COVERING OF A HOLOMORPHICALLY CONVEX MANIFOLD CARRYING A POSITIVE LINE BUNDLE

Saïd Asserda

Let M be a holomorphically convex manifold and $\pi: \tilde{M} \to M$ is a holomorphic connected covering. If M carries a positive holomorphic line bundle L such that the cohomology class of π^*L in $H^1(\tilde{M}, \mathcal{O}^*)$ vanishes, then \tilde{M} is a Stein manifold.

A classical theorem of Siegel **[S]** asserts that a bounded domain in \mathbb{C}^n covering a compact complex manifold is a domain of holomorphy. In **[Wa]** Watanabe showed that if a complex manifold D covering a projective manifold M and satisfies $H^1(D, \mathcal{O}^*) = 0$, then D is a Stein manifold with $H^2(D, \mathbb{Z}) = 0$, where \mathcal{O}^* is the sheaf of germs of nowhere-vanishing holomorphic functions and \mathbb{Z} is the additive group of integers. The purpose of this paper is to study the case where the base of covering is a holomorphically convex complex manifold carrying a positive holomorphic line bundle. Recall that a complex manifold M is holomorphically convex if, for every infinite subset S of M without limit points, there is a holomorphic function f on M which is unbounded on S. Our main result is the following:

Theorem. Let M be a holomorphically convex complex manifold and $\pi : \tilde{M} \to M$ is a holomorphic connected covering. If M carries a positive holomorphic line bundle L such that the cohomology class of π^*L in $H^1(\tilde{M}, \mathcal{O}^*)$ vanishes, then \tilde{M} is a Stein manifold.

It is well known that there is an isomorphism between the class of holomorphic line bundles over a complex manifold X and the cohomology group $H^1(X, \mathcal{O}^*)$ (see [We], Lemma 4.4, p. 101). The cohomology class of a line bundle F is defined as the class in $H^1(X, \mathcal{O}^*)$ of a holomorphic cocycle $\{f_{ij}\}$ representing F. The vanishing of the cohomology class of π^*L in $H^1(\tilde{M}\mathcal{O}^*)$ is necessary as shown later. Since a compact complex manifold is vacuously holomorphically convex, Watanabe's theorem is a consequence of our theorem. But in his proof, it is not clear that the strongly plurisubharmonic function ϕ ([Wa], p. 244) does not grow to $-\infty$ near the topological boundary of \tilde{M} . Also as remarked by him, the condition $H^1(\tilde{M}\mathcal{O}^*) = 0$ cannot

SAÏD ASSERDA

be replaced by $H^1(\tilde{M}, \mathcal{O}) = 0$, where \mathcal{O} is the sheaf of germs of holomorphic functions: Consider the case $M = \tilde{M} = \mathbf{P}_1(C)$ and π is the identity mapping.

Proof of theorem. As in [Wa] let $\{V_i\}$ be an open covering of M such that each V_i is a local coordinate neighborhood and is biholomorphic to a connected component $\pi^{-1}(V_i)$. Choosing a suitable refinement $\{U_i\}$ of $\{V_i\}$, we can represent the line bundle L by a system of transition functions $\{f_{ij}\}$ and find a Hermitian metric $\{a_j\}$ along the fibers of L which satisfies the following conditions:

- (i) Each a_j is a C^{∞} , real valued and positive function on U_j .
- (ii) If $U_j \cap U_k = \emptyset$, then we have $a_k = |f_{jk}|^2 a_j$.
- (iii) The function $-\log a_j$ is strongly plurisubharmonic on U_j i.e. the

(1,1)-form
$$i\partial\bar{\partial}\log\frac{1}{a_j}$$
 is positive definite.

The curvature of L is defined as $c(L) := i\partial\bar{\partial}(-\log a_j)$ on U_j . L is said to be *positive* if c(L) is a positive definite (1, 1)-form on the convex tangent bundle TM.

