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COMPLETE CONICAL TYPE END
IMMERSED MANIFOLDS IN RN

Jaime Ripoll

We introduce and describe the topology of a family of
complete immersed manifolds in RN , having a nice behaviour
at infinity, which we call conical type end manifolds. Our main
result states that a complete, non compact immersed manifold
in RN , whose lim sup of the norm of the second fundamental
form times the intrinsic distance of the manifold to a fixed
point is strictly less than 1, as the distance goes to infinity, is
a conical type end manifold. In particular, it follows that the
manifold has finite topology and is properly immersed in RN .

1. Introduction.

In this paper we introduce and describe the topology of a family of immersed
manifolds in RN having a nice behaviour at infinity, which we call conical
type end manifolds, defined as follows. Let M be a complete non compact
n−dimensional Riemannian manifold, and let φ : M → RN be an isometric
immersion. As usual, we identify M with φ(M) and assume that 0 /∈M.

Given p ∈ M we denote by N(p) the orthogonal projection of p/|p| over
TpM

⊥, where TpM is the tangent space of M at p and TpM⊥ its orthogonal
complement in RN . Given α ≥ 0, we say that M is a α−conical type end
immersed manifold of RN if

δα := lim
d(p,p0) →∞

sup dα(p, p0)|N(p)| < 1(1)

where d(p, p0) is the intrinsic distance in M from p to an arbitrary but fixed
point p0 in M.

An obvious example is as follows. Setting

SN−1(1) = {x ∈ RN | |x| = 1},

take an immersed compact manifold V n−1 ⊂ SN−1(1), and let M be the
part of the cone over V exterior to SN−1(1), that is, M = {tx | t ≥ 1,
x ∈ V }. Since N(p) = 0 for all p ∈ M, it follows that M is an immersed
α-conical type end manifold of RN for any α ≥ 0 once one “completes” M
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with some compact immersed n− manifold of RN . Roughly speaking, this
example is typical at least in the case α > 0 in the sense that a α−conical
type end immersed manifold M, α > 0, is uniformly asymptotic to a cone
over a compact subset of the sphere (Theorem 1.1 (d)).

Our main result (Theorem 1.3) states that a complete non compact
n-dimensional immersed manifold M in RN , n ≥ 1, N ≥ 2, whose norm
of the second fundamental form A times the intrinsic distance d of the man-
ifold relative to a fixed point is uniformly strictly less than 1, that is,

lim
d(p,p0)→∞

sup d(p, p0)|Ap| < 1,(2)

is of this type, that is, has conical type ends. In particular, it will follows
that M has finite topology and is properly immersed in RN (see Theorem
1.1).

K. Enomoto ([E]) proved, under the assumption that M is properly im-
mersed and n ≥ 2, that if the condition

lim
d(p,p0)→∞

d1+ε(p, p0)|Ap| = 0(3)

is satisfied for some ε > 0 then the inversion I(M) of M is a C1 immersed
manifold at the origin O of RN , where I(p) := p/|p|2. As a direct consequence
of this result one has, under the above hypothesis, that M has finite topology
and the Gauss map of M is continuous at infinity in each end of M . This
last conclusion fails if one assumes that condition (3) is satisfied just for
ε = 0 (for example, cones over compact manifolds immersed in spheres as
defined above). Other results describing immersed manifolds in Euclidean
and hyperbolic space forms, satisfying condition (3), were obtained by A.
Kasue and K. Sugahara ([KS]).

Our contribution in comparison with Enomoto’s result and also others
obtained by Kasue and Sugahara is that we don’t require the properness
of the immersion and that our theorem gives a description of the manifolds
satisfying condition (3) with ε = 0, and more generally, condition (2), cases
not yet considered.

In a recent work, H. Rosenberg ([R]) proved that a complete embedded
minimal surface in the Euclidean 3−dimensional space whose second funda-
mental form has bounded norm is proper. It is not known if this result holds
either for immersions or for higher codimensions. Of course, the assumption
of the minimality of the immersion is important in Rosenberg’s result. In
fact, under general hypothesis, condition (2) is sharp, as shows the following
simple example: The curve γ(t) = et(1+cos t, sin t) is not proper but satisfies

lim
p→∞ d

β(p, p0)|Ap| = 0,
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for any 0 ≤ β < 1.
We shall now give precise statements of our theorems. Recall that the

asymptotic boundary M∞ ⊂ SN−1(1) of an immersed manifold M of RN is
the pointwise limit of the subsets

(1/R)(M ∩ SN−1(R)) ⊂ SN−1(1)

as R→∞, where SN−1(R) = {p | |p| = R}.
In the next two results we give a description of the conical type end

immersions:

Theorem 1.1. Let M be a complete n− dimensional α-conical type end
immersed manifold in RN , that is, satisfying (1), n ≥ 1, α ≥ 0. Then
(a) M is proper,
(b) there is R0 such that M is transversal to the hyperspheres SN−1(R) for

all R ≥ R0,

(c) M is diffeomorphic to the interior of a compact differentiable manifold
with boundary,

(d) if α > 0, then M converges continuously to its asymptotic boundary,
that is, there are a compact n−dimensional differentiable manifold L,
surjective immersions

σR : L→ (1/R)(M ∩ SN−1(R)), R ≥ R0

converging uniformly C0, as R → ∞, to a continuous surjective map
σ : L→M∞.

