
pacific journal of mathematics
Vol. 185, No. 2, 1998

PEAK SETS IN REAL-ANALYTIC CONVEX BOUNDARIES

Rachid Belhachemi

Suppose D ⊂⊂ Cn is a convex domain with real-analytic
boundary. Assume K is a compact subset of ∂D which is a
peak set for A∞(D), and L is a compact subset of K. Then L
is a peak set for A∞(D).

1. Introduction.

Throughtout this paper we will denote by D a smoothly bounded domain in
Cn with defining function r.

We denote by A∞(D) the set of holomorphic functions in D which have
C∞-extension to D.

First, we give the necessary definitions and notations needed in this paper.
A closed subset K ⊂ ∂D is a peak set for A∞(D) if there exists a function

f ∈ A∞(D) so that f = 1 on K and |f | < 1 on D \K. K is locally a peak
set for A∞(D) if for each p ∈ K, there exists a neighborhood V of p so that
K ∩ V is a peak set for A∞(D).

It is easy to see that a closed subset K ⊂ ∂D is a peak subset for A∞(D)
if and only if there exists a function g ∈ A∞(D) such that g = 0 on K and
Re g > 0 on D \K. Such a function g is called a strong support function for
K.

We denote by Tp(M) the real tangent space to a smooth manifold M at
the point p ∈ M. For a point p ∈ M , the complex tangent space of M at p
denoted by T Cp (M) is the maximal complex subspace of Tp(M), of complex
dimension n− 1 if M = ∂D.

A C∞-submanifold M ⊆ ∂D is integral at p ∈M if Tp(M) ⊆ T Cp (∂D). M
is an integral manifold if it is integral at each point p ∈M.

A C∞-submanifold M ⊂ ∂D is totally real if T Cp (M) = {0} for every
p ∈M.

We denote by w(∂D) the set of weakly pseudoconvex boundary points.
For p ∈ ∂D, we let Np denote the null space in T Cp (∂D) of the Levi form at

p. Dα will denote the differential operator
∂|α|

∂xα1
1 ∂xα2

2 · · · ∂xαNN
in RN , where

α = (α1, . . . , αN) and |α| = α1 + · · ·+ αN .
We will denote by d(z,M) the Euclidean distance from z to a manifold

M.
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The main result of this paper is:

(Theorem 1.8)1 Suppose D ⊂⊂ Cn is a convex domain with real-analytic
boundary. Assume K is a peak set for A∞(D), and L is a compact subset of
K. Then L is a peak set for A∞(D).

Theorem 1.8 was proved by Chaumat and Chollet in [4] for strongly pseu-
doconvex domains with smooth boundaries in Cn. Noell in [7] extended
this result to convex domains with real-analytic boundaries in C2, he also
showed in [7] that compact subsets of peak sets for A∞(D) are peak sets
for A∞(D) for smooth pseudoconvex domains of finite type in C2. Further-
more, he showed that the finite type requirement can not be dropped, in
fact, Noell gave in [7] an example of a pseudoconvex domain D ⊂⊂ C2 not
of finite type, a compact subset K which is a peak set for A∞(D), and a
compact subset L of K that is not a peak set for A∞(D).

We recall from [2] the following useful theorem.

Theorem 1.1. Suppose D ⊂⊂ Cn is a convex domain with real-analytic
boundary. Then for each p ∈ w(∂D), there exists a neighborhood U of p so
that:
(a) w(∂D) ∩ U =

⋃2n−3
j=0 Sj, where each Sj is a finite disjoint union of j-

dimensional real-analytic CR submanifolds of ∂D ∩ U. Furthermore,
for all q ∈ Sj, Tq(Sj) ∩Nq = {0}.

(b) If S is a component of some Sj and Tq(S) ⊂ TCq (∂D) for some q ∈ S,
then S is an integral submanifold of ∂D ∩ U.

(c) Sj is closed in ∂D
∖(⋃j−1

i=0 Si
)
, j = 1, . . . , 2n− 3.