The line bundle π^*L defined on M has $\{f_{ij}o\pi\}$ as transition functions and $\{a_jo\pi\}$ for Hermitian metric. Since $\{\pi^{-1}(U_j)\}$ is an open covering of \tilde{M} , $\{f_{ij}o\pi\}$ defines an element of the cohomology class of π^*L . By hypothesis $[\pi^*L] = 0$ in $H^1(\tilde{M}, \mathcal{O}^*)$, then there an open covering Y_j of \tilde{M} such that the cohomology class of $[f_{ij}o\pi] = 0$ in $H^1(\{Y_j\}, \mathcal{O}^*)$. Taking a refinment of $\{U_j\}$ and $\{Y_j\}$, we may suppose that $\{U_j\} = \{Y_j\}$. Then there is a cochain $\{f_j\}$ of $C^0(\{\pi^{-1}(U_j)\}, \mathcal{O}^*)$ such that $f_{jk}o\pi = \frac{f_k}{f_j}$ on $\pi^{-1}(U_j) \cap \pi^{-1}(U_k)$. The holomorphic section of π^*L over \tilde{M} defined by $s = f_j$ on $\pi^*(U_j)$ is nowhere zero. We can define a C^∞ strongly Psh function on \tilde{M} in the following way:

$$\phi(x) := -\log(a_j o\pi(x) |f_j(x)|^2) = -\log ||s(x)||_{\pi^*L}^2 \quad \text{for } x \in \pi^{-1}(U_j)$$

where $||s||_{\pi^*L}$ is the norm of s with respect to the Hermitian metric of π^*L induced by L.

Since M is holomorphically convex and L is positive, it is easy to see that M admits a complete Kähler metric g. Simply take

$$g := i\partial\partial(\chi o\Psi) + c(L),$$

where $\Psi \in C^{\infty}(M)$ is an exhaustive Psh function (see [**H**], p. 117, Theorem 5.1.6) and $\chi : \mathbf{R} \to \mathbf{R}$ is a smooth function such that $\chi' > 0$, $\chi'' \ge 0$, and $\chi'(t) \to +\infty$ fast as $t \to +\infty$. Since π is a connected covering, the pull back π^*g of g by π , define a complete Kähler metric \tilde{g} on \tilde{M} .

Now let S be an infinite subset without linit point in \tilde{M} . We must produce a holomorphic function f on \tilde{M} such that |f| is unbounded on S. Since it suffices to consider any infinite subset of S, we may assume that S is actually equal to a sequence of points $\{x_{\nu}\}$.

Case 1. If $\{y_{\nu}\}$ has a limit point y in M, then we may assume $y_{\nu} \to y$. Let $(U\phi)$ be a local coordinate neighborhood such that $\phi(y) = 0, \phi(U) = B(0, R) \subset \mathbb{C}^n$ and $\pi^{-1}(U) = \bigcup_j V_j$ with $V_j \cap V_k = \emptyset$ for every $j \neq k$ and $\pi_j := \pi|_{V_j} : V_j \to U$ is a biholomorphic map. Taking ν large enough, we may assume that $y_{\nu} \in U$ for $\nu = 1, 2, \ldots$. Since $x_{\nu} \in \pi^{-1}(U)$ there is a unique $j(\nu) \in \mathbb{N}$ such that $x_{\nu} \in V_{j(\nu)}$. If $I_{\nu} := \{\nu \in \mathbb{N}, j(\nu) = j(\mu)\}$ and $\nu_k = \sup\{\nu \in I_k\}$, then $x_{\nu_k} \in V_{\nu_k}$ and $V_{j(k)} \cap V_{j(k')} = \emptyset$ if $k \neq k'$. Since the set I_k is finite, the subsequence $\{z_k := x_{\nu_k}\}$ has not limit point in \tilde{M} . Set $W_k := V_{j(\nu_k)}$ and $\pi_k := \pi_{j(\nu_k)}$ and consider the biholomorphic map $\phi_k = \phi \sigma \pi_k : W \to B(0, R)$. The map ϕ_k satisfies the following properties: (1) $\phi_k(z_k) = \phi(y_{\nu_k}) \forall k \in \mathbb{N}$; and

(2) $\alpha \phi_k^* g_e \leq \tilde{g} \leq \beta \phi_k^* g_e$ on W_k where the constants α , β are independent of k and g_e is the Euclidean metric of \mathbf{C}^n .