It is possible to prove that a surface of finite topology whose Gauss map
extends continuously to the punctures is a conical type end surface. Hence,
Theorem 1.1 generalizes itens (1) and (2) of Theorem 1 of [JM].

When α = 0, the convergence of (1/R)(M ∩ SN−1(R)) may not satisfy
(d). For instance, the asymptotic boundary of the plane curve γ(t) =
(t, t cos

√
ln t), t ∈ [1,∞) is a whole strip in S1(1), as one easily sees. In

this example, we even have limd(p,p0)→∞ sup |N(p)| = 0.
We observe that in a α−conical type end manifold, α > 0, the limit map

σ : L→M∞ may not be a topological immersion, as one sees in the example
of the parboiled z = x2 + y2.

Denote by D(R) the closed ball centered at the origin of R3 with radius
R.

Proposition 1.2. Let M be a complete α-conical type end immersed surface
in R3, α ≥ 0. Assume that there are R0 and V such that each connected
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component γiR, i = 1, ..., k, of (1/R)(S2(R) ∩M) satisfies∫
γi
R

|(γiR)′′(t)|dt ≤ V

for all R ≥ R0, where t is the arc length of γiR. Then
∫
M∩D(R)Kdw is uni-

formly bounded, where K is the Gaussian curvature of M. If
∫
M∩D(Rn)Kdw

converges as n→∞, we have the formula

lim
n→∞

∫
M∩D(Rn)

Kdw = 2πχ(M)−
k∑
i=1

lim
n→∞L(γiRn).(4)

In particular, M has finite total curvature if and only if there exist the limits
limR→∞ L(γiR), i = 1, ..., k.

It is interesting to notice two special cases of formula (4). One occurs when
the limit curves γ1, ..., γk of M∞ are great circles in S2(1), this happening,
for instance, when the Gauss map extends to the infinity. In this case, it
follows from Theorem 1 of [JM] that each curve γiR converges C1 with a
certain multiplicity, say mi, to γi, and formula (4) yields

∫
M

Kdw = 2π

(
χ(M)−

k∑
i=1

mi

)

a very known formula in minimal surface theory, also proved in [JM]. The
other case, in certain sense opposite to this one, occurs when γi are points. In
this case, of course, the Gauss map does not extend to the infinity. Formula
(4) gives ∫

M

Kdw = 2πχ(M).

Exemples are the graphs of even degree polinomials whose coefficients of
higher degree are positive, where we have

∫
M Kdw = 2π. Also, certain

complete graphs over k multiply connected domains, where we will have∫
M Kdw = 2π(1− k).

Related to formula (4), but in a more general context, K. Shiohama ([S])
proves that ∫

M

KdM = 2πχ(M)− lim
r→∞L(r)

where M is a finite total curvature anullus, and L(r) is the length of a
geodesic circle centered at some point of M divided by r.

In the next result, we give a characterization of conical type end manifolds
immersed in RN .
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Theorem 1.3. Let M be a complete non compact n-dimensional manifold
immersed in RN , n ≥ 1, whose second fundamental form A satisfies

lim
d(p,p0)→∞

sup d1+2α(p, p0)|Ap| < 1(5)

for some α ≥ 0. Then M is a α-conical type manifold.

2. Proof of the results.

We recall that M is a complete n−dimensional Riemannian manifold iso-
metrically immersed in RN . We identify M with its image in RN and assume
that 0 /∈M.

Given p ∈ M, we denote by ρ(t, p) the flow of the gradient in M of the
map F |M , where F : RN → R is defined by F (p) = (1/2)|p|2. Since M is
complete, ρ(p, t) is defined for all t. We choose an arbitrary point p0 ∈M.

If (1) is satisfied for some α ≥ 0, then obviously there is R1 > 0 such that
the critical points of F are all inside the geodesic ball

Bp0(R1) = {p ∈M | d(p, p0) < R1}

of M.

