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PEAK SETS IN REAL-ANALYTIC CONVEX BOUNDARIES

RAcHID BELHACHEMI

Suppose D CC C" is a convex domain with real-analytic
boundary. Assume K is a compact subset of 9D which is a
peak set for A>*(D), and L is a compact subset of K. Then L
is a peak set for A (D).

1. Introduction.

Throughtout this paper we will denote by D a smoothly bounded domain in
C™ with defining function 7.

We denote by A>(D) the set of holomorphic functions in D which have
C>-extension to D.

First, we give the necessary definitions and notations needed in this paper.

A closed subset K C 9D is a peak set for A (D) if there exists a function
f € A°(D) sothat f=1on K and |[f| <1 on D\ K. K is locally a peak
set for A= (D) if for each p € K, there exists a neighborhood V' of p so that
KNV is a peak set for A~(D).

It is easy to see that a closed subset K C 0D is a peak subset for A>(D)
if and only if there exists a function g € A>(D) such that ¢ = 0 on K and
Reg > 0 on D\ K. Such a function g is called a strong support function for
K.

We denote by T,(M) the real tangent space to a smooth manifold M at
the point p € M. For a point p € M, the complex tangent space of M at p
denoted by T)7(M) is the maximal complex subspace of T,,(M), of complex
dimension n — 1 if M = 0D.

A C*>-submanifold M C 9D is integral at p € M if T,(M) C T, (0D). M
is an integral manifold if it is integral at each point p € M.

A C>-submanifold M C 9D is totally real if T);(M) = {0} for every
p e M.

We denote by w(9D) the set of weakly pseudoconvex boundary points.

For p € 0D, we let N, denote the null space in TF(0D) of the Levi form at
p. D* will denote the differential operator ik in RY, where

0x{10x3? - - - 0xQN
a=(ag,...,ay) and |a| = a3 + -+ an.

We will denote by d(z, M) the Euclidean distance from z to a manifold
M.
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The main result of this paper is:

(Theorem 1.8)*  Suppose D CC C" is a convexr domain with real-analytic
boundary. Assume K is a peak set for A~(D), and L is a compact subset of
K. Then L is a peak set for A>*(D).

Theorem 1.8 was proved by Chaumat and Chollet in [4] for strongly pseu-
doconvex domains with smooth boundaries in C". Noell in [7] extended
this result to convex domains with real-analytic boundaries in C2, he also
showed in [7] that compact subsets of peak sets for A (D) are peak sets
for A>(D) for smooth pseudoconvex domains of finite type in C?. Further-
more, he showed that the finite type requirement can not be dropped, in
fact, Noell gave in [7] an example of a pseudoconvex domain D CC C? not
of finite type, a compact subset K which is a peak set for A>(D), and a
compact subset L of K that is not a peak set for A>(D).

We recall from [2] the following useful theorem.

Theorem 1.1. Suppose D CC C" is a convexr domain with real-analytic

boundary. Then for each p € w(0D), there exists a neighborhood U of p so

that:

(a) w@D)NU = U?ZE?) S;, where each S; is a finite disjoint union of j-
dimensional real-analytic CR submanifolds of 0D N U. Furthermore,
for all ¢ € S;, T,(S;) N N, = {0}.

(b) If S is a component of some S; and T,(S) C T,/ (0D) for some q € S,
then S is an integral submanifold of 0D N U.

(c) S is closed in GD\ (Ug;ol SZ) ,j=1,...,2n—3.

Theorem 1.1 shows that, analysis on convex domains with real-analytic
boundaries in C™ is similar to that of a strongly pseudoconvex domain.

2. Peak sets and integral manifolds.

The purpose of this section is to build additional ingredients that will enable
us to prove the main result of this paper Theorem 1.8. In this section we
will resolve two questions, in the first result (Theorem 1.2) we will show that
the intersection of a peak set and any strata of w(9D) described in Theorem
1.1 is locally contained in integral manifolds. The second result (Theorem
1.4) contains our estimate which shows the local behavior of strong support
functions in convex domains with real-analytic boundaries.