Theorem 1.1 shows that, analysis on convex domains with real-analytic
boundaries in Cn is similar to that of a strongly pseudoconvex domain.

2. Peak sets and integral manifolds.

The purpose of this section is to build additional ingredients that will enable
us to prove the main result of this paper Theorem 1.8. In this section we
will resolve two questions, in the first result (Theorem 1.2) we will show that
the intersection of a peak set and any strata of w(∂D) described in Theorem
1.1 is locally contained in integral manifolds. The second result (Theorem
1.4) contains our estimate which shows the local behavior of strong support
functions in convex domains with real-analytic boundaries.

Theorem 1.2. Suppose D ⊂⊂ Cn is a convex domain with real-analytic
boundary. Assume K is a compact subset of ∂D which is locally a peak set

1I would like to thank my advisor, Dr. Alan Noell for his useful suggestions. His
encouragement and guidance have been invaluable to me.
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for A∞(D). Let S be any strata of w(∂D) as in Theorem 1.1, and suppose
dimR S = 2t + λ, where dimC T

C
q0

(S) = t for all q0 ∈ S. Suppose p ∈ K ∩ S.
Then there exists a neighborhood U ⊂ Cn of p, a holomorphic change of
coordinates in U, in which p = 0 and S ⊂ Ct+λ × {0}, a neighborhood U ′ ⊂
Ct+λ of 0, a strongly pseudoconvex domain Ω ⊂⊂ U ′, a locally peak set
L̃ ⊂ ∂Ω ∩ V ′, where V ′ ⊂⊂ U ′ is a neighborhood of zero, and a totally real
smooth M̃ ⊂ ∂Ω ∩ V ′ so that:
(a) K ∩S ∩V ⊆ L̂ ⊂ M̂ ⊂ (∂Ω×{0})∩V ′′ ⊂ ∂D∩V, where L̂ = L̃×{0},

M̂ = M̃ × {0}, V ′′ = V ′ × {0}, and V ⊂⊂ U is a neighborhood of 0.
(b) Tq(M̂) ⊆ T Cq (∂D) for all q ∈ M̂.

(c) dimR M̂ ≤ n− 2.

Proof.
Case 1. Assume that S is not integral at p.

Since S is a real-analytic CR manifold, then by Rossi’s theorem [9] there
exists a neighborhood U of p in Cn and a biholomorphic map Φ : U → Cn
so that Φ(p) = 0 and Φ(U ∩ S) ⊂ Ct+λ × {0}. Note that Rossi’s theorem
enables us to put real-analytic CR manifolds of Cn into lower dimensional
Ck (k < n).

Let z ∈ U, and Φ(z) = (z′, z′′), with z′ = (z1, . . . , zt+λ), denotes the
new holomorphic change of coordinates near 0, where zt+λ = u + iv is the
complex normal direction to ∂D at 0. We assume that the new manifold
obtained under Φ that sits in Ct+λ × {0} is also denoted by S.

We define the function ρ as follows:

ρ(z′) = r ◦ h(z′),

where h(z′) = (z′, 0, . . . , 0).
Let U ′ be a neighborhood of 0′ in Ct+λ, and put

Ω = {z′ ∈ U ′ : ρ(z′) < 0} .

Note that Ω is a bounded domain in U ′, and S is locally contained in (∂Ω×
{0}) ∩ U ′, with ∂Ω ∩ U ′ = {z′ ∈ U ′ : ρ(z′) = 0}.

We need to show that ρ is a defining function for Ω, so it suffices to show
that if U ′ is small enough, then ∇ρ 6= 0 on ∂Ω ∩ U ′.
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Assume
∂r

∂zt+λ
(0) = 1. By the chain Rule we have,

∂ρ

∂zt+λ
(0′) =

n∑
k=1

∂r

∂wk
(0) · ∂hk

∂zt+λ
(0′) +

n∑
k=1

∂r

∂wk
(0) · ∂hk

∂zt+λ
(0′)

=
n∑
k=1

∂r

∂wk
(0) · ∂hk

∂zt+λ
(0′) = 1.