Lemma 2.1. Let p ∈M be given. Setting r(p, t) = (1/2)|ρ(p, t)|2, we have

r′(p, t) ≤ 2r(p, t)(6)

for all t. If (1) is satisfied for some α ≥ 0, then there is a compact K ⊂ M
such that, if ρ(p, t) ∈M\K for all t ≥ 0 then

1
2
|p|2e(1−δ2

α)t ≤ r(p, t) ≤ 1
2
|p|2e2t, if t ≥ 0(7)

and if ρ(p, t) ∈M\K for all t ≤ 0 then

1
2
|p|2e2t ≤ r(p, t) ≤ 1

2
|p|2e(1−δ2

α)t, if t ≤ 0.(7’)

Proof. We have

r′ =
(

1
2
〈ρ, ρ〉

)′
= 〈ρ, ρ′〉

and, since

ρ′ = ρ− |ρ|N(ρ)(8)
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we obtain

r′ = |ρ|2 (1− |N(ρ)|2)(9)

= 2r
(
1− |N(ρ)|2) ≤ 2r

which proves (6). Since r′/r ≤ 2, by integration we obtain r(p, t) ≤
(1/2)|p|2e2t if t ≥ 0, and r(p, t) ≥ (1/2)|p|2e2t if t ≤ 0.

It folows from (1) that there is a compact K ⊂M such that

1− |N(p)|2 > 1
2

(1− δ2
α)

for all p ∈ M\K. Therefore, if ρ(p, t) ∈ M\K either for all t ≥ 0 or t ≤ 0
one has, from the second equality of (9)

r′(p, t)
r(p, t)

≥ 1− δ2
α

in each case. By integration we obtain the remaining inequalities (7, 7’),
proving Lemma 2.1.

Lemma 2.2. Let us assume that (1) is satisfied for some α ≥ 0, and let R1

be such that the critical points of F are all inside the geodesic ball Bp0(R1)
of M. Then
(i) there is R2 such that, given p ∈M\Bp0(R2), then ρ(p, t) /∈ Bp0(R1) for

all t ≥ 0,
(ii) given p ∈M\Bp0(R1), there is t ≤ 0 such that ρ(p, t) ∈ Bp0(R1).

Proof. (i) By contradiction, let us assume the opposite. Then we can get
a divergent sequence pn ∈ M and a sequence of positive real numbers tn
such that qn := ρ(pn, tn) ∈ Bp0(R1) for all n. We have limn→∞ d(pn, qn) =
∞, where d is the intrinsic distance in M. But from (6) and (7’), setting
rn(qn, t) = (1/2)|ρ(qn, t)|2, we obtain, for all n

d(pn, qn) ≤
∫ 0

−tn
|ρ′(qn, t)|dt ≤

∫ 0

−∞
|ρ′(qn, t)|dt =

∫ 0

−∞

√
r′n(qn, t)dt

≤ |qn|
∫ 0

−∞
e

(1−δ2α)t
2 dt ≤ max

q∈BR1 (p0)
|q| <∞

contradiction! This proves (i).
(ii) Given p ∈M\Bp0(R1), the above computations show that the length

of the curve ρ(p,−t), t ≥ 0, is finite. Since M is complete, we can get a
sequence tn → ∞ such that qn := ρ(p, tn) converges to a point q ∈ M,
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which has to be a critical point of F. It follows that q ∈ Bp0(R1), proving
(ii).

Lemma 2.3. Given 0 < ε < 1, let U ⊂M be such that d(q, p0)|Aq| < ε for
all q ∈ U. Assume the existence of p ∈ U which is not a critical point of F
such that ρ(p, t) ∈ U for all t ≥ 0. Then

|N(ρ(p, t))|2 ≤ ε(1− y0)e2t(1−ε) + y0 − ε
(1− y0)e2t(1−ε) + y0 − ε(10)

for all t ≥ 0, where y0 = |N(p)|2. In particular

lim
t→∞ sup |N(ρ(p, t))|2 ≤ ε.(11)

Proof. Observe that〈
q

|q| ,
N(q)
|N(q)|

〉2

= 1−
n∑
i=1

〈
q

|q| , Vi
〉2

(12)

where {V1, .., Vn} is an orthonormal basis of TqM, so that the function

q 7→
〈
q

|q| ,
N(q)
|N(q)|

〉2

is differentiable, even where N(q) = 0. Setting

y(t) =
〈
ρ(p, t)
|ρ(p, t)| , Ñ(ρ(p, t))

〉2

,(13)

where Ñ = N/|N |, we will prove that

y′ ≤ 2(1− y)(ε− y),(14)

for all t ≥ 0. If N(ρ(p, t)) = 0 at some t then we have y(t) = y′(t) = 0 so
that (14) is satisfied at t. If N(ρ(p, t)) 6= 0 then

