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COVERING OF A HOLOMORPHICALLY CONVEX
MANIFOLD CARRYING A POSITIVE LINE BUNDLE

SAID ASSERDA

Let M be a holomorphically convex manifold and 7 : M —
M is a holomorphic connected covering. If M carries a positive
holomorphic line bundle L such that the cohomology class of
7L in Hl(M, ©*) vanishes, then M is a Stein manifold.

A classical theorem of Siegel [S] asserts that a bounded domain in C"
covering a compact complex manifold is a domain of holomorphy. In [Wa]
Watanabe showed that if a complex manifold D covering a projective man-
ifold M and satisfies H'(D,O*) = 0, then D is a Stein manifold with
H?*(D,Z) = 0, where O is the sheaf of germs of nowhere-vanishing holo-
morphic functions and Z is the additive group of integers. The purpose of
this paper is to study the case where the base of covering is a holomorphi-
cally convex complex manifold carrying a positive holomorphic line bundle.
Recall that a complex manifold M is holomorphically convex if, for every
infinite subset S of M without limit points, there is a holomorphic function
f on M which is unbounded on S. Our main result is the following;:

Theorem. Let M be a holomorphically convex complex manifold and
T : M — M is a holomorphic connected covering. If M carries a posi-
tive holomorphic line bundle L such that the cohomology class of w*L in
H' (M, O*) vanishes, then M is a Stein manifold.

It is well known that there is an isomorphism between the class of holo-
morphic line bundles over a complex manifold X and the cohomology group
H'(X,0") (see [We], Lemma 4.4, p. 101). The cohomology class of a line
bundle F is defined as the class in H'(X, O*) of a holomorphic cocycle {f;;}
representing F. The vanishing of the cohomology class of 7*L in H 1(M 0*)
is necessary as shown later. Since a compact complex manifold is vacuously
holomorphically convex, Watanabe’s theorem is a consequence of our the-
orem. But in his proof, it is not clear that the strongly plurisubharmonic
function ¢ ([Wal, p. 244) does not grow to —oo near the topological bound-
ary of M. Also as remarked by him, the condition H'(M®*) = 0 cannot

201


http://nyjm.albany.edu:8000/PacJ/
http://nyjm.albany.edu:8000/PacJ/1998/v185no2.html
http://nyjm.albany.edu:8000/PacJ/1998/

202 SAID ASSERDA

be replaced by H'(M,O) = 0, where O is the sheaf of germs of holomor-
phic functions: Consider the case M = M = P;(C) and 7 is the identity

mapping.

Proof of theorem. As in [Wa] let {V;} be an open covering of M such
that each V; is a local coordinate neighborhood and is biholomorphic to a
connected component 7~ *(V;). Choosing a suitable refinement {U;} of {V;},
we can represent the line bundle L by a system of transition functions {f;;}
and find a Hermitian metric {a;} along the fibers of L which satisfies the
following conditions:

(i) Each a; is a C°, real valued and positive function on U;.

(i) If U; NU, = 0, then we have a; = |f;x|*a;.

(iii) The function —loga; is strongly plurisubharmonic on Uj i.e. the

(1,1)-form 90 logai is positive definite.
J

The curvature of L is defined as ¢(L) := i09(—loga,) on U;. L is said
to be positive if ¢(L) is a positive definite (1, 1)-form on the convex tangent
bundle T'M.

The line bundle 7* L defined on M has { fijom} as transition functions and
{ajon} for Hermitian metric. Since {7~'(U,)} is an open covering of M,
{fijor} defines an element of the cohomology class of 7#*L. By hypothesis
[7*L] = 0 in H'(M,O*), then there an open covering Y; of M such that
the cohomology class of [fi;or] = 0 in H'({Y;}, 0*). Taking a refinment of
{U;} and {Y;}, we may suppose that {U;} = {Y;}. Then there is a cochain

{f;} of C°({m(U;)}, O*) such that f;.omr = ];—’J‘ on 7 Y(U;) N7~ (Uy). The

holomorphic section of 7*L over M defined by s = fj on m(Uj) is nowhere
zero. We can define a C* strongly Psh function on M in the following way:

¢(z) = —log(a;om(x)| f;(2)[*) = —log ||s(=)

where ||s||,+z is the norm of s with respect to the Hermitian metric of 7*L
induced by L.