Theorem 1.2. Suppose D CC C" is a convex domain with real-analytic
boundary. Assume K is a compact subset of 0D which is locally a peak set

'T would like to thank my advisor, Dr. Alan Noell for his useful suggestions. His
encouragement and guidance have been invaluable to me.
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for A>(D). Let S be any strata of w(OD) as in Theorem 1.1, and suppose
dimg S = 2t + A\, where dimc¢ Tg) (S) =t for all qo € S. Suppose p € KN S.
Then there exists a neighborhood U C C™ of p, a holomorphic change of
coordinates in U, in which p = 0 and S C C'™ x {0}, a neighborhood U’ C
C*** of 0, a strongly pseudoconvex domain Q CC U’, a locally peak set
LcC o0 N V', where V! CC U’ is a neighborhood of zero, and a totally real
smooth M C Q. NV’ so that:

(a) KNSNV CLCMCc (dQx{0})NV" DNV, where L = L x {0},

M =M x {0}, V' =V’ x {0}, and V CC U is a neighborhood of 0.

(b) T,(M)C TE(D) for all g € M.

(¢) dimg M <n—2.

Proof.
Case 1. Assume that S is not integral at p.

Since S is a real-analytic CR manifold, then by Rossi’s theorem [9] there
exists a neighborhood U of p in C" and a biholomorphic map ¢ : U — C”
so that ®(p) = 0 and ®(U N S) C C** x {0}. Note that Rossi’s theorem
enables us to put real-analytic CR manifolds of C™ into lower dimensional
C* (k < n).

Let z € U, and ®(z) = (2/,2"), with 2/ = (21,...,21), denotes the
new holomorphic change of coordinates near 0, where 2,y = u + v is the
complex normal direction to 9D at 0. We assume that the new manifold
obtained under ® that sits in C'™ x {0} is also denoted by S.

We define the function p as follows:

p(2) =roh('),

where h(z') = (2/,0,...,0).
Let U’ be a neighborhood of 0’ in C***, and put

Q={'eU": p(z)<0}.

Note that €2 is a bounded domain in U’, and S is locally contained in (02 x
{0p)NU’, with 9QNU" = {2 € U : p(z') = 0}.

We need to show that p is a defining function for €2, so it suffices to show
that if U’ is small enough, then Vp # 0 on 0QNU".
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Assume (0) = 1. By the chain Rule we have,
Zt4A
ap ., " Or ohy " Or ohy
0) =3 —(0)- 0)+ 3 —(0)- 0
athr)\( ) kz::l wk( ) 3Zt+/\( ) ,;awk( ) 82t+>\( )
- Z ﬁ(o) . Ohy, 0)=1
=1 Wy 82t+)\

Thus Vp(0') # 0, and hence Vp # 0 in a neighborhood of 0.

To show that €2 is strongly pseudoconvex near 0, it is enough to show
that Q is strongly pseudoconvex at 0’. An easy computation of the Levi
form yields,

Ly(0'sm) = Ly (0, h'(0')n)
- I/,,‘(O7 (771,. .. 7nt+A707 e 70))

(Here L,(r,p) denotes the Levi form of r at p.) n = (n1,... ,myr) € CHA
n # 0 and n € TS(99Q). Since Ty(S) N Ny = {0} by Theorem 1.1, we may
conclude that L,(0',7) > 0.

Now, we show that there exists locally a peak set L C 99 for A (Q) so
that

(1) KNnSNV CLx{0},

where V' CC U is a neighborhood of 0 in C™.

Let f be a strong support function for K NV. Define the function g as
follows,

9(2') = f o h(z'),
and N
L= {z’ ceQnV':g(?) = O},

with V' C U’ a neighborhood of 0. N

First we claim that g is a strong support function for LNV"’. It is obvious

that g € A>(Q). Now let us show that g # 0 on QN V’. Assume to the
contrary that ¢ = 0 on QN V’. Then by the Chain Rule we get,

99 o _ = Of o Ohy o Of
0 _z::azk 0 O0zi4a 0 _azt+)\’

0=
O0ziqa

of

and so 8—(0) = 0. But this is absurd because Re f is a non-constant pluri-
u

harmonic function on D which has a local minimum at 0, and therefore by

J(Re f)
5 (0) <o0.

Hopf lemma, we must have
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We note that if Re f = 0 then g = 0, and hence Reg > 0 on ﬁ\iﬂ Vv,
moreover, Lcoanv by the maximum modulus principle.

Let z € KNSNV with z = (2/,0,...,0). Then g(z') = foh(z) =
f(#,0,...,0) =0 since z € K. So (2/,0') € L x {0}, and this gives (1).

Now, we verify properties (a)-(c) of the theorem.

Since (2 is a strongly pseudoconvex domain near 0', and L is locally a peak
set for A%°(Q2), then by a result of Chaumat and Chollet in [4] (Theorem 7),
we obtain a totally real integral submanifold of M C 9Q N V" if V' is small
enough, so that LNV’ C M.

We put .

M = M x {0}.

