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MODULES WITH NORMS WHICH TAKE VALUES IN A
C*-ALGEBRA

N.C. Phillips and N. Weaver

We consider modules E over a C*-algebra A which are
equipped with a map into A+ that has the formal properties
of a norm. We completely determine the structure of these
modules. In particular, we show that if A has no nonzero com-
mutative ideals then every such E must be a Hilbert module.
The commutative case is much less rigid: If A = C0(X) is
commutative then E is merely isomorphic to the module of
continuous sections of some bundle of Banach spaces over X.
In general E will embed in a direct sum of modules of the
preceding two types.

Let A be a C*-algebra, and let A+ denote the set of positive elements of A.
We define a Finsler A-module to be a left A-module E which is equipped
with a map ρ : E → A+ such that

(1) the map ‖ · ‖E : x 7→ ‖ρ(x)‖ is a Banach space norm on E; and

(2) ρ(ax)2 = aρ(x)2a∗ for all a ∈ A and x ∈ E.

If we use the convention |b| = (bb∗)1/2 for b ∈ A, then condition (2) is
equivalent to

ρ(ax) = |aρ(x)|.
For A commutative this is the same as ρ(ax) = |a|ρ(x), which is the usual
form this sort of axiom takes in the commutative case. But this last version
is not appropriate in the noncommutative case because ρ(ax) is positive,
while |a|ρ(x), though a product of two positive elements, in general cannot
be expected to be self-adjoint, let alone positive.

(Note that we have used the reverse of the usual definition of |b|. This
is appropriate in the setting of left modules, while the usual convention is
the best for right modules. For instance, A is a left Hilbert module over
itself via the inner product 〈a, b〉 = ab∗, and this makes it natural to take
|b2| = 〈b, b〉 = bb∗. In any case, in the remainder of the paper we will use the
notation |b| only for normal elements b.)

If E is a Hilbert A-module then defining ρ(x) = 〈x, x〉1/2 makes E a Finsler
module; in particular, 〈ax, ax〉 = a〈x, x〉a∗, so condition (2) holds. This also
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helps to justify the specific form of this condition, on the grounds that any
definition of an A-valued norm ought to include norms arising from Hilbert
modules in this manner.

Indeed, in the commutative case Finsler modules are a natural general-
ization of Hilbert modules. To see this let X be a locally compact space and
let B =

⋃
t∈X Ht be a bundle of Hilbert spaces over X satisfying appropriate

continuity properties. Then the set E of continuous sections (that is, con-
tinuous maps f : X → B such that f(t) ∈ Ht for t ∈ X) which vanish at
infinity, is naturally a C0(X)-module. Furthermore it has a C0(X)-valued
inner product defined by

〈f, g〉(t) = 〈f(t), g(t)〉Ht
for t ∈ X, hence is a Hilbert C0(X)-module [16]. Conversely, every Hilbert
C0(X)-module is isomorphic to one of this form [21].

If we ask instead only that B =
⋃
t∈X Bt be a bundle of Banach spaces over

X, then the module of continuous sections now possesses a C0(X)-valued
norm

ρ(f)(t) = ‖f(t)‖Bt
rather than a C0(X)-valued inner product. It is easy to see that this makes
E a Finsler C0(X)-module, and we prove conversely that (as an easy conse-
quence of known facts) every Finsler C0(X)-module is isomorphic to one of
this form.

Thus, given the well-known conception of finitely generated projective
modules over C*-algebras as “noncommutative vector bundles” and Hilbert
modules as “noncommutative Hilbert bundles” ([18], [20]), it may appear
that our Finsler modules might serve as the basis for a noncommutative
version of Banach bundles. Now we mentioned above that every Hilbert
A-module carries a natural Finsler structure. One might hope to construct
non-Hilbert Finsler modules over many C*-algebras A by forming a suit-
able completion of the algebraic tensor product of A with a non-Hilbert
Banach space. Surprisingly, we found that for “most” noncommutative C*-
algebras, namely all those algebras A with no nonzero commutative ideals,
every Finsler A-module must arise from a unique Hilbert A-module (Corol-
lary 18). In comparison with the commutative situation just discussed, even
with the case A = C (when E can be any Banach space), the noncommu-
tative case is evidently far more rigid. From one standpoint this is merely
a negative result which shows that A-valued norms are not interesting in
the noncommutative case. On the other hand it may be viewed as a posi-
tive result about the robustness of the concept of Hilbert modules, a topic
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also explored in [8], and also as indirect evidence that operator modules are
really the right noncommutative version of Banach bundles, a position we
argue in Section 2. The Banach module properties of Hilbert modules have
also been considered in [14].

Our terminology was chosen for the following reason. A natural example
of a bundle of Hilbert spaces is given by the tangent bundle of a Rieman-
nian manifold X. Here the vector space over a point t ∈ X is simply the
tangent space at t, and the fact that X is Riemannian means precisely that
each tangent space has an inner product. Finsler geometry is an increasingly
popular generalization of Riemannian geometry in which one requires only
that each tangent space have a norm ([5], [9]). Thus Finsler geometry ap-
pears to involve Banach bundles in the same way that Riemannian geometry
involves Hilbert bundles. We wish to thank David Blecher for pointing out
this connection between Finsler manifolds and Banach bundles.

