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SPINOR GENERA UNDER Z,-EXTENSIONS

WAI-KIU CHAN

Let L be a quadratic lattice over a number field F'. We
lift the lattice L along a Z,-extension of F' and investigate
the growth of the number of spinor genera in the genus of L.
Let L, be the lattice obtained from L by extending scalars
to the n-th layer of the Z,-extension. We show that, under
various conditions on L and F, the number of spinor genera
in the genus of L, is 277" t9() where 7 is some rational num-
ber depending on L and the Z,-extension. The work involves
Iwasawa’s theory of Z,-extensions and explicit calculation of
spinor norm groups of local integral rotations.

1. Introduction.

The question of how the genus of a positive definite quadratic form over
the rationals behaves when is lifted to a totally real number field was first
raised by Ankeny in the sixties (see the introduction in [EH1)). The closely
related problem of how the spinor genus behaves upon field extension was
then investigated by Earnest and Hsia. In a series of papers [EH1-3], they
showed that, modulo some restrictions on the bottom field, the (proper)
spinor genera in the genus of the given lattice do not collapse when lifted to
an odd degree extension. In particular, the number of spinor genera in the
genus will not decrease in this situation. However, there was no quantitative
description of the growth of the spinor genera. When the degree of extension
is even, examples show that the spinor genera in a given genus may collapse.
Constructive methods for determining the amount of collapsing in the case
of quadratic extension of Q were given in [EH3]. In this paper, we will
consider the problem when the lattice is lifted along a Z,-extension. The
result presented in this paper will describe the growth of the number of
spinor genera asymptotically.

Our work is initiated by a paper of Estes and Hsia [EsH] in which they
developed the theory of spinor class fields. Let f be a quadratic form over a
number field F. Via class field theory, Estes and Hsia identify the group of
spinor genera in the genus of f with the Galois group of an abelian extension
Y /F. The field ¥ is called the spinor class field of f. The spinor class field
enjoys properties which are similar to those borne by the Hilbert class field.
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Powerful machineries had been developed to yield information on the Hilbert
class fields and ideal class numbers. An important example is Iwasawa’s work
on ideal class numbers of fields inside a Z,-extension. He shows that the p-
part of ideal class number of the n-th layer of a Z,-extension is p#?" T An+v
when n is sufficiently large. Here u, A, v are constants independent of n.
In this paper, we would like to attack the base change problem mentioned
in the last paragraph in Iwasawa’s setting. More precisely, let f, be the
form obtained from f by extending scalars to the n-th layer of the Z,-
extension. Let h,(f,) be the number of spinor genera in the genus of f,,. We
try to seek a formula for h,(f,) which serves as an analog of Iwasawa’s class
number formula. The formula implies the following interesting result. Under
some mild assumption (see the next paragraph) h,(L, ) is either bounded or
growing exponentially.

The rest of the paper is organized as follows. In Section 2 we will give
some necessary background on quadratic forms and Z,-extensions. Since the
number of spinor genera in a given genus is always a 2-power, we start our
investigation on Zs-extensions. In Section 3 we will handle the case where
the form has good reduction (see Definition 3.1) at the dyadic primes of F'.
In Section 4, we do not require the form to have good reduction. But we
restrict ourselves on cyclotomic Zs-extension of totally real number fields or
CM fields. The results of Section 4 rely heavily on the spinor norms of local
integral rotations at the dyadic primes. Because of this, we will assume that
2 is unramified in the bottom field F. In Section 5, we will consider the
problem when the Z,-extension is the cyclotomic one with p > 2. One of the
main ingredients is Washington’s theorem which asserts the boundedness of
the [-part of the ideal class groups in a cyclotomic Z,-extension of abelian
number field. In Section 6, we will carry out the calculations of the local
spinor norms which is needed in Section 4.

2. Background Material.

This paper involves two areas of number theory. Namely, the arithmetic the-
ory of quadratic forms and Iwasawa’s theory of Z,-extensions. In order to
keep the paper in a reasonable length, we will just provide background mate-
rial on both areas which is necessary for later discussions. For further detail
and any unexplained terminology, we refer the reader to O’Meara’s book
[OM] and Washington’s book [Wa]. We also refer the reader to Iwasawa’s
original papers [I1-4] for more information on Z,-extensions.

From now on, F' is always either a number field or the completion of a
number field at one of its prime spot. In the later case, we will simply say
that F' is a local field. The ring of integers in F' is denoted by Op. A
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local field is called nondyadic if its residue class field has odd characteristic.
Otherwise, it is called dyadic. A 2-adic local field is a dyadic local field in
which 2 is unramified. If F' is a dyadic local field, we fix a unit pr (or simply
p) such that A =1+ 4pp is a unit of quadratic defect 40p. If R is a ring,
then R* always denotes the group of invertible elements in R.

Instead of working with quadratic forms, we will follow O’Meara [OM]
to use the language of quadratic spaces and lattices. All spaces and lattices
are assumed to be endowed with a non-degenerate quadratic form Q. Let
L be a lattice on a quadratic space V over F. For any anisotropic vector
v in V, S, will be the symmetry with respect to v. We put P(L) to be
the set {v € V : S, € O(L)}. The spinor norm map on O(V) is denoted
by 6 and 6(O* (L)) will be abbreviated as 6. Every hyperbolic plane has
a basis {x,y} such that both x and y are isotropic vectors and the inner
product between them is 1. Such a basis is called a hyperbolic pair. As in

[OM, 93B], A(a, ) denotes a binary lattice which has

al .
153 as an inner
product matrix.

Suppose that F' is a number field and g is a prime spot of F'. Let Jr be the
group of ideles of F' and ©, the subgroup {(i,) € Jp : i, € 0., for all p}. We
will assume throughout this paper that the rank of L is at least three unless
stated otherwise. Under this assumption, the quotient group Jr/F*O can
be identified with the set of all (proper) spinor genera in gen(L) (see [EsH]
and [Kn]). The spinor class field of L is the abelian extension 3 of F' which
corresponds to the open subgroup F*O; via class field theory. It follows
directly that ¥/F is a multiquadratic extension and [¥ : F] is equal to
hs(L), the number of spinor genera in gen(L).

Let F' be a number field. A Z,-extension of F' is a Galois extension F, /F
such that Gal(F./F) is isomorphic to the additive group Z,. Let F,, be the
fixed field of the closed subgroup p"Z,. Then F,, C F,,;; and Gal(F,/F,)
is cyclic of order p". It is also known that the ramified primes in F, /F are
lying above p. Let ¢ = p or 4 if p = 2. Let B, be the unique real subfield
of the cyclotomic field Q((,,) of degree p™ over Q. Then B, = UB, is a
Z,-extension of Q. The cyclotomic Z,-extension of F' is the compositum
FB.. In the cyclotomic Z,-extension, all primes lying above p are ramified
and the corresponding inertia groups have finite index in Gal(FB./F). All
other finite primes are finitely decomposed.

As is customary, we write Gal(F,,/F') multiplicatively and denote it by
I'. The subgroup Gal(F,/F,) is just I'*" and we denote it by I',. By a
I'-module we mean a p-primary abelian group on which I' acts continuously.
Let T be an indeterminate and A the power series ring Z,[[T]]. Let us fix a
topological generator vy of I'. For every compact I'-module M, we can endow
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it with a unique compact A-module structure such that (1 + 7T)x = ~ox for
every x € M. Conversely, every compact A-module determines a compact
I'-module uniquely.

Given any A-modules M and N, we say that M is pseudo-isomorphic to
N, written as M ~ N, if there is a A-module homomorphism M — N
with finite kernel and cokernel. A fundamental theorem of structure of A-
modules says that if M is finitely generated, then M is pseudo-isomorphic to
A @Y A/(p™ )@Y A/(f]") where r, t, n;, m; are non-negative integers and f;
is a so-called distinguished irreducible polynomial [Wa, Thm. 13.12]. If r =
0, then M is called A-torsion. Let p(M) = Y n,; and A(M) = Y m;deg f;.
They are called the p-invariant and the A-invariant of M. The ideals (p™)
and (f;") are called the divisors of M. For eachn > 0, let w,, = (1+7)"" —1
and vy, ;m = Wy /Wy,

Lemma 2.1 ([I1]). Suppose that M is a finitely generated A-torsion mod-
ule. If v, is relatively prime to the divisors of M for any n > t, then
[M : v, M] = pr@®DP"AMIFO0W) — Game conclusion holds if we replace v,
by w, provided that w, is relatively prime to the divisors of M.

Proposition 2.1.  Let F /F be a Zy-extension and K., a Galois exten-
sion of F which contains F,,. Suppose Gal(K./F,) is an elementary 2
group finitely generated as a A-module. Let K, be the mazximal elementary 2
extension of F,, inside K,. Then there exists a non-negative integer i such
that

(K, : F,] = 22" +00),

Proof. Let G,, be the Galois group of K, over F,. Then,

Gn
(G, GG,
where [G,,,G,] is the closure of the commutator subgroup of G,. Since
I, acts on X := Gal(K./F) by conjugation and w,X is the smallest
submodule of X such that I',, acts trivially on the quotient, [G,,,G,] is just
w, X. Therefore
G,
wpX - G2

Since G,/X = T, the index [G, : X - G2] is 2. As [K, : F,] = [G, :
XG?] - [XG? :w, X - G?], we have [K,, : F,] = 2[XG? : w, X - G?].