Then, for all ¢ € M
T, (M) C 15 (D)

and N
dmg M =t+A—-1<(n—-1)—1=n-2.

This completes the proof in the case T,(S) € T (0D).

Case 2. 1If S is integral at p, then S is an integral submanifold of dD by
Theorem 1.1 (b). Hence by Theorem 1.1 (a), and a result of Bedford and
Fornaess in [1] (Lemma 3, p. 287), we must have S totally real, and therefore
the preceding proof of Case 1 is easily modified. This finishes the proof of
Theorem 1.2. u

Remark 1.3. Observe that the convexity of D was used only to get a
real-analytic strata described in Theorem 1.1.

First, we introduce the function Sg(f), and then we state and prove The-
orem 1.4.

For R > 0, let Sg(f) = f — Rf?, where f is a strong support function for
a closed subset K C 0D. We note that,

Re(Sr(f)) = Re f(1 — R(Re f)) + R(Im f)?,
and for a small neighborhood U of K,

Sr(f)=0 on K and Re(Sg(f)) >0 on (5m U) \K.

Theorem 1.4. Suppose D CC C" is a convexr domain with real-analytic
boundary. Let K C 0D be a compact subset which is a peak set for A>(D)
with strong support function f. Let p, .S, E, Z, Q,U" and U be as in Theorem
1.2. Let R be a sufficiently large positive number. Then there exist neighbor-
hoods V.CC U of p, V' CC U’ of p, a totally real manifold M' C 9QNV’ of
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dimension at most (n—1) containing ZHV’, and a smooth manifold N C 'V
containing M = M’ x {0} so that

(a) KNSNVCLCMCcCOQx{0H)nV"cCoDNV, with V" =V"'x{0}.
(b) ReSgr(f)(q) > cd*(q,N) if g € DNV, for some positive constant c.

Proof. By Theorem 1.2, we know that 2 CC U’ is a strongly pseudoconvex
domain with boundary, and L is locally a peak set for A>(Q) with strong
support function g, so by using a result of Chaumat and Chollet in [4]
(Proposition 9), we can find a neighborhood V' CC U’ of 0’ and a totally
real submanifold M’ C 92NV’ of dimension ¢+ A < n— 1, containing LNV’
such that Reg(q') > c/d*(¢’, M) for all ¢ € QN V', where ¢ is a positive
constant. Using this and the reasoning in Theorem 1.2 (a), we get part (a)
of the theorem.
Define the manifold N C U by

N =M x {C Y,

and observe that M = M’ x {0} C N. It remains to show part (b).

Let ¢ € M. Since M is totally real, we can make a holomorphic linear
change of coordinates near ¢’ that we denote by z; =z, +iy;, 7 =1,... ,t+
A—1, z;,y = u+iv so that ¢ = 0, and To(M') = {2/ € C*t .y, =
<o = Ypa—1 = u = 0}. We may assume that 75(09Q) = {2’ : u = 0} and
To(0D) = {(#,2") : u = 0}.

Let g(z') = f(#',0,...,0) be the strong support function for LNV’ con-
structed in the proof of Theorem 1.2. The proof of Proposition 9 in [4]
guarantees that the real Hessian of Reg at 0 is positive definite when re-
stricted to the orthgonal complement of Ty (M’) in TG (9€). In addition, the
Cauchy-Riemann equations and the Hopf lemma give %(0) < 0. Using
this, we may conclude that for all ¢ € D near ¢’, Re Sg(f)(q) > cd*(q, N).
This ends the proof of Theorem 1.4. |

The proposition below is due to Harvey and Wells and appears in [5]. We
will use it in the proof of Theorem 1.8.

Proposition 1.5. Suppose M coDNU isa totally real submanifold,

where U is an open subset of C™. Let x be a C* function in M. Then there

exists a C™ function X in U so that:

(1) X=x on M.

(2) 09X vanishes to infinite order along ]/\Z, i.e. D*(9X) = 0 along MnU
for each multi-index .

(3) X is locally constant near where x is locally constant.

(4) If x has compact support in J\//T, then X has compact support in U.
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(5) First deriwatives of X vanishes on M in directions perpendicular to

T(M)+JT(M), where J is the almost complex structure corresponding
to multiplication by i.

3. Compact subsets of peak sets.

The next proposition goes back to Chaumat and Chollet [3]. Proposition
1.6 allows us to construct peak functions from the functions stated there.