Since M is holomorphically convex and L is positive, it is easy to see that
M admits a complete Kéhler metric g. Simply take

2, for xe 77_1(Uj)

g :=100(xo¥) + c(L),

where ¥ € C*°(M) is an exhaustive Psh function (see [H|, p. 117, Theorem
5.1.6) and x : R — R is a smooth function such that x’ > 0, x” > 0, and
X'(t) — +oo fast as t — 4o00. Since 7 is a connected covering, the pull back
7*g of g by , define a complete Kéhler metric § on M.
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Now let S be an infinite subset without linit point in M. We must produce
a holomorphic function f on M such that |f| is unbounded on S. Since it
suffices to consider any infinite subset of S, we may assume that S is actually
equal to a sequence of points {z,}.

Case 1. If {y,} has a limit point y in M, then we may assume y, — y.
Let (U¢) be a local coordinate neighborhood such that ¢(y) = 0, ¢(U) =
B(0,R) C C" and 7 *(U) = U,V; with V; NV, = 0 for every j # k and
m; = 7|y, : V; — U is a biholomorphic map. Taking v large enough, we
may assume that y, € U for v = 1,2,.... Since 2, € 7' (U) there is a
unique j(v) € N such that z, € Vj,). If I, := {v € N, j(v) = j(pu)}
and v, = sup{v € I}, then z,, € V,, and Vi) N Vo) = 0 if k& # K.
Since the set I is finite, the subsequence {z; := z,, } has not limit point in
M. Set Wy = Vju,) and m, := mj(,,) and consider the biholomorphic map
or = ¢omy, : W — B(0, R). The map ¢, satisfies the following properties:
(1) ow(z) = ¢(y,,) Vk € N; and
(2) adige < g < Podige on Wy where the constants «, § are independent
of k and g, is the Euclidean metric of C™.

Without loss of generality, we may assume that ||¢;(z;)| < %. Hence

B(0, %) cC B(¢u(zr), ) cC B(0, R) and by (2) we have

allpp(z) = du(ze) || < dg(x, 21) < Bllgr(e) = dr(ze)ll Vo € Wi
Thus X = ¢~ (B(dr(z), £)) C By(zr, 22). Let A be a test function in

) T
B(0, £) such that A = 1 in B(0, &). Let ¥ : M — RU{—00} be the function
U defined by

U(z) = M ow(x))log||dn(x) — dr(zr)[*" if zelX,
0 if z€ M\ Uk Xk.

Then W is a smooth function on M\{z,}32,. Thanks to (2) there is a constant
K > 0 such that

i00¥ > —K§ in a distributional sense on all of M.

2.1 and p, = sup,, ;. 7;. By passing to a subsequence,

Put 7, = supy, [|s 1
we may assume that r(zx) := dj(2x,2,) > k+pp forall k € N (z, € M is a
fixed point).

Lemma ([N1, Lemma 1.1]).  There is a smooth and exhaustive function
7: M — R such that
(i) r<Cit < Cyr; and

(ii) 00T > —Csg, on 7 (V)
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where the constants may depend on U.

Define a smooth section ¢ of 7*L™ on M by

)\(qﬁk(:p))e’“(zk)és(m) it xe Xy

0 elsewhere.

t(x) =

We obtain a smooth d-form of type (0,1) with values in 7*L™ and support
contained in Uj2, X}, by defining

w = Ot.

Since A = 1 on B(0, £) and s is holomorphic, we conclude that w vanishes

on ¢, '(B(0, %)) C X for k =1,2,3,... . Moreover, we have |Aog;| < Const

on X;\¢, ' (B(0, %)), and, because the map ¢, satisfies the property (2), we

have |0(Ao¢y)| < Const on Xy, where the constants are independent of k.

Therefore on the set X;\¢;, ' (B(0, %)), hence on all X}, we have
[wlle-vmepm < Const e* ) 2,

where the constant is independent of k. Also as mentioned above, w vanishes
on the complement M\ U, X;. Therefore, if we define a singular Hermitian
metric in 7*L™ on M by

2
TEL™M

1717, = e~ =9 7|

then ||?||,, is smooth on M\{zk}le, and
[tV = [l e oray;

o0
=5 [l e,
k=1" X%

Hence

/M |lwl|2,dV5 < Const Z pime?rn) =3 gy
k=1

By the previous Lemma, we have r < Cir om X. Therefore, since X, C
B- BR
g(zk, 4 )7
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for every x € X and k=1,2,... . Thus

‘/~ Herznd‘/g < Const Zpim/ 627"(2’1@)73r(zk)d‘/g
M k=1 Xk

> R
< Z pi’”e‘r(z’“) vol (Bge (0, ))
k=1 4

o0
< Const Z pime e,
k=1

Let a := limy_, o pi- If @ < 400 then

/~ lwll7,dV; < Const > e™* < +oc.
M

k=1

Now if a = +00, then
/~ |wl?,dVs < Consthime*p’c < +00.
M k=1

Let f be a smooth (0, 1)-form in M with values in 7* L. By Cauchy-Schwarz
inequality

2
([ rwmivs) < [ olzav [ iri2dv.
M M supp t(w)

There exist a constants ¢ > 0 and d such that ¢(L) > c.g and Ricci(g) > d.g
on U. Since ¢(7*(L™)) = mn*(c(L)), for m sufficiently large we have

Ricci(§) + i00¥ +i3C100 + mr*c(L) > § on 7 Y(U).