The natural map X — XG? /w, X - G? is clearly surjective. The kernel
is X N (w, X - G2). Take an element w,x - g> in X N (w,X - G2). Then ¢* is
in X. However, as G,,/X =T, is torsion free, g is already in X'. Therefore

Gal(K, /F,) =
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W - g* = w,r € w,X and hence X N (w, X - G?) = w,X. It is clear that
the divisors of X’ are powers of the ideal (2) only. Therefore w, is relatively
prime to the divisors of X. Let u be the p-invariant of Gal(K . /F. ). Then
by Lemma 2.1, [K,, : F,,] = 2[X : w,X] = 2#2"+00), O

Suppose now that F, is the cyclotomic Z,-extension of F'. Let HZ be
the maximal abelian 2-extension of F,, which is unramified outside co and
H_, the maximal unramified abelian 2-extension of F... The field H., is a
Galois extension of F'. Therefore, I' = Gal(F/F) acts on Gal(H./F.)
by conjugation. In this case, Gal(H./F.) becomes a finitely generated
A-module. Let u(F) be the p-invariant of this module. Similarly, we can
define p(F™*) by using HX . Obviously, if u(F*) = 0, then u(F) = 0. Iwasawa
conjectured them to be always zero. The full veracity of this conjecture is
not yet established. However, it is settled by Ferrero and Washington [FW]
when F' is an abelian extension of Q (see [Si] for another proof by Sinnott).
There are nonabelian extensions F//Q such that p(F) = 0. For example,
Kida [Ki] proves that if F' is totally real and [F' : Q] is a 2-power, then
w(F) = p(F*) = 0.

Let X be a finite set of primes of F' containing all the infinite primes. Let
ZX (resp. Z;X*) be the subgroup of the X-ideal class group (resp. the narrow
X-ideal class group) of F,, generated by the order 2 elements.

Corollary 2.1.  If u(F*) =0, then |ZX| and |Z.X*| are bounded as n tends
to infinity.

Proof. By class field theory, |ZX| = [H : F,] where H; is the maximal
unramified elementary 2-extension of F), in which all finite primes in X split
completely. Then HX C H, = maximal unramified elementary 2-extension
of F,,. By Proposition 2.1, [H, : F},] is bounded and hence [H : F},] is also

bounded. Similarly for |Z:X*|.0J

Proposition 2.2. Let M,, be the mazimal elementary 2-extension of
F,, which is unramified outside 2 U co. If p(F*) = 0, then [M, : F,] =
2(ri472)2"+0M) yhere v (resp. 1) is the number of real (resp. complex)
primes of F.

Proof. Let T be the set of all dyadic and infinite primes of F. Let M be
the subgroup of F*/F*? which corresponds to M, via Kummer’s theory.
If a € F represents an element in M, then (a) = B?A where B is an
ideal prime to T and A is supported on 7. Thus we have a surjective
homomorphism

M —TIF

a+— B.
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The kernel of the above map is E,/E? where E,, is the T-units of F,,. Since
all the dyadic primes of F' is totally ramified in F,,, the number of dyadic
primes in F;, is eventually constant. Together with Dirichlet’s theorem, we
have |E, /E?| = 2(n+r2)2"+0() " The proposition now follows by virtue of
Corollary 2.1. [l

Proposition 2.3. Suppose F' is totally real. Let N, be the maximal
elementary 2-extension of F,, which is unramified outside 2. If u(F*) = 0,
then [N, : F,] is bounded as n tends to infinity.

Proof. Let N be the subgroup of F*/F*? corresponding to N,,. Like Propo-
sition 2.2, we have an exact sequence

1—E'E? >N —I" —1

where E;f contains those T-units which are positive at the real primes. Let
P, be the principle ideals of the T-integers of F,, and P, be the subgroup
containing principle ideals generated by elements which are positive at all
real primes. Then

F}/F B, = P,/P}

where F*" is the set of elements in F* which are positive at all real primes.
On the other hand, by weak approximation, we have

| ET =2

where d = [F : Q. This shows that |P,/P;|- [E, : E}] = 24",

Now, |P,/P;| is a subgroup of Z'*. Since u(F*) = 0, |Z1*| is bounded
as n — oo and hence |P,/P;| is also bounded. Therefore, [E, : Ef] =
242"+0() * From the proof of Proposition 2.2, we see that [E, : E?]
242"+0() * Consequently, [E} : E?] = O(1) and we are done.

11

3. Lattice with Good Reduction.

Let F.,/F be an arbitrary Zj-extension. For each n, we let O,, be the ring
of integers of F,,. Let L be a lattice on a quadratic space V over F. The
“lifted” lattice L ® O,, is denoted by L,. If R is a prime of F;,, we use 0,
instead of 0, . for the sake of brevity.

Definition 3.1.  Let p be a dyadic prime of F.

(I) A lattice L has Type 1 reduction at @ if a Jordan splitting of L, has a
component of rank > 3 or a binary component which is isometric to 7" A(0, 0)
of m"A(2,2p) where 7 is a prime element in F,.
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(IT) A lattice L has Type 11 reduction at ¢ if L, = (a1) L --- L (a,,) and
ordg,(a;11)—ordy(a;) > 4e for all i where e is the absolute ramification index
of p.

The lattice L has good reduction at @ if it has either Type 1 or Type 11
reduction at .

It is clear that if L has Type I reduction at p, then L, also has Type I
reduction at all R|p. By [OM, 93:20] and [H, Lemma 1], we know that ,,»
contains all units of O,r. We recall that P(L) is the set of vectors in V
which give rise to symmetries in O(L).

Lemma 3.1. If L has Type 11 reduction at p, then for any prime divisor
R of p in F,, the index [0,p : F5] is bounded as n tends to infinity.

Proof. Suppose L, = (a;) L --- L (a,,). For simplicity, let L,; = (a;) L
(@j41). If ord,(ajq1) — ordg,(a;) > 4e, then by [EsH, Prop. 1] 6, is the
subgroup generated by a;a; F . Therefore, [0, . : Fa] < 2m0m=D/2 which
is independent of n.

Now suppose min{ord,(a;;1) —ord,(a;)} = 4e. Foreachi=1,... ,m, let
a; = m'e; where €; € O;},- By the corollary to Lemma 1 in [EsH], we know
that O(L,r) is generated by symmetries and Eichler transformations. Also,
L,» is not of E type (see [EH2]). Therefore, 0,2 contains precisely all the
even products of Q(v) where v € P(L,;) for all 1 <i < m — 1. We suffice to
show that Q(P(L,;)) contains at most four cosets of F,55 in F% for each i.

If 7,41 —r; > 4e, then by [Xu, Prop. 2.1], it is easy to see that Q(P (L))
contains at most two cosets. If ;.1 —r; = 4e, then [Xu, Prop. 2.2 (iii)]
implies that Q(P(L,;)) contains at most four cosets. The lemma is now
proved. [l

Theorem 3.1. Suppose that the lattice L has good reduction at all dyadic
primes of F which do not split completely in F,,. Then there exists a non-
negative constant u such that hy(L,) = 2#2"T0),

Proof. Let v(L) be the volume of the lattice L. We define five finite subsets
of primes of F' as follows:

D" = set of all dyadic primes which are ramified in F,
D? = set of all dyadic primes which split completely in F,
D? = set of all dyadic primes which are finitely decomposed in F,
S = set of all nondyadic primes which divide v(L) and split
completely in F,
T=SUD"UD*UD*Uoo.
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For any set of primes X of F, X,, denotes the set containing primes of F,
which lie above some elements in X. We first make some modification on
the local components of O, .

At o ¢ T : This p must be nondyadic. If p does not divide v(L), then
O = O nF3 for any Rlp. If p|v(L), then g is finitely decomposed in
F,.. Therefore, for large enough n, the number of primes in F,, dividing g
X

is constant. Therefore, changing 6, to OXx F5 at these R will only cause
a bounded effect on hy(L,). Consequently, we may assume that

Oup = OXpFX2  YRET,.

At o € D" U D® If L has Type I reduction at g, then [F)% : 0,2] < 2.
If L has Type II reduction at . then [0, : F,3] is bounded as n tends
to infinity. Any g in this case is either ramified or finitely decomposed.
Therefore | D7 U D¢| is eventually constant and so we may assume for any

R e DrubD?,

*oF3 if L has Type I reduction at o
en'R -
F3 if L has Type II reduction at g.

Now, let 3J,, be the spinor class field of L,, and N,, the norm from F;, to F},_;.
After we modified O, , we have Nn+1(®Ln,+1) C O, and hence X, C ¥, ;.
Let X, be the union of the X,,’s. It is not hard to see that X, is a Galois
extension of F. Therefore, Gal(¥,/F.) is a A-module. As ¥./F, is
unramified outside 7', Gal(X./F) is a finitely generated A-module (see
[Wa] or [14]).

Let us first assume that L has Type II reduction at all p € D". We claim
that X, is the maximal elementary 2-extension of F;, inside X.,. Let M,
be the maximal elementary 2-extension of Fj, inside .. Then 3, C M,.
If we let V, be the open subgroup in Jg, corresponding to M, via class
field theory, then obviously FX0., 2V, and F5 C V, for all R. By the
modification we made on O, , we know that ¥.,/F is unramified outside 7.
Therefore M, /F, is unramified outside 7" and so

OXF2CV, VYRET,.