√
y(s) is differentiable at

s = t and, at t

y′ = 2
〈
ρ

|ρ| , Ñ
〉[−1
|ρ|2 〈ρ, ρ

′〉
〈
ρ

|ρ| , Ñ
〉

+
〈
ρ

|ρ| , Ñ
′
〉]

= −2

(
1−

〈
ρ

|ρ| , Ñ
〉2
)〈

ρ

|ρ| , Ñ
〉2

+ 2
〈
ρ

|ρ| , Ñ
〉〈

ρ

|ρ| , Ñ
′
〉

that is

y′ ≤ −2(1− y)y + 2
∣∣∣∣〈 ρ

|ρ| , Ñ
′
〉∣∣∣∣ .(15)
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But

2
∣∣∣∣〈 ρ

|ρ| , Ñ
′
〉∣∣∣∣ = 2

∣∣∣∣∣
〈
ρ′ + ρ⊥

|ρ| ,∇ρ′Ñ
〉∣∣∣∣∣ = 2

|ρ′|2
|ρ|

∣∣∣∣〈 ρ′

|ρ′| ,∇ρ′/|ρ′|Ñ
〉∣∣∣∣

= 2

(
1−

〈
ρ

|ρ| , Ñ
〉2
)
|ρ|
∣∣∣∣〈 ρ′

|ρ′| ,∇ρ′/|ρ′|Ñ
〉∣∣∣∣

≤ 2(1− y)d(ρ, p0) |Aρ| ≤ 2ε(1− y),

which, with (15), proves (14).
Let z(t) be the solution of the differential equation

z′ = 2(1− z)(ε− z)
satisfying z(0) = y0 := y(0). We note that since p is not a critical point of
F , y(0) < 1. We see that z(t) is given by

z(t) =
ε(1− y0)e2t(1−ε) + y0 − ε
(1− y0)e2t(1−ε) + y0 − ε(16)

being defined for all t if ε ≤ y0, and for

t ≥ 1
1− ε ln

ε− y0

1− y0

if y0 < ε. Since (ε−y0)/(1−y0) < 1, z(t) is defined, in any case, for all t ≥ 0.
By comparison, since y′(t) ≤ z′(t) for all t ≥ 0 and y(0) = z(0), we obtain

y(t) ≤ z(t),
for all t ≥ 0, proving (10). Inequality (11) follows from (10), finishing the
proof of Lemma 2.3.

Lemma 2.4. Assume that there is p ∈ M such that the curve t 7→ ρ(p, t)
satisfies

lim
t→−∞ sup d(ρ(p, 0), ρ(p, t))|Aρ(p,t)| < 1.

Then the image of the curve t 7→ ρ(p, t), t ∈ (−∞, 0], lies in a compact subset
of M .

Proof. By contradiction, we assume the opposite. Since M is complete,
the curve t 7→ ρ(p, t), t ∈ (−∞, 0], has infinite length. Setting r(p, t) =
(1/2) 〈ρ(p, t), ρ(p, t)〉 , for t ≤ 0, we therefore have∫ 0

−∞

√
r′(p, t)dt =∞
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since r′ = 〈ρ′, ρ〉 = 〈ρ′, ρ′〉 . Since limt→−∞ d(p, ρ(p, t)) = ∞, it follows that
limt→−∞ |Aρ(p,t)| = 0 and, given 0 < δ < 1, there is t0 ≤ 0 such that

1− |p||Aρ(p,t)| ≥ δ

for all t ≤ t0. If N(ρ(p, t)) 6= 0 we can set Ñ = N/|N | in a neighbourhood
of t. Since

ρ′ = ρ−
〈
ρ, Ñ

〉
Ñ

we obtain
ρ′′ = ρ′ −

〈
ρ, Ñ ′

〉
Ñ −

〈
ρ, Ñ

〉
Ñ ′

and
〈ρ′′, ρ′〉 = 〈ρ′, ρ′〉 −

〈
ρ, Ñ

〉〈
ρ′, Ñ ′

〉
so that

r′′

r′
=

2
〈ρ′, ρ′〉 〈ρ

′′, ρ′〉 = 2
(

1−
〈
ρ, Ñ

〉〈 ρ′

|ρ′| ,∇ ρ′
|ρ′|
Ñ

〉)
≥ 2(1− |p||Aρ(p,t)|) ≥ 2δ,

since the function t 7→ ρ(u, t) is non decreasing, for all u ∈ M. We may
therefore conclude that

r′′(p, t)
r′(p, t)

≥ 2δ

for all t ≤ t0 satisfying N(ρ(p, t)) 6= 0. If N(ρ(p, t)) = 0 at some point t then
we have, ρ′′(p, t) = ρ′(p, t) so that r′′(t)/r′(t) = 2.