Without loss of generality, we may assume that $\|\phi_k(z_k)\| \leq \frac{R}{9}$. Hence $B(0, \frac{R}{9}) \subset B(\phi_k(z_k), \frac{R}{9}) \subset B(0, R)$ and by (2) we have

$$\alpha \|\phi_k(x) - \phi_k(z_k)\| \le d_{\tilde{g}}(x, z_k) \le \beta \|\phi_k(x) - \phi_k(z_k)\| \quad \forall_x \in W_k.$$

Thus $X_k := \phi^{-1}(B(\phi_k(z_k), \frac{R}{4})) \subset B_{\tilde{g}}(z_k, \frac{\beta B}{4})$. Let λ be a test function in $B(0, \frac{B}{8})$ such that $\lambda = 1$ in $B(0, \frac{R}{9})$. Let $\Psi : \tilde{M} \to \mathbf{R} \cup \{-\infty\}$ be the function Ψ defined by

$$\Psi(x) = \begin{cases} \lambda(\phi_k(x)) \log \|\phi_k(x) - \phi_k(z_k)\|^{2n} & \text{if } x \in X_k \\ 0 & \text{if } x \in \tilde{M} \setminus \cup_k X_k. \end{cases}$$

Then Ψ is a smooth function on $M \setminus \{z_k\}_{k=1}^{\infty}$. Thanks to (2) there is a constant K > 0 such that

 $i\partial \bar{\partial}\Psi \geq -K\tilde{g}$ in a distributional sense on all of \tilde{M} .

Put $\gamma_k = \sup_{X_k} \|s\|_{\pi^*L}^2$ and $\rho_k = \sup_{1 \le j \le k} \gamma_j$. By passing to a subsequence, we may assume that $r(z_k) := d_{\tilde{g}}(z_k, x_o) \ge k + \rho_k$ for all $k \in \mathbf{N}$ ($x_o \in \tilde{M}$ is a fixed point).

Lemma ([N1, Lemma 1.1]). There is a smooth and exhaustive function $\tau : \tilde{M} \to \mathbf{R}$ such that

- (i) $r \leq C_1 \tau \leq C_2 r$; and
- (ii) $i\partial\bar{\partial}\tau \ge -C_3\tilde{g}, \text{ on } \pi^{-1}(U)$

where the constants may depend on U.

Define a smooth section t of $\pi^* L^m$ on \tilde{M} by

$$t(x) = \begin{cases} \lambda(\phi_k(x))e^{r(z_k)}\bigotimes_{1}^{m} s(x) & \text{if } x \in X_k \\ 0 & \text{elsewhere.} \end{cases}$$

We obtain a smooth $\bar{\partial}$ -form of type (0,1) with values in $\pi^* L^m$ and support contained in $\bigcup_{k=1}^{\infty} X_k$, by defining

$$\omega = \bar{\partial}t.$$

Since $\lambda = 1$ on $B(0, \frac{R}{8})$ and s is holomorphic, we conclude that ω vanishes on $\phi_k^{-1}(B(0, \frac{R}{8})) \subset X_k$ for $k = 1, 2, 3, \ldots$. Moreover, we have $|\lambda o \phi_k| \leq \text{Const}$ on $X_k \setminus \phi_k^{-1}(B(0, \frac{R}{8}))$, and, because the map ϕ_k satisfies the property (2), we have $|\overline{\partial}(\lambda o \phi_k)| \leq \text{Const}$ on X_k , where the constants are independent of k. Therefore on the set $X_k \setminus \phi_k^{-1}(B(0, \frac{R}{8}))$, hence on all X_k , we have

$$\|\omega\|_{e^{-\Psi}\pi^*L^m} \le \text{Const } e^{2r(z_k)}\rho_k^{2m}$$

where the constant is independent of k. Also as mentioned above, ω vanishes on the complement $\tilde{M} \setminus \bigcup_k X_k$. Therefore, if we define a singular Hermitian metric in $\pi^* L^m$ on \tilde{M} by

$$\|?\|_m^2 := e^{-(3C_1r + \Psi)} \|?\|_{\pi^*L^m}^2,$$

then $\|?\|_m$ is smooth on $\tilde{M} \setminus \{z_k\}_{k=1}^{\infty}$, and

$$\begin{split} \int_{\tilde{M}} \|\omega\|_m^2 dV_{\tilde{g}} &= \int_{\tilde{M}} \|\omega\|_{e^{\Psi}\pi^*L^m}^2 e^{-3C_1 r} dV_{\tilde{g}} \\ &= \sum_{k=1}^{\infty} \int_{X_k} \|\omega\|_{e^{\Psi}\pi^*L^m}^2 e^{-3C_1 r} dV_{\tilde{g}} \end{split}$$