Suppose p € D?. If L has Type II reduction at g, then 0, = F3 C V,,.
If L has Type I reduction at @, then 0, = O}xF5. This implies that
¥,/ F, is unramified at R. Since F,,/F is unramified at p, therefore ¥, /F is
unramified at p and hence so is ¥, /F. Consequently, M, /F, is unramified
at R and we have

Opp = O FX2CV, VRe DL
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Take a sufficiently large integer t such that M, C 3;. Then M,F; C 3.
This implies that Ng, g, (©r,) €V, and

an QNFt/Fn(@Lt) QVn V'P’GD;US,L
Certainly, since L has Type II reduction at p € D", we also have
bun CV, VRED

It is easy to see that ,p = 0, if R|p € co. Combining everything together,
we have F*©, C V), and hence M, = %,,.

For any o € Gal(X,/F,) and for any n, o|s, € Gal(X,/F., NX,) C
Gal(X,,/F,). Therefore, o has order 2 and the A-module Gal(X./F.)
is pseudo-isomorphic to a direct sum of copies of A/(2). Let p be the
p-invariant of Gal(X4/F,). By Proposition 2.1, we can conclude that
he(L,) = 2, : F,] = 2#2"+00),

Now, let us assume that L has Type I reduction at P = {p1,...,0,} C
D", In this case, we can use a similar argument as before to show that ¥, is
the maximal elementary 2-extension of Fj, inside Y., which is unramified at
all primes in P,. The proof now resembles that of Theorem 13.13 in [Wal.
We first assume that all primes in D" are totally ramified in F,. For each
i=1,---,7, let @; be a prime of ¥, lying over p;. Let I, be the inertia
group of ¢;. Furthermore, we let G = Gal(X,/F) and X = Gal(X./F).
Then, by our assumption, it is true that I; "X = 0 and G = X = X1, for
any 1 =1,---,7.

Let 7o be the fixed topological generator of I' =2 G/X and let o; € I; map
to og under the natural surjection. Since I; C X1, we can find a; € X such
that o; = a;0;. Let ) be the closed subgroup of X’ generated by {as,... ,a,}
and woX. Then for any n > 0, one can show that Gal(X,,/F,,) = X/Y,, where
Vi = Z/n,Oy .

The final step is to remove the assumption that F../F is totally ramified
at all ramified primes. Let ¢t be a sufficiently large integer such that all
ramified primes in F., /F; are totally ramified. Then Gal(X,,/F,,) = X /v, ),
for all n > t. Since X and ), are pseudo-isomorphic, they have the same
p-invariant. Let it be p. Then for n > ¢, hy(L,) = |Gal(Z,/F,)| = [X :
yt”yt : Vn,tyt] = 2n2"+0(), |

4. Cyclotomic Z,-Extensions.

In this section, we assume that F,/F is the cyclotomic Zy-extension and 2
is unramified in F. For any n > 1, F, D B, O B; = Q(v/2). Therefore 2 is
a square in F,,. We keep all the notations used in the last section.
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We now make some adjustments on the local components of ©, . Any
nondyadic prime in F' is finitely decomposed in F,,. Therefore the number
of prime divisors of v(L,,) is eventually constant. As a result, we may assume
that

b = O F2

for any nondyadic prime divisor R of v(L,). For each n, the extension
¥,/ F, is now unramified outside 2Uoco. Let M,, be the maximal elementary
2-extension of F,, which is unramified outside 2 U co. Then ¥, C M,,.

Definition 4.1. A lattice L is called totally indefinite if it is indefinite at
all infinite primes of F.

Theorem 4.1. Suppose that F is totally real. If uw(F*) = 0 and L is
totally indefinite, then hy(L,,) is bounded.

Proof. If L is totally indefinite, then L, is also totally indefinite for all n.
Therefore, 0, = F,% for all infinite primes R. (Note that all the infinite
primes of F), are real since infinite primes are not ramified in F,,.) By class
field theory and our adjustments on 6,,», the extension ¥,,/F,, is unramified
outside 2. In particular, ¥, € N, = the maximal real subfield of M,.
By Proposition 2.3, we know that [N, : F,] is bounded and hence so is
hs(Ly). Ul

We now present a result on spinor norms of local integral rotations. The
proof will be given in Section 6.

Theorem 4.2. Suppose that L is a lattice on a quadratic space over a

2-adic local field F. Let K/F be a totally ramified cyclic extension of degree

2", n >4 and L the lifted lattice L ® Ox. Put e = 2" to be the ramification

index of K/F. Then:

(I) If a Jordan splitting of L has a component of rank > 3, then 0; =
OxK*2.

(IT)  Suppose that a Jordan splitting of L has a component of rank < 2 and
at least one of them is binary.

(I1.1)  If all the components of the Jordan splitting are isometric to
2" A(0,0) or 2"A(2,2pr), then 0; = O K*2.
(I1.2)  Assume that 2 is a square in K. If all the components are of the
form 27€((1) L (8)) where 6,e € OF, then 0; = (1 +R*)K*2.
(IIT)  Assume that 2 is a square in K and all the components of a Jordan
splitting of L are of rank 1. In this case, we may assume that L =
(1) L (27€p) L -+ L (2"m€,,) where 0 =11 < 19 < -+ < 1y and all
€, € Op. Then
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(1+RT)K*2 ifmin{ri, —r} =1 (1IL1)

9. — (1+R)K*? if min{r;y, —r;} =2 (I1I1.2)
L (1+ 7*2376)1(X2 if min{r;,; —r;} =3 (IIL.3)
subgroup inside (1 +R** NK*?  ifmin{r;,, —r;} >4 (IIL4)

Let p be a dyadic prime of F'. We define a rational number 7,, as follows:

if L, is in Case (I) or Case (II.1)

if L, is in Case (I1.2)
B if L, is in Case (IIL.1
e = (I11.2
(I3
(

I11.4

if L, is in Case

if L, is in Case

= oW o= wljw a= O

)
)
)
if L, is in Case )

Let f,, be the absolute residue degree of p. Put

pl2

If L, is in Case (IIL.4), then [0, : F,5] < 27¢*! which is independent of n.
Therefore, we can assume that for all R|gp,

Op = F)5  if L, is in Case (II1.4).

Lemma 4.1. Let F be a finite extension of Qo and p the prime ideal of Op.
Let e and f be the ramification index and the residue degree of @ respectively.
Then for any even integer i satisfying 0 < i < 2e — 2, we have

[(1 + pi)sz . (1 + pz'+2) sz] —9of

Proof. For any i between 0 and 2e—2, (1+p%)F*? = (1+p"™!)F*2. Therefore,
if0<i<2—4,

(1+pi)F><2 ~ (1+ ga”l)FXQ ~ 1 +@i+1
(1 + pi+2)F><2 (1 + pi+2)Fx2 1+ piJr2'

The proof is now finished because (1 + p®)/(1 + p**1) has order 2/ for all
positive integer a. ]

Theorem 4.3. Suppose that F' is totally real and L is positive definite. If
w(F*) =0, then hy(L,) = 2m*"+0W),



248 WAI-KIU CHAN

Proof. Let H, (resp. H}) be the maximal unramified (resp. unramified
outside 00) elementary 2-extension of F),. By the hypothesis, we know that
for all n,

F,CH CX%,CM,.

Using Lemma 4.1 and the fact that the number of dyadic primes in F;, is
constant, we can see that

[Zn . H:ﬂ S 27}2n
[M, :%,] < 9> (1=np) fo2"+0(1)

Let d be the degree [F' : Q. Since d = 3°, f,,, therefore, [M, : ¥,] <
2(d=m2"+0()  The index [H* : F,] is bounded as u(F*) = 0. As a result,

(M, : F,] =M, :%,][X,: H|[H, : F,]
< 2(d=m)2"+0(1) , 9n2™  9O0(1)

— 9d2"+0(1)

However, Proposition 2.2 says that [M, : F,] = 2¢2"+0() Therefore, we
must have h,(L,) = [3, : F,] = 272"+01), 0

Since the theory of Z-lattice is of particular interest, we specialize the
previous results to the case F' = Q in the following theorem.

Theorem 4.4. If F = Q, then
(1) If L is indefinite, then hy(L,,) is bounded.
(2) If L is definite, then hs(L,) is bounded if Ly is in Case (I) or (I1.1)
and
92" *+0() if Ly is in Case (11.2)
232" +0() i [, s in Case (II1.1)
hy(L,) = { 22" '+0) if Ly is in Case (II1.2)
282" P00 4f L, is in Case (I11.3)
22"+0() if Ly is in Case (111.4).

We next turn our attention to the case when F is a CM field. For each
n, let the maximal real subfield of F),, be E,. Put E,, = UFE,. It is easy to
see that

Lemma 4.2. E,/FE is a cyclotomic Zy-extension.
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Let 0,, be the discriminant of the field extension F,,/F,. By calculating
the ramification indices, we can see that the prime divisors of §, are lying
over the prime divisors of the discriminant of F'/E. Since no finite primes
in F split completely in F,,. So we have proved:

Lemma 4.3.
(1) The prime divisors of §,, are all nondyadic.

(2)  The number of distinct prime divisors of 0, is eventually constant.
Let ¢ be a dyadic prime of F. Define
To = min{n,, : p dyadic prime in F" and p|p}

where 7, is defined as before. Let f; be the absolute residue degree of ©.
Let
T= Z Tofo-
o2
Let J, be the idele group of E,. Via class field theory, we define an elemen-
tary 2-extension €2,/ E, which corresponds to

_ X - X2 - X x2 - A2 X2
W,=E ] EX ] 05%E2 11 (1 + R ) EX2 C .
oo RYy2 R|p
Here []" is the restricted product in J,,.

Lemma 4.4. For any n, X, contains §2,,.

