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SPINOR GENERA UNDER Zp-EXTENSIONS

Wai-kiu Chan

Let L be a quadratic lattice over a number field F . We
lift the lattice L along a Zp-extension of F and investigate
the growth of the number of spinor genera in the genus of L.
Let Ln be the lattice obtained from L by extending scalars
to the n-th layer of the Zp-extension. We show that, under
various conditions on L and F , the number of spinor genera
in the genus of Ln is 2ηp

n+O(1) where η is some rational num-
ber depending on L and the Zp-extension. The work involves
Iwasawa’s theory of Zp-extensions and explicit calculation of
spinor norm groups of local integral rotations.

1. Introduction.

The question of how the genus of a positive definite quadratic form over
the rationals behaves when is lifted to a totally real number field was first
raised by Ankeny in the sixties (see the introduction in [EH1]). The closely
related problem of how the spinor genus behaves upon field extension was
then investigated by Earnest and Hsia. In a series of papers [EH1-3], they
showed that, modulo some restrictions on the bottom field, the (proper)
spinor genera in the genus of the given lattice do not collapse when lifted to
an odd degree extension. In particular, the number of spinor genera in the
genus will not decrease in this situation. However, there was no quantitative
description of the growth of the spinor genera. When the degree of extension
is even, examples show that the spinor genera in a given genus may collapse.
Constructive methods for determining the amount of collapsing in the case
of quadratic extension of Q were given in [EH3]. In this paper, we will
consider the problem when the lattice is lifted along a Zp-extension. The
result presented in this paper will describe the growth of the number of
spinor genera asymptotically.

Our work is initiated by a paper of Estes and Hsia [EsH] in which they
developed the theory of spinor class fields. Let f be a quadratic form over a
number field F . Via class field theory, Estes and Hsia identify the group of
spinor genera in the genus of f with the Galois group of an abelian extension
Σ/F . The field Σ is called the spinor class field of f . The spinor class field
enjoys properties which are similar to those borne by the Hilbert class field.
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Powerful machineries had been developed to yield information on the Hilbert
class fields and ideal class numbers. An important example is Iwasawa’s work
on ideal class numbers of fields inside a Zp-extension. He shows that the p-
part of ideal class number of the n-th layer of a Zp-extension is pµp

n+λn+ν

when n is sufficiently large. Here µ, λ, ν are constants independent of n.
In this paper, we would like to attack the base change problem mentioned
in the last paragraph in Iwasawa’s setting. More precisely, let fn be the
form obtained from f by extending scalars to the n-th layer of the Zp-
extension. Let hs(fn) be the number of spinor genera in the genus of fn. We
try to seek a formula for hs(fn) which serves as an analog of Iwasawa’s class
number formula. The formula implies the following interesting result. Under
some mild assumption (see the next paragraph) hs(Ln) is either bounded or
growing exponentially.

The rest of the paper is organized as follows. In Section 2 we will give
some necessary background on quadratic forms and Zp-extensions. Since the
number of spinor genera in a given genus is always a 2-power, we start our
investigation on Z2-extensions. In Section 3 we will handle the case where
the form has good reduction (see Definition 3.1) at the dyadic primes of F .
In Section 4, we do not require the form to have good reduction. But we
restrict ourselves on cyclotomic Z2-extension of totally real number fields or
CM fields. The results of Section 4 rely heavily on the spinor norms of local
integral rotations at the dyadic primes. Because of this, we will assume that
2 is unramified in the bottom field F . In Section 5, we will consider the
problem when the Zp-extension is the cyclotomic one with p > 2. One of the
main ingredients is Washington’s theorem which asserts the boundedness of
the l-part of the ideal class groups in a cyclotomic Zp-extension of abelian
number field. In Section 6, we will carry out the calculations of the local
spinor norms which is needed in Section 4.

2. Background Material.

This paper involves two areas of number theory. Namely, the arithmetic the-
ory of quadratic forms and Iwasawa’s theory of Zp-extensions. In order to
keep the paper in a reasonable length, we will just provide background mate-
rial on both areas which is necessary for later discussions. For further detail
and any unexplained terminology, we refer the reader to O’Meara’s book
[OM] and Washington’s book [Wa]. We also refer the reader to Iwasawa’s
original papers [I1-4] for more information on Zp-extensions.

From now on, F is always either a number field or the completion of a
number field at one of its prime spot. In the later case, we will simply say
that F is a local field. The ring of integers in F is denoted by OF . A
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local field is called nondyadic if its residue class field has odd characteristic.
Otherwise, it is called dyadic. A 2-adic local field is a dyadic local field in
which 2 is unramified. If F is a dyadic local field, we fix a unit ρF (or simply
ρ) such that ∆ = 1 + 4ρF is a unit of quadratic defect 4OF . If R is a ring,
then R× always denotes the group of invertible elements in R.

Instead of working with quadratic forms, we will follow O’Meara [OM]
to use the language of quadratic spaces and lattices. All spaces and lattices
are assumed to be endowed with a non-degenerate quadratic form Q. Let
L be a lattice on a quadratic space V over F . For any anisotropic vector
v in V , Sv will be the symmetry with respect to v. We put P (L) to be
the set {v ∈ V : Sv ∈ O(L)}. The spinor norm map on O(V ) is denoted
by θ and θ(O+(L)) will be abbreviated as θL. Every hyperbolic plane has
a basis {x, y} such that both x and y are isotropic vectors and the inner
product between them is 1. Such a basis is called a hyperbolic pair. As in

[OM, 93B], A(α, β) denotes a binary lattice which has

〈
α 1
1 β

〉
as an inner

product matrix.
Suppose that F is a number field and ℘ is a prime spot of F . Let JF be the

group of idèles of F and ΘL the subgroup {(i℘) ∈ JF : i℘ ∈ θL℘ for all ℘}. We
will assume throughout this paper that the rank of L is at least three unless
stated otherwise. Under this assumption, the quotient group JF/F

×ΘL can
be identified with the set of all (proper) spinor genera in gen(L) (see [EsH]
and [Kn]). The spinor class field of L is the abelian extension Σ of F which
corresponds to the open subgroup F×ΘL via class field theory. It follows
directly that Σ/F is a multiquadratic extension and [Σ : F ] is equal to
hs(L), the number of spinor genera in gen(L).