Section 1 contains preliminary general results. In Section 2 we estab-
lish connections between operator modules, Finsler modules, and Banach
bundles in the commutative case. In Section 3 we consider the noncommu-
tative case and obtain a complete description of the structure of an arbitrary
Finsler module.

It is a pleasure to thank Charles Akemann for supplying a general C*-
algebra fact, Theorem 4. This is a crucial result for our purposes and is also
of independent interest.

1. Preliminaries.

In this section we collect some important general facts about Finsler mod-
ules. Aside from Akemann’s result (Theorem 4) the material is fairly trivial.

Recall that a Banach A-module is an A-module E that is simultaneously
a Banach space and which satisfies ‖ax‖ ≤ ‖a‖‖x‖ for all a ∈ A and x ∈ E.

Proposition 1. Every Finsler A-module is a Banach A-module.

Proof. By definition, ‖ · ‖E makes E a Banach space. We must therefore
show that ‖ax‖E ≤ ‖a‖‖x‖E for all a ∈ A and x ∈ E. This follows from
condition (2):

‖ax‖2E = ‖ρ(ax)2‖ = ‖aρ(x)2a∗‖ ≤ ‖a‖2‖x‖2E.
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In the next result we observe that if A is commutative, every Finsler A-
module has properties which make it look very much like a module with an
A-valued norm. Of these, the first has a natural analog in Finsler condition
(2), as we observed in the introduction.

The second property, a generalized triangle inequality, is far too strong in
the noncommutative case (but see [2]), although we see in this proposition
that if A is commutative it follows from the seemingly weaker assumption
that ‖ · ‖E satisfies the triangle inequality. The latter is suitable in the non-
commutative setting, and is already sufficient for the rather strong structure
results to be given in Section 3. On the other hand, in Lemma 12 we give a
kind of noncommutative generalization of this part of the proposition.

Proposition 2. Let A be a C*-algebra with center Z(A), and let E be a
Finsler A-module. Then ρ satisfies

ρ(ax) = |a|ρ(x)

for all a ∈ Z(A) and x ∈ E. If A = C0(X) is commutative then ρ satisfies

ρ(x+ y) ≤ ρ(x) + ρ(y)

for all x, y ∈ E.

Proof. If a belongs to the center of A then so does |a|, hence both commute
with ρ(x)2 and

ρ(ax)2 = aρ(x)2a∗ = |a|2ρ(x)2 = |a|ρ(x)2|a|;

taking square roots yields ρ(ax) = |a|ρ(x). To prove the second statement
suppose it is not the case and find a point t ∈ X such that

ρ(x+ y)(t) > α > ρ(x)(t) + ρ(y)(t).

Let U be a compact neighborhood of t such that ρ(x)(t′) + ρ(y)(t′) < α for
all t′ ∈ U . Let f ∈ C0(X) satisfy 0 ≤ f ≤ 1, f |X−U = 0, and f(t) = 1. Then
using the first part of this proposition we have

‖fx‖E + ‖fy‖E = ‖ρ(fx)‖+ ‖ρ(fy)‖ = ‖fρ(x)‖+ ‖fρ(y)‖ ≤ α
< f(t)ρ(x+ y)(t) = ρ(fx+ fy)(t)

≤ ‖ρ(fx+ fy)‖ = ‖fx+ fy‖E,

contradicting the triangle inequality in E (Finsler condition (1)). This es-
tablishes the result.
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Next we observe that every Hilbert module gives rise to a Finsler module.

Proposition 3. Let A be a C*-algebra and E a Hilbert A-module. Then
defining ρ(x) = 〈x, x〉1/2 makes E a Finsler A-module.

Proof. The fact that ‖ · ‖E is a complete norm is part of the definition of a
Hilbert module. The second Finsler condition holds because

ρ(ax)2 = 〈ax, ax〉 = a〈x, x〉a∗ = aρ(x)2a∗.

Finally, we come to the one substantive result in this section [1]. It is
needed to show that ρ is continuous and uniquely determined by the scalar
norm ‖ · ‖E (Corollaries 5 and 6), and also to show that Finsler modules can
be factored (Lemma 12).

Theorem 4 (Akemann). Let b and c be positive elements of a C*-algebra
A. Then

‖b− c‖ = sup{∣∣‖aba‖ − ‖aca‖∣∣ : a ∈ A+, ‖a‖ ≤ 1}.

Proof. The inequality ≥ is easy since∣∣‖aba‖ − ‖aca‖∣∣ ≤ ‖aba− aca‖ ≤ ‖a‖‖b− c‖‖a‖ ≤ ‖b− c‖
for any a ∈ A+ with ‖a‖ ≤ 1.

Now for the reverse inequality. Without loss of generality assume that
0 ≤ b, c ≤ 1. By replacing A with C∗(b, c) we can assume that A is separable.
Assume that α = ‖b−c‖ > 0. It now suffices to prove that there is a sequence
{an} in the positive unit ball of A such that

lim
n→∞

∣∣‖anban‖ − ‖ancan‖∣∣ = α.