Proof. It suffices to show that for each dyadic prime R of E,, we have

o gntl
H NFn%/EMa (ap) € <1 + R "2 )

R|R
where ap € (1 + P"‘“’QHI). This is true because F,,/FE, is unramified at all

dyadic primes and hence Np, /g (1 +R*) = (1 + R") for any a > 0. The
assertion is now clear because 7, = min{n,, : p[H}. u

Let Mg, (resp. Mp,) be the maximal elementary 2-extension of E,, (resp.
F,,) which is unramified outside 2 U co. Obviously, Q,, C Mg NX,.

Lemma 4.5. The degree [Mp, NY,, : Q,] is bounded as n tends to infinity.
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Proof. Let V,, be the subgroup of the idele group of F,, which corresponds to
the extension 3,/ F,. It suffices to show that the index W, : EXNg, /g, (V)]
is bounded. It is clear that £ Np, /g, (V,) contains the subgroup

*

B Il B I org e I (1™ ) .

Recoo RY26, R|6n Rlp
Therefore, W, : EXNg,/g,(Va)| is bounded above by [z, [O:ﬁE:fQ :
E:;] = [la5, 2. It is certainly bounded when n tends to infinity in view of
Lemma 4.3. u

Let K, (resp. H,) be the maximal elementary 2-extension of E,, (resp.
F,,) which is unramified outside oo.

Lemma 4.6. For anyn, Q,NH, =K,.

Proof. 1t is clear that K,, C Q,, N H,. For equality, we suffice to demonstrate
that Q,, N H,/E, is unramified outside co. First of all, as a subextension of
H,/E,, Q,NH,/E, is ramified only at the prime dividing §,, and co. On
the other hand, since Q,, C Mg, , Q, N H,/E, is unramified outside 2 U oco.
By Lemma 4.3, all prime divisors of §,, is nondyadic. The assertion is now
proved. |

Theorem 4.5. Let F be a CM field. If w(F) = 0, then hs(L,) =
9r2"+0(1)

Proof. First of all, we note that [My :Q,] = 2(6-72"+00) and [Q, : E,] =
272"+0()  They can be proved similarly as in Theorem 4.3. Now,
[MFn : Zn] 2 [EnMEn : Zn}
= [MET, : ME" N Zn}
_ [MEn . Qn]
[MEn N Zn : Qn]
_ o(§-m)2"+0(1)

Since u(F) =0, u(E*) = 0 also. Therefore,

X,:H,] >[Q.H,: H,]
=1[Q,:Q,NH,
=[Q, : K,,]
Q,: E,]

(K, : E,]
_ 972"+0(1)
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Also, [H,, : F,] = 2°M. So, combining everything together, we have
[MF . Fn] Z 2(%—7‘)2"4—0(1) X 272”+O(1) . 20(1) — 2%2”-"—0(1)'

However, Proposition 2.2 shows that the above must be an equality. Conse-
quently, hy(L,) = [3, : F,] = 272"+00), u

5. Cyclotomic Z,-Extensions, p > 2.

We keep all the notations used in the last section. Let F../F be the cyclo-
tomic Z,-extension. Let X be a finite set of primes of F' containing all the
infinite primes. When p = 2, the assumption p(F*) = 0 implies that |Z;¥]
and |Z:X*| are bounded as n tends to infinity (see Corollary 2.1). If p > 2,
the 2-primary modules of the group Gal(F,/F) do not behave as well as in
the p = 2 case. In particular, we cannot apply Iwasawa’s theory to estimate
the 2-part of any class groups of F,. However, we do have the following
result due to Washington [Wal].

Theorem 5.1 ([Wal]). Suppose that F is an abelian extension of Q and
F./F is the cyclotomic Z,-extension. Then for any prime | # p, the l-part
of the ideal class group of F,, is bounded as n tends to infinity.

Corollary 5.1. Under the hypothesis of Theorem 5.1, |Z.X| and |Z;*| are
bounded as n tends to infinity.

In the proofs of Proposition 2.2 and 2.3, we actually only require two con-
ditions satisfied. Firstly, |[ZX| and |ZX*| are bounded as n tends to infinity.
Secondly, the number of dyadic primes in F;, is eventually constant. When
F is abelian over Q, the first condition is fulfilled by Corollary 5.1. The
second one is ensured by the fact that no finite prime split completely in a
cyclotomic Z,-extension. Therefore, we have:

Corollary 5.2. Suppose that F is abelian over Q. Let M, (resp. N,) be
the maximal elementary 2-extension of F,, which is unramified outside 2U oo
(resp. 2). Then

(1) [M,, : F,] = 2(r+r2)p"+00),

(2) [N, : F,]) = O(1) if F is real.

From now on, F' is assumed to be an abelian number field in which 2 is
unramified. The extension F,,/F is the cyclotomic Z,-extension where p is
an odd prime. Note that 2 is unramified in all F,.

Lemma 5.1. If L does not have Type 11 reduction at a dyadic prime p,
then [F)g : O,r] < 2 for any prime R of F,, dividing p.
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Proof. Note that L,, also does not have Type II reduction at R. Therefore we
can just prove the lemma for L. If a Jordan splitting of L,, has a component
of rank > 2, then it is clear from [H, Prop. A] and [EH, Thm. 3.14]. So,
we may assume that L = (1) L (2™e) L --- L (2"¢,,) where 0 =1 <1y <
oo <1y and € € Of for all 4. If r;y —r; < 3, then it is a consequence
of [EH, 1.9]. The lemma is now proved since Type II reduction means that
riz1 — 1 > 4 for all 1. O

Let R be a nondyadic prime of F,. If R does not divide v(L), then
O, = O nF 5. Suppose that R|v(L). Since any finite prime of F is finitely
decomposed in F,, or totally ramified, we may assume that 0,p = O % F, 5.

Let o be a dyadic prime of F' and R a prime of F,, lying over p. By
Lemma 3.1 and 5.1, we may assume that

9 {anﬁ if L, has Type II reduction
nR —

O pF)5  otherwise.

Theorem 5.2. Suppose that F, [ F is the cyclotomic Z,-extension of a real
abelian number field F. If L is totally indefinite, then hy(L,) is eventually
constant.

Proof. The proof is the same as the one given for Theorem 4.1. We just need
to replace Proposition 2.3 by Corollary 5.2. Moreover, the sequence hy(L,,)
is nondecreasing by [EH2]. |

Theorem 5.3.  Suppose that F, /F is the cyclotomic Z,-extension of a real
abelian number field F'. If L is a definite lattice, then there is a constant o
such that 0 < o < [F : Q] and h,(L,) = 2°P"+0M),

Proof. Let X, be the spinor class field of L,,. By our modification on the
local spinor norms, we can assume that 3, C M,,. Let H} be the maximal
elementary 2-extension of F,, which is unramified outside co. By Washing-
ton’s theorem, [H : F,] is bounded as n tends to infinity. Let D be the set
of all dyadic primes of F' at which L has Type II reduction. Then

¥, :F,]=[%,: H][H::F,] < ( 11 26%]‘%) 200
rReD,

where er and fr are the absolute ramification index and absolute residue
degree of R respectively. Using Lemma 4.1, we also get

(M, -3, < [ 27/ - 2000,

ReD,
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As a result, [M,, : F,] < 2FQP"+0M)  However, Corollary 5.2 says that it
must be an equality. Therefore, [, : F,,] = (ITpep, 2¢°7*) - 200,

Now ep = 1 since 2 is unramified in every F,,. Let f, be the absolute
residue degree of a dyadic prime of F,. It is independent of the choice of
the dyadic prime. Since any dyadic prime of F' is finitely decomposed in
F.., there exists a ng such that f,.1 = pf, and |D,,| = |D,,| for all n > nq.
In other words, f, = p" ™ f,, for all n > ng. Therefore, for n > ny,
Yorep, frer = D" frg|Dyol|. Let 0 = p=0 f,, | Dy, |. Then 0 <o < [F: Q]
and hy(L,) = 207" T0W), Ul

Remark. (1) If D is empty, then h,(L,) is eventually constant as the
sequence hg(L,,) becomes bounded and nondecreasing.
(2) If D contains all the dyadic primes, then o = [F : Q].

Again, let us summarize the result when F' = Q.

Theorem 5.4. Let L be a lattice on a quadratic space over Q of dimension
at least 3. Then hy(L,) is eventually constant unless L is definite and has
Type 11 reduction at 2. In the exceptional case, hy(L,) = 2" +O0W),

We next turn our attention to the case where F' is a complex abelian
extension of Q. Let E,, be the maximal real subfield of F,,. Then E,, = UE,
is the cyclotomic Z,-extension of E = E,. Define a finite set of primes R
of E as follows. If ¢ € R, then ¢ is dyadic and there exists a dyadic prime
o € D lying above p. Now, for any dyadic prime R of E,,, define a subgroup
Or of E)5 by

EXA ifR¢R,
b = EX%  otherwise.
Let €2, be the elementary 2-extension of F,, corresponding to the following
subgroup of idele group of E,;:

B 12 11 0 T 0
P RE2 RE2
Using the argument in the proof of Theorem 5.3, one can show that [(,, :
E,] = 277"+O00) for some constant 7 between 0 and [E : Q.

Theorem 5.5. Suppose that F.. /F is the cyclotomic Z,-extension of a
complex abelian number field F. For any lattice L, there is a constant T
such that 0 < 17 < %[F : Q] and h,(L,) = 277" 00,

We skip the proof of the above theorem since it is similar to the proof
of Theorem 4.5. We merely remark that the constant 7 is precisely the one
described before the theorem.
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6. Local Spinor Norms.