Thus ∇ρ(0′) 6= 0, and hence ∇ρ 6= 0 in a neighborhood of 0′.
To show that Ω is strongly pseudoconvex near 0′, it is enough to show

that Ω is strongly pseudoconvex at 0′. An easy computation of the Levi
form yields,

Lρ(0′, η) = Lr(0, h′(0′)η)

= Lr(0, (η1, . . . , ηt+λ, 0, . . . , 0)).

(Here Lr(r, p) denotes the Levi form of r at p.) η = (η1, . . . , ηt+λ) ∈ Ct+λ,
η 6= 0′ and η ∈ TC0′(∂Ω). Since T0(S) ∩ N0 = {0} by Theorem 1.1, we may
conclude that Lρ(0′, η) > 0.

Now, we show that there exists locally a peak set L̃ ⊂ ∂Ω for A∞(Ω) so
that

(1) K ∩ S ∩ V ⊆ L̃× {0},
where V ⊂⊂ U is a neighborhood of 0 in Cn.

Let f be a strong support function for K ∩ V . Define the function g as
follows,

g(z′) = f ◦ h(z′),

and
L̃ =

{
z′ ∈ Ω ∩ V ′ : g(z′) = 0

}
,

with V ′ ⊂ U ′ a neighborhood of 0′.
First we claim that g is a strong support function for L̃∩V ′. It is obvious

that g ∈ A∞(Ω). Now let us show that g 6≡ 0 on Ω ∩ V ′. Assume to the
contrary that g ≡ 0 on Ω ∩ V ′. Then by the Chain Rule we get,

0 =
∂g

∂zt+λ
(0′) =

n∑
k=1

∂f

∂zk
(0) · ∂hk

∂zt+λ
(0′) =

∂f

∂zt+λ
,

and so
∂f

∂u
(0) = 0. But this is absurd because Re f is a non-constant pluri-

harmonic function on D which has a local minimum at 0, and therefore by

Hopf lemma, we must have
∂(Re f)
∂u

(0) < 0.
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We note that if Re f = 0 then g = 0, and hence Re g > 0 on Ω \ L̃ ∩ V ′,
moreover, L̃ ⊂ ∂Ω ∩ V ′ by the maximum modulus principle.

Let z ∈ K ∩ S ∩ V with z = (z′, 0, . . . , 0). Then g(z′) = f ◦ h(z′) =
f(z′, 0, . . . , 0) = 0 since z ∈ K. So (z′, 0′) ∈ L̃× {0}, and this gives (1).

Now, we verify properties (a)-(c) of the theorem.
Since Ω is a strongly pseudoconvex domain near 0′, and L̃ is locally a peak

set for A∞(Ω), then by a result of Chaumat and Chollet in [4] (Theorem 7),
we obtain a totally real integral submanifold of M̃ ⊂ ∂Ω ∩ V ′ if V ′ is small
enough, so that L̃ ∩ V ′ ⊂ M̃.

We put
M̂ = M̃ × {0}.

Then, for all q ∈ M̂
Tq
(
M̂
)
⊆ T Cq (∂D)

and
dimR M̂ = t+ λ− 1 ≤ (n− 1)− 1 = n− 2.

This completes the proof in the case Tp(S) 6⊆ TCp (∂D).

Case 2. If S is integral at p, then S is an integral submanifold of ∂D by
Theorem 1.1 (b). Hence by Theorem 1.1 (a), and a result of Bedford and
Fornaess in [1] (Lemma 3, p. 287), we must have S totally real, and therefore
the preceding proof of Case 1 is easily modified. This finishes the proof of
Theorem 1.2.

Remark 1.3. Observe that the convexity of D was used only to get a
real-analytic strata described in Theorem 1.1.

First, we introduce the function SR(f), and then we state and prove The-
orem 1.4.