Let F be a number field. A Zp-extension of F is a Galois extension F∞/F
such that Gal(F∞/F ) is isomorphic to the additive group Zp. Let Fn be the
fixed field of the closed subgroup pnZp. Then Fn ⊆ Fn+1 and Gal(Fn+1/Fn)
is cyclic of order pn. It is also known that the ramified primes in F∞/F are
lying above p. Let q = p or 4 if p = 2. Let Bn be the unique real subfield
of the cyclotomic field Q(ζqpn) of degree pn over Q. Then B∞ = ∪Bn is a
Zp-extension of Q. The cyclotomic Zp-extension of F is the compositum
FB∞. In the cyclotomic Zp-extension, all primes lying above p are ramified
and the corresponding inertia groups have finite index in Gal(FB∞/F ). All
other finite primes are finitely decomposed.

As is customary, we write Gal(F∞/F ) multiplicatively and denote it by
Γ. The subgroup Gal(F∞/Fn) is just Γp

n

and we denote it by Γn. By a
Γ-module we mean a p-primary abelian group on which Γ acts continuously.
Let T be an indeterminate and Λ the power series ring Zp[[T ]]. Let us fix a
topological generator γ0 of Γ. For every compact Γ-module M , we can endow
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it with a unique compact Λ-module structure such that (1 + T )x = γ0x for
every x ∈ M . Conversely, every compact Λ-module determines a compact
Γ-module uniquely.

Given any Λ-modules M and N , we say that M is pseudo-isomorphic to
N , written as M ∼ N , if there is a Λ-module homomorphism M −→ N
with finite kernel and cokernel. A fundamental theorem of structure of Λ-
modules says that if M is finitely generated, then M is pseudo-isomorphic to
Λr⊕∑Λ/(pni)⊕∑Λ/(fmjj ) where r, t, ni,mj are non-negative integers and fj
is a so-called distinguished irreducible polynomial [Wa, Thm. 13.12]. If r =
0, then M is called Λ-torsion. Let µ(M) =

∑
ni and λ(M) =

∑
mjdeg fj.

They are called the µ-invariant and the λ-invariant of M . The ideals (pni)
and (fmjj ) are called the divisors of M . For each n ≥ 0, let ωn = (1+T )p

n−1
and νn,m = ωn/ωm.

Lemma 2.1 ([I1]). Suppose that M is a finitely generated Λ-torsion mod-
ule. If νn,t is relatively prime to the divisors of M for any n ≥ t, then
[M : νn,tM ] = pµ(M)pn+λ(M)n+O(1). Same conclusion holds if we replace νn,t
by ωn provided that ωn is relatively prime to the divisors of M .

Proposition 2.1. Let F∞/F be a Z2-extension and K∞ a Galois exten-
sion of F which contains F∞. Suppose Gal(K∞/F∞) is an elementary 2
group finitely generated as a Λ-module. Let Kn be the maximal elementary 2
extension of Fn inside K∞. Then there exists a non-negative integer µ such
that

[Kn : Fn] = 2µ2n+O(1).

Proof. Let Gn be the Galois group of K∞ over Fn. Then,

Gal(Kn/Fn) =
Gn

[Gn, Gn]G2
n

where [Gn, Gn] is the closure of the commutator subgroup of Gn. Since
Γn acts on X := Gal(K∞/F∞) by conjugation and ωnX is the smallest
submodule of X such that Γn acts trivially on the quotient, [Gn, Gn] is just
ωnX . Therefore

Gal(Kn/Fn) =
Gn

ωnX ·G2
n

.

Since Gn/X ∼= Γn, the index [Gn : X · G2
n] is 2. As [Kn : Fn] = [Gn :

XG2
n] · [XG2

n : ωnX ·G2
n], we have [Kn : Fn] = 2[XG2

n : ωnX ·G2
n].

The natural map X −→ XG2
n/ωnX · G2

n is clearly surjective. The kernel
is X ∩ (ωnX ·G2

n). Take an element ωnx · g2 in X ∩ (ωnX ·G2
n). Then g2 is

in X . However, as Gn/X ∼= Γn is torsion free, g is already in X . Therefore
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ωnx · g2 = ωnx ∈ ωnX and hence X ∩ (ωnX · G2
n) = ωnX . It is clear that

the divisors of X are powers of the ideal (2) only. Therefore ωn is relatively
prime to the divisors of X . Let µ be the µ-invariant of Gal(K∞/F∞). Then
by Lemma 2.1, [Kn : Fn] = 2[X : ωnX ] = 2µ2n+O(1).

Suppose now that F∞ is the cyclotomic Z2-extension of F . Let H∗∞ be
the maximal abelian 2-extension of F∞ which is unramified outside ∞ and
H∞ the maximal unramified abelian 2-extension of F∞. The field H∞ is a
Galois extension of F . Therefore, Γ ∼= Gal(F∞/F ) acts on Gal(H∞/F∞)
by conjugation. In this case, Gal(H∞/F∞) becomes a finitely generated
Λ-module. Let µ(F ) be the µ-invariant of this module. Similarly, we can
define µ(F ∗) by using H∗∞. Obviously, if µ(F ∗) = 0, then µ(F ) = 0. Iwasawa
conjectured them to be always zero. The full veracity of this conjecture is
not yet established. However, it is settled by Ferrero and Washington [FW]
when F is an abelian extension of Q (see [Si] for another proof by Sinnott).
There are nonabelian extensions F/Q such that µ(F ) = 0. For example,
Kida [Ki] proves that if F is totally real and [F : Q] is a 2-power, then
µ(F ) = µ(F ∗) = 0.

