x;0¢.)|2 + [|yi0 ¢ — P(gio ¢.)ll2) :

=1
A€ (Myxn)1 RE€ Pn},

where
x = (zq1, - ,xn)T =(R—-A)f and y = (y1,... ,yn)T = A"g.

Theorem 10 Let f = (f1,...,fu)" and g = (g1,... ,9,)" for fi and g; in

L. The following are equivalent.

(1) Hj H, +---+ Hj Hy is compact.

(2) lim._op 2252, (Hyk:) @ (Hy, k)| = 0.

(3) lim,_gpEa(z) =0.

(4) For each m € M(H™ + C), there exist a matriz A € (M,x,)1 and a
permutation matriz R € P, such that (R — A) f|suppm € H|suppm
and A*g|suppm € H*|supp m.

(5)  The following relation holds.
NAe(Mun)r, RePVHT[(R = A)f, A"g] C H* 4 C.

Proof. Without loss of generality we may assume that ||f;||.c < 1/2 and
llgilloo < 1/2 for alli=1,... n.

(1) = (2). Assume that >1", H} H,, is compact. By Lemma 2 [15] we
obtain

(12) lim

|z|—1

=0.

1=

ZH*iHQi - T;z (ZH;1H91> T<¢>z
i=1 i=1

But by the proof of Lemma 1,

v1! (iH}Hg -1, (iH}‘Hg> T¢Z> V= iHﬁkz ® Hyk.,
i=1 i=1

i=1
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where recall that V is the antiunitary operator on L?(9D) defined by V h(e®)
= e h(e?). Thus

(13) lim

That is (2) holds.

(2) = (3). Assume now that (2) holds. Suppose that (3) does not hold.
That is, there are § > 0 and a net {z} C D accumulating a point in D such
that

Es(z) > 0.
We will get a contradiction. We may assume that the net {z} converges to
some nontrivial point m € M(H> + C).

Let Hy® denote the algebra H*|suppm on suppm, and LS denote the
algebra L™ |suppm- Then LY°/H> is a vector space. For a function # in
L*>, let [¢],, denote the element in L>°/H> which contains . For f =

(fisoo s f)T et [flm = ([films -+ [fulm)® and f € H® means that f; €
H> for alli = 1,... ,n. Let ¢ = (g1,...,9,)". For convenience we also
introduce the following notations.

1H pk.lz == ) | H k2,

i=1

Hpk, ® Hyk, :=> Hpk. ® Hyk..

i1
Suppose that the dimension of the space spanned by [fi]m, -y [folm
is N < n. We may assume that {[fi]m,..., [fn]m} Is a basis such that

([fl}mw"?[fn]m)T = B([fl]mv'“v[fN]m)T with B = (blj) and ‘bij’ < 1, see
the proof of Proposition 4 for details. Let A be the matrix (B,0),,x,. Then
f— Af isin H° on the support set suppm. By Lemma 3 [15],

L [|[Hpapkells = 0.
On the other hand,

Hyk, ® Hyk, = Hy_ask. ® Hok. + Hk. © H - k.
— Hy_ask. ® Hyk. + Hy, k. @ Hp- k.,

where fixy = (fi,..., fn). As z goes to m, the first term in the right hand
side of the above equation goes to zero. Hence

Zh_}n;l ||Hf(N)kZ ® HB*ngH =0.
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We are going to show that
lim || Hp- . 2 = 0.
Suppose that this is not true. We may assume that

lim ||H,, k|2 > 0.

Let a;(z) = (Hy k., Hy k.). Note that |a;(2)] < /]|g1lleoV/]|Gillec < 1. We
may assume that a;(z) converges to a; as z goes to m. By our assumption
a; # 0. But

zh_{% H(Hfuv)kz ® HB*ng)Hglk2”2 =0
implies that
lig 5 kel =0

By Lemma 3 [15], Y%, a;f; is in H* on suppm. This contradicts the fact
that {[f1]m,- .-, [fn]m} is a basis. Therefore

lim || Hpe g2 = 0.