For R > 0, let SR(f) = f −Rf2, where f is a strong support function for
a closed subset K ⊂ ∂D. We note that,

Re(SR(f)) = Re f(1−R(Re f)) +R(Im f)2,

and for a small neighborhood U of K,

SR(f) = 0 on K and Re(SR(f)) > 0 on
(
D ∩ U

)∖
K.

Theorem 1.4. Suppose D ⊂⊂ Cn is a convex domain with real-analytic
boundary. Let K ⊂ ∂D be a compact subset which is a peak set for A∞(D)
with strong support function f. Let p, S, L̃, L̂,Ω, U ′ and U be as in Theorem
1.2. Let R be a sufficiently large positive number. Then there exist neighbor-
hoods V ⊂⊂ U of p, V ′ ⊂⊂ U ′ of p′, a totally real manifold M ′ ⊂ ∂Ω∩V ′ of
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dimension at most (n−1) containing L̃∩V ′, and a smooth manifold N ⊂ V
containing M = M ′ × {0} so that
(a) K ∩S∩V ⊆ L̂ ⊂M ⊂ (∂Ω×{0})∩V ′′ ⊂ ∂D∩V, with V ′′ = V ′×{0}.
(b) ReSR(f)(q) ≥ cd2(q,N) if q ∈ D ∩ V, for some positive constant c.

Proof. By Theorem 1.2, we know that Ω ⊂⊂ U ′ is a strongly pseudoconvex
domain with boundary, and L̃ is locally a peak set for A∞(Ω) with strong
support function g, so by using a result of Chaumat and Chollet in [4]
(Proposition 9), we can find a neighborhood V ′ ⊂⊂ U ′ of 0′ and a totally
real submanifold M ′ ⊂ ∂Ω∩V ′ of dimension t+λ ≤ n−1, containing L̃∩V ′
such that Re g(q′) ≥ c′d2(q′,M ′) for all q′ ∈ Ω ∩ V ′, where c is a positive
constant. Using this and the reasoning in Theorem 1.2 (a), we get part (a)
of the theorem.

Define the manifold N ⊂ U by

N = M ′ × {Cn−t−λ},
and observe that M = M ′ × {0} ⊂ N. It remains to show part (b).

Let q′ ∈ M. Since M is totally real, we can make a holomorphic linear
change of coordinates near q′ that we denote by zj = xj + iyj, j = 1, . . . , t+
λ − 1, zt+λ = u + iv so that q′ = 0, and T0(M ′) = {z′ ∈ Ct+λ : y1 =
· · · = yt+λ−1 = u = 0}. We may assume that T0(∂Ω) = {z′ : u = 0} and
T0(∂D) = {(z′, z′′) : u = 0}.

Let g(z′) = f(z′, 0, . . . , 0) be the strong support function for L̃ ∩ V ′ con-
structed in the proof of Theorem 1.2. The proof of Proposition 9 in [4]
guarantees that the real Hessian of Re g at 0 is positive definite when re-
stricted to the orthgonal complement of T0′(M ′) in T C0′(∂Ω). In addition, the
Cauchy-Riemann equations and the Hopf lemma give ∂(Re f)

∂u
(0) < 0. Using

this, we may conclude that for all q ∈ D near q′, ReSR(f)(q) ≥ cd2(q,N).
This ends the proof of Theorem 1.4.

The proposition below is due to Harvey and Wells and appears in [5]. We
will use it in the proof of Theorem 1.8.

Proposition 1.5. Suppose M̂ ⊂ ∂D ∩ U is a totally real submanifold,
where U is an open subset of Cn. Let χ be a C∞ function in M̂. Then there
exists a C∞ function χ̃ in U so that:
(1) χ̃ = χ on M̂.

(2) ∂χ̃ vanishes to infinite order along M̂, i.e. Dα(∂χ̃) ≡ 0 along M̂ ∩ U
for each multi-index α.

(3) χ̃ is locally constant near where χ is locally constant.
(4) If χ has compact support in M̂, then χ̃ has compact support in U.
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(5) First derivatives of χ̃ vanishes on M̂ in directions perpendicular to
T (M̂)+JT (M̂), where J is the almost complex structure corresponding
to multiplication by i.