Let X be a finite set of primes of F containing all the infinite primes. Let
IXn (resp. IX∗n ) be the subgroup of the X-ideal class group (resp. the narrow
X-ideal class group) of Fn generated by the order 2 elements.

Corollary 2.1. If µ(F ∗) = 0, then |IXn | and |IX∗n | are bounded as n tends
to infinity.

Proof. By class field theory, |IXn | = [HX
n : Fn] where HX

n is the maximal
unramified elementary 2-extension of Fn in which all finite primes in X split
completely. Then HX

n ⊆ Hn = maximal unramified elementary 2-extension
of Fn. By Proposition 2.1, [Hn : Fn] is bounded and hence [HX

n : Fn] is also
bounded. Similarly for |IX∗n |.�
Proposition 2.2. Let Mn be the maximal elementary 2-extension of
Fn which is unramified outside 2 ∪ ∞. If µ(F ∗) = 0, then [Mn : Fn] =
2(r1+r2)2n+O(1) where r1 (resp. r2) is the number of real (resp. complex)
primes of F .

Proof. Let T be the set of all dyadic and infinite primes of F . Let M be
the subgroup of F×n /F

×2
n which corresponds to Mn via Kummer’s theory.

If a ∈ F×n represents an element in M, then 〈a〉 = B2A where B is an
ideal prime to T and A is supported on T . Thus we have a surjective
homomorphism

M−→ ITn
a 7−→ B.



242 WAI-KIU CHAN

The kernel of the above map is En/E2
n where En is the T -units of Fn. Since

all the dyadic primes of F is totally ramified in F∞, the number of dyadic
primes in Fn is eventually constant. Together with Dirichlet’s theorem, we
have |En/E2

n| = 2(r1+r2)2n+O(1). The proposition now follows by virtue of
Corollary 2.1.

Proposition 2.3. Suppose F is totally real. Let Nn be the maximal
elementary 2-extension of Fn which is unramified outside 2. If µ(F ∗) = 0,
then [Nn : Fn] is bounded as n tends to infinity.

Proof. Let N be the subgroup of F×n /F
×2
n corresponding to Nn. Like Propo-

sition 2.2, we have an exact sequence

1 −→ E+
n /E

2
n −→ N −→ IT∗n −→ 1

where E+
n contains those T -units which are positive at the real primes. Let

Pn be the principle ideals of the T -integers of Fn and P+
n be the subgroup

containing principle ideals generated by elements which are positive at all
real primes. Then

F×n /F
×+

n En ∼= Pn/P
+
n

where F×
+

n is the set of elements in F×n which are positive at all real primes.
On the other hand, by weak approximation, we have

|F×n /F×
+

n | = 2d2n

where d = [F : Q]. This shows that |Pn/P+
n | · [En : E+

n ] = 2d2n .
Now, |Pn/P+

n | is a subgroup of IT∗n . Since µ(F ∗) = 0, |IT∗n | is bounded
as n → ∞ and hence |Pn/P+

n | is also bounded. Therefore, [En : E+
n ] =

2d2n+O(1). From the proof of Proposition 2.2, we see that [En : E2
n] =

2d2n+O(1). Consequently, [E+
n : E2

n] = O(1) and we are done.

3. Lattice with Good Reduction.

Let F∞/F be an arbitrary Z2-extension. For each n, we let On be the ring
of integers of Fn. Let L be a lattice on a quadratic space V over F . The
“lifted” lattice L⊗On is denoted by Ln. If P∼ is a prime of Fn, we use θnP∼
instead of θLnP∼ for the sake of brevity.

Definition 3.1. Let ℘ be a dyadic prime of F .
(I) A lattice L has Type I reduction at ℘ if a Jordan splitting of L℘ has a
component of rank ≥ 3 or a binary component which is isometric to πrA(0, 0)
of πrA(2, 2ρ) where π is a prime element in F℘.
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(II) A lattice L has Type II reduction at ℘ if L℘ ∼= 〈a1〉 ⊥ · · · ⊥ 〈am〉 and
ord℘(ai+1)−ord℘(ai) ≥ 4e for all i where e is the absolute ramification index
of ℘.

The lattice L has good reduction at ℘ if it has either Type I or Type II
reduction at ℘.

It is clear that if L has Type I reduction at ℘, then Ln also has Type I
reduction at all P∼|℘. By [OM, 93:20] and [H, Lemma 1], we know that θnP∼
contains all units of OnP∼. We recall that P (L) is the set of vectors in V
which give rise to symmetries in O(L).

Lemma 3.1. If L has Type II reduction at ℘, then for any prime divisor
P∼ of ℘ in Fn, the index [θnP∼ : F×2

nP∼] is bounded as n tends to infinity.