It follows that r′′/r′ ≥ 2δ, for all t ≤ t0. By integration, we obtain

ln
r′(p, t0)
r′(p, t)

=
∫ t0

t

r′′(p, s)
r′(p, s)

ds ≥ 2δ(t0 − t)

so that
r′(p, t) ≤ r′(p, t0)e2δ(t−t0).

It follows that∫ 0

−∞

√
r′(p, t)dt =

∫ t0

−∞

√
r′(p, t)dt+

∫ 0

t0

√
r′(p, t)dt ≤

≤
√
r′(p, t0)

∫ t0

−∞
e(1−δ)(t−t0)dt+

∫ 0

t0

√
r′(p, t)dt

=
r′(p, t0)

δ
+
∫ 0

t0

√
r′(p, t)dt <∞

contradiction! This proves Lemma 2.4.
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Proof of Theorem 1.1.
(a) Clearly, it follows from (1) that all critical points of F are inside a

geodesic ball B1 := Bp0(R1) ⊂ M, where p0 is a fixed point in M. We
assume that R1 is such that K ⊂ B1, where K is the compact given in
Lemma 2.1. By Lemma 2.2 (i), there is another ball B2 := Bp0(R2) such
that ρ(p, t) ∈ M\B1 for all p ∈ M\B2 and for all t ≥ 0. We assume that
R2 > R1. Given a divergent sequence {pn} ⊂ M\B2, we will prove that it
is divergent in the space. Reasoning by contradiction, we may assume that
{pn} converges in the space to p ∈ RN . Given n, it follows from Lemma 2.2
(ii) that there is tn ≥ 0 such that qn := ρ(pn,−tn) ∈ ∂B2, for all n. We choose
tn in such a way that ρ(pn,−t) /∈ ∂B2 for all 0 ≤ t < tn. We may assume,
without loss of generality, that qn converges to q ∈ ∂B2. Furthermore, since
pn diverges in M and M is complete, tn →∞ as n→∞. Given any divergent
sequence sm of positive real numbers, we have

lim
m
|ρ(q, sm)| = lim

m
lim
n
|ρ(qn, sm)| ≤ lim

n
|ρ(qn, tn)| = lim

n
|pn| = |p|(17)

since the function t 7→ |ρ(u, t)| is non decreasing, for all u ∈M. On the other
hand, since ρ(q, t) ∈M\K for all t ≥ 0, it follows from Lemma 2.1 (7) that
limt→∞ |ρ(q, t)| = ∞, contradicting (17). This proves that M is properly
immersed in the space and (a) is satisfied.

(b) Clearly (3) implies (b).
(c) Since M is proper and there is R0 such that SN−1(R) is transversal to

M for all R ≥ R0, M∩SN−1(R0) consists of a finite number of immersed com-
pact connected differentiable manifolds. It follows that M(R0) := D(R0)∩M
is a compact immersed manifold in RN with boundary, where D(R0) is the
ball of the space centered at the origin and with radius R0. If L is any con-
nected component of M\M(R0) then the function F (p) = 2|p|2 restricted to
L has no critical points having its gradient orthogonal to the boundary N
of L. We then observe that the map

τ : N × [0,∞)→ L

(p, t) 7→ ρ(p, t)

is a diffeomorphism. In fact: It is obviously injective and a local diffeo-
morphism. But it is also surjective since all critical points of F are inside
M(R0) so that, by Lemma 2.2 (ii), given p ∈ L\N, there is t ≥ 0 such that
ρ(−t, p) ∈ N. This proves (c).

(d) Let us assume that (1) is satisfied with α > 0. Then, there is no loss
of generality to assume that

lim
d(p,p0)→∞

dα(p, p0)|N(p)| = 0.(18)



COMPLETE CONICAL TYPE END... 193

We will prove the existence of the limit

lim
t→∞

ρ(p, t)
|ρ(p, t)|

for all p ∈ M\B2 where B2 is given in (a). Choose p ∈ M\B2. Given any
unitary vector V in RN it is enough to prove that the angle θ(p, t) between
V and ρ(p, t) has a limit for t→∞. First assume that N = 2 and V = (1, 0).
We can therefore write

ρ(p, t) = r(p, t)(sin θ(p, t), cos θ(p, t))

and we note that here r(p, t) = |ρ(p, t)|. Since 〈ρ, ρ′〉 = 〈ρ′, ρ′〉 = rr′ we
obtain

r′

r

(
1− r′

r

)
= θ′2(19)

and

1− r′

r
= |N |2(20)

so that
lim
t→∞

r′

r
= 1

and

lim
t→∞ r

2α

(
1− r′

r

)
= lim

t→∞

(
rα
〈
ρ

|ρ| , N
〉)2

= lim
t→∞

(
|ρ|α

〈
ρ

|ρ| , N
〉)2

= 0.