3. Compact subsets of peak sets.

The next proposition goes back to Chaumat and Chollet [3]. Proposition
1.6 allows us to construct peak functions from the functions stated there.

Proposition 1.6. Suppose D ⊂ Cn is a bounded pseudoconvex domain
with smooth boundary. Let E be a compact subset of ∂D, W a neighborhood
of E in Cn, and ρ a non-negative continuous function on W which vanishes
on E. Suppose that there exists a function G ∈ C∞(W ∩D) such that:
(a) E = {z ∈W ∩D : G(z) = 0}.
(b) For each α ∈ Nn, and for each k ∈ N there exists Cαk > 0 such that

for each z ∈W ∩D ∣∣∣Dα
(
∂G(z)

)∣∣∣ ≤ Cαk[ρ(z)]k.

(c) There exists a constant c > 0 so that for all z ∈ D ∩W,

ReG(z) ≥ cρ(z).

Then E is a peak set for A∞(D).

Remark 1.7. Let {Ej}∞j=1 be a collection of peak sets for A∞(D), with
strong support functions {fj}∞j=1, then E = ∩∞j=1Ej is a peak set for A∞(D).
To see this, let cj = max{‖Dαfj‖∞ : 0 ≤ |α| ≤ j}, and put f =

∑∞
j=1

1
cj2j

fj.

We note that since ‖fj‖∞ ≤ cj, so ‖ 1
cj
fj‖∞ ≤ 1, then f is well-defined.

Moreover, f ∈ A∞(D) and Re fj(z) ≥ 0 for all j and z ∈ D, and z ∈ E if
and only if f(z) = 0. Therefore f is a strong support function for E.

Now, we are ready to prove our main result. The approach which we have
carried out to prove Theorem 1.8 is based on that used by Chaumat and
Chollet in [4].

Theorem 1.8. Suppose D ⊂⊂ Cn is a convex domain with real-analytic
boundary. Let K be a compact subset of ∂D which is a peak set for A∞(D),
and L a compact subset of K. Then L is a peak subset for A∞(D).

Proof. We apply Theorem 1.1 to get a finite covering of K ∩w(∂D) by open
sets {U ′β}lβ=1 so that on each U ′β, (1 ≤ β ≤ l) properties (a)→ (c) of Theorem
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1.1 are satisfied. We will take compact subsets within each U ′β and then take
intersections.

Fix β, and drop the subscript from U ′β.
The idea of the proof is to take compact subsets in U ′ successively on

S2n−3, S2n−4, . . . , S0 where Sj (0 ≤ j ≤ 2n − 3) is a real-analytic strata
of w(∂D) described in Theorem 1.1 starting with the maximal dimensional
strata S2n−3.

Let
L1 = [K ∩ w(∂D)] ∪ L.

Noell in [7] proved that L1 is a peak set for A∞(D) in pseudoconvex with
smooth boundary in C2, and Iordan in [6] generalized the result to such
domains in Cn. Observe that L ⊆ L1 ⊆ K, and one can take compact
subsets of K away from w(∂D).

We put
L2 = [L1 ∩ (S0 ∪ S1 ∪ · · ·S2n−4)] ∪ L

and note that L ⊆ L2 ⊆ L1 ⊆ K. We will show that L2 is a peak set for
A∞(D). We will remove from L1 points of (K \ L) on S2n−3.

Let {Vk}∞k=1 be a family of open neighborhoods of L1 ∩ (S0 ∪ · · · ∪ S2n−4)
such that Vk+1 ⊂⊂ Vk and ∩∞k=1Vk = L1 ∩ (S0 ∪ · · · ∪ S2n−4).

Fix k, and let U be a neighborhood of Vk. We first show that (L1∩V k)∪L
is a peak set for A∞(D). Using this and Remark 1.7 we obtain that L2 is a
peak set for A∞(D).