Proof. Suppose L℘ ∼= 〈a1〉 ⊥ · · · ⊥ 〈am〉. For simplicity, let Lnj = 〈aj〉 ⊥
〈aj+1〉. If ord℘(aj+1) − ord℘(aj) > 4e, then by [EsH, Prop. 1] θnP∼ is the
subgroup generated by aiajF×2

nP∼. Therefore, [θLnP∼ : F×2
nP∼] ≤ 2m(m−1)/2, which

is independent of n.
Now suppose min{ord℘(aj+1)−ord℘(aj)} = 4e. For each i = 1, . . . ,m, let

ai = πiεi where εi ∈ O×F℘ . By the corollary to Lemma 1 in [EsH], we know
that O(LnP∼) is generated by symmetries and Eichler transformations. Also,
LnP∼ is not of E type (see [EH2]). Therefore, θnP∼ contains precisely all the
even products of Q(v) where v ∈ P (Lni) for all 1 ≤ i ≤ m− 1. We suffice to
show that Q(P (Lni)) contains at most four cosets of F×2

nP∼ in F×nP∼ for each i.
If ri+1− ri > 4e, then by [Xu, Prop. 2.1], it is easy to see that Q(P (Lni))

contains at most two cosets. If rj+1 − rj = 4e, then [Xu, Prop. 2.2 (iii)]
implies that Q(P (Lni)) contains at most four cosets. The lemma is now
proved.

Theorem 3.1. Suppose that the lattice L has good reduction at all dyadic
primes of F which do not split completely in F∞. Then there exists a non-
negative constant µ such that hs(Ln) = 2µ2n+O(1).

Proof. Let v(L) be the volume of the lattice L. We define five finite subsets
of primes of F as follows:

Dr = set of all dyadic primes which are ramified in F∞

Ds = set of all dyadic primes which split completely in F∞

Dd = set of all dyadic primes which are finitely decomposed in F∞

S = set of all nondyadic primes which divide v(L) and split

completely in F∞

T = S ∪Dr ∪Ds ∪Dd ∪∞.
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For any set of primes X of F , Xn denotes the set containing primes of Fn
which lie above some elements in X. We first make some modification on
the local components of ΘLn .

At ℘ 6∈ T : This ℘ must be nondyadic. If ℘ does not divide v(L), then
θnP∼ = O×nP∼F×2

nP∼ for any P∼|℘. If ℘|v(L), then ℘ is finitely decomposed in
F∞. Therefore, for large enough n, the number of primes in Fn dividing ℘
is constant. Therefore, changing θnP∼ to O×nP∼F×2

nP∼ at these P∼ will only cause
a bounded effect on hs(Ln). Consequently, we may assume that

θnP∼ = O×nP∼F×2
nP∼ ∀P∼ 6∈ Tn.

At ℘ ∈ Dr ∪ Dd: If L has Type I reduction at ℘, then [F×nP∼ : θnP∼] ≤ 2.
If L has Type II reduction at ℘. then [θnP∼ : F×2

nP∼] is bounded as n tends
to infinity. Any ℘ in this case is either ramified or finitely decomposed.
Therefore |Dr

n ∪ Dd
n| is eventually constant and so we may assume for any

P∼ ∈ Dr
n ∪Dd

n,

θnP∼ =


O×nP∼F×2

nP∼ if L has Type I reduction at ℘

F×2
nP∼ if L has Type II reduction at ℘.

Now, let Σn be the spinor class field of Ln and Nn the norm from Fn to Fn−1.
After we modified ΘLn , we have Nn+1(ΘLn+1) ⊆ ΘLn and hence Σn ⊆ Σn+1.
Let Σ∞ be the union of the Σn’s. It is not hard to see that Σ∞ is a Galois
extension of F . Therefore, Gal(Σ∞/F∞) is a Λ-module. As Σ∞/F∞ is
unramified outside T , Gal(Σ∞/F∞) is a finitely generated Λ-module (see
[Wa] or [I4]).

Let us first assume that L has Type II reduction at all ℘ ∈ Dr. We claim
that Σn is the maximal elementary 2-extension of Fn inside Σ∞. Let Mn

be the maximal elementary 2-extension of Fn inside Σ∞. Then Σn ⊆ Mn.
If we let Vn be the open subgroup in JFn corresponding to Mn via class
field theory, then obviously F×n ΘLn ⊇ Vn and F×2

nP∼ ⊆ Vn for all P∼. By the
modification we made on ΘLn , we know that Σ∞/F is unramified outside T .
Therefore Mn/Fn is unramified outside T and so

O×nP∼F×2
nP∼ ⊆ Vn ∀P∼ 6∈ Tn.

Suppose ℘ ∈ Dd. If L has Type II reduction at ℘, then θnP∼ = F×2
nP∼ ⊆ Vn.

If L has Type I reduction at ℘, then θnP∼ = O×nP∼F×2
nP∼. This implies that

Σn/Fn is unramified at P∼. Since Fn/F is unramified at ℘, therefore Σn/F is
unramified at ℘ and hence so is Σ∞/F . Consequently, Mn/Fn is unramified
at P∼ and we have

θnP∼ = O×nP∼F×2
nP∼ ⊆ Vn ∀P∼ ∈ Dd

n.
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Take a sufficiently large integer t such that Mn ⊆ Σt. Then MnFt ⊆ Σt.
This implies that NFt/Fn(ΘLt) ⊆ Vn and

θnP∼ ⊆ NFt/Fn(ΘLt) ⊆ Vn ∀P∼ ∈ Dr
n ∪ Sn.

Certainly, since L has Type II reduction at ℘ ∈ Dr, we also have

θnP∼ ⊆ Vn ∀P∼ ∈ Dr
n.

It is easy to see that θnP∼ = θ℘ if P∼|℘ ∈ ∞. Combining everything together,
we have F×n ΘLn ⊆ Vn and hence Mn = Σn.

For any σ ∈ Gal(Σ∞/F∞) and for any n, σ|Σn ∈ Gal(Σn/F∞ ∩ Σn) ⊆
Gal(Σn/Fn). Therefore, σ has order 2 and the Λ-module Gal(Σ∞/F∞)
is pseudo-isomorphic to a direct sum of copies of Λ/(2). Let µ be the
µ-invariant of Gal(Σ∞/F∞). By Proposition 2.1, we can conclude that
hs(Ln) = [Σn : Fn] = 2µ2n+O(1).