Using the Bochner-Kodaira-Nakano equality in Ké&hlerian geometry [D], we

have
(/1)

< [ Jelav; ( [ @ik av+ HWHiWa) ,
M supp t(w) supp t(w)

where 0* is the formal adjoint of & acting on (0, 1)-forms in L*(M; (x*L™,
I?]lm)) as an unbounded operator. Since the metric § is complete, the space
of smooth (0, 1)-forms with compact support on M and with values in 7* L™
is dense in Dom(0*) N Ker d with respect to the (singular) graph norm [D]:

171= [ UfIavs+ [ 1T av; + [ 18515,av;
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By density, ¥ f € Dom(0*) N Ker d we have

[ 1@)mlav;

< ([ lzav) ([ s+ [ 1onzav)
M M M

Since dw = 0, it suffices to consider the d-closed forms f. The above inequal-
ity become

[ 1 .w)mlav;

< ([ 1lzav) ([ 1@ s2dv)" v s e Domd
M M

By Lemma 4.1.1 in [H], there exists a smooth section o of 7*L™ on M such
that

br=w and [ foltav; < [ wlavi.
M M

Therefore [|o||2, is integrable on the neighborhood ¢, '(B(0, £)) of zx, on
which
U(z) = nlog ||¢r(x) — du(z)]1*.

Hence

x> [ o 2,av;
¢, 1 (B(0,9))

-3Cir -V
a*Ime€ e d‘/g

=/ lo
o, (B0, %))
73C1T

:/ lo]Z. pme
67 (B0, 2)) ||dr — dr(z) >

dv.

However [|o(2)]|2. ,me ") is smooth while ||¢x — ¢y (2,)|| 7" is not locally
integrable at z, since M has real dimension 2n and ¢ (z;) = 0. It follows
that

O'(Zk) =0
for k = 1,2,3,.... If f is the holomorphic function defined on M in the
following way:
=
= s

then f(z;) = ") — 0o as k — oo. It follows that f is unbounded on S.
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Case 2. If {y,} has no limit point in M, then there exists a holomorphic
function f on M such that |f(y,)| is unbounded. Hence we may take 7* f as
our desired holomorphic function on M.

Since M supports a smooth strongly plurisubharmonic function, then M
is a Stein manifold.

As mentioned in the introduction, the condition [7*L] = 0 in H'(M, O*)
is necessary. We give here an example M of a covering of a smooth projective
manifold M which is not holomorphically convex and for every positive line
bundle L over M, the cohomology class of 7* L is not zero in H 1(M ,O0*). An
example of M such that M is not holomorphically convex is given in [N2],
Ex. 4,5, p. 451. We will use it to verify the nonvanishing of the cohomology
class. For the sake of complements, we reproduce the construction.

Suppose a and b are complex numbers such that the elements (1,0), (0,1),
(a,0) and (0,b) form a basis for C? over R. Let I' C C? be the lattice gen-
erated by these elements over Z, and let I’ be the subgroup of I’ generated
by (1,0),(0,1), (a,b) over Z. Then C?/T" is an Abelian variety which is bi-
holomorphic to a product of 1-dimensional tori, and the map

M =C?I — M =C?/T

is a covering map. If 1,a and b are linearly independent over Z, then the
only holomorphic functions on M are the constants.

Now let L be a positive holomorphic line bundle over M and suppose that
the cohomology class of 7*L vanishes. Let s be the holomorphic section of
7* L without zeros as above. Since O(M) = C, every holomorphic section
h of L over M can be written as h = c.s where ¢ € C. By Corollary
4.3 in [N2], there exists a positive integer p and a holomorphic section o of
7*L? on M such that ||o]| is unbounded on any infinite subset without limit
point in M. Therefore o = ¢. % s which implies lim__,,; ||s|| = +o0. Hence
the strongly Psh function ¢ = —log ||s||? is bounded from above on M. Let
71 : C2 — M be the universal covering, and define a strongly Psh function
6 on C? by

0 := ¢om;.
Since C? is parabolic, the only Psh function bounded from above are the
constants. This implies that ||s|| = constante which contradicts the growth

of 5. Hence [7*L] # 0 in H'(M©O*) for every positive line bundle L on M.
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