To prove this, observe that, exchanging b and c if necessary, there is a
pure state f of A such that f(b−c) = α. By Proposition 2.2 of [3], there is a
sequence {an} of positive norm 1 elements in A that excises f . This means
that for any a in A, lim ‖anaan−f(a)a2

n‖ = 0. Taking a = b and then a = c,
we get

0 = lim ‖anban − f(b)a2
n‖ ≥ lim

∣∣‖anban‖ − ‖f(b)a2
n‖
∣∣ ≥ 0

and
0 = lim ‖ancan − f(c)a2

n‖ ≥ lim
∣∣‖ancan‖ − ‖f(c)a2

n‖
∣∣ ≥ 0.
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Since ‖f(b)a2
n‖ = f(b) and ‖f(c)a2

n‖ = f(c), this means that lim ‖anban‖ =
f(b) and lim ‖ancan‖ = f(c). Since f(b) − f(c) = α, we get lim(‖anban‖ −
‖ancan‖) = α, as desired.

Corollary 5. Let E be a Finsler module over a C*-algebra A. Then
ρ : E → A+ is continuous from ‖ · ‖E to ‖ · ‖.

Proof. Let xn, x ∈ E and set bn = ρ(xn)2, b = ρ(x)2. Suppose ‖xn−x‖E → 0
and let C = sup{‖xn‖E}. Then for any a in the positive unit ball of A we
have ∣∣‖abna‖ − ‖aba‖∣∣ =

∣∣‖ρ(axn)2‖ − ‖ρ(ax)2‖∣∣
=
∣∣‖axn‖2E − ‖ax‖2E∣∣

=
(‖axn‖E + ‖ax‖E

)∣∣‖axn‖E − ‖ax‖E∣∣
≤ 2C‖a(xn − x)‖E
≤ 2C‖xn − x‖E.

Thus Theorem 4 implies

‖ρ(xn)2 − ρ(x)2‖ = ‖bn − b‖ ≤ 2C‖xn − x‖E → 0,

so that we have ρ(xn)2 → ρ(x)2. Finally, by [22, Proposition 4.10], taking
square roots implies that ρ(xn)→ ρ(x). Thus, xn → x in E implies ρ(xn)→
ρ(x) in A.

Corollary 6. Let A be a C*-algebra and E an A-module. Suppose ρ, ρ′ :
E → A+ are two functions both of which make E a Finsler module and which
induce the same norm ‖ · ‖E. Then ρ = ρ′.

Proof. Suppose ρ(x)2 6= ρ′(x)2 for some x ∈ E. Then ‖ρ(x)2 − ρ′(x)2‖ 6= 0
and so Theorem 4 implies that there exists a ∈ A+ with ‖a‖ ≤ 1 such that
‖aρ(x)2a‖ 6= ‖aρ′(x)2a‖. Hence

‖ax‖2E = ‖ρ(ax)2‖ 6= ‖ρ′(ax)2‖ = ‖ax‖2E,

a contradiction.

A similar statement about Hilbert modules, to the effect that the scalar
norm determines the A-valued inner product, was given in [8]. This also
follows from Corollary 6 since the A-valued inner product is uniquely de-
termined via polarization from the Finsler norm that it gives rise to via
Proposition 3.
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2. Banach bundles.

A need for a noncommutative version of Banach bundles arises in the theory
of noncommutative metrics. This happens in the following way. First of all,
if X is a Riemannian manifold then the cotangent bundle is a Hilbert bundle,
as mentioned in the introduction. For X any metric space there is a cor-
responding construction [11] which involves Banach bundles, and this may
be regarded as an integrated version of the cotangent bundle construction
[23]. This construction of de Leeuw actually “encodes” the metric structure
of X in a manner so robust as to suggest that a notion of a noncommutative
metric could be based on a noncommutative version of the set-up [23]. To
describe this noncommutative scheme one needs a noncommutative version
of the notion of a Banach bundle.

On the basis of examples it has become clear that in describing noncom-
mutative metrics, Hilbert modules are sufficient for situations in which one
has “noncommutative Riemannian structure” ([19], [24]), but more gener-
ally one needs operator modules ([25], [26]). Thus our first goal here is to
show how in the commutative case operator modules correspond to Banach
bundles, which suggests that general operator modules may be viewed as
noncommutative Banach bundles. Modules associated to Banach bundles
have been thoroughly studied and so our results in this section are fairly
easy consequences of known facts.

Before proceeding we must introduce a distinction emphasized in [12],
between (F) Banach bundles and (H) Banach bundles. These are the
bundle notions which respectively correspond to the concepts of continuous
fields of Banach spaces [15] and uniform fields of Banach spaces [10]. In
brief, the topology interacts with the norm in such a way that the fiberwise
norm of a continuous section of an (F) Banach bundle is continuous, while
in an (H) Banach bundle it need only be semicontinuous.

We also need the following definitions. Let A = C(X) be a unital commu-
tative C*-algebra. By an abelian operator A-module (see [13]) we mean
a Banach A-module E for which there exists a commutative C*-algebra B
together with an isometric embedding π : E → B and a ∗-isomorphic em-
bedding ϕ : A→ B, such that

π(ax) = ϕ(a)π(x)

for a ∈ A and x ∈ E. An A-convex A-module [12] is a Banach A-module
E which satsifies

‖fx+ gy‖ ≤ max(‖x‖, ‖y‖)
for any x, y ∈ E and any positive f, g ∈ C(X) such that f + g = 1.
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Theorem 7. Let A = C(X) be a unital commutative C*-algebra and let E
be a Banach A-module. The following are equivalent:
(a) E is an abelian operator A-module.
(b) E is an A-convex A-module.
(c) There is an (H) Banach bundle over X of which E is isomorphic to

the module of continuous sections.