Lemma 1.9. Let L1, L, V k and U be as above. Then there exists a peak set
L′ ⊂ ∂D for A∞(D) so that:

(1) L′ ⊂ L1.
(2) L′ \ U = L \ U.
(3) L ∪

(
L1 ∩ V k

)
⊂ L′.

Proof. Let f be a strong support function for L2. Apply Theorem 1.4 to
get an open covering for L2 \ U by open sets U ′j and Uj, with U ′j ⊂⊂ Uj
(1 ≤ j ≤ l), a smooth manifold Nj ⊂ U ′j, and a constant cj such that
L1 ∩ S2n−3 ∩ U ′j ⊂ Nj (1 ≤ j ≤ l), and for each z ∈ D ∩ U ′j
(2) ReSR(f)(z) ≥ cjd2(z,Nj).

Let χ′j : Cn → [0, 1] be a C∞-function so that χ′j ≡ 1 on Uj (1 ≤ j ≤ l)
and suppχ′j ⊂ U ′j. For z ∈ Cn, put

(3) ρ(z) =
l∑

j=1

χ′j(z)d
2(z,Nj).
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Then ρ ≥ 0, and ρ ≡ 0 on L1 ∩ S2n−3. In addition, (2) gives for each
z ∈ D, ∑l

j=1 χ
′
j(z) ReSR(f)(z) ≥ ∑l

j=1 cjχ
′
j(z)d

2(z,Nj) ≥ c0ρ(z), with c0 =
min{cj}lj=1. Thus

(4) ReSR(f)(z) ≥ c0

l
ρ(z).

Let {χj}lj=1 be a partition of unity on L1 \ U subordinate to the cover
{Uj}lj=1 so that for 1 ≤ j ≤ l χj ∈ C∞(Uj), suppχj ⊂ Uj, and

(5)
l∑

j=1

χj = 1 on L1.

Put Ω1 = ∪lj=1Uj and Ω2 = Ω1 ∪U. Let D′ be a compact neighborhood of
D containing Ω2. Choose a C∞-function s on Cn so that s ≥ 0, supp s ⊂ D′,

(6) L = {z ∈ D′ : s(z) = 0}.

Let Mj = M ′
j × {0} (1 ≤ j ≤ l) be the totally real manifold obtained

from Theorem 1.4 and which is contained in Nj. Let z(j) =
(
z′(j), z′′(j)

)
be

the holomorphic coordinate system on U ′j (1 ≤ j ≤ l) described in the proof
of Theorem 1.2.

Put

(7) sj = sχj.

We apply Proposition 1.5 to sj restricted to M ′
j in a neighborhood of V ′j ⊂

Ct+λ to get a function ŝj ∈ C∞(Ct+λ) so that ŝj = sj on M ′
j, supp ŝj ⊂ V ′′j ,

V ′′j ⊂⊂ V ′j , and Dα(∂ŝj) ≡ 0 on M ′
j for each multi-index α. Furthermore,

since ∂ŝj ≡ 0 on M ′
j, then as a consequence of the Cauchu-Riemann equa-

tions, we get the differential of Re ŝj is zero on JT (M ′
j).

Extend ŝj trivially to get a function s̃j on Cn defined by s̃j(z(j)) = ŝj(z).
Then S̃j = sj on Nj (recall that Nj = M ′

j × Cn−t−λ) and ∂s̃j vanishes to
infinite order along Nj∩U ′j. We modify s̃j away from Mj to get supp s̃ ⊂ U ′j if
U ′j is small enough. In addition, the differential of Re s̃j vanishes on JT (Nj),
this is true because ∂s̃j = ∂ŝ = 0.

We deduce from this, (6), and (7) by Taylor expanding Re s̃j that there
exists a constant c′j > 0 such that for each z ∈ Cn, Re s̃j(z) ≥ −c′jd2(z,N).