The aim of this section is to give the proof of Theorem 4.2. Throughout this
section, we assume that F' is a 2-adic local field. Let L be a lattice on a
quadratic space V' over F. We lift the lattice L to a totally ramified cyclic
extension K/F of degree e = 2", n > 4. The lifted lattice L=L® Ok is on
the space V = V ® K. We always use 7 to represent a prime element in O-.
The unique prime ideal of K is denoted by R. The scale and the norm of L
are written as s(L) and n(L) respectively.

Definition 6.1. A lattice M on V is said to be defined over Op if there

is a basis {x1, -+ ,xm} of M such that the matriz (B(x;,x;)) has entries in
OrF.
Lemma 6.1.  Suppose a Jordan splitting of L has a unimodular compo-

nent of rank > 3. Then L = A(0,0) L N where N is defined over Op.

Proof. Let L = Ly 1. M with L; unimodular and s(M) C 20;. If the rank
of L; is at least 5, then A(0,0) splits L; and we are finished. Therefore, we
may assume that the rank of L; is 3 or 4.

Suppose that the rank of L, is 3. Let a be a norm generator of L. Then
a is a norm generator of L as well. We choose 2 to be the weight generator
of L. By the weight formula in [OM, 94], we see that 2 is also a weight
generator of L. Since ordy (a) 4 ordg(2) is even, L; = A(0,0) L N for some
lattice N on V. By comparing determinants, we see that NV is defined over
Op.

Suppose that the rank of L, is 4. If L; is improper, then L; = A(0,0) L
A(2,2pp) or A(0,0) L A(0,0). So, we may assume that L; is proper. In
this case, Ly has a rank 3 orthogonal summand .J and L; = .J L (a) where
o € OF. As in the last paragraph, J = A(0,0) L N’ for some N’ defined
over Op. Therefore, L; = A(0,0) L N’ L (o) and N := N’ 1 (a) is defined
over Op. |

Lemma 6.2. Let 0 € O(L) and x € L. If ox + x is anisotropic, then
Saxizo-(x) = +x.

Proof. Direct verification. O

Let S(L) be the subgroup of O(L) generated by the symmetries which
fix L. Put X(L) to be the subgroup of O(L) generated by S(L) and the
Eichler transformations in O(L). If s(L) € Op, we define another group
Xn(L) as follows (see [OP]). If rank L < 2, X,(L) is just S(L). If rank
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L > 2, X;(L) is defined to be the subgroup of X (L) generated by S(L)
and Eichler transformation EY € X(L) for which there exists a splitting
L = A(0,0) L M with y € A(0,0) and w € M.

Theorem 6.1. O(L) = X(L).

Proof. We proceed by induction on the rank of L. By scaling, we may assume
that L = L; L M with L; unimodular and s(M) C 20r. The theorem is
clear if L is of rank 1.

Suppose that the rank of L, is at least 3. By Lemma 6.1, L = A(0,0) L N
where N is defined over Op. So we may assume N = J for some lattice .J
on a quadratic space over F. By [OP, 2.5], O(L) = X,,(L)O(J) and we are
done by induction.

If L, is binary, then we can assume that L is A(0,0), A(2,2pr), A(1,20)
or A(1,4)\) with 6 € O and A = 0 or pr. The case A(0,0) can be done
by using [OP, 2.5] again. Suppose L, = A(2,2pr). If Q(M) N 205 # 0,
then there exists a z € M such that Q(z) = 2n € 20;. By [OM, 93:29], we
can see that A(2,2pr) L (2n) = A(0,0) L (2n(1 — 4pr)) and so [OP, 2.5]
applies. Therefore, we assume that Q(M) N 205 = (). Then n(M) C 40F
and hence n(M) C 40k. In other words, Q(M) N 205 is empty also. We
apply [OP, 2.1] to conclude that O(L) = S(L)O(M). The assertion follows
by induction.

Suppose that L; = A(1,26). Let {x,y} be a basis of L; adapted to
A(1,26). Take o € O(L) and write oz = Az + Cy + w with w € M. Then
1 = Q(ox) = A* + 2AC + 2C?%5 + Q(w). Therefore, 1 — A* € 20k and
hence A € OF. If 1 — A — C € Oy, then one can check that S,, , € O(E)

Otherwise, A/d + (1 - A+ C) € Ok and Sg,50—2 € O(L). Let ¢ be S;p_s
or Sg,60-25y. Then ¢ € X(i) and ¢oxr = x. Now Ogx splits L and
¢o € O(Ogxzt). Therefore induction applies and we can conclude that
o € X(L). Similar argument applies when L; = A(1,4)). One shows that
¢ox = x where ¢ = S,u_p OF Sg_ge_oS. With 2 = 7¢/22 +y.

If L, is of rank 1, then we may assume that L = Opz L M with s(M) C
20p and Q(z) = 1. Let ox = Az + w with w € M. Direct computations
show that A must be a unit. We suffice to produce ¢ € X(L) so that
pox =x. If 1 — A ¢ 2R, then ordx(Q(oz —x)) = e +ordg (1 — A) < 2e and

S0 Sypn € O(E) Otherwise, S,,1. € O(L). O

Since 2 is totally ramified in K, there is a § € O such that 2 = 7¢3. In
below, the quadratic defect function on K is denoted by Dg.

Lemma 6.3. Let § be a unit in OF. Then Dk (5) C R*™.
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Proof. The lemma is certainly true when e = 2. For n > 1, let E be the
unique subfield of K with [E : F] = 2"~!. Let Rg be the prime ideal of Op.
Apply induction and we have Dg(d) C P?;‘l. As R0k = R?, we have
Dk (0) C 2" =2 Therefore, Dk (0) C R — et u

Lemma 6.4. Dy (3) C R

Proof. Let M be the unique quadratic extension of F' inside K. Inside M,
2 = m3,t where t € O3, and ordy(my) = 1. Therefore, 7Dy (3) = 7Dy (t)
and thus Dk () = Dk(t). Apply Lemma 6.3 to the extension K/M and we
have Dy (t) C R u

We first compute 0; when Lis binary. The results are basically extracted
from [H| and [Xu].

Lemma 6.5. Suppose that L is binary unimodular.
(1) If L is improper, then 0; = O K*2.
(2) If L is proper, then 0; = (1 4+ R3)K*2,

Proof. (1) is just [H, Lemma 1]. For (2), we may assume that L represents 1.
If L 22 A(1,0) or A(1,4pk), then [H, Prop C] applies. Note that e = 0 mod
4. So, we are left with the case where L = A(1, —a), disc(L) = —(14«) and
Dk (14 a) = a0k # 0 or 40k. However, disc(L) € disc(L)K*? and hence
Di(l + ) C R* ' by Lemma 6.3. This shows that Dx (1 4+ a) = aOx =
R*~'. We now apply [H, Prop. D). |

Lemma 6.6. Suppose L = (1) L (2"¢) where r > 1 and ¢ € Of. Then
1) 0; = K*2UeK*? ifr>A.

(
(2) 0p=(1+R*)K*2Uc(1+R*)K*? ifr=4.

3) 0; =(1+REK2UB(L+RIK*? ifr=3.

4) 0; = (1L+RIK* ifr=2.

(5) 0; C OLK*? ifr = 1. Furthermore, if Dk (2) C R**™', then 0; =
(1+RT)K*2.

~— ~— ~— ~— ~—

Proof. (1) is just [Xu, Prop. 2.1]. The lattice L is isometric to (1) L
(m7¢B"€). The quadratic defect of $"¢ and —f3"¢ are contained in R
Since e — 1 > 2e — re/2 for r = 3 or 4, so (2) and (3) can be deduced from
[Xu, Prop. 2.2(iii)]. Note that ¢ € (1 +R%)K*2 by Lemma 6.3. If r = 2,
then (3e —re/2)/2 = e and Dk (—B%) = Dg(—¢) € R*~'. We can now
apply [Xu, Prop. 2.3(iii)]. Note that e —[e/2 —¢/2] =e.
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If r = 1, then (3e —re/2)/2 = 3e/4. On the other hand, Dy (—Be) C R
and 5e/4 > e —1 > e — e¢/2. Therefore, [Xu, Prop. 2.3(ii)] applies and so
0; C OXK*2. If Dg(2) € R*7, then D (B) € R* ™' and so Dx(—fFe) C
R*~'. In this case, apply [Xu, Prop. 2.3(iii)] and the result follows. u

Corollary 6.1. Suppose that L is a binary lattice. Then Q(v) € O K*?

for all v € P(L). Consequently, 6(O(L)) C O K*2.

Proof. Let uw € L so that Q(u) is a norm generator. Then Q(u) is a norm
generator of L as well. Let v € P(L). Then Q(v) € Q(u)#(O(L)). By Lemma
6.5 and 6.6, we see that 0; C OxK*2 However, Q(u) € F* C OFK*?.
Therefore, Q(v) € O K*2. The last assertion is a consequence of Theorem

6.1. U

Theorem 6.2. For any lattice L on V, (O(L)) C O K*2.

Proof. We prove the theorem by induction on the rank of L. We already
established the theorem when the rank of L is 2 and it is trivial when the
rank is 1. So, we assume in below that the rank of L is at least 3. Since
F* C O3 K*? we can scale L by any scalar in F. This allows us to assume
that L = L; L M where L; is the unimodular component of a Jordan
splitting of L.