Proof. (a)⇒ (b). Let B = C0(Y ) be a commutative C*-algebra and suppose
A and E are embedded in B. Then the A-convex inequality is trivially
checked at each t ∈ Y :

|f(t)x(t) + g(t)y(t)| ≤ (f(t) + g(t))max(‖x‖, ‖y‖) ≤ max(‖x‖, ‖y‖),

hence ‖fx+ gy‖ ≤ max(‖x‖, ‖y‖).
(b) ⇒ (c). This is ([12], Theorem 2.5).

(c) ⇒ (a). Let B =
⋃
t∈X Bt be an (H) Banach bundle over X and let E

be the module of continuous sections of B. Let

Y = {(t, v) : t ∈ X, v ∈ B∗t , ‖v‖ ≤ 1}

where B∗t is the dual Banach space to Bt. Then A = C(X) embeds in
B = l∞(Y ) by setting ϕ(f)(t, v) = f(t), and E embeds in B by setting
π(x)(t, v) = v(x(t)). The module structure is preserved by these embeddings,
for

π(fx)(t, v) = v(fx(t)) = v(f(t)x(t)) = f(t)v(x(t)) = ϕ(f)π(x)(t, v).

Thus E is an abelian operator A-module.

We view Theorem 7 as justifying the idea that general operator modules
are “noncommutative Banach bundles.” Note that the equivalence of parts
(a) and (c) easily extends to the case where A = C0(X) is nonunital, since
any Banach module over A is also a Banach module over the unitization
of A. But now part (c) will involve a Banach bundle over the one-point
compactification of X.

Next we prove a similar fact about Finsler C0(X)-modules.

Theorem 8. Let A = C0(X) be a commutative C*-algebra and let E be a
Banach A-module. The following are equivalent:
(a) There exists a map ρ : E → A+ (necessarily unique) which induces the

given norm on E and makes E into a Finsler A-module.
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(b) There is an (F) Banach bundle over X of which E is isomorphic to
the module of continuous sections vanishing at infinity.

Proof. (a) ⇒ (b). For X compact (b) follows from page 48 of [12] and
Proposition 2. If X is locally compact but not compact, let X+ be its one-
point compactification; then E is also a Finsler module over C(X+). Hence
E is isomorphic to the module of continuous sections of some (F) Banach
bundle over X+. But since ρ(x) ∈ C0(X) for all x ∈ E, the fiber over ∞
must be trivial. So E is also isomorphic to the module of continuous sections
vanishing at infinity of the restriction of the bundle to X.

(b) ⇒ (a). We have already described the construction of ρ in the intro-
duction, namely ρ(x)(t) = ‖x(t)‖Bt for any section x : X → B. This is a
continuous function of t precisely by the definition of an (F) Banach bun-
dle, and it satisfies the Finsler conditions because it satisfies them fiberwise.
Uniqueness of ρ was Corollary 6.

Finally, we show that if A is a commutative von Neumann algebra then
abelian operator modules and Finsler modules coincide. We say that a Ba-
nach L∞(X)-module E has the L∞ norm property if

‖x‖ = max(‖px‖, ‖(1− p)x‖)

for any x ∈ E and any projection p ∈ L∞(X).

Theorem 9. Let A = L∞(X) be a commutative von Neumann algebra and
let E be a Banach A-module. The following are equivalent:
(a) E is an abelian operator A-module.
(b) There exists a map ρ : E → A+ (necessarily unique) which induces the

given norm on E and makes E into a Finsler A-module.
(c) E satisfies the L∞ norm property.

Proof. (a)⇒ (b). Let A and E be embedded in a commutative C*-algebra B;
without loss of generality suppose B has a unit and A is embedded unitally.
(Otherwise replace B by 1AB. This does not alter the embedding of E in B
since x = 1Ax for all x ∈ E.) For each x ∈ E define

ρ(x) = inf{f ∈ A : |x| ≤ f} = inf{f ∈ A : |x| ≤ f and ‖f‖ = ‖x‖}.

The two infima are equal since everything in the first set dominates some-
thing in the second set. Since A is unitally embedded in B, the second set
contains f = ‖x‖ · 1, so it is nonempty, bounded, and self-adjoint; therefore
its infimum exists. This also shows that ‖ρ(x)‖ ≤ ‖x‖, and conversely, as
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|x| ≤ f implies ‖x‖ ≤ ‖f‖, we see that ‖ρ(x)‖ = ‖x‖. So ρ does induce the
original norm on E. This automatically implies Finsler condition (1), and
condition (2) in the form ρ(ax) = |a|ρ(x) is easy:

ρ(ax) = inf{f ∈ A : |ax| ≤ f} = |a| inf{f ∈ A : |x| ≤ f} = |a|ρ(x).

Again, uniqueness of ρ follows from Corollary 6.

(b) ⇒ (c). Let p be a projection in L∞(X), let q = 1− p, and let x ∈ E.
Then

ρ(x) = ρ((p+ q)x) = (p+ q)ρ(x) = pρ(x) + qρ(x) = ρ(px) + ρ(qx).