Now, let us assume that L has Type I reduction at P = {℘1, . . . , ℘r} ⊆
Dr. In this case, we can use a similar argument as before to show that Σn is
the maximal elementary 2-extension of Fn inside Σ∞ which is unramified at
all primes in Pn. The proof now resembles that of Theorem 13.13 in [Wa].
We first assume that all primes in Dr are totally ramified in F∞. For each
i = 1, · · · , r, let ℘̃i be a prime of Σ∞ lying over ℘i. Let Ii be the inertia
group of ℘̃i. Furthermore, we let G = Gal(Σ∞/F ) and X = Gal(Σ∞/F∞).
Then, by our assumption, it is true that Ii ∩ X = ∅ and G = IiX = X Ii for
any i = 1, · · · , r.

Let γ0 be the fixed topological generator of Γ ∼= G/X and let σi ∈ Ii map
to σ0 under the natural surjection. Since Ii ⊆ X I1, we can find ai ∈ X such
that σi = aiσ1. Let Y be the closed subgroup of X generated by {a2, . . . , ar}
and ω0X . Then for any n ≥ 0, one can show that Gal(Σn/Fn) ∼= X/Yn where
Yn = νn,0Y.

The final step is to remove the assumption that F∞/F is totally ramified
at all ramified primes. Let t be a sufficiently large integer such that all
ramified primes in F∞/Ft are totally ramified. Then Gal(Σn/Fn) ∼= X/νn,tYt
for all n ≥ t. Since X and Yt are pseudo-isomorphic, they have the same
µ-invariant. Let it be µ. Then for n ≥ t, hs(Ln) = |Gal(Σn/Fn)| = [X :
Yt][Yt : νn,tYt] = 2µ2n+O(1).

4. Cyclotomic Z2-Extensions.

In this section, we assume that F∞/F is the cyclotomic Z2-extension and 2
is unramified in F . For any n ≥ 1, Fn ⊇ Bn ⊇ B1 = Q(

√
2). Therefore 2 is

a square in Fn. We keep all the notations used in the last section.
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We now make some adjustments on the local components of ΘLn . Any
nondyadic prime in F is finitely decomposed in F∞. Therefore the number
of prime divisors of v(Ln) is eventually constant. As a result, we may assume
that

θnP∼ = O×nP∼F×2
nP∼

for any nondyadic prime divisor P∼ of v(Ln). For each n, the extension
Σn/Fn is now unramified outside 2∪∞. Let Mn be the maximal elementary
2-extension of Fn which is unramified outside 2 ∪∞. Then Σn ⊆Mn.

Definition 4.1. A lattice L is called totally indefinite if it is indefinite at
all infinite primes of F.

Theorem 4.1. Suppose that F is totally real. If µ(F ∗) = 0 and L is
totally indefinite, then hs(Ln) is bounded.

Proof. If L is totally indefinite, then Ln is also totally indefinite for all n.
Therefore, θnP∼ = F×nP∼ for all infinite primes P∼. (Note that all the infinite
primes of Fn are real since infinite primes are not ramified in F∞.) By class
field theory and our adjustments on θnP∼, the extension Σn/Fn is unramified
outside 2. In particular, Σn ⊆ Nn = the maximal real subfield of Mn.
By Proposition 2.3, we know that [Nn : Fn] is bounded and hence so is
hs(Ln).

We now present a result on spinor norms of local integral rotations. The
proof will be given in Section 6.

Theorem 4.2. Suppose that L is a lattice on a quadratic space over a
2-adic local field F . Let K/F be a totally ramified cyclic extension of degree
2n, n ≥ 4 and L̃ the lifted lattice L⊗OK. Put e = 2n to be the ramification
index of K/F . Then:
(I) If a Jordan splitting of L has a component of rank ≥ 3, then θL̃ =

O×KK×2.
(II) Suppose that a Jordan splitting of L has a component of rank ≤ 2 and

at least one of them is binary.
(II.1) If all the components of the Jordan splitting are isometric to

2rA(0, 0) or 2rA(2, 2ρF ), then θL̃ = O×KK×2.
(II.2) Assume that 2 is a square in K. If all the components are of the

form 2rε(〈1〉 ⊥ 〈δ〉) where δ, ε ∈ O×F , then θL̃ = (1 + P∼ e
2 )K×2.

(III) Assume that 2 is a square in K and all the components of a Jordan
splitting of L are of rank 1. In this case, we may assume that L ∼=
〈1〉 ⊥ 〈2r2ε2〉 ⊥ · · · ⊥ 〈2rmεm〉 where 0 = r1 < r2 < · · · < rm and all
εi ∈ O×F . Then
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θL̃ =


(1 + P∼ 3e

4 )K×2 if min{ri+1 − ri} = 1 (III.1)
(1 + P∼e)K×2 if min{ri+1 − ri} = 2 (III.2)
(1 + P∼ 3e

2 )K×2 if min{ri+1 − ri} = 3 (III.3)
subgroup inside (1 + P∼2e−1)K×2 if min{ri+1 − ri} ≥ 4 (III.4).

Let ℘ be a dyadic prime of F . We define a rational number η℘ as follows:

η℘ =



0 if L℘ is in Case (I) or Case (II.1)
1
4

if L℘ is in Case (II.2)
3
8

if L℘ is in Case (III.1)
1
2

if L℘ is in Case (III.2)
3
4

if L℘ is in Case (III.3)
1 if L℘ is in Case (III.4).

Let f℘ be the absolute residue degree of ℘. Put

η =
∑
℘|2

η℘f℘.

If L℘ is in Case (III.4), then [θnP∼ : F×2
nP∼] ≤ 2f℘+1 which is independent of n.

Therefore, we can assume that for all P∼|℘,

θnP∼ = F×2
nP∼ if L℘ is in Case (III.4).

