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COVERING OF A HOLOMORPHICALLY CONVEX
MANIFOLD CARRYING A POSITIVE LINE BUNDLE

Säid Asserda

Let M be a holomorphically convex manifold and π : M̃ →
M is a holomorphic connected covering. If M carries a positive
holomorphic line bundle L such that the cohomology class of
π∗L in H1(M̃,O∗) vanishes, then M̃ is a Stein manifold.

A classical theorem of Siegel [S] asserts that a bounded domain in Cn

covering a compact complex manifold is a domain of holomorphy. In [Wa]
Watanabe showed that if a complex manifold D covering a projective man-
ifold M and satisfies H1(D,O∗) = 0, then D is a Stein manifold with
H2(D,Z) = 0, where O∗ is the sheaf of germs of nowhere-vanishing holo-
morphic functions and Z is the additive group of integers. The purpose of
this paper is to study the case where the base of covering is a holomorphi-
cally convex complex manifold carrying a positive holomorphic line bundle.
Recall that a complex manifold M is holomorphically convex if, for every
infinite subset S of M without limit points, there is a holomorphic function
f on M which is unbounded on S. Our main result is the following:

Theorem. Let M be a holomorphically convex complex manifold and
π : M̃ → M is a holomorphic connected covering. If M carries a posi-
tive holomorphic line bundle L such that the cohomology class of π∗L in
H1(M̃,O∗) vanishes, then M̃ is a Stein manifold.

It is well known that there is an isomorphism between the class of holo-
morphic line bundles over a complex manifold X and the cohomology group
H1(X,O∗) (see [We], Lemma 4.4, p. 101). The cohomology class of a line
bundle F is defined as the class in H1(X,O∗) of a holomorphic cocycle {fij}
representing F. The vanishing of the cohomology class of π∗L in H1(M̃O∗)
is necessary as shown later. Since a compact complex manifold is vacuously
holomorphically convex, Watanabe’s theorem is a consequence of our the-
orem. But in his proof, it is not clear that the strongly plurisubharmonic
function φ ([Wa], p. 244) does not grow to −∞ near the topological bound-
ary of M̃. Also as remarked by him, the condition H1(M̃O∗) = 0 cannot
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be replaced by H1(M̃,O) = 0, where O is the sheaf of germs of holomor-
phic functions: Consider the case M = M̃ = P1(C) and π is the identity
mapping.

Proof of theorem. As in [Wa] let {Vi} be an open covering of M such
that each Vi is a local coordinate neighborhood and is biholomorphic to a
connected component π−1(Vi). Choosing a suitable refinement {Ui} of {Vi},
we can represent the line bundle L by a system of transition functions {fij}
and find a Hermitian metric {aj} along the fibers of L which satisfies the
following conditions:
(i) Each aj is a C∞, real valued and positive function on Uj.

(ii) If Uj ∩ Uk = ∅, then we have ak = |fjk|2aj.
(iii) The function − log aj is strongly plurisubharmonic on Uj i.e. the

(1, 1)-form i∂∂̄ log
1
aj

is positive definite.

The curvature of L is defined as c(L) := i∂∂̄(− log aj) on Uj. L is said
to be positive if c(L) is a positive definite (1, 1)-form on the convex tangent
bundle TM.

The line bundle π∗L defined on M̃ has {fijoπ} as transition functions and
{ajoπ} for Hermitian metric. Since {π−1(Uj)} is an open covering of M̃,
{fijoπ} defines an element of the cohomology class of π∗L. By hypothesis
[π∗L] = 0 in H1(M̃,O∗), then there an open covering Yj of M̃ such that
the cohomology class of [fijoπ] = 0 in H1({Yj},O∗). Taking a refinment of
{Uj} and {Yj}, we may suppose that {Uj} = {Yj}. Then there is a cochain
{fj} of C0({π−1(Uj)},O∗) such that fjkoπ = fk

fj
on π−1(Uj) ∩ π−1(Uk). The

holomorphic section of π∗L over M̃ defined by s = fj on π∗(Uj) is nowhere
zero. We can define a C∞ strongly Psh function on M̃ in the following way:

φ(x) := − log(ajoπ(x)|fj(x)|2) = − log ‖s(x)‖2π∗L for x ∈ π−1(Uj)

where ‖s‖π∗L is the norm of s with respect to the Hermitian metric of π∗L
induced by L.