Since ρ(px) = pρ(x) and ρ(qx) = qρ(x) have disjoint support, we get

‖x‖E = ‖ρ(x)‖ = max(‖ρ(px)‖, ‖ρ(qx)‖) = max(‖px‖E, ‖qx‖E)

as desired.

(c) ⇒ (a). We assume the L∞ norm property and prove that E is A-
convex; this suffices by Theorem 7.

Thus let x, y ∈ E and let f, g ∈ L∞(X) be positive functions such that
f + g = 1. Let ε > 0. Partition X into measurable subsets X1, . . . , Xn such
that f and g each vary by less than ε′ = ε/(‖x‖ + ‖y‖) on each Xj. Let pj
be the characteristic function of Xj.

Fix j and let α, β ∈ R+ satisfy α+ β = 1 and

‖pj(f − α1)‖, ‖pj(g − β1)‖ ≤ ε′.

Then

‖pj(fx+ gy)‖ ≤ ‖pj((f − α1)x+ (g − β1)y)‖+ ‖pj(αx+ βy)‖
≤ ε′‖x‖+ ε′‖y‖+ α‖x‖+ β‖y‖
≤ ε+ max(‖x‖, ‖y‖).

But then the L∞ norm property implies that

‖fx+ gy‖ = max(‖p1(fx+ gy)‖, . . . , ‖pn(fx+ gy)‖)
≤ ε+ max(‖x‖, ‖y‖),

which in the limit ε→ 0 establishes that E is A-convex.

A simple example of an abelian operator module which is not a Finsler
module in the C* case is given by A = C([0, 1]) and E = L∞([0, 1]).
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3. The noncommutative case.

Lemma 10. Let A be a C*-algebra. Then A has a unique maximal com-
mutative ideal I and it may be obtained as the intersection of the kernels of
all irreducible representations of A of dimension greater than 1. Moreover,
I is contained in the center of A.

Proof. Let I be the intersection of the kernels of all irreducible representa-
tions of A of dimension greater than 1. If J is any ideal of A then any irre-
ducible representation of A either annihilates J or restricts to an irreducible
representation of J ([4], Theorem 1.3.4). As no commutative C*-algebra
has irreducible representations of dimension greater than 1, it follows that I
contains every commutative ideal.

Now let a ∈ I and b ∈ A. Then ab − ba is annihilated by every homo-
morphism into C, and it also belongs to I, hence it is annihilated by every
irreducible representation of A. Thus ab − ba = 0, and we conclude that
I ⊂ Z(A). In particular, I is commutative.

Recall that if A, B, and D are C*-algebras, and if homomorphisms ϕ :
A→ D and ψ : B → D are given, then the C*-algebra A⊕D B is defined as

A⊕D B = {(a, b) ∈ A⊕B : ϕ(a) = ψ(b)}.

We use the same notation for modules, Banach spaces, etc.

Lemma 11. Let A and I be as in Lemma 10. Then every multiplicative
linear functional on I extends uniquely to a multiplicative linear functional
on A. The intersection of the kernels of these functionals is an ideal J of A
with the properties that I ∩ J = 0 and A/J is commutative. We have A ∼=
C0(X)⊕C0(Y )B where X = Prim(A/J), B = A/I, and Y = Prim(A/(I+J)).

Proof. Let Î denote the spectrum of I. Every ω ∈ Î extends uniquely to
a multiplicative linear functional εω on A by Theorem 1.3.4 of [4]. Let
J =

⋂
ω∈Î ker(εω).

Since the range of each εω is C, it follows that each ker(εω) contains the
commutator ideal of A. Hence so does J , so that A/J is commutative. For
every nonzero element of I there exists an ω ∈ Î which does not annihilate
it, so that I ∩ J = 0.

Define ϕ : A→ C0(X)⊕C0(Y )B by ϕ(a) = (a+J, a+ I). Then ϕ is clearly
a ∗-homomorphism, and it is injective because I ∩ J = 0. To see that ϕ is
surjective, let b, c ∈ A satisfy b+(I+J) = c+(I+J). Then c−b ∈ I+J and
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so by the natural isomorphism J = J/(I ∩J) ∼= (I+J)/I there exists b′ ∈ J
such that b′+I = (c−b)+I. Then (b+b′)+J = b+J and (b+b′)+I = c+I,
that is, ϕ(b+ b′) = (b+ J, c+ I).

Note that J can also be described in the following way. If U is the open
subset of Prim(A) corresponding to I, then J corresponds to the interior of
the complement of U .

For subsets B of a C*-algebra A and F of a Banach A-module E, we
denote by BF the closed linear span of all products ax with a ∈ B and
x ∈ F.
Lemma 12. Let E be a Finsler module over a C*-algebra A, let I be
an ideal of A, let B = A/I, let π : A → B be the quotient map, and let
ρ′ = π ◦ ρ. Then IE = ker(ρ′), E/IE is a B-module, and ρ′ descends to a
B-valued Finsler norm on E/IE.

Proof. It is clear that E/IE is naturally a B-module. If a ∈ I and x ∈ E then
ρ(ax)2 = aρ(x)2a∗ ∈ I, hence ρ(ax) ∈ I, that is, ax ∈ ker(ρ′). This shows
that IE ⊂ ker(ρ′). Conversely, if x ∈ ker(ρ′) then ρ(x) ∈ I, and so there
exists a sequence {en} of positive elements of I such that enρ(x) → ρ(x).
We claim that

ρ(x− enx)2 = ρ(x)2 − ρ(x)2en − enρ(x)2 + enρ(x)2en.