Hence
lim | Hae g2 = 0.
But
[Hr—aysk: || + | Ha-gk. || > Z2(2).
Hence

Y (|| Hop— s | + | Hae b)) > 6

This is a contradiction.
(3) = (4). We are going to show that for each m € M (H*> + C), there
exist matrices A,, € (M,,«x,): and R,, € P, such that

(R — Ap) flm = 0, [A5,9)m = 0.

Let z be a net in D converging to m. By condition (3), there are matrices
A, € (M,x,): and R, € P, such that

lim (|, ayphclla + [ Hazghll2) = 0.
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Since (M,,x,)1 is compact and the permutation group P, is also compact,
we may assume that A, converges to A,, and R, converges to R,,. Hence

Y (11H a0l + [ Ha g 1) = 0.
By Lemma 3 [15], we have
(R — An) fln =0, [A},g]mn = 0.

(4) = (5). By the Chang-Marshall theorem [8], we need only to show
that

M(H* +C) C M(Ngaeyyn), rert HE[(R—A)f, A*g]).
Condition (4) states exactly that

M(H™ + C) C Ugae(Muxn), rRePyM(HT[(R— A) f, A7g]).
By the Sarason theorem [11],

(14)  M(N{aeMurn), ReryHZ[(R—A)f, Ag])
= Closure of UlAe(Muxn)i, REP,} M(H*®[(R—-A)f, A*g]).

Hence
M(H> +C) C M(Ntac(Mpyn), rRepyHZ[(R—A)f, A%g]).

(5) = (3). Suppose that (3) does not hold. There are § > 0 and a net z
in D converging to some m € M(H> + C) such that

EQ(Z) Z 0.

By condition (5) and Sarason’s Theorem [11] as in (14), there are a net
m, € M(H*) and matrices A,, R, such that m, converges to m and

[(Ra — Ad) flin. = 0, [AL9]m, = 0.

We may assume that A, converges to some A,, and R, converges to some
R,,. We claim that

(R — Ap) [l =0, [A5glm = 0.

As in Lemma 3 [15], let u; (¢ = 1,... ,n) be the unimodular functions
such that u,, = (uy,...,u,)" in (R,, — A,)f + H>® and v; (i =1,--- ,n) be
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the unimodular functions such that v,, = (vy,...,v,)" in A% g+ H. Then
by Lemma 3 [15]

< Cll[Aa = Amlloso + [1Ba = Bimlloo] + Cll Hro— a0y sk=ll2 + [ Haz gk 2]

for all z € D. Hence

n

Z[(l - ‘uz(mG)P) + (1 - |vl(ma)’2)} < C[HAa - AmHoo + ”Ra - RmHOO]'

i=1
Since these functions u; and v; are continuous on M (H>), we have
D = Jug(m) ) + (1 = vy (m) )] = 0.

i=1

Therefore
[(Rm - Am)f]m =0, [A:ng]m =0.

This proves our claim. But again by Lemma 3 [15], this implies that
Nim (| H g, a,)pF=ll2 + [ Hag, gk=[l2) = 0.
This contradicts to the assumption that

[H (R~ 1Kz N2 + [[Hay, gkl = Ea(2) > 6.
(3) = (1). Now we assume that

Zlirng Es(z) = 0.
We use the distribution inequality obtained in Section 5 to show that
Z;L:lH}:Hgi is compact. Since the quantity =,.(z) for some r > 2 appears
in the distribution inequality, we first need to show that in fact for some r
such that 3 > r > 2,
(15) lim =,.(z) =0.