Lemma 4.1. Let F be a finite extension of Q2 and ℘ the prime ideal of OF .
Let e and f be the ramification index and the residue degree of ℘ respectively.
Then for any even integer i satisfying 0 ≤ i ≤ 2e− 2, we have[

(1 + ℘i)F×2 :
(
1 + ℘i+2

)
F×2

]
= 2f .

Proof. For any i between 0 and 2e−2, (1+℘i)F×2 = (1+℘i+1)F×2. Therefore,
if 0 ≤ i ≤ 2e− 4,

(1 + ℘i)F×2

(1 + ℘i+2)F×2
∼= (1 + ℘i+1)F×2

(1 + ℘i+2)F×2
∼= 1 + ℘i+1

1 + ℘i+2
.

The proof is now finished because (1 + ℘a)/(1 + ℘a+1) has order 2f for all
positive integer a.

Theorem 4.3. Suppose that F is totally real and L is positive definite. If
µ(F ∗) = 0, then hs(Ln) = 2η2n+O(1).
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Proof. Let Hn (resp. H∗n) be the maximal unramified (resp. unramified
outside ∞) elementary 2-extension of Fn. By the hypothesis, we know that
for all n,

Fn ⊆ H∗n ⊆ Σn ⊆Mn.

Using Lemma 4.1 and the fact that the number of dyadic primes in Fn is
constant, we can see that

[Σn : H∗n] ≤ 2η2n

[Mn : Σn] ≤ 2
∑

(1−η℘)f℘2n+O(1).

Let d be the degree [F : Q]. Since d =
∑
℘|2 f℘, therefore, [Mn : Σn] ≤

2(d−η)2n+O(1). The index [H∗n : Fn] is bounded as µ(F ∗) = 0. As a result,

[Mn : Fn] = [Mn : Σn][Σn : H∗n][H∗n : Fn]

≤ 2(d−η)2n+O(1) · 2η2n · 2O(1)

= 2d2n+O(1).

However, Proposition 2.2 says that [Mn : Fn] = 2d2n+O(1). Therefore, we
must have hs(Ln) = [Σn : Fn] = 2η2n+O(1).

Since the theory of Z-lattice is of particular interest, we specialize the
previous results to the case F = Q in the following theorem.

Theorem 4.4. If F = Q, then
(1) If L is indefinite, then hs(Ln) is bounded.
(2) If L is definite, then hs(Ln) is bounded if L2 is in Case (I) or (II.1)

and

hs(Ln) =



22n−2+O(1) if L2 is in Case (II.2)
23·2n−3+O(1) if L2 is in Case (III.1)
22n−1+O(1) if L2 is in Case (III.2)
23·2n−2+O(1) if L2 is in Case (III.3)
22n+O(1) if L2 is in Case (III.4).

We next turn our attention to the case when F is a CM field. For each
n, let the maximal real subfield of Fn be En. Put E∞ = ∪En. It is easy to
see that

Lemma 4.2. E∞/E is a cyclotomic Z2-extension.
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Let δn be the discriminant of the field extension Fn/En. By calculating
the ramification indices, we can see that the prime divisors of δn are lying
over the prime divisors of the discriminant of F/E. Since no finite primes
in E split completely in E∞. So we have proved:

Lemma 4.3.
(1) The prime divisors of δn are all nondyadic.
(2) The number of distinct prime divisors of δn is eventually constant.

Let ℘̂ be a dyadic prime of E. Define

τ℘̂ = min{η℘ : ℘ dyadic prime in F and ℘|℘̂}

where η℘ is defined as before. Let f℘̂ be the absolute residue degree of ℘̂.
Let

τ =
∑
℘̂|2

τ℘̂f℘̂.

Let Jn be the idèle group of En. Via class field theory, we define an elemen-
tary 2-extension Ωn/En which corresponds to

Wn = E×n

∗∏
P̂∼|∞

E×2
n

∗∏
P̂∼6 | 2

O×
nP̂∼E

×2

nP̂∼

∗∏
P̂∼|℘̂

(
1 + P̂∼τP̂∼2n+1

)
E×2

nP̂∼ ⊆ Jn.

Here
∏∗ is the restricted product in Jn.

Lemma 4.4. For any n, Σn contains Ωn.

Proof. It suffices to show that for each dyadic prime P̂∼ of En, we have

∏
P∼|P̂∼

NFnP∼/EnP̂∼(αP∼) ∈
(

1 + P̂∼τP̂∼2n+1
)

where αP̂∼ ∈ (1 + P∼η℘2n+1

). This is true because Fn/En is unramified at all
dyadic primes and hence NFnP∼/EnP̂∼(1 + P∼a) = (1 + P̂∼a) for any a ≥ 0. The
assertion is now clear because τ℘̂ = min{η℘ : ℘|℘̂}.

Let MEn (resp. MFn) be the maximal elementary 2-extension of En (resp.
Fn) which is unramified outside 2 ∪∞. Obviously, Ωn ⊆MEn ∩ Σn.

Lemma 4.5. The degree [MEn ∩Σn : Ωn] is bounded as n tends to infinity.
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Proof. Let Vn be the subgroup of the idèle group of Fn which corresponds to
the extension Σn/Fn. It suffices to show that the index [Wn : E×n NFn/En(Vn)]
is bounded. It is clear that E×n NFn/En(Vn) contains the subgroup

E×n

∗∏
P̂∼∈∞

E×2
n

∗∏
P̂∼6 | 2δn

O×
nP̂∼E

×2

nP̂∼

∗∏
P̂∼|δn

E×2

nP̂∼

∗∏
P̂∼|℘̂

(
1 + P̂∼τ℘̂2n+1

)
E×2

nP̂∼.