To see this, let b be the left side and c the right side. Then for any a ∈ A
we have

aca∗ = (a− aen)ρ(x)2(a∗− ena∗) = ρ((a− aen)x)2 = aρ(x− enx)2a∗ = aba∗.

Thus, a(b− c)a∗ = 0 for all a ∈ A, whence b = c as claimed. It now follows
that ρ(x − enx)2 → 0. Thus ‖x − enx‖E → 0 and so x ∈ IE. We have
therefore shown that IE = ker(ρ′).

Next we show that ‖ρ′(·)‖ satisfies the triangle inequality. For suppose
this fails and

‖ρ′(x+ y)‖ > ‖ρ′(x)‖+ ‖ρ′(y)‖
for some x, y ∈ E. Then there is a pure state f on B such that f(ρ′(x+y)2) =
α2, f(ρ′(x)2) = β2, and f(ρ′(y)2) = γ2 with α = ‖ρ′(x + y)‖, β ≤ ‖ρ′(x)‖,
and γ ≤ ‖ρ′(y)‖ (hence α > β + γ). Letting f ′ = f ◦ π, we get that f ′ is a
pure state on A and f ′(ρ(x+ y)2) = α2, f ′(ρ(x)2) = β2, f ′(ρ(y)2) = γ2.

By Proposition 2.2 of [3], there exists a net {aλ} of positive norm one
elements of A such that

lim ‖aλbaλ − f ′(b)a2
λ‖ = 0
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for any b ∈ A. It follows that ‖aλbaλ‖ → f ′(b) for all b. In particular with
b = ρ(x+ y)2 we have

‖ρ(aλx+ aλy)2‖ = ‖aλρ(x+ y)2aλ‖ → α2,

hence
‖aλx+ aλy‖E = ‖ρ(aλx+ aλy)‖ → α,

and similarly ‖aλx‖E → β and ‖aλy‖E → γ. Since α > β+γ this contradicts
the triangle inequality in E. We conclude that ‖ρ′(·)‖ satisfies the triangle
inequality.

We must now show that ρ′ descends to E/IE, that is, we must prove that
ρ′(x) = ρ′(x + y) for any x ∈ E and y ∈ IE. The triangle inequality just
established implies that for any a ∈ A+ we have

‖ρ′(ax)‖ = ‖ρ′(ax)‖ − ‖ρ′(ay)‖ ≤ ‖ρ′(ax+ ay)‖
≤ ‖ρ′(ax)‖+ ‖ρ′(ay)‖ = ‖ρ′(ax)‖,

whence ‖ρ′(ax)‖ = ‖ρ′(ax+ ay)‖. If b ∈ B+, then there is a ∈ A+ such that
π(a) = b, so that

‖bρ′(x)2b‖ = ‖ρ′(ax)‖2 = ‖ρ′(ax+ ay)‖2 = ‖bρ′(x+ y)2b‖.
Theorem 4 now implies that ρ′(x) = ρ′(x+ y), showing that ρ′ does descend
to E/IE.

Lemma 13. Retain the notation of Lemma 12. Suppose ρ′ satisfies the
parallelogram law

ρ′(x+ y)2 + ρ′(x− y)2 = 2ρ′(x)2 + 2ρ′(y)2

for x, y ∈ E. Then E/IE is a Hilbert B-module for a unique B-valued inner
product which gives rise to ρ′.

Proof. We begin by showing that the polarization formula

〈x, y〉 =
1
4

3∑
k=0

ikρ′(x+ iky)2

defines a C-sesquilinear map 〈·, ·〉 : E×E → B which satisfies 〈x, y〉∗ = 〈y, x〉
and ρ′(x)2 = 〈x, x〉 for all x, y ∈ E.

First, we have

〈x, x〉 =
1
4

3∑
k=0

ikρ′((1 + ik)x)2 =
1
4

3∑
k=0

ik(1 + ik)ρ′(x)2(1 + i−k) = ρ′(x)2.
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Next, observe that ρ′(ikz)2 = ikρ′(z)2i−k = ρ′(z)2, whence

〈y, x〉 =
1
4

3∑
k=0

ikρ′(y + ikx)2 =
1
4

3∑
k=0

ikρ′(ik(x+ i−ky))2

=
1
4

3∑
k=0

i−kρ′(x+ iky)2 = 〈x, y〉∗.

This proves one of the claims and also shows that to prove C-sesquilinearity
we need only check C-linearity in the first variable. This is done by exactly
the same argument that one uses in the scalar case (e.g. see [6]), but we
include this argument for completeness.

For u, v, z ∈ E the parallelogram law gives

ρ′((u+ ikz) + v)2 + ρ′((u+ ikz)− v)2 = 2ρ′(u+ ikz)2 + 2ρ′(v)2,

that is,

ρ′((u+ v) + ikz)2 + ρ′((u− v) + ikz)2 = 2ρ′(u+ ikz)2 + 2ρ′(v)2.