Suppose that L is split by H = A(0,0). This is the case when (i) the
rank of L; is > 3 (see Lemma 6.1) , (ii) L; = A(0,0) or (iii) L, = A(2,2pr)
and Q(M) N 205 # 0. Let 0 € O(L). Clearly L = oL = oH L oN.
Let {z,y} be a hyperbolic pair for H. Then {ox,oy} is a hyperbolic pair
for oH. By [OP, 2.3], there exists an Eichler transformation E € O(L)
such that F(ox) = ex for some ¢ € Of. Therefore, E(cH) = Ogx + Okz
where {x, 2} is a hyperbolic pair and E(oy) = e '2. By [OP, 2.4], we can
find another Eichler transformation £’ € O(L) such that E'(z) = y and
E'(x) = z. Let 7 = F'E and ¢ = S,_,Se,—,7. Since ¢(ox) = = and
$(oy) = y. Hence ¢po € O(N). By induction, (¢)8(c) C O K*. Now,
Qx —y) = -2 € OxK*? and Q(ex —y) = —2¢ € OxK*?. Therefore
0(¢) C O K*? and so is 0(o).

Suppose that L, is binary. If L, is proper, then we can assume that L,
represents 1. Let x € L; be a vector such that Q(xz) = 1. In the proof of
Theorem 6.1, we show that for any o € O(L), we can find ¢ € X(L) so
that ¢o € O(Okzt). Direct calculation shows that 6(¢) € OFK*?. By
induction, §(c) € O K*2.

If L, = A(2,2pF), we only need to look at the case when Q(M)N205; = 0.
Let {z,y} be a basis of L, adapted to A(2,2pp). Let o € O(L) and write
ox = Az + Cy+ w with w € M. Note that Q(w) € 40k. Suppose C € OF.
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Then Q(ox — x) = 4 — 2B(ox,x) = 4 — 4A — 2C which is in 20). Then
Spre—z0 € O(Ogzt) and so 6(c) C O K*?. Suppose that C is in R. Since
2=Q(ox) =242+ 2AC +2prC? + Q(w), therefore, A must be a unit. As a
result, the coefficient of y in S,o0x = Az + (—Apyp' —C)y+w is in OF. This
implies that Sg,o.—.0 € O(Oxat) and Q(Syox —x) =4 —4A — 2(—App' —
C) € OFK*? and hence 0(c) € O K*2.

Finally, let us assume that L, has rank 1. By scaling, we may further
assume that there is a vector x in Ly with Q(z) = 1. Take o € O(L)
and write oz = Az + w with w € M. From the proof of Theorem 6.1,
we can see that if 1 — A € 2R, then 1 + A € 20, Sypin € O(L) and
Q(oz + ) = 2(1 + A) € 40%. Moreover, S,,.,0 € O(M). By induction,
we have 0(0) € Q(ox + )0 K*? = OFK*?. If 1 — A is not in 2R, then
Sys—z € O(L). Therefore, ordg (1 — A) < e. Note that if we can show that
ordg (1 — A) is even, then we are done. For, Q(cx — z) = 2(1 — A) and so
ordg(Q(ox — x)) is also even. By a similar argument as before, we have
0(c) € Qlox — x)OFK*? = OFK*2. If s(M) C 40, then ordy(Q(w)) >
2e. However, Q(ocx—x) = (A—1)*+Q(w). This means that ordg(1—A) = e
which is even. So, we may assume s(M) = 20p and ordg (1 — A) < e.

Let L = (1) L Ly L N where Ly is 2-modular and s(N) C 40r. Write
oxr = Az 4+ y + z where y € L, and z € N. Since Q(z) € 40k, we have
2¢ > e+ordg(l — A) = ordg(Q(ox — x)) = ordg((A — 1) + Q(y)). Let
v = (A—1)x+y. We can see that S, € O((1) L Ly) since 2B(v, ) = 2(A—1)
and 2B (v, Ly) = 2B(y, L) C 40k. If the rank of Ly is 1, then (1) L L,
is binary and hence Q(v) € OxK*? by Corollary 6.1. This shows that
ordg (1 —A) is even and we are done. Suppose that the rank of L, is at least
2. Let T = (1) L L, and T# be the dual of T. Then T#% = L¥* L (2). Now
T#?2 is an integral lattice defined over O and the unimodular component
has rank > 2. Therefore S, € O(T#?) has spinor norm 2Q(v) which is
inside O K*2. In other words, ordg(Q(cx — x)) is even and we are done
again. Ul

Corollary 6.2. If a Jordan splitting of L has a component of rank > 3 or
of the form 2" A(0,0) or 2"A(2,2pr), then 0; = O K*2.

From now on, we assume that 2 is a square in K. Therefore, 2 = 7¢f3
with Dk (3) = 0. It also implies that F* C (14 R* ") K*2,

Lemma 6.7. If 0; C (1 4+ RMK*2 with A < 2e — 1, then Q(P(L)) C
(14 RMK*2,

Proof. Letv € P(f)) Fix u € P(L) such that Q(u) € Op is a norm generator.
Then S,S, € OF(L) and therefore Q(u)Q(v) € (1 + R*)K*2. The lemma
follows since Q(u) € O \ 0 C (1 4+ R K*2, Ul
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Lemma 6.8. Let0< A <eanday,...,a,, 0 beintegers in Og such that
a; € 1+RPYHK*? and B € R If 1+ a1+ -+ -+ a, + B is a unil, then it is
inside (1 + RN K*2,

Proof. For each i, write o; = n? + 7*t; where n;,t; € Og. Then 1 + oy +
ot a,+6=(1+>1n)*mod 7. Since 1 +a; + -+, + 3 is a unit and
A >0, (14> n;)? is also a unit and the lemma is proved. u

Lemma 6.9. Suppose L = (1) L M with s(M) C 40p. If 0; C (1 +
RMK*? where 0 < A < e, then 0; C (1 + R K*2.

Proof. In view of Theorem 6.1, we suffice to show that Q(v) € (1 4+ R*) K *?
for any v € P(L). Write v = Az 4 z where Q(z) = 1,4 € O and z € M.
Then Q(v) = A? + Q(z). In below, | - | denote the R-adic norm on K.

Suppose that |[A?| < |Q(z)]. In this case, |Q(v)| = |Q(z)]. Therefore,
z € P(M) and hence Q(z) € (1 + R*)K*2 by Lemma 6.7 and hypothesis.
Now apply Lemma 6.8 to the unit 1+ A?/Q(z), we see that Q(v) = Q(2)(1+
A?/Q(z)) € (1+RMK*2.

If |A%| = |Q(z)|, then |A?| and |Q(z)| are both greater than or equal
to |Q(v)|. Therefore z € P(M) and so Q(z) € (1 + R*)K** by Lemma
6.7. Since v € P(L), we must have |Q(v)| > |2B(z,v)| = |24]|. Therefore,
|A%| > |24] and so |A] > |2|. However, |4] > |Q(z)] since s(M) C 40p.
Therefore |4] = |A?| = |Q(2)| = |Q(v)|]. Now Q(v) = A%*(1 + Q(2)/A?) and
this implies (1 + Q(z)/A?) € Of. Apply Lemma 6.7 again and we obtain
the assertion.

Finally, let us assume that |A?] > |Q(z)]. If |Q(2)| < |47*|, then 1 +
Q(z)/A% € 1 + R because |A%| > |4| (see the last paragraph) and hence
Q(v) € (1 +RMK*2. If we have |Q(2)| > |4n* > |8|, then |Q(z)| >
|2B(z,w)| for any w € M. In other words, z € P(M) and so Q(z) €
(1+RMK*2. Apply Lemma 6.8 again to the unit 1 + Q(z)/A?, we see that
Qv) = A(1+ Q()/4%) € (1 + RK. 0

Proposition 6.1. Suppose all the components of a Jordan splitting L are
of rank 1. Then 0; C (1 +R*)K*2. In particular, if L is split by 2"({1) L
(2€)) with € € OF, then 0; = (1+ RT)K*2,

Proof. We will proceed by induction on the rank of L. The proposition is
true when L is of rank 1 or rank 2 (see Lemma 6.6). In view of Lemma 6.9,
we may assume that L = (1) L (26) L N where s(N) C 40p and N # 0.
Let {z,y} be a pair of vectors adapted to the summand (1) L (26). For any
vE P(i), write v = Az + Cy + z with z € N and A, C € O.
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Suppose that [A% + 26C?| > |Q(z)|. In this case, Max(|A?|,[26C?|)
|Q(v)| = |A? 4+ 26C?| > |2A]. The last inequality holds because |Q(v)]
|2B(x,v)|.

If |26C?| < |A?|, then |2| < |A] and so |Q(v)| > |4]. Moreover, A2+26C* €
(1 + RT)K*2 because Az + Cy € P((1) L (28)). If |Q(2)| < |4n*], then
|Q(2)(A% + 26C%) 1| < |7%]| and so Q(v) = (A% + 26C?)(1 + Q(2)(A2 +
26C2)~1) € (1 + RT)K*2. So we assume |Q(z)| > |[4r%| > [8]. Then
z € P(N) and induction hypothesis implies that Q(z) € (1 + RT)K*2.
Apply Lemma 6.8 to the unit 1+ Q(z)(A? 4+ 26C?)~! and we are done.