z—0D

Recall that

Zi(z) = inf {Z(Hl‘z o¢. — P(x;0¢.)|li + [lyiod. — P(gio¢.)li) :

i=1
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A 6 (Man)l R G Pn}a

where
T = (:’Ul?”' aﬁn)T - (R_A)f and Yy = (yl;"' )yn)T :A*g

First note that since A € (M,,x,,)1, R € P, and by our assumption || fi||e <
1/2 and ||gil|co < 1/2, we have ||z;||oc < (1+n)/2 and ||y;|lco < n/2. Thus

n

> (llwio ¢ — P(zi 0 ¢.)[lr + llyi © ¢ — P(yi 0 6.)I,)

=1
<G <Z(H$i © ¢ — P(xi0¢:)|l2+ llyi o ¢ — Pyio @)HQ)WT) ;

for some constant C,. dependent only on r and n. Therefore
5,(2) < Co(Eal(2)".
Since lim, . 5p Z2(2) = 0, we obtain

lim Z,.(z) =0.

z—9D

This completes the proof of (15).

Now let u and v be two functions in H?. Since H r,u is orthogonal to H 2
we see that (Hyu)(0) = 0. Thus by the Littlewood-Paley formula [8], we
have

<u, (iH}kH%) v> = f:(Hfiu, H, v)

i=1

1 i o 1
B / <Z grad(Hfiu)grad(Hgiv)> 10g T dA(Z) = IR + IIR>
i=1

T Jp 2|

where for 1/2 < R < 1,

Iy = /|Z|>R (ﬁ: grad(Hfiu)grad(Hgiv)> log L dA(z)

i=1 |2|

and

n - 1
IIp = / (Z grad(Hfiu)grad(Hgi)> log m dA(z).
[z|<R

i=1
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One easily checks that there is a compact operator Kz such that
IIR = <U,KRU>.

Thus, if we show that Ir — 0 as R — 1, then ||T,T, —T,T; — Kg|| — 0, and
we are done. The rest of the proof will be devoted to showing that Ir — 0
as R — 1.

Choose z € D and fix a constant a > 1 for which the Distribution In-
equality holds; that is

|t € I, : {B.(u,v)(t) < aZ,.(2)T,(2)Asu(t)Av(t)} > Col|L,].
For t € 0D, let
p(t) = max{e : B(u,v)(t) < aZ,.(2)[.(2)Asu(t)Av(t)}.

Let x; denote the characteristic function of I'; ;). Then

/6 By (w,0)(0)dt < aZ (T (2) /8 Au()Au(0)di
< a2, (T () Al 1A

2
Since — > 1, so by [8]
s

[1Asully = [[M(Jul*) [l = [IM (Jul*)|l2/s]"* < As([] Tl ]275)"-

So
HASUH2 < ASHUHQ'
Similarly,
[Asv]l2 < Afl[o]]2-
Thus
(16) By (u,v)(t)dt < a”Z0(2)0(2)][ul|2 [[v]]2-

oD
On the other hand,

[ Buw o)t = /6 ) /F S grad(Hj, u)arad(H,, 0)

i=1

dA(z) dt.

t,p(t)

So

Z grad (Hy,u)grad(H,,v)| dA(z) dt.

i=1
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Now the Distribution Function Inequality tells us that p(t) > (1—|z|*) on
a subset F, of I, satisfying
|E.| > C,|L.|.

Now, for t € E,, we have t € I,. Thus if we write z = re? and note that
p(t) > 3(1 — |z]) we have
(1—1z)

’T€i9 N 6”’ < ’reie _ eie‘ + ‘eie _ eit‘ < (1 _ ‘Z|) + T) < p(t).

Therefore, for t € E., we have that z € I, ,;) and that x;(2) =1 on E.. So,
> grad(Hy, w)grad (H,,v)

oo Jaoa® @[
2 oL

Since x;(z) =1 on E,, we have

dA(z) dt

dA(z).