Since M is holomorphically convex and L is positive, it is easy to see that
M admits a complete Kähler metric g. Simply take

g := i∂∂̄(χoΨ) + c(L),

where Ψ ∈ C∞(M) is an exhaustive Psh function (see [H], p. 117, Theorem
5.1.6) and χ : R → R is a smooth function such that χ′ > 0, χ′′ ≥ 0, and
χ′(t)→ +∞ fast as t→ +∞. Since π is a connected covering, the pull back
π∗g of g by π, define a complete Kähler metric g̃ on M̃.
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Now let S be an infinite subset without linit point in M̃. We must produce
a holomorphic function f on M̃ such that |f | is unbounded on S. Since it
suffices to consider any infinite subset of S, we may assume that S is actually
equal to a sequence of points {xν}.
Case 1. If {yν} has a limit point y in M , then we may assume yν → y.
Let (Uφ) be a local coordinate neighborhood such that φ(y) = 0, φ(U) =
B(0, R) ⊂ Cn and π−1(U) = ∪jVj with Vj ∩ Vk = ∅ for every j 6= k and
πj := π|Vj : Vj → U is a biholomorphic map. Taking ν large enough, we
may assume that yν ∈ U for ν = 1, 2, . . . . Since xν ∈ π−1(U) there is a
unique j(ν) ∈ N such that xν ∈ Vj(ν). If Iν := {ν ∈ N, j(ν) = j(µ)}
and νk = sup{ν ∈ Ik}, then xνk ∈ Vνk and Vj(k) ∩ Vj(k′) = ∅ if k 6= k′.
Since the set Ik is finite, the subsequence {zk := xνk} has not limit point in
M̃. Set Wk := Vj(νk) and πk := πj(νk) and consider the biholomorphic map
φk = φoπk : W → B(0, R). The map φk satisfies the following properties:
(1) φk(zk) = φ(yνk) ∀ k ∈ N; and
(2) αφ∗kge ≤ g̃ ≤ βφ∗kge on Wk where the constants α, β are independent

of k and ge is the Euclidean metric of Cn.
Without loss of generality, we may assume that ‖φk(zk)‖ ≤ R

9
. Hence

B(0, R
9

) ⊂⊂ B(φk(zk), R9 ) ⊂⊂ B(0, R) and by (2) we have

α‖φk(x)− φk(zk)‖ ≤ dg̃(x, zk) ≤ β‖φk(x)− φk(zk)‖ ∀x ∈Wk.

Thus Xk := φ−1(B(φk(zk), R4 )) ⊂ Bg̃(zk, βB4 ). Let λ be a test function in
B(0, B

8
) such that λ = 1 in B(0, R

9
). Let Ψ : M̃ → R∪{−∞} be the function

Ψ defined by

Ψ(x) =

{
λ(φk(x)) log ‖φk(x)− φk(zk)‖2n if x ∈ Xk

0 if x ∈ M̃\ ∪k Xk.

Then Ψ is a smooth function on M̃\{zk}∞k=1. Thanks to (2) there is a constant
K > 0 such that

i∂∂̄Ψ ≥ −Kg̃ in a distributional sense on all of M̃.

Put γk = supXk ‖s‖2π∗L and ρk = sup1≤j≤k γj. By passing to a subsequence,
we may assume that r(zk) := dg̃(zk, xo) ≥ k + ρk for all k ∈ N (xo ∈ M̃ is a
fixed point).

Lemma ([N1, Lemma 1.1]). There is a smooth and exhaustive function
τ : M̃ → R such that
(i) r ≤ C1τ ≤ C2r; and
(ii) i∂∂̄τ ≥ −C3g̃, on π−1(U)
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where the constants may depend on U.

Define a smooth section t of π∗Lm on M̃ by

t(x) =

λ(φk(x))er(zk)

m⊗
1

s(x) if x ∈ Xk

0 elsewhere.

We obtain a smooth ∂̄-form of type (0, 1) with values in π∗Lm and support
contained in ∪∞k=1Xk, by defining

ω = ∂̄t.