Hence

$$\int_{\tilde{M}} \|\omega\|_m^2 dV_{\tilde{g}} \le \operatorname{Const} \sum_{k=1}^{\infty} \rho_k^{2m} e^{2r(z_k)} e^{-3C_1 r} dV_{\tilde{g}}.$$

By the previous Lemma, we have $r \leq C_1 r$ om X_k . Therefore, since $X_k \subset B_{\tilde{g}}(z_k, \frac{\beta R}{4})$,

$$r(z_k) - \frac{\beta R}{4} \le r(x) \le C_1 r(x)$$

204

for every $x \in X_k$ and $k = 1, 2, \ldots$. Thus

$$\begin{split} \int_{\tilde{M}} \|\omega\|_m^2 dV_{\tilde{g}} &\leq \operatorname{Const} \sum_{k=1}^{\infty} \rho_k^{2m} \int_{X_k} e^{2r(z_k) - 3r(z_k)} dV_{\tilde{g}} \\ &\leq \sum_{k=1}^{\infty} \rho_k^{2m} e^{-r(z_k)} \operatorname{vol} \left(B_{g_e} \left(0, \frac{R}{4} \right) \right) \\ &\leq \operatorname{Const} \sum_{k=1}^{\infty} \rho_k^{2m} e^{-\rho_k} e^{-k}. \end{split}$$

Let $a := \lim_{k \to \infty} \rho_k$. If $a < +\infty$ then

$$\int_{\tilde{M}} \|\omega\|_m^2 dV_{\tilde{g}} \le \operatorname{Const} \sum_{k=1}^{\infty} e^{-k} < +\infty.$$

Now if $a = +\infty$, then

$$\int_{\tilde{M}} \|\omega\|_m^2 dV_{\tilde{g}} \le \operatorname{Const} \sum_{k=1}^{\infty} \rho_k^{2m} e^{-\rho_k} < +\infty.$$

Let f be a smooth (0, 1)-form in \tilde{M} with values in $\pi^*L.$ By Cauchy-Schwarz inequality

$$\left(\int_{\tilde{M}} |\langle f, \omega \rangle_m | dV_{\tilde{g}}\right)^2 \le \int_{\tilde{M}} \|\omega\|_m^2 dV_{\tilde{g}} \int_{\operatorname{supp} t(\omega)} \|f\|_m^2 dV_{\tilde{g}}.$$

There exist a constants c > 0 and d such that $c(L) \ge c.g$ and $\operatorname{Ricci}(g) \ge d.g$ on U. Since $c(\pi^*(L^m)) = m\pi^*(c(L))$, for m sufficiently large we have

$$\operatorname{Ricci}(\tilde{g}) + i\partial\bar{\partial}\Psi + i3C_1\partial\bar{\partial} + m\pi^*c(L) \ge \tilde{g} \quad \text{on} \ \pi^{-1}(U).$$

Using the Bochner-Kodaira-Nakano equality in Kählerian geometry [**D**], we have

$$\left(\int_{\tilde{M}} |\langle f, \omega \rangle_m | dV_{\tilde{g}} \right)^2$$

$$\leq \int_{\tilde{M}} \|\omega\|_m^2 dV_{\tilde{g}} \left(\int_{\operatorname{supp} t(\omega)} \|\overline{\partial^*} f\|_m^2 dV_{\tilde{g}} + \int_{\operatorname{supp} t(\omega)} \|\bar{\partial} f\|_m^2 dV_{\tilde{g}} \right),$$

where $\overline{\partial^*}$ is the formal adjoint of $\overline{\partial}$ acting on (0, 1)-forms in $L^2(\tilde{M}; (\pi^*L^m, \|?\|_m))$ as an unbounded operator. Since the metric \tilde{g} is complete, the space of smooth (0, 1)-forms with compact support on \tilde{M} and with values in π^*L^m is dense in $\text{Dom}(\overline{\partial^*}) \cap \text{Ker} \overline{\partial}$ with respect to the (singular) graph norm [**D**]:

$$\|f\| := \int_{\tilde{M}} \|f\|_m^2 dV_{\tilde{g}} + \int_{\tilde{M}} \|\overline{\partial^*} f\|_m^2 dV_{\tilde{g}} + \int_{\tilde{M}} \|\bar{\partial} f\|_m^2 dV_{\tilde{g}}.$$