Let

s̃ =
l∑

j=1

s̃j.
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We may apply the manipulations used by Chaumat and Chollet in [4] to
our situation, and deduce that there exist constants Cαk > 0 and d > 0 such
that for each z ∈ Cn, α ∈ Nn, and k ∈ N,∣∣∣Dα∂s̃(z)

∣∣∣ ≤ Cαk[ρ(z)]k(8)

and

Re s̃(z) ≥ −dρ(z).(9)

Define the function G by
G = SR(f) + δs̃,

where δ > 0 is sufficiently small. Using (4) and (9), there exists a positive
constant c so that,

(10) ReG(z) ≥ cρ(z).

Let
L′ = {z ∈ D ∩ Ω2 : G(z) = 0},

and note by (6) that L′ ⊂ {z ∈ D ∩ Ω2 : ρ(z) = 0}.
Thus, by Proposition 1.6, we may conclude that L′ is a peak set forA∞(D).

Now let us verify properties (1) → (3) stated in Lemma 1.9.

(1) There are two cases to consider:

(a) If z ∈ Ω1 ∩ L′1, then by (5) we have s̃(z) =
∑l
j=1 χj(z)s(z) = s(z), and

since ReG = 0 on L′, we get s(z) = 0, so by (6) z ∈ L, and hence ∈ L1.

(b) If z ∈ (U \Ω1) ∩ L′1, then χ′j(z) = 0 for all j (1 ≤ j ≤ l) and this gives
s̃(z) = 0, and so ReG(z) = ReSR(f)(z) = 0. Thus z ∈ L1. Combining the
two cases we obtain L′ ⊂ L1.

(2) This follows from (a) and by observing that

(c) Ω1∩L ⊂ L′. (If z ∈ Ω1∩L, then s̃(z) = 0 and SR(f)(z) = 0, so G(z) = 0
and this gives z ∈ L′.)
(3) Finally, (3) follows from (c) and the following:

(d) If z ∈ L1 ∩ V k, then z /∈ Ω1 and so s̃(z) = 0. Since SR(f)(z) = 0 we
have G(z) = 0, and hence z ∈ L′.
(e) If z ∈ (U \Ω1)∩L, then s̃(z) = s(z) = 0. Because SR(f)(z) = 0, we get
G(z) = 0 and hence z ∈ L1. This completes the proof of Lemma 1.9.

Now we proceed with the proof that L2 is a peak set for A∞(D). Let
{Ui}∞i=1 be a family of neighborhoods of V k so that Ui+1 ⊂⊂ Ui and ∩∞i=1Ui =
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V k. By virtue of Lemma 1.9, we get for each i ≥ 1 a peak set L′i ∈ A∞(D) so
that properties (1) → (3) hold. Thus by Remark 1.7, L′ = ∩∞i=1Li is a peak
set for A∞(D), and by part (3) of Lemma 1.9 we have L ∪ (L1 ∩ V k) ⊂ L′.
Furthermore, for each i ≥ 1, L′1 = [L ∪ (L1 ∩ V k)] ∪ L′′i , with L′′i ⊂ (K ∩
Ui) \ (K ∩ V k). Taking intersections, we obtain L′ = L ∪ (L1 ∩ V k). Thus
L ∪ (L1 ∩ V k) is a peak set for A∞(D), and therefore L2 is a peak set for
A∞(D).

Let
L3 = [L2 ∩ (S0 ∪ · · · ∪ S2n−5)] ∪ L.

We proceed along the same lines of the proof that L2 is a peak set for A∞(D),
removing from L2 points of (K \L) on S2n−4 to obtain that L3 is a peak set
for A∞(D).

Continuing inductively and using the same process as above, we finally
obtain that

Lm = (Lm−1 ∩ S0) ∪ L
is a peak set for A∞(D), with m = 2n−2 and Lm−1 is a peak set for A∞(D).

Now let us show that L is a peak set for A∞(D). We use Proposition 1.6.
Choose a neighborhood W of L so that W does not contain the points of
(S0 ∩ Lm) \ L, these points are isolated in Lm.

Let h be a strong support function for Lm.
Put

G = h on W

and

ρ = 0.

By Proposition 1.6, L is a peak set for A∞(D).
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