Therefore, [Wn : E×n NFn/En(Vn)] is bounded above by
∏
P̂∼|δn [O×

nP̂∼E
×2

nP̂∼ :
E×2

nP̂∼] =
∏
P̂∼|δn 2. It is certainly bounded when n tends to infinity in view of

Lemma 4.3.

Let Kn (resp. Hn) be the maximal elementary 2-extension of En (resp.
Fn) which is unramified outside ∞.

Lemma 4.6. For any n, Ωn ∩Hn = Kn.

Proof. It is clear that Kn ⊆ Ωn∩Hn. For equality, we suffice to demonstrate
that Ωn ∩Hn/En is unramified outside ∞. First of all, as a subextension of
Hn/En, Ωn ∩Hn/En is ramified only at the prime dividing δn and ∞. On
the other hand, since Ωn ⊆ MEn , Ωn ∩Hn/En is unramified outside 2 ∪∞.
By Lemma 4.3, all prime divisors of δn is nondyadic. The assertion is now
proved.

Theorem 4.5. Let F be a CM field. If µ(F ) = 0, then hs(Ln) =
2τ2n+O(1).

Proof. First of all, we note that [MEn : Ωn] = 2( d2−τ)2n+O(1) and [Ωn : En] =
2τ2n+O(1). They can be proved similarly as in Theorem 4.3. Now,

[MFn : Σn] ≥ [ΣnMEn : Σn]

= [MEn : MEn ∩ Σn]

=
[MEn : Ωn]

[MEn ∩ Σn : Ωn]

= 2( d2−τ)2n+O(1).

Since µ(F ) = 0, µ(E∗) = 0 also. Therefore,

[Σn : Hn] ≥ [ΩnHn : Hn]

= [Ωn : Ωn ∩Hn]

= [Ωn : Kn]

=
[Ωn : En]
[Kn : En]

= 2τ2n+O(1).
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Also, [Hn : Fn] = 2O(1). So, combining everything together, we have

[MFn : Fn] ≥ 2( d2−τ)2n+O(1) · 2τ2n+O(1) · 2O(1) = 2
d
2 2n+O(1).

However, Proposition 2.2 shows that the above must be an equality. Conse-
quently, hs(Ln) = [Σn : Fn] = 2τ2n+O(1).

5. Cyclotomic Zp-Extensions, p > 2.

We keep all the notations used in the last section. Let F∞/F be the cyclo-
tomic Zp-extension. Let X be a finite set of primes of F containing all the
infinite primes. When p = 2, the assumption µ(F ∗) = 0 implies that |IXn |
and |IX∗n | are bounded as n tends to infinity (see Corollary 2.1). If p > 2,
the 2-primary modules of the group Gal(F∞/F ) do not behave as well as in
the p = 2 case. In particular, we cannot apply Iwasawa’s theory to estimate
the 2-part of any class groups of Fn. However, we do have the following
result due to Washington [Wa1].

Theorem 5.1 ([Wa1]). Suppose that F is an abelian extension of Q and
F∞/F is the cyclotomic Zp-extension. Then for any prime l 6= p, the l-part
of the ideal class group of Fn is bounded as n tends to infinity.

Corollary 5.1. Under the hypothesis of Theorem 5.1, |IXn | and |IX∗n | are
bounded as n tends to infinity.

In the proofs of Proposition 2.2 and 2.3, we actually only require two con-
ditions satisfied. Firstly, |IXn | and |IX∗n | are bounded as n tends to infinity.
Secondly, the number of dyadic primes in Fn is eventually constant. When
F is abelian over Q, the first condition is fulfilled by Corollary 5.1. The
second one is ensured by the fact that no finite prime split completely in a
cyclotomic Zp-extension. Therefore, we have:

Corollary 5.2. Suppose that F is abelian over Q. Let Mn (resp. Nn) be
the maximal elementary 2-extension of Fn which is unramified outside 2∪∞
(resp. 2). Then
(1) [Mn : Fn] = 2(r1+r2)pn+O(1);
(2) [Nn : Fn] = O(1) if F is real.

From now on, F is assumed to be an abelian number field in which 2 is
unramified. The extension F∞/F is the cyclotomic Zp-extension where p is
an odd prime. Note that 2 is unramified in all Fn.

Lemma 5.1. If L does not have Type II reduction at a dyadic prime ℘,
then [F×nP∼ : θnP∼] ≤ 2 for any prime P∼ of Fn dividing ℘.
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Proof. Note that Ln also does not have Type II reduction at P∼. Therefore we
can just prove the lemma for L. If a Jordan splitting of L℘ has a component
of rank ≥ 2, then it is clear from [H, Prop. A] and [EH, Thm. 3.14]. So,
we may assume that L ∼= 〈1〉 ⊥ 〈2r2ε2〉 ⊥ · · · ⊥ 〈2rmεm〉 where 0 = r1 < r2 <
· · · < rm and εi ∈ O×F for all i. If ri+1 − ri ≤ 3, then it is a consequence
of [EH, 1.9]. The lemma is now proved since Type II reduction means that
ri+1 − ri ≥ 4 for all i.

Let P∼ be a nondyadic prime of Fn. If P∼ does not divide v(L), then
θnP∼ = O×nP∼F×2

nP∼. Suppose that P∼|v(L). Since any finite prime of F is finitely
decomposed in F∞ or totally ramified, we may assume that θnP∼ = O×nP∼F×2

nP∼.
Let ℘ be a dyadic prime of F and P∼ a prime of Fn lying over ℘. By

Lemma 3.1 and 5.1, we may assume that

θnP∼ =

{
F×2
nP∼ if L℘ has Type II reduction
O×nP∼F×2

nP∼ otherwise.