Therefore, from (19), we have

lim
t→∞ r

αθ′ = 0.

From Lemma 2.1 inequality (7) we have r(p, t) ≥ |p|2e(1−δ2
α)t so that

limt→∞ eα(1−δ2
α)tθ′(p, t) = 0. It follows that there is a positive constant C

such that
|θ′(p, t)| ≤ Ce−α(1−δ2

α)t, t ≥ 0,

which implies the existence of the limit limt→∞ θ(p, t).
If N > 2, we can write ρ(p, t) in spherical coordinates extending V to an

orthonormal basis of the space and we will obtain

r′

r

(
1− r′

r

)
= θ′2 +

∑
i

a2
i
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for certains function ai = ai(p, t), where θ(p, t) is the angle between ρ(p, t)
and V. Since one still has (20), the proof continues as in the case N = 2.

Suppose that M ∩ SN−1(R0) is the image of an immersion H : L → RN
where L is a (n − 1)-dimensional differentiable manifold and R0 is given as
in (c). Given R ≥ R0, we define σR : L→ (1/R)(M ∩ SN(R)) by

σR(x) = (1/R)
(
ρ(H(x),R) ∩ SN−1(R)

)
.

By the implicit function theorem, it follows that σR is a surjective immersion
for all R ≥ R0. From what we have proved above, it follows that σR converges
as R→∞, to the map

σ : L→M∞

x 7→ lim
t→∞

ρ(H(x), t)
|ρ(H(x), t)| .

To prove the uniform convergence of the family {σR}, we consider the family
{τt : L→ SN(1)} given by

τt(x) =
ρ(H(x), t)
|ρ(H(x), t)|

which clearly converges to σ as t → ∞. Given ε > 0, by (18), there is a
geodesic ball B3 in M containing B2 such that

|p|α|N(p)| < ε

for all p ∈ M\B3. Let t1 be such that ρ(H(x), t) ∈ M\B3 for all t ≥ t1 and
for all x ∈ L. It follows that

|ρ(H(x), s)|α|N(ρ(H(x), s))| < ε

so that, by Lemma 2.1 (7’),

|N(ρ(H(x), s))| < ε

|ρ(H(x), s)|α <
εe−

α(1−δ2α)s
2

R0
α

(21)

for all x ∈ L and for all s ≥ t1. Denoting by θ(x) the angle between σ(x)
and V and, as before, by θ(x, t) the angle between τt(x) and V we have

|θ(x)− θ(x, t)| ≤
∫ ∞
t

|θ′(x, s)| ds.
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By (19) and (21), setting r(x, t) = |ρ(H(x), t)|, we obtain

|θ′(x, s)| =
√
r′(x, s)
r(x, s)

(
1− r′(x, s)

r(x, s)

)
≤
√

1− r′(x, s)
r(x, s)

= |N(ρ(H(x), s))| ≤ εe−
α(1−δ2α)s

2

Rα
0

|θ(x)− θ(x, t)| ≤ 2εe−
α(1−δ2α)t

2

αRα0

proving that the family {τt} converges uniformly to σ as t→∞. This proves
that σ is continuous.

Now, given ε > 0, there is t1 such that |τt(x)− σ(x)| < ε, for all t ≥ t1 and
for all x ∈ L. Clearly, there is R1 such that |σR(x)− σ(x)| ≤ |τt1(x)− σ(x)|
for all R ≥ R1 and for all x ∈ L, implying that {σR} also converges uniformly
to σ. This concludes the proof of Theorem 1.1.

The completness of M in Theorem 1.1 is an essential hypothesis (to apply
Lemma 2.2). In this sense, it is interesting to observe the example of the
cone M over an immersed but not proper curve in the sphere. Condition (1)
is satisfied for all α but M is not proper.

Proof of Proposition 1.2. Applying Gauss-Bonnet theorem on M(R) :=
M ∩D(R), where D(R) is the ball of R3 centered at the origin with radius
R, we get

∫
M(R)

KdM = 2πχ(M(R))−
k∑
i=1

∫
γi(R)

ki(R)(t)dt(22)

where ki(R) is the geodesic curvature of Rγi(R). We observe that

ki(R)(t) = 〈γi(R)′′(t), n(t)〉

where t is the arc lenght of γi(R) and n(t) the exterior conormal vector of
∂M(R) at γi(R)(t). We can write

ki(R)(t) = 〈γi(R)′′(t), n(t)− γi(R)(t)〉+ 〈γi(R)′′(t), γi(R)(t)〉
(23)

= 〈γi(R)′′(t), n(t)− γi(R)(t)〉 − 1/R

since 〈γi(R)(t), γi(R)(t)〉 = 1.
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From the boundedness of the total curvature of γi(R)(t) in the space and
from (3), we get

lim
R→∞

∫
γi(R)

|〈γi(R)′′(t), n(t)− γi(R)(t)〉| dt = 0(24)

since |n(t) − γi(R)(t)| → 0 as R → ∞. Since M has finite topology, using
(22), (23) and (24) we therefore obtain

lim
R→∞

∫
M(R)

KdM = 2πχ(M)−
k∑
i=1

lim
R→∞

L(γi(R))

proving Proposition 1.2.