>~ grad(Hyu)grad(H,,v)
=1

n

Z grad(H s,u)grad(Hy,v)

=1

B.(u,v)(t)dt > / IE.| dA(2).

|z|>R

oD

Bllt, ‘Ez’ > Ca(l - ‘Z|2)7 SO

Zn:grad(Hfiu)grad(Hgiv) (1 —|2]*)dA(2).

i=1

Be(u,v)(t) = Cq

oD |z|>R

- |
|z|>R

Since

1
log — dA(z),

Zgrad(Hfju)grad(ngU) ‘Z|

i=1

we have,

Be(u,v)(t) = CalIg|.

oD

Combining this together with (16), we see that

[Ir| < CE:(2)T(2)|[ull2 [[v]2-

But by (15),
T =) =0,
and I'.(z) is bounded. Hence we have limp_.; |[Igr| = 0. This finishes the

proof. [l
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7. Compact semi-commutator or commutator.

In this section by combining the results in Sections 2 and 6, we will show
several necessary and sufficient conditions for the semi-commutator or the
commutator of the block Toeplitz operators with matrix symbols to be com-
pact. We also give a characterization of essentially normal block Toeplitz
operators.

Theorem 11. Let F' and G be in L3, .
G =1(91,-.- ,9n). The following are equivalent.
(1) Tre —TrTe(= Hy Hg) is compact.

(2) Uiy N{aeMurnn, Rery H[(R— A)fi, Ag;] € H* + C.
(3)

Let F* = (f1,...,fn) and

lim [[[|(F)" = (F) ()P 2IIG- = G- (2)P(2)] 2] = 0.

|z]—1

Proof. (1) <= (2). Let F = (fij)nxn and G = (gij)nxn. Note that Tpg —
TrTg is compact if and only if each entry of

(Z Hhﬂgkj>
k ij

is compact. By Theorem 10, this is equivalent to
Ui DA€ (Moyn)i, RePy HZ[(R — A) fi, A%g;] € H* + C.

(1) <= (3). (1) = (3) is proved in Theorem 3. We are going to prove
that (3)=(1). By Lemma 2,

tr(|(FL)" = (1) ()P ())(IG- = G-(2)*(2))
= trace[H;*HG - ngH;*HgT@z]*[H;*HG - T&:ZH;*HgT@Z].

Thus by Lemma 1, (3) implies that

hm

‘—)1

ZH k. ® Hy, k.

for all 4, 7. By Theorem 10, we have that ), H = Hgk are compact for all
i,7. Hence Hj.Hg is compact. Therefore TFG — TrTg is compact. The

proof is complete. [l

Next we characterize when the commutator TrTo — T TF is compact. To
do this, recall that

TeTe — 16Ty = Telg — Tre + Tor — 16Tr + Tira-ar)
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== —(H;‘*HG - HZ;*HF) + T(FGfGF)-

Therefore by the Douglas theorem [7], TrTe — T TF is compact if and only
it FG = GF and Hy.Hg — H}.. Hp is compact. But if we let

F -G GO
o= (0] =[5

H:i Hg — Hi Hyp 01

then

0 0

Therefore, Tr T — 1T is compact if and only if FG = GF and H}. He
is compact. Note that |(B.)* — (B.)*(2)|*(z) and |C_ — C_(2)|?(z) can be
computed as in (4) and (5). The following result now follows immediately
from Theorem 11.

Hj. He = l

Theorem 12. Let F' and G be in L

nxn*

[_FC;*‘| :(fla---’fn)a [g] :(91,'--,gn).

The following are equivalent.

(1) TpTg —TcTr is compact.

(2) FG =GF and Ui,j ﬁ{,qe(]\/["x”)17 ReEP,} HOO[(R - A)f“ A*g]} Cc H*+C.
(3) FG=GF and

Let

[ - “( 4 1/2
(Fo) — (B (a)P(z) (W) (B (=)

lim
A =G = (G4 (2)
(Fy = Fe(2)(2)

G- =G (2)]*(2)

((FL = F(2))((G-)"
—(G)(2)(2)

An operator A is said to be essentially normal if A*A — AA* is compact.
By taking G = F*, we immediately get the following characterization of
essentially normal block Toeplitz operators.