By density, $\forall f \in \text{Dom}(\overline{\partial^*}) \cap \text{Ker}\,\overline{\partial}$ we have

$$\begin{split} &\int_{\tilde{M}} |\langle f, \omega \rangle_m | dV_{\tilde{g}} \\ &\leq \left(\int_{\tilde{M}} \|\omega\|_m^2 dV_{\tilde{g}} \right)^{\frac{1}{2}} \left(\int_{\tilde{M}} \|\overline{\partial^*} f\|_m^2 dV_{\tilde{g}} + \int_{\tilde{M}} \|\bar{\partial} f\|_m^2 dV_{\tilde{g}} \right)^{\frac{1}{2}}. \end{split}$$

Since $\bar{\partial}\omega = 0$, it suffices to consider the $\bar{\partial}$ -closed forms f. The above inequality become

$$\begin{split} &\int_{\tilde{M}} |\langle f, \omega \rangle_m | dV_{\tilde{g}} \\ &\leq \left(\int_{\tilde{M}} \|\omega\|_m^2 dV_{\tilde{g}} \right)^{\frac{1}{2}} \left(\int_{\tilde{M}} \|\overline{\partial^*} f\|_m^2 dV_{\tilde{g}} \right)^{\frac{1}{2}} \quad \forall f \in \operatorname{Dom} \overline{\partial^*}. \end{split}$$

By Lemma 4.1.1 in [**H**], there exists a smooth section σ of $\pi^* L^m$ on \tilde{M} such that

$$ar{\partial}\sigma = \omega \quad ext{and} \quad \int_{ ilde{M}} \|\sigma\|_m^2 dV_{ ilde{g}} \leq \int_{ ilde{M}} \|\omega\|_m^2 dV_{ ilde{g}}.$$

Therefore $\|\sigma\|_m^2$ is integrable on the neighborhood $\phi_k^{-1}(B(0, \frac{R}{8}))$ of z_k , on which

$$\Psi(x) = n \log \|\phi_k(x) - \phi_k(z_k)\|^2.$$

Hence

$$\begin{split} &\infty > \int_{\phi_k^{-1}(B(0,\frac{R}{8}))} \|\sigma\|_m^2 dV_{\tilde{g}} \\ &= \int_{\phi_k^{-1}(B(0,\frac{R}{8}))} \|\sigma\|_{\pi^*L^m} e^{-3C_1 r} e^{-\Psi} dV_{\tilde{g}} \\ &= \int_{\phi_k^{-1}(B(0,\frac{R}{8}))} \frac{\|\sigma\|_{\pi^*L^m}^2 e^{-3C_1 r}}{\|\phi_k - \phi_k(z_k)\|^{2n}} dV_{\tilde{g}}. \end{split}$$

However $\|\sigma(x)\|_{\pi^*L^m}^2 e^{-3C_1r(x)}$ is smooth while $\|\phi_k - \phi_k(z_k)\|^{-2n}$ is not locally integrable at z_k , since \tilde{M} has real dimension 2n and $\phi_k(z_k) = 0$. It follows that

$$\sigma(z_k) = 0$$

for k = 1, 2, 3, ... If f is the holomorphic function defined on \tilde{M} in the following way:

$$f := \frac{\sigma}{\otimes_1^m s},$$

then $f(z_k) = e^{r(z_k)} \to \infty$ as $k \to \infty$. It follows that f is unbounded on S.

206

Case 2. If $\{y_{\nu}\}$ has no limit point in M, then there exists a holomorphic function f on M such that $|f(y_{\nu})|$ is unbounded. Hence we may take $\pi^* f$ as our desired holomorphic function on \tilde{M} .