Proposition 1.6. Suppose D C C" is a bounded pseudoconvex domain

with smooth boundary. Let E be a compact subset of 0D, W a neighborhood

of E in C™, and p a non-negative continuous function on W which vanishes

on E. Suppose that there exists a function G € C=(W N D) such that:

(a) E={zeWnD:G(z)=0}

(b) For each o € N, and for each k € N there exists Cyr > 0 such that
for each . € W N D

D°(9G(2))| < Carlp(2)]".
(c) There exists a constant ¢ > 0 so that for all z € DNW,
ReG(2) > ep(z).
Then E is a peak set for A*(D).

Remark 1.7. Let {E;}52, be a collection of peak sets for A*(D), with
strong support functions {f;}52,, then £ = N2, E; is a peak set for A>(D).
To see this, let ¢; = max{||D*f)|ls : 0 < |a] < j}, and put f =372, g%fj
We note that since || fj||- < ¢;, so ||cijfj]|Oo <1, then f is well-defined.
Moreover, f € A*(D) and Re f;(z) > 0 for all j and 2z € D, and z € E if

and only if f(z) = 0. Therefore f is a strong support function for E.

Now, we are ready to prove our main result. The approach which we have
carried out to prove Theorem 1.8 is based on that used by Chaumat and
Chollet in [4].

Theorem 1.8. Suppose D CC C" is a convex domain with real-analytic
boundary. Let K be a compact subset of 0D which is a peak set for A*(D),
and L a compact subset of K. Then L is a peak subset for A>(D).

Proof. We apply Theorem 1.1 to get a finite covering of K Nw(9D) by open
sets {Uj};_; so that on each U}, (1 < 8 <) properties (a) — (c) of Theorem
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1.1 are satisfied. We will take compact subsets within each Uj and then take
intersections.

Fix 3, and drop the subscript from Uj.

The idea of the proof is to take compact subsets in U’ successively on
Son—3,S2n—4,... ,5 where S; (0 < j < 2n — 3) is a real-analytic strata
of w(0D) described in Theorem 1.1 starting with the maximal dimensional
strata S, _3.

Let

L, =[Knuw(0D)|U L.

Noell in [7] proved that L, is a peak set for A>(D) in pseudoconvex with
smooth boundary in C?, and Tordan in [6] generalized the result to such
domains in C". Observe that L C L; C K, and one can take compact
subsets of K away from w(0D).
We put
Ly=[LiN(SoUS;U---Sy, 4)]UL

and note that L C L, C L; C K. We will show that L, is a peak set for
A*>(D). We will remove from L; points of (K \ L) on Sy, 3.

Let {Vi.}32, be a family of open neighborhoods of L; N (So U+ --U Sy, _4)
such that Vi, CC Vi and N2, Vi = LN (SoU-+-U Sa,_4).

Fix k, and let U be a neighborhood of V;,. We first show that (L; NV })UL
is a peak set for A*(D). Using this and Remark 1.7 we obtain that L, is a
peak set for A>(D).

Lemma 1.9. Let Ly, L,V and U be as above. Then there exists a peak set
L' C 0D for A>=(D) so that:

(1) L' C L,.

(2) '\U=L\U.

(3) LU (LinVy) C I,

Proof. Let f be a strong support function for L,. Apply Theorem 1.4 to
get an open covering for L, \ U by open sets U and U;, with U; CC U;
(1 < j < 1), a smooth manifold N; C Uj, and a constant c; such that
LiN Sy, 3NU; C Ny (1<j<I),and for each z € DNUj

(2) ReSa(f)(2) = 6, (z, Ny).
Let xj : C* — [0,1] be a C*-function so that x; =1 on U; (1 < j <)

and supp xj C Uj. For z € C", put

3) p(z) = Z X;(2)d* (2, N;).
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Then p > 0, and p = 0 on L; N Sa,-3. In addition, (2) gives for each
zeD, 22:1 Xj(z)Re Sr(f)(2) > Zé-:l ;X (2)d*(z, N;) > cop(2), with ¢p =
min{c;}_,. Thus

C

(4) Re S(f)(2) = 7 p(2).

Let {x;},—, be a partition of unity on L; \ U subordinate to the cover
{Uj}é':l so that for 1 < j <1 x; € C>(Uy), supp x; C Uj, and

!
(5) > x;=1 on L.
=1

Put O, = Ué-:lUj and Qy, = Q; UU. Let D’ be a compact neighborhood of
D containing €2,. Choose a C'*°-function s on C" so that s > 0, supps C D',

(6) L={ze D' :s(z)=0}.

Let M; = M; x {0} (1 < j <) be the totally real manifold obtained
from Theorem 1.4 and which is contained in N;. Let 29 = (/@) 2"()) be
the holomorphic coordinate system on U (1 < j <) described in the proof
of Theorem 1.2.