Corollary 13 Let F be in L, . Let

nxn*

[f’;‘| :(fla"'>fn)7 [i:] :(gla""gn)'
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The following are equivalent.
(1) Tr is essentially normal.

(2) FF*=F*F and Ui,jm{AE(Man)l, Repn}H"o[(R—A)fi,A*gj] C H*+C.
(3) FF*=F*F and

] 1/2
[(Fy)" = (P ) (2)*(2) _(gf—;’f(z(;gz@
lim
= (B = (B (2) CF ()P
() = F e TN
] 1/2

(F- — F_(2))
(Fe = F(2))(2)
() = S p - E ke

For the scalar symbols there were several other sufficient conditions for the
product of two Toeplitz operators to be a compact perturbation of a Toeplitz
operator. To state those conditions we need some notations. The fiber M)
of M (L) above the point A is the set {7 € M(L>®) : z(7) = A\}. We recall
that a subset of M(L*>) is called an antisymmetric set if any real-valued
function in H* + C' is constant on the set.

One of the following conditions implies the compactness of the semi-
commutator 15T, — T3, of Toeplitz operators with scalar symbols ¢ and

1(/}1) Either ¢ or ¢ is in C(9D) [5].

(2) ¢ and 9 are piecewise continuous and have no common discontinuities
[10]

(3) Either ¢ or ¢ is in H>® on each fiber M, for z on the circle [13].

(4) Either ¢ is in H* or ¢ is in H> on each set of maximal antisymmetry

of H* + C [1]. It was shown in [2] that H>[¢]H>[¢] C H>* +C'is
equivalent to

(5) Either ¢ or ¢ is in H* on each support set.

Next we will show some sufficient conditions for the compactness of the
semi-commutator TrTg — Trg of Toeplitz operators with matrix symbols F
and G. Those conditions are analogous to the above conditions of the scalar
case. Some of them are well known ([7], [9]).

Corollary 14. Let F and G be in LS .,. Then one of the following
conditions is a sufficient condition for TrTg — Trg to be compact:

(1) Either F* or G is in Cpx,(0D).
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(2) F* and G are piecewise continuous and have no common discontinu-

ities.

(3) FEither F* or G is in HS, on each fiber M, for z on the circle.

(4) FEither F* or G is in H>S, on each mazimal antisymmetric set of
H>+C.

(5) Either F* or G is in HS,,, on each support set.

(6) Hx, [F*INHX,G) C HY, + Ch,(0D), where HZS, [G] denotes the

oo
nxn

subalgebra of L generated by HZS,, and G.

Proof. Notice that Conditions (1) to (6) in the corollary are ordered by
weakness. So it is sufficient to show that Condition (6) is stronger than
Condition (2) in Theorem 11. Since H>%,[G] denotes the subalgebra of

nxn
LS., generated by HS ,, and G, we observe that

H’r?;n[G] = (Hoo[gllv"' y91ny - -+ 5 9nly - - - 7gnn])n><n-

Hence Condition (6) is equivalent to

Hoo[flla"' 757"' 7%7"' 7fnn] mHoo[gllw" )
Giny -+ 1 9n1y- - - 7.gnn] C HOO+C

Let F* = (f1,...,fn) and G = (g1,... ,9n). It is easy to see that

Usj Nae(My ), Rep y HT[(R— A) fi, A%g;)

But for all 4, j, we have
H>[fi]n H>g;]

CHOO[fll,... ,E,... ,ﬂ,... ,E]ﬁﬂoo[gn,... s91ns " y9nly - - - 7gnn]

Hence
Ui N{Ae(Moyn)i, RePy HZ[(R— A) fi, A%g;] C H* + C.

So by Theorem 11, TrTg — Trg is compact. This completes the proof.
U
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