Proof of Theorem 1.3. We will prove that the set Z ⊂ M of the critical
points of F is bounded. By contradiction, let us assume the opposite. We
begin by showing the existence of a geodesic ball B of M such that Z\B is
a submanifold of M of dimension zero, that is Z\B is constituted of isolated
points of M. Setting R0 = |p0|, we have 2d(p, p0) ≥ |p| for all p ∈M\Bp0(R0).
Let B, closed, be chosen such that

d(p, p0) |Ap| ≤ 1 + δα
2

< 1(25)

and d(p, p0) ≥ 2(1+δα)/(1−δα) for all p ∈M\B. Given p ∈ Z\B, let Bp(R)
be a geodesic normal ball of M centered at p such that Bp(R) ⊂ Z\B and
let V1, ..., Vn be vector fields on Bp(R) which constitute an orthonormal basis
of the tangent space of M at any point of Bp(R). Define fi : Bp(R)→ R by

fi(q) =
〈
q

|q| , Vi
〉
.

Then Z ∩Bp(R) = ∩ni=1f
−1
i (0). Given q ∈ f−1

i (0), we have

Vj(fi)(q) =
1
|q| 〈Vj, Vi〉+ Vj

(
1
|q|
)
〈q, Vi〉+

〈
q

|q| ,∇VjVi
〉

=
1
|q|δij +

〈
q

|q| ,∇VjVi
〉

so that

d(q, p0)|Vi(fi)(q)| ≥ 1− d(q, p0)|Aq|
≥ 1− δα

2
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and

|Vj(fi)(q)| ≤ 1− δα
4

i 6= j.

It follows that the gradients gradf1, ..., gradfn are linearly independent,
which shows that Z∩Bp(R) is the transversal intersection of n submanifolds
of M with dimension n− 1, proving our assertion.

Let q ∈ Z\B be critical point of F. Since q is isolated, there is p ∈ M,
p 6= q, such that the α−limit (with respect to the vector field gradient of F
in M) of p is q, that is,

lim
t→∞ ρ(p, t) = q.

By choosing p close enough to q, we may assume that ρ(p, t) ∈M\B for all
t ≥ 0. Setting

y(t) =
〈
ρ(p, t)
|ρ(p, t)| , N(ρ(p, t))

〉2

(26)

we have limt→∞ y(t) = 1. On another hand, it follows from (25) and Lemma
2.3 with ε = (1 + δa)/2 the existence of t0 such that y(t) ≤ ε < 1 for all
t ≥ t0, contradiction!

Therefore, there is a geodesic ball Bp0(R1) containing all the critical points
of F. We claim that there is R2 > R1 such that if p ∈ M\Bp0(R2) then
ρ(p, t) /∈ Bp0(R1) for all t ≥ 0. In fact: By contradiction, assume the existence
of a divergent sequence pn in M and a divergent sequence tn of positive
real numbers such that qn := ρ(pn, tn) → ∂Bp0(R1). We may assume that
ρ(pn, t) ∈ M/Bp0(R1), for all 0 ≤ t < tn. Without loss of generality, we
may assume that qn converges to a point q0 ∈ ∂Bp0(R1). It follows that the
curve t 7→ ρ(q0, t), t ≤ 0, is divergent in M and satisfies, by hypothesis,
limt→−∞ sup d(ρ, p0)|Aρ| < 1, contradicting Lemma 2.4. This proves our
claim.

Since M is complete, we have

lim
t→∞ d(ρ(p, t), p0) =∞(27)

for all p ∈M\Bp0(R2). Let us prove that

lim
t→∞ sup |N(ρ(p, t))| < 1(28)

for all p ∈M\Bp0(R2).
Let R3 ≥ R2 be such that (25) is satisfied for all p ∈ M\Bp0(R3). Using,

as above, Lemma 2.4, we can assure the existence of R4 such that ρ(p, t) ∈
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M\Bp0(R3), for all p ∈ M\Bp0(R4) and for all t ≥ 0. Now, given p ∈
M\Bp0(R2), by (27), there is t1 such that ρ(p, t1) ∈M\Bp0(R4). Therefore,
by Lemma 2.3, we obtain

lim
t→∞ sup |N(ρ(p, t))| = lim

t→∞ supN(ρ(ρ(p, t1), t))| ≤ 1 + δa
2

< 1

proving (28).
We prove now that (3) is satisfied for α = 0. Let R4 be as above and set

d = max {|N(p)|, p ∈ ∂Bp0(R4)} .