Put

(7) 8j = 8X;-

We apply Proposition 1.5 to s; restricted to M} in a neighborhood of V; C
C"* to get a function 5; € C>(C"*) so that 5; = s; on Mj, supps; C V',
V" cc Vj, and D*(9s;) = 0 on M; for each multi-index a. Furthermore,
since 95; = 0 on M 7, then as a consequence of the Cauchu-Riemann equa-
tions, we get the differential of Res; is zero on JT'(M).

Extend 3; trivially to get a function 5; on C™ defined by 5;(2)) = 5;(2).
Then S; = s; on N, (recall that N; = M} x C"*=*) and 95; vanishes to
infinite order along N;NU;. We modify s; away from M; to get supp s C U if
Uj is small enough. In addition, the differential of Re s; vanishes on JT'(N;),
this is true because 95; = 95 = 0.

We deduce from this, (6), and (7) by Taylor expanding Res; that there
exists a constant ¢; > 0 such that for each z € C", Re5s;(z) > —cjd*(z, N).

Let

l
S = E Sj.
J=1
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We may apply the manipulations used by Chaumat and Chollet in [4] to
our situation, and deduce that there exist constants C,; > 0 and d > 0 such
that for each z € C", @« € N", and k € N,

(8) |D°B3(2)| < Corlo(2))"
and
9) Res(z) > —dp(z).

Define the function G by

where § > 0 is sufficiently small. Using (4) and (9), there exists a positive
constant ¢ so that,
(10) ReG(z) > ¢p(z).
Let
L'={2€DnNQy:G(z) =0},

and note by (6) that L' C {z € DN Oy : p(z) = 0}.
Thus, by Proposition 1.6, we may conclude that L' is a peak set for A~ (D).
Now let us verify properties (1) — (3) stated in Lemma 1.9.

(1) There are two cases to consider:
(a) If z € QN L}, then by (5) we have 3(2) = 32\, x;(2)s(2) = s(2), and
since ReG =0 on L', we get s(z) =0, so by (6) z € L, and hence € L;.

(b) If z€ (U\ Q)N LY, then () = 0 for all j (1 < j <) and this gives
5(z) = 0, and so ReG(z) = Re Sg(f)(z) = 0. Thus z € L;. Combining the
two cases we obtain L' C L;.

(2) This follows from (a) and by observing that

(¢) yNLC L. (Ifz€ QNL, then 5(z) = 0and Sg(f)(z) =0,s0 G(z) =0
and this gives z € L'.)

(3) Finally, (3) follows from (c) and the following:

(d) Ifze LNV, then z ¢ Q; and so 3(z) = 0. Since Sr(f)(z) = 0 we
have G(z) =0, and hence z € L.

(e) Ifze (U\Q)NL,then s5(z) = s(z) = 0. Because Sg(f)(z) =0, we get
G(z) = 0 and hence z € L;. This completes the proof of Lemma 1.9. u

Now we proceed with the proof that L, is a peak set for A*(D). Let
{U;}%2, be a family of neighborhoods of V. so that U;;, CC U; and N2, U; =
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V. By virtue of Lemma 1.9, we get for each i > 1 a peak set L, € A>(D) so
that properties (1) — (3) hold. Thus by Remark 1.7, L' = N2, L; is a peak
set for A>®(D), and by part (3) of Lemma 1.9 we have LU (L, N'V};) C L'.
Furthermore, for each i > 1, L) = [L U (L, N V})] U LY, with L C (KN
U;) \ (K NV}). Taking intersections, we obtain L' = L U (L; N V}). Thus
LU (L, NVy) is a peak set for A*(D), and therefore L, is a peak set for
A>(D).
Let
Ly=[LyN(SoU---USs, 5)]UL.

We proceed along the same lines of the proof that L, is a peak set for A>(D),
removing from L, points of (K \ L) on Sy, _4 to obtain that Lj is a peak set
for A>*(D).
Continuing inductively and using the same process as above, we finally
obtain that
L, =L, 1NSy)UL

is a peak set for A>(D), with m = 2n—2 and L,,_; is a peak set for A>(D).
Now let us show that L is a peak set for A>(D). We use Proposition 1.6.
Choose a neighborhood W of L so that W does not contain the points of
(SoN L,,) \ L, these points are isolated in L,,.
Let h be a strong support function for L,,.

Put
G=h on W
and
p=0.
By Proposition 1.6, L is a peak set for A>(D). [l
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