However, if |A?%| < |26C?|, then |Q(v)| = [26C?|. Also |26C?| = |26C? +
A?| > |Q(z)]. Therefore, |20C* + Q(z)| = [20C?*| = |Q(v)]. So, Cy + z €
P((26) L N) and induction hypothesis implies that 20C? + Q(z) € (1 +
REVK*2. Therefore, Q(v) = (26C* + Q(2))(1 + A2(26C? + Q(2))!) €
(14 R%)K*2 Note that 1+ A2(26C2 + Q(z))~! is a unit since |Q(v)| =
12002 + Q(2))-

Suppose that |A? + 26C?| = |Q(z)]. Here, both A? + 25C? and Q(z) are
in (1+ RT)K*2 since Az + Cy € P((1) L (26)) and z € P(M). If |A2] >
26C7 + Q(2)l, then [42] > |Q(v)] = 2], So, |A] > |2/ and [Q(v)] = .
However, |4] > |Q(z)| > |Q(v)|. Hence |4] = |Q(v)| = |Q(z)| = |A% + 25C?|.
Therefore, 1+ Q(2)(A% +26C?)~! is a unit and Lemma 6.8 shows that it is
in (1+7R%)K*2 and hence so is Q(v).

If |A%] < |20C? + Q(z)|, then [26C* + Q(z)| = |Q(v)| and induction hy-
pothesis implies that 26C%+Q(z) € (1+R*)K*2 as Cy+z € P((26) L N).
Consequently, Q(v) = (20C2+Q(2))(1+A%(26C%+Q(2))"!) € (1+RT)K*2,

At last, suppose that |A? + 20C?| < |Q(z)|. This implies that |Q(z)| =
QW) IF |42] > [Q(2)], then [42] > |Q()| > [24]. So, [A] > J2] and
[4] > |Q(2)| = |Q(v)| > |4] which is impossible. So, we must have |Q(z)| >
|A%|. Since (A% +20C?)Q(2)~! is an integer, A?Q(z)~" and 20C?Q(z)~! are
both inside Of. Induction hypothesis shows that Q(z) € (1 + RT)K*2.
We then have A2Q(z)~! and 26C2Q(z)~! are inside (1 4+ RT)K*2. Since
Q)] = |Q(2)|, 1 + A%2Q(2)~" + 26C%*Q(2)~" is a unit. Lemma 6.8 shows
that this unit must be inside (1 +R%)K>*? and hence so is Q(v). O

>
>

Proposition 6.2. Suppose L = (2"¢) L --- L (2™¢,) where €;’s € OF
and ry <1y < -+ <r,. Ifmin{r; —r;_} =2, then 6z = (1 4+ R°)K*2.

Proof. Clearly, (14+R°)K*? C ; by Lemma 6.6. The reverse inclusion can be
proved by using Lemma 6.9, together with an induction argument. Note that
0 C (1+ R°)K*? for all non-modular binary lattice M = 2%¢((1) L (274))
with r > 2. O
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Proposition 6.3. Suppose L = (2"¢;) L --- L (2™¢,) where all the ¢; €
Of and r; —r;_y > 3 for all i. Then

0; = {all even products of Q(v)K**: v € P((27i¢;) L (2rivie; 1))}
In particular, if min{r; —r;_1} = 3, then 6; = (1 + P%)K“.

Proof. Suppose that {z1,... ,x,} is the basis which gives the Jordan splitting
stated in the proposition. For simplicity, we let L; = Opx; 1L Opx;i, for
i=1,---,n—1. Let v =Y A;z; € P(L). Then Q(v) = 3 A22"i¢;. Let k
be the largest index for which |A4;27| is maximal. Then |A227| > |Q(v)| >
12B(v, 2;)| = [24,2"] for all j. If 3j < k such that |A327| = [A72"¢|, then
|A;| > |2] as |[A3279] > [2A,27]. However, |[A72"| > |A;2"5+!]. Therefore
|Az2m =71 > | A;| > |2| which is impossible since 7, — r; > 3. Therefore
k is the unique index for which |A?27| is maximal and |Q(v)| = |A72"*|.
Therefore, for any j > k + 2,

A297
‘ o | S 12T <8

A2

and for any j < k — 2,

< |AR2nT 7 < 8]

Az
A22m

By local square theorem [OM, 63:1], we then have
Q) € (A7_12™ "ep_1 + A72¢, + Ai+12r’““ek+1) K*2,
If |A3| > |2/, then |AZ]| > |7 2| and

A2 9rk+1 QTkA1—Tk
‘kﬂ = |A%,4] —p | < l4l.
k

A2

Therefore, Q(v) € Q(P(Ly_1))K*2. If |A2] < |x°*2|, then

Ai 127

Fan| <M

< |2 in?| < 4|

and so Q(v) € Q(P(Ly))K*2.
We are left with the case where |A7| = |7¢|. If min{r; — r;_,} > 4, then
the last set of inequalities still holds and we are done with this case also.
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Therefore we assume right now that min{r; — r,_1} = 3. We may further
assume that [Ag1| = 1 and 7y — r, = 3 for otherwise |A;, 2"+ <
|4]|A227+| and then Q(v) € Q(P(L4_1)) C (1 + R¥)K*2. Since |A227¢| >

|27-1t1 Ay |, we have |27k -1 > | A, _4]. If strict inequality holds, then

Ai 12Tk—1

2 e—1—TEp—1
A22rk S |Ak—12” T |
k

< |2 meig?] < Jda.

Therefore, Q(v) € Q(P(Lx))K*%. So, we may finally assume that ), —
e =3, [Apa] = |8|,N|Ai| = |7°| and [Ap41| = 1~3 Let u = Ap_1z-1 +
Agzy. Then u € P(Ly_;) and so Q(u) € (1 +R7)K*2 On the other
hand (1 + A2, 216, Q(u)™ ) € 1+ R* C 1+ R¥ and therefore Q(v) €
(1+R7)K*2 O

Corollary 6.3. Suppose L = (2"¢;) 1L --- L (2™¢,) where all the ¢; € Oy
and r; —ri_1 > 4 for alli. Then 0; C (1 + R K*2.

Proof. By Lemma 6.6 and the fact that Dy (e) C (1 +R*")K*? for all € €
OF, we see that Q(v) € (1 +R* )K*2 for all v € P((2"¢;) L (2r+1e;41)),
1<:<n—-1. Ul

Up to now, we have completed the proof of Case (I), (II.1) and (III)
of Theorem 4.2. Henceforth, we concentrate on Case (I1.2) in which the
components of a Jordan splitting of L are of rank 1 or 2 but at least one
of them is of rank 2. Also, the binary components are all proper and hence
isometric to 2"¢((1) L (d)) for some units €,0 € OF.

Lemma 6.10. Suppose A and C are in O and § € OF such that ordx (A?
+6C?%) = h < 2e — 1+ 2ordg(C). Then h is even and A% + 6C? € (1 +
Pefh/2+ordK(C))K><2 C O;;»KXQ-

Proof. Since Dg(—6) € R*™', we can write —0 = (1 + 72~ 'u)t? where
u € Ok and t € OF. Then A? + 6C?* = A? — E? — n**"'uE? where E = tC.
Let A— E = %3 and A+ E = 3 where 8,3 € 0. Without loss
of generality, we may assume that b’ > b. If &’ > b, then b = e + ordx (F)
because A+ E = A — E + 2E. Therefore ordyx(A* — E?) > 2e + 2ordg (E)
and so ordg (A% + 6C?) > 2e — 1 + 2 ordk (E) which is a contradiction.
Therefore, we have b = b. Then h = 2b < 2e — 1 + 2ordg(FE) and
b<e-+ordg(E)—1. Now, A> — E? = 7% 3%(1 + 2n*37'E) and so A% +
6C? = w2 32(1 + 27 B~ E — w2172 372y E?). Since e — b+ ordg(E) > 1
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and 2e — 1 — 2b + 2ordg(E) > e — b + ordg(FE), therefore A? + §C? €
(1 + Pefh/2+ordK(C))K><2 C O[X(KXQ. [l

Lemma 6.11. Let a € (1 4+ RY?)K** with |4] < |a| < |2|. Suppose D
and E are integers in K and v € OF such that 1+ (2D* +2E*y)a™! € Of.
Then 1+ (2D* 4+ 2E%*y)a~" € (1 + R*)K*2.

Proof. Let h = ord g (D*+E?v). If h > ordg () —e/2, then 2(D*+ E?*y)a™ ! €
R? and we are done. Hence we assume that h < ordg(a) —e/2 < 2e —
e/2 <2e—142ordg(F). So Lemma 6.10 applies and hence h is even and
D2 + E2'7 c (1 +’Re_h/2+°rdK(E))K><2,

If h <e, then e — h/2 + ordg (E) > e/2 and hence 2(D? + E?*v) € (1 +
RY?)K*2. We are finished again with the help of Lemma 6.8. So, we assume
h > e. In this case, (e+h—ordg(a))+(e—h/24ordg(E)) > h/2+ordk (E) >
e/2. In addition, e + h — ordg (a) > 0 is even. Therefore, (2D? + 2E%*y)a™*
can be written as 5% + 72¢ with 8 € R and hence 1+ (2D? 4+ 2F?y)a™! =
(1+6)2—28+7ite (1+REK*2. O

Lemma 6.12. Let ¢ and & be in OF. Then (€) L (e6) = (1) L (5).