Since λ = 1 on B(0, R
8

) and s is holomorphic, we conclude that ω vanishes
on φ−1

k (B(0, R
8

)) ⊂ Xk for k = 1, 2, 3, . . . . Moreover, we have |λoφk| ≤ Const
on Xk\φ−1

k (B(0, R
8

)), and, because the map φk satisfies the property (2), we
have |∂̄(λoφk)| ≤ Const on Xk, where the constants are independent of k.
Therefore on the set Xk\φ−1

k (B(0, R
8

)), hence on all Xk, we have

‖ω‖e−Ψπ∗Lm ≤ Const e2r(zk)ρ2m
k ,

where the constant is independent of k. Also as mentioned above, ω vanishes
on the complement M̃\ ∪k Xk. Therefore, if we define a singular Hermitian
metric in π∗Lm on M̃ by

‖?‖2m := e−(3C1r+Ψ)‖?‖2π∗Lm ,

then ‖?‖m is smooth on M̃\{zk}∞k=1, and∫
M̃

‖ω‖2mdVg̃ =
∫
M̃

‖ω‖2eΨπ∗Lme−3C1rdVg̃

=
∞∑
k=1

∫
Xk

‖ω‖2eΨπ∗Lme−3C1rdVg̃.

Hence ∫
M̃

‖ω‖2mdVg̃ ≤ Const
∞∑
k=1

ρ2m
k e2r(zk)e−3C1rdVg̃.

By the previous Lemma, we have r ≤ C1r om Xk. Therefore, since Xk ⊂
Bg̃(zk, βR4 ),

r(zk)− βR

4
≤ r(x) ≤ C1r(x)
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for every x ∈ Xk and k = 1, 2, . . . . Thus∫
M̃

‖ω‖2mdVg̃ ≤ Const
∞∑
k=1

ρ2m
k

∫
Xk

e2r(zk)−3r(zk)dVg̃

≤
∞∑
k=1

ρ2m
k e−r(zk) vol

(
Bge

(
0,
R

4

))

≤ Const
∞∑
k=1

ρ2m
k e−ρke−k.

Let a := limk→∞ ρk. If a < +∞ then∫
M̃

‖ω‖2mdVg̃ ≤ Const
∞∑
k=1

e−k < +∞.

Now if a = +∞, then∫
M̃

‖ω‖2mdVg̃ ≤ Const
∞∑
k=1

ρ2m
k e−ρk < +∞.

Let f be a smooth (0, 1)-form in M̃ with values in π∗L. By Cauchy-Schwarz
inequality (∫

M̃

|〈f, ω〉m|dVg̃
)2

≤
∫
M̃

‖ω‖2mdVg̃
∫

supp t(ω)

‖f‖2mdVg̃.

There exist a constants c > 0 and d such that c(L) ≥ c.g and Ricci(g) ≥ d.g
on U. Since c(π∗(Lm)) = mπ∗(c(L)), for m sufficiently large we have

Ricci(g̃) + i∂∂̄Ψ + i3C1∂∂̄ +mπ∗c(L) ≥ g̃ on π−1(U).

Using the Bochner-Kodaira-Nakano equality in Kählerian geometry [D], we
have (∫

M̃

|〈f, ω〉m|dVg̃
)2

≤
∫
M̃

‖ω‖2mdVg̃
(∫

supp t(ω)

‖∂∗f‖2mdVg̃ +
∫

supp t(ω)

‖∂̄f‖2mdVg̃
)
,

where ∂∗ is the formal adjoint of ∂̄ acting on (0, 1)-forms in L2(M̃ ; (π∗Lm,
‖?‖m)) as an unbounded operator. Since the metric g̃ is complete, the space
of smooth (0, 1)-forms with compact support on M̃ and with values in π∗Lm

is dense in Dom(∂∗) ∩Ker ∂̄ with respect to the (singular) graph norm [D]:

‖f‖ :=
∫
M̃

‖f‖2mdVg̃ +
∫
M̃

‖∂∗f‖2mdVg̃ +
∫
M̃

‖∂̄f‖2mdVg̃.
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By density, ∀ f ∈ Dom(∂∗) ∩Ker ∂̄ we have∫
M̃

|〈f, ω〉m|dVg̃

≤
(∫

M̃

‖ω‖2mdVg̃
) 1

2
(∫

M̃

‖∂∗f‖2mdVg̃ +
∫
M̃

‖∂̄f‖2mdVg̃
) 1

2

.