Since M supports a smooth strongly plurisubharmonic function, then M is a Stein manifold.

As mentioned in the introduction, the condition $[\pi^*L] = 0$ in $H^1(\tilde{M}, \mathcal{O}^*)$ is necessary. We give here an example \tilde{M} of a covering of a smooth projective manifold M which is not holomorphically convex and for every positive line bundle L over M, the cohomology class of π^*L is not zero in $H^1(\tilde{M}, \mathcal{O}^*)$. An example of M such that \tilde{M} is not holomorphically convex is given in [N2], Ex. 4, 5, p. 451. We will use it to verify the nonvanishing of the cohomology class. For the sake of complements, we reproduce the construction.

Suppose a and b are complex numbers such that the elements (1, 0), (0, 1), (a, 0) and (0, b) form a basis for \mathbb{C}^2 over \mathbb{R} . Let $\Gamma \subset \mathbb{C}^2$ be the lattice generated by these elements over \mathbb{Z} , and let $\tilde{\Gamma}$ be the subgroup of Γ generated by (1, 0), (0, 1), (a, b) over \mathbb{Z} . Then \mathbb{C}^2/Γ is an Abelian variety which is biholomorphic to a product of 1-dimensional tori, and the map

$$\tilde{M} = \mathbf{C}^2 / \tilde{\Gamma} \longrightarrow M = \mathbf{C}^2 / \Gamma$$

is a covering map. If 1, a and b are linearly independent over \mathbf{Z} , then the only holomorphic functions on \tilde{M} are the constants.

Now let L be a positive holomorphic line bundle over M and suppose that the cohomology class of π^*L vanishes. Let s be the holomorphic section of π^*L without zeros as above. Since $\mathcal{O}(\tilde{M}) = \mathbf{C}$, every holomorphic section h of π^*L over \tilde{M} can be written as h = c.s where $c \in \mathbf{C}$. By Corollary 4.3 in [N2], there exists a positive integer p and a holomorphic section σ of π^*L^p on \tilde{M} such that $\|\sigma\|$ is unbounded on any infinite subset without limit point in \tilde{M} . Therefore $\sigma = c. \otimes_1^p s$ which implies $\lim_{x\to\partial \tilde{M}} \|s\| = +\infty$. Hence the strongly Psh function $\phi = -\log \|s\|^2$ is bounded from above on \tilde{M} . Let $\pi_1 : \mathbf{C}^2 \to \tilde{M}$ be the universal covering, and define a strongly Psh function θ on \mathbf{C}^2 by

$$\theta := \phi o \pi_1.$$

Since \mathbb{C}^2 is parabolic, the only Psh function bounded from above are the constants. This implies that ||s|| = constante which contradicts the growth of s. Hence $[\pi^*L] \neq 0$ in $H^1(\tilde{MO}^*)$ for every positive line bundle L on M.

References

[D] J.P. Demailly, Estimations L² pour l'operateur \(\overline{\Delta}\) d'un fibr\(\epsilon\) holomorphr semipositif au dessus d'une vari\(\epsilon\) t\(\vee K\) ablerienne compl\(\epsilon\) te, Annales Sci. Ec. Norm. sup., 15 (1982), 457-511.

SAÏD ASSERDA

- [H] L. Hörmander, An introduction to complex analysis in several variables, North Holland, Third Edition, 1990.
- [N1] T. Nappier, Covering spaces of families of compact Riemann surfaces, Math. Annalen, 294 (1992), 523-549.
- [N2] _____, Convexity properties of covering of smooth projective varietes, Math. Annalen, 286 (1990), 433-479.
- [S] C. Siegel, Analytic functions of several variables, Institute for Advanced Study, Princeton, 1949.
- [Wa] K. Watanabe, Covering of a projective algebraic manifold, Pacific J. Math., 96 (1981), 243-246.
- [We] R.O. Wells, Differential analysis on complex manifolds, GTM, Springer, New York, 1980.

Received June 11, 1996. This research was supported by Moroccan Civil Service grant FSK-1.11.95-2.17033.

IBN TOFAIL UNIVERSITY P.O. 135 KENITRA MOROCCO