If d ≤ (3 + δa)/4 < 1, then we have

|N(p)| ≤ (3 + δa)/4 < 1,(29)

for all p ∈M\Bp0(R4). In fact: given p ∈M\Bp0(R4), there is p1 ∈ ∂Bp0(R4)
such that p = ρ(p1, t1), for some t1 ≥ 0. Since ρ(p, t) ∈ BR3(p0), t ≥ 0, if y(t)
is defined as in (26) with p1 instead of p, we obtain, from the proof of Lemma
2.3, y(t) ≤ z(t) for all t ≥ 0, where z(t) is given by (16) with ε = (1 + δα)/2.
This proves (29).

If d > (3 + δa)/4, we set

T =
1

1− δa ln
d− 1+δa

2

1− d(30)

and, since T ≥ 0,

K := {ρ(p, t) | p ∈ Bp0(R4), 0 ≤ t ≤ T}

is well defined. We then have |N(q)|2 < (3 + δα)/4 if q ∈ M\K. In fact:
Given q ∈ M\K, there is p ∈ ∂Bp0(R4) such tha ρ(p, t1) = q, for some
t1 ≥ T. By (16) and (30), we obtain, using again the proof of Lemma 2.3,
y(t1) ≤ z(t1) ≤ (3 + δα)/4, that is,

|N(q)|2 =
〈
q

|q| , N(q)
〉

=
〈
ρ(p, t1)
|ρ(p, t1)| , N(ρ(p, t1))

〉
= y(t1) ≤ 3 + δα

4
.

This proves that M is a 0-conical type end manifold.
Now, let us prove that M is a α−conical type immersed manifold. Since

it is a 0−conical type end manifold, we can take δ > 0 and R6 such that

0 <
〈
ρ(p, t)
|ρ(p, t)| , N(ρ(p, t))

〉2

< δ
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for all t ≥ 0 and for all p ∈M\Bp0(R6). Given p ∈M\Bp0(R6), set

f(t) =
〈

ρ(p, t)
|ρ(p, t)|β , N(ρ(p, t))

〉2

β = 1−α, and let us prove that limt→∞ sup f(t) < 1. Assuming the opposite,
there is a sequence tn →∞ such that limn f(tn) = 1. Setting

a(t) = d2α+1(ρ(p, t), p0)
∣∣∣∣〈 ρ′

|ρ′| ,∇ ρ′
|ρ′|
N

〉∣∣∣∣ ,
since limt→∞ sup a(t) < 1, there is t0 and c < 1 such that a0/(δ|β|) < c, for
all t ≥ t0, where a0 = a(t0). Let t1 be such that a(t1) ≤ a(t0) for all t ≥ t1,
and set t2 = max{t0, t1}. Then, for all t ≥ t2, we obtain

f ′ = −2
β

|ρ|2 〈ρ, ρ
′〉
〈

ρ

|ρ|β , N
〉

+ 2
〈

ρ

|ρ|β , N
〉〈

ρ

|ρ|β , N
′
〉

= −2β

(
1−

〈
ρ

|ρ|β , N
〉2
)〈

ρ

|ρ|β , N
〉2

+ 2
〈

ρ

|ρ|β , N
〉〈

ρ

|ρ|β , N
′
〉

= −2β

(
1−

〈
ρ

|ρ|β , N
〉2
)
f + |ρ|2α

〈
ρ

|ρ| , N
〉〈

ρ

|ρ| , N
′
〉

≤ −2|β|δf + 2d2α+1(ρ, p0)
∣∣∣∣〈 ρ′

|ρ′| ,∇ ρ′
|ρ′|
N

〉∣∣∣∣ ≤ −2|β|δf + 2a0

where we have used that ρ′ = ρ − 〈ρ,N〉N . Let g(t) be the solution of the
differential equation

z′ = −2|β|δz + 2a0(31)

satisfying the condition g(t2) = f(t2) = f2. By comparison, we obtain f(t) ≤
g(t), for all t ≥ t2. Equation (31) can be easily integrated providing

g(t) =
a0

δ|β| −
a0
δ|β| − f2

e−2δ|β| e
−2δ|β|t,

which shows that f(t) ≤ a0/δ|β| for all t ≥ t2, contradiction!
It is therefore proved that limt→∞ sup f(t) < 1. From this, as already made

above for the case α = 0, one can conclude that (1) is satisfied, proving that
M is a α-conical type end manifold, concluding the proof of Theorem 1.3.
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