Since ∂̄ω = 0, it suffices to consider the ∂̄-closed forms f. The above inequal-
ity become∫

M̃

|〈f, ω〉m|dVg̃

≤
(∫

M̃

‖ω‖2mdVg̃
) 1

2
(∫

M̃

‖∂∗f‖2mdVg̃
) 1

2

∀ f ∈ Dom ∂∗.

By Lemma 4.1.1 in [H], there exists a smooth section σ of π∗Lm on M̃ such
that

∂̄σ = ω and
∫
M̃

‖σ‖2mdVg̃ ≤
∫
M̃

‖ω‖2mdVg̃.

Therefore ‖σ‖2m is integrable on the neighborhood φ−1
k (B(0, R

8
)) of zk, on

which
Ψ(x) = n log ‖φk(x)− φk(zk)‖2.

Hence

∞ >

∫
φ−1
k

(B(0,R8 ))

‖σ‖2mdVg̃

=
∫
φ−1
k

(B(0,R8 ))

‖σ‖π∗Lme−3C1re−ΨdVg̃

=
∫
φ−1
k

(B(0,R8 ))

‖σ‖2π∗Lme−3C1r

‖φk − φk(zk)‖2ndVg̃.

However ‖σ(x)‖2π∗Lme−3C1r(x) is smooth while ‖φk−φk(zk)‖−2n is not locally
integrable at zk, since M̃ has real dimension 2n and φk(zk) = 0. It follows
that

σ(zk) = 0

for k = 1, 2, 3, . . . . If f is the holomorphic function defined on M̃ in the
following way:

f :=
σ

⊗m1 s
,

then f(zk) = er(zk) →∞ as k →∞. It follows that f is unbounded on S.
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Case 2. If {yν} has no limit point in M, then there exists a holomorphic
function f on M such that |f(yν)| is unbounded. Hence we may take π∗f as
our desired holomorphic function on M̃.

Since M̃ supports a smooth strongly plurisubharmonic function, then M̃
is a Stein manifold.

As mentioned in the introduction, the condition [π∗L] = 0 in H1(M̃,O∗)
is necessary. We give here an example M̃ of a covering of a smooth projective
manifold M which is not holomorphically convex and for every positive line
bundle L over M, the cohomology class of π∗L is not zero in H1(M̃,O∗). An
example of M such that M̃ is not holomorphically convex is given in [N2],
Ex. 4, 5, p. 451. We will use it to verify the nonvanishing of the cohomology
class. For the sake of complements, we reproduce the construction.

Suppose a and b are complex numbers such that the elements (1, 0), (0, 1),
(a, 0) and (0, b) form a basis for C2 over R. Let Γ ⊂ C2 be the lattice gen-
erated by these elements over Z, and let Γ̃ be the subgroup of Γ generated
by (1, 0), (0, 1), (a, b) over Z. Then C2/Γ is an Abelian variety which is bi-
holomorphic to a product of 1-dimensional tori, and the map

M̃ = C2/Γ̃ −→M = C2/Γ

is a covering map. If 1, a and b are linearly independent over Z, then the
only holomorphic functions on M̃ are the constants.

Now let L be a positive holomorphic line bundle over M and suppose that
the cohomology class of π∗L vanishes. Let s be the holomorphic section of
π∗L without zeros as above. Since O(M̃) = C, every holomorphic section
h of π∗L over M̃ can be written as h = c.s where c ∈ C. By Corollary
4.3 in [N2], there exists a positive integer p and a holomorphic section σ of
π∗Lp on M̃ such that ‖σ‖ is unbounded on any infinite subset without limit
point in M̃. Therefore σ = c.⊗p1 s which implies limx→∂M̃ ‖s‖ = +∞. Hence
the strongly Psh function φ = − log ‖s‖2 is bounded from above on M̃. Let
π1 : C2 → M̃ be the universal covering, and define a strongly Psh function
θ on C2 by

θ := φoπ1.

Since C2 is parabolic, the only Psh function bounded from above are the
constants. This implies that ‖s‖ = constante which contradicts the growth
of s. Hence [π∗L] 6= 0 in H1(M̃O∗) for every positive line bundle L on M.
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