Proof. Let L be the lattice (1) L (§). Let Hasse(L) be the Hasse symbol of the
quadratic space spanned by L and (,)x be the Hilbert symbol on K. Then
for any € € OF, Hasse(L) = (e, €)x(€d,0)x. By Bender’s lifting formula
for Hilbert symbols of local fields [Be], we have (a,b)x = (Ng/r(a),b)r for
any a € K and b € F. Thus, Hasse(L¢) = 1. Moreover, d(L) = d(L¢).
Therefore L ® K = L* ® K. By [OM, 93:16], we suffice to show that the
norm groups of L¢ and L are equal. Clearly, the weights of both lattices are
20K = R°. Since € € OF, Dk(e) € R** " and so ¢ = 1? mod R for some
unit 1. Therefore, 1 is a norm generator for both lattices. Hence, their norm
groups are equal. |

Proposition 6.4. Suppose L = (1) L M where M is binary proper 2-
modular. Then 0; = (1 +R*)K*2.

Proof. By Lemma 6.12, we may assume L = (1) L 2((1) L (d)) in basis
{x,y,2}. Let v € P(L). Write v = Az + Dy + Ez where A,D,E € Op.
Then Q(v) = A% + 2D? 4+ 26 E*.

Suppose that |A?| > |2D? 4+ 20 E?|. If |A?| > |2|, then both 2D?A~2 and
20E?A~? are integers in (1 + R*)K*2. Since |Q(v)| = |A4?|, the integer
1+ 2D?A72 + 20E*A? is a unit. Therefore, 1 + 2D?A2 + 26E?A~2 ¢
(1 +R“*)K** by Lemma 6.8. So we may assume |A?| < [2|. As |A%| =
IQ(v)| > |2B(v,z)| = |2A], we actually have |4] < |A?| < |2| and Lemma
6.11 applies.
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If |A%| < |2D? + 20E?|, then |Q(v)| = |2D? + 20E?| and this implies
Dy + Ez € P(M). Therefore, 2D? 4+ 26E? € (1 + R?)K*? by Lemma 6.6
and 6.7. Since 1+ A?(2D? +20E?)™! is a unit, therefore Lemma 6.8 implies
that 1+ A%(2D? +20E?)~! € (1 +R?)K*? and so is Q(v).

Finally, suppose |A?%| = |2D? + 26 E?|. Here, we also have 2D? + 26 E? €
(14 R*)K*2. If |Q(v)| = |A?|, then 1 4 (2D? + 20E?)A~? is a unit and
Lemma 6.8 applies. So, Q(v) € (1 + R?)K*2. Therefore, we may assume
that |Q(v)| < |A4?%| = |2D? + 20FE?| < |2|. Since 24| < |Q(v)|, we have
|24| < |A?|. Then |2| < |A] and 4| < |Q(v)|. As a result, |D?* 4+ 0E?| > |2|.
Let h = ordg(A?) = ordg(2D? + 20E?). Then ordg(D? + dE?) = h —
e < e <2 —1+2ordg(F). Therefore Lemma 6.10 applies and we have
D? + §F? € (1 4 Rete/27h/2rordeE)y =2 1t shows that 2(D? + §E?) A2 €
(14 ReTe/27h/2tordrc (BN (02 However, e4-¢/2—h/2+ordg (E) > e+e/2—e =
e/2. Therefore Lemma 6.8 applies and Q(v) € (1 + R?)K*2. O

Proposition 6.5. Suppose L = (1) L (6) L M where M is binary proper
2-modular. Then 0; = (1 +R*)K*2.

Proof. By Lemma 6.12, we may assume that L = (1) L (§) L (2) L (2v) in
basis {x,y,z w} where v and § are units in @%. Let v € P(L) and write
v=Ax+ Cy+ Dz+ Ew. Then Q(v) = A* + C?6 + 2D? + 2E?~. Similar
to Proposition 6.4, we divide our discussion into three cases according to
|A? 4+ §C?| is (i) bigger than, (ii) less than, (iii) equal to [2D? + 2yE?|. The
proof of cases (i) and (ii) are similar to their counterparts in the proof of
Proposition 6.4. Therefore, we just treat case (iii) in below. It is clear that
v can be assumed to be primitive in L.

Suppose that |A% 4+ §C?| = |2D? + 2yE?|. In this case, both A% 4+ §C? and
2D? + 2vE? are in (1 + R2)K*2. If |Q(v)| = |A% + 6C?|, then 1 + (A% +
8C?)(2D? +2vyE?)~! is a unit and Lemma 6.8 applies. Therefore, we assume
that |Q(v)| < |[A240C?| = |2D?*+2vE?| < |2|. As |Q(v)| > |24] and |2C], A
and C cannot be units and hence D or E is a unit. Moreover, |Q(v)| > |4D|
and |4F|. Consequently,

4] < 1Q(v)| < |A% +6C?| = |2D* + 2vE?| < |2|.

Let h = ordg (A% + 6C?). Then his even and so e < h <2 —2 <2 —1+
2ordg(C). Apply Lemma 6.10 and we get

A% 4 6C% € wh (1 4+ eI OF2.
Similarly, if £ = ordx (D? + vE?), then

e—k ord
D? + yE? € nf (1 4 ReF/2ordr (B2,
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Let n = (2D? + 2vE?)(A? + 6C?)~!. Then
ne (1 +Pefh/2+ordK(C))(1 +pefk/2+ordK(E))Ol><(2'

Therefore, we can write 1 = (14 m¢F/2+ord(E)¢) (1 4 re—h/240rdi(C) 5) 32 where
t,s € Ok and B € OF. Furthermore, 141 = (14 3)? —23ne~k/2+ordu(E)¢ 4
qe—h/2+ordk (C) g | p2e—(h+h)/2+ordk (E)+ordx (C) g

Now |1 + n||A? + §C?| > |2C| and |2A|. This shows that ordg (1 +7) <
e+ordg(C)—h and e+ ordg (A) — h. Without loss of generality, we assume
ordg(C) > ordg(A). Since |A% 4+ 6C?| < Max(|A?],|C?|), we have h/2 >
ordg (A).

Let ordx (1 4+ n) = d. Then d must be even since ; C O K*?. Also,
(a)e—d>e—e—ordg(A)+h>h/2>¢e/2;
(b) e—h/24+ordg(C)—d > e—h/2—ordx(C)—e+ordg(C)+h=h/2 > e/2
and
(c) e—k/24+ordg(F)—d > e—k/2+ordg(E)—e—ordx(A)+h > (h—k)/2 >
e/2 since h =k +e and h —ord(A) > h/2.

By (a), (b), (c) above and the fact that d is even, we see that (1+n)7~¢ =
(1 + B)yr=¥2)2 4 w¢/?r for some r € Ok. Therefore 141 € (1 + R/*)K*2,
We are now finished since Q(v) = (A? + 6C?)(1 + 7). |

Lemma 6.13. Suppose L = (1) L (§) L N where s(N) C 40p. If 05 C
(1+R2)K*2, then 0; = (14 R“/*)K*2.

Proof. Clearly, 8; D (14 R?2)K*2. For the other inclusion, we let v € P(L).
Then Q(v) = A2+C?5+Q(z) where z € N. The cases |A24+C25| < |Q(z)| can
be proved similarly as before. Suppose that |A?2+C?§| > |Q(z)|. In this case,
A2+ C?5 € (1+R2)K*2. Without loss of generality, we assume |A2| > |C?|.
Then |A?] > |A? 4+ C?§] > |24] and so |A] > |2|. As a result, |A? + C?)| =
|Q(v)| > |4]. Now, Q(v) = (A246C?)(14+Q(2)(A%+6C?)~1). The following
lemma will show that either Q(z) € (14+R?)K*? or Q(z)(A2+6C?)~" € R2.
We are finished in either case. L

Lemmq 6.14. Let M be a lattice defined over Op with s(M) = 2"Op. Let
x € Q(M). Then either ordg(x) > re+e/2 orx € (14+R?)K*2,

Proof. Scaling by 27" allows us to assume r = 0. If n(M) C 20, then we are
done. Hence we can assume that n(M) = Op. Let a be a norm generator
of M. Take z € Q(L). There exist a, 3 € Ok such that z = aa? + 2.
We may assume that ordg(aa?) = ordg(a) < ordg(23) since otherwise
ordg(z) > e > e/2. Under this assumption, ordg(z) = ordg(a?) and
z(aa?)™ =1+ 23(aa?) is a unit.
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If ordk () < e/2, then ordg(aa?) < /2 and so 1+ 26(ac?®)~" € 1 + R2.
Asa € Op, a € (1+R2)K*2. Therefore, z € (1+R*)K*2, u

The next proposition is Case (I1.2) of Theorem 4.2.

Proposition 6.6. Suppose L is split by 2"¢((1) L (0)). Then 6; = (1 +
RE)K*2.

Proof. We proceed by induction on the rank of L. The proposition is true
if the rank is 2 or 3 or L = (1) L (0) L 2¢((1) L (§)) (after scaling L
suitably). In view of Lemma 6.9 and 6.13, we may assume that the second
Jordan component has scale 20r. We have two situations here, namely (A)
L=(1) 1Ly ! Nand (B) L=(1) L (6) L Ly L N where Ly is 2-modular
and s(N) C 40p. The proof of the proposition will be similar to the proofs
for Proposition 6.4 and 6.5 and Lemma 6.13. Therefore, we simply lay out
the idea below instead of giving the full version of the proof.

In (A), let x be the vector which gives the summand (1). Take v € P(L)
and write it as v = Az 4+ y 4+ 2z where y € L, and z € N. As usual, we
subdivide the discussion into three subcases by comparing |A% + Q(y)| and
|Q(2)|. In (B), let {z,y} be the pair of vectors which gives the summand
(1) L (6). Let v € P(L). This time, v can be written as Az + Cy + z + w
where z € Ly and w € N. We then compare the norms |42 + C2§ + Q(2)|
and |Q(w)]. u
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