Multiplying by ik/4 and summing over k yields

(∗) 〈u+ v, z〉+ 〈u− v, z〉 = 2〈u, z〉.
Substituting v = u then shows that 〈2u, z〉 = 2〈u, z〉, using the fact that

〈0, z〉 =
1
4

3∑
k=0

ikρ′(ikz)2 =
1
4

3∑
k=0

ikρ′(z)2 = 0.

So replacing 2〈u, z〉 with 〈2u, z〉 in (∗) and substituting u = (x + y)/2 and
v = (x− y)/2, we get

〈x, z〉+ 〈y, z〉 = 〈x+ y, z〉.
This proves additive linearity.

Now for α ∈ R define f(α) = 〈αx, y〉 ∈ A. The map α 7→ αx + iky is
continuous since E is a Banach module, so Corollary 5 implies that the map
α 7→ ρ′(αx+ iky)2 is continuous. It follows that f is continuous. As we also
have f(α + β) = f(α) + f(β), it follows that f(α) = αf(1) for all α ∈ R,
that is, 〈αx, y〉 = α〈x, y〉. Finally, direct calculation shows that

〈ix, y〉 =
1
4

3∑
k=0

ikρ′(ix+ iky)2 =
1
4

3∑
k=0

ikρ′(x+ ik−1y)2

=
1
4

3∑
k=0

ik+1ρ′(x+ iky)2 = i〈x, y〉.
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So additive linearity implies that

〈(α+ iβ)x, y〉 = 〈αx, y〉+ 〈iβx, y〉 = α〈x, y〉+ iβ〈x, y〉 = (α+ iβ)〈x, y〉.
This completes the proof of C-linearity in the first variable, hence of C-
sesquilinearity by the comment made earlier.

Let y ∈ IE, so that 〈y, y〉 = ρ′(y)2 = 0. For any positive linear functional
f on B, f(〈·, ·〉) is a C-valued positive semidefinite sesquilinear form, hence
it satisfies the Cauchy-Schwartz inequality. In particular

|f(〈x, y〉)|2 ≤ f(〈x, x〉)f(〈y, y〉) = 0.

It follows that 〈x, y〉 = 0 for all x ∈ E, and from this we conclude that 〈·, ·〉
descends to E/IE.

We now know that 〈x + IE, y + IE〉 = 〈x, y〉 defines a B-valued inner
product on E/IE that satisfies 〈x + IE, y + IE〉∗ = 〈y + IE, x + IE〉 and
ρ′(x)2 = 〈x+ IE, x+ IE〉 and is C-sesquilinear. To complete the proof that
E/IE is a Hilbert B-module we must prove B-sesquilinearity. To do this
fix x, y ∈ E and consider the C-sesquilinear forms {·, ·}, {·, ·}′ : A× A→ B
defined by {a, b} = π(a)〈x, y〉π(b)∗ and {a, b}′ = 〈ax, by〉. For any a ∈ A we
have

{a, a} =
1
4

3∑
k=0

ikπ(a)ρ′(x+ iky)2π(a)∗ =
1
4

3∑
k=0

ikπ(aρ(x+ iky)2a∗)

=
1
4

3∑
k=0

ikρ′(ax+ ikay)2 = {a, a}′.

It follows that {·, ·} = {·, ·}′ by polarization. Thus

π(a)〈x+ IE, y + IE〉π(b)∗ = 〈π(a)(x+ IE), π(b)(y + IE)〉
for all a, b ∈ A and x, y ∈ E, and this shows that 〈·, ·〉 is B-sesquilinear.

Finally, 〈·, ·〉 is unique by polarization.

The following lemma is a much simpler relative of Lemma 6.7.1 of [17].
The proof is simple enough that we give it anyway.

Lemma 14. Let A ⊂ B(H) be a C*-algebra irreducibly represented on a
Hilbert space H of dimension greater than 1. Let ξ ∈ H. Then there exist
a, b ∈ A such that a = a∗, aξ = ξ, ba = 0, and bb∗ = a2.

Proof. Let ζ ∈ H be orthogonal to ξ and satisfy ‖ζ‖ = ‖ξ‖. By the Kadison
Transitivity Theorem ([17], Theorem 2.7.5) we can find self-adjoint c, s ∈ A
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such that cξ = ξ, cζ = 0, sξ = ζ, and sζ = ξ. Choose continuous functions
f, g : R → [0, 1] with f(1) = 1, g(0) = 1, and fg = 0. Set b = f(c)sg(c).
Note that bζ = ξ and b∗ξ = ζ, so bb∗ξ = ξ. Set a = (bb∗)1/2. Then fg = 0
implies b2 = 0 implies ba(ba)∗ = b2(b∗)2 = 0, so ba = 0.

Lemma 15. Let E be a Finsler A-module, let I be the maximal commutative
ideal of A, and let B = A/I. Then E/IE is a Hilbert B-module.

Proof. Let π : A → B be the natural projection and let ρ′ = π ◦ ρ. By
Lemma 13 it will suffice to show that ρ′ satisfies the parallelogram law. Let
x, y ∈ E, let ϕ : A → B(H) be an irreducible representation on a Hilbert
space of dimension greater than 1, and let ξ ∈ H.

By Lemma 14 there exist a, b ∈ A such that the elements ã = ϕ(a) and b̃ =
ϕ(b) satisfy ã = ã∗, ãξ = ξ, b̃b̃∗ = ã2, and b̃ã = 0. Letting ρ̃ = ϕ◦ρ and using
the fact proved in Lemma 12 that ρ̃ descends to E/ ker(ρ̃) = E/ ker(ϕ)E
(and ba, bb∗ − a2 ∈ ker(ϕ)) we have

〈ρ̃(x± y)2ξ, ξ〉 = 〈ã2ρ̃(x± y)2ã2ξ, ξ〉 = 〈ρ̃(a2(x± y))2ξ, ξ〉
= 〈ρ̃((a± b)(ax+ b∗y))2ξ, ξ〉
= 〈(ã± b̃)ρ̃(ax+ b∗y)2(ã± b̃∗)ξ, ξ〉.

Adding yields〈[
ρ̃(x+ y)2 + ρ̃(x− y)2

]
ξ, ξ
〉

=
〈[

2ãρ̃(ax+ b∗y)2ã+ 2b̃ρ̃(ax+ b∗y)2b̃∗
]
ξ, ξ
〉

=
〈[

2ρ̃(a(ax+ b∗y))2 + 2ρ̃(b(ax+ b∗y))2
]
ξ, ξ
〉

=
〈[

2ρ̃(a2x)2 + 2ρ̃(a2y)2
]
ξ, ξ
〉

=
〈
ã2
[
2ρ̃(x)2 + 2ρ̃(y)2

]
ã2ξ, ξ

〉
=
〈[

2ρ̃(x)2 + 2ρ̃(y)2
]
ξ, ξ
〉
.

Let c = ρ(x+y)2+ρ(x−y)2−2ρ(x)2−2ρ(y)2, so we have 〈cξ, ξ〉 = 0. As ξ was
arbitrary we get ϕ(c) = 0, and since this is true for all irreducible represen-
tations ϕ of dimension greater than 1 we conclude that c ∈ I. This implies
that π(c) = 0 and so ρ′ satisfies the parallelogram law, as desired.

Lemma 16. Let A = B1 ⊕D B2, with ϕi : Bi → D surjective.

(1) Let F1 and F2 be Finsler modules over B1 and B2, let H be a Finsler
module over D, and let ψi : Fi → H be continuous linear maps inducing
Finsler module isomorphisms ψi : Fi/ ker(ϕi)Fi → H. Then E = F1 ⊕H
F2 is a Finsler module over A, with the module structure (b1, b2)(x1, x2) =
(b1x1, b2x2) and ρE(x1, x2) = (ρF1(x1), ρF2(x2)).
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(2) Let E be a Finsler module over A. Let πi : A → Bi be the projection
maps, and set Fi = E/ ker(πi)E and H = E/ ker(ϕ1 ◦ π1)E = E/ ker(ϕ2 ◦
π2)E. Then there is a canonical isomorphism E ∼= F1 ⊕H F2.

Proof. (1) This is a straightforward calculation, and is omitted.

(2) We have ϕ1 ◦ π1 = ϕ2 ◦ π2 by the definition of B1⊕D B2. Since ϕ1 and
ϕ2 are surjective, so are π1 and π2. Therefore Lemma 12 shows that Fi is a
Finsler module over Bi and H is a Finsler module over D. It is immediate
that the map x 7→ (x + ker(π1)E, x + ker(π2)E) is a homomorphism of A-
modules, and easy to check that it intertwines the Finsler norms. Since it
intertwines the Finsler norms, it must be injective, and it is surjective by
the argument used at the end of the proof of Lemma 11.

Theorem 17. Let A be a C*-algebra and as in Lemma 11 write A ∼=
C0(X) ⊕C0(Y ) B, where C0(X) = A/J , B = A/I, and C0(Y ) = A/(I + J).
If E0 is a Hilbert module over C0(Y ), E1 is a Finsler module over C0(X),
E2 is a Hilbert module over B, and ψi : Ei → E0 are continuous linear maps
inducing Finsler module isomorphisms

ψ1 : E1/[(I + J)/J ]E1 → E0 and ψ2 : E2/[(I + J)/I]E2 → E0,

then E1⊕E0E2 is a Finsler module over A. Conversely, every Finsler module
over A arises in this way.

Proof. If in the statement we merely require E0 and E2 to be Finsler modules,
then this is just the previous lemma. However, Lemma 15 implies that E2

is necessarily a Hilbert module, and it follows that E0
∼= E2/[(I + J)/I]E2

is also automatically a Hilbert module.

Corollary 18. Let A be a C*-algebra. Then the class of Finsler A-modules
equals the class of Hilbert A-modules if and only if A has no nonzero com-
mutative ideals. In particular this holds if A is simple with dim(A) > 1,
approximately divisible [7], or a von Neumann algebra with no abelian sum-
mand.

Proof. We use the notation of Theorem 17. If A has no commutative ideals
then I = 0, J = A, C0(X) = C0(Y ) = 0, and B = A. Thus Theorem 17
identifies the Finsler modules over A with the Hilbert modules over B = A.
Conversely, if I is a nontrivial commutative ideal of A then C0(X) 6= 0.
Choose a non-Hilbert Banach space V, and take E1 to be the module of
continuous maps Î → V which vanish at infinity. Letting E2 = E0 = 0,
Theorem 17 produces a Finsler A-module; but it is not a Hilbert A-module
because the norm ρ does not satisfy the parallelogram law.
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