Theorem 5.2. Suppose that F∞/F is the cyclotomic Zp-extension of a real
abelian number field F . If L is totally indefinite, then hs(Ln) is eventually
constant.

Proof. The proof is the same as the one given for Theorem 4.1. We just need
to replace Proposition 2.3 by Corollary 5.2. Moreover, the sequence hs(Ln)
is nondecreasing by [EH2].

Theorem 5.3. Suppose that F∞/F is the cyclotomic Zp-extension of a real
abelian number field F . If L is a definite lattice, then there is a constant σ
such that 0 ≤ σ ≤ [F : Q] and hs(Ln) = 2σp

n+O(1).

Proof. Let Σn be the spinor class field of Ln. By our modification on the
local spinor norms, we can assume that Σn ⊆ Mn. Let H∗n be the maximal
elementary 2-extension of Fn which is unramified outside ∞. By Washing-
ton’s theorem, [H∗n : Fn] is bounded as n tends to infinity. Let D be the set
of all dyadic primes of F at which L has Type II reduction. Then

[Σn : Fn] = [Σn : H∗n][H∗n : Fn] ≤
( ∏
P∼∈Dn

2eP∼fP∼
)
· 2O(1)

where eP∼ and fP∼ are the absolute ramification index and absolute residue
degree of P∼ respectively. Using Lemma 4.1, we also get

[Mn : Σn] ≤
∏
P∼∈Dn

2eP∼fP∼ · 2O(1).
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As a result, [Mn : Fn] ≤ 2[F :Q]pn+O(1). However, Corollary 5.2 says that it
must be an equality. Therefore, [Σn : Fn] = (

∏
P∼∈Dn 2eP∼fP∼) · 2O(1).

Now eP∼ = 1 since 2 is unramified in every Fn. Let fn be the absolute
residue degree of a dyadic prime of Fn. It is independent of the choice of
the dyadic prime. Since any dyadic prime of F is finitely decomposed in
F∞, there exists a n0 such that fn+1 = pfn and |Dn| = |Dn0 | for all n ≥ n0.
In other words, fn = pn−n0fn0 for all n ≥ n0. Therefore, for n ≥ n0,∑
P∼∈Dn fP∼eP∼ = pn−n0fn0 |Dn0 |. Let σ = p−n0fn0 |Dn0 |. Then 0 ≤ σ ≤ [F : Q]

and hs(Ln) = 2σp
n+O(1).

Remark. (1) If D is empty, then hs(Ln) is eventually constant as the
sequence hs(Ln) becomes bounded and nondecreasing.
(2) If D contains all the dyadic primes, then σ = [F : Q].

Again, let us summarize the result when F = Q.

Theorem 5.4. Let L be a lattice on a quadratic space over Q of dimension
at least 3. Then hs(Ln) is eventually constant unless L is definite and has
Type II reduction at 2. In the exceptional case, hs(Ln) = 2p

n+O(1).

We next turn our attention to the case where F is a complex abelian
extension of Q. Let En be the maximal real subfield of Fn. Then E∞ = ∪En
is the cyclotomic Zp-extension of E = E0. Define a finite set of primes R
of E as follows. If ℘̂ ∈ R, then ℘̂ is dyadic and there exists a dyadic prime
℘ ∈ D lying above ℘̂. Now, for any dyadic prime P∼ of En, define a subgroup
ΘP∼ of E×nP∼ by

ΘP∼ =

{
E×2
nP∼ if P∼ 6∈ Rn
O×nP∼E×2

nP∼ otherwise.

Let Ωn be the elementary 2-extension of En corresponding to the following
subgroup of idèle group of En:

E×n

∗∏
P∼
E×2
nP∼

∗∏
P∼6∈2

O×nP∼E×2
nP∼

∗∏
P∼∈2

ΘP∼.

Using the argument in the proof of Theorem 5.3, one can show that [Ωn :
En] = 2τp

n+O(1) for some constant τ between 0 and [E : Q].

Theorem 5.5. Suppose that F∞/F is the cyclotomic Zp-extension of a
complex abelian number field F . For any lattice L, there is a constant τ
such that 0 ≤ τ ≤ 1

2
[F : Q] and hs(Ln) = 2τp

n+O(1).

We skip the proof of the above theorem since it is similar to the proof
of Theorem 4.5. We merely remark that the constant τ is precisely the one
described before the theorem.
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6. Local Spinor Norms.

The aim of this section is to give the proof of Theorem 4.2. Throughout this
section, we assume that F is a 2-adic local field. Let L be a lattice on a
quadratic space V over F . We lift the lattice L to a totally ramified cyclic
extension K/F of degree e = 2n, n ≥ 4. The lifted lattice L̃ = L⊗OK is on
the space Ṽ = V ⊗K. We always use π to represent a prime element in OK .
The unique prime ideal of K is denoted by P∼. The scale and the norm of L
are written as s(L) and n(L) respectively.

Definition 6.1. A lattice M on Ṽ is said to be defined over OF if there
is a basis {x1, · · · , xm} of M such that the matrix 〈B(xi, xj)〉 has entries in
OF .

Lemma 6.1. Suppose a Jordan splitting of L has a unimodular compo-
nent of rank ≥ 3. Then L̃ ∼= A(0, 0) ⊥ N where N is defined over OF .

Proof. Let L = L1 ⊥ M with L1 unimodular and s(M) ⊆ 2O×F . If the rank
of L1 is at least 5, then A(0, 0) splits L1 and we are finished. Therefore, we
may assume that the rank of L1 is 3 or 4.

Suppose that the rank of L1 is 3. Let a be a norm generator of L. Then
a is a norm generator of L̃ as well. We choose 2 to be the weight generator
of L. By the weight formula in [OM, 94], we see that 2 is also a weight
generator of L̃. Since ordK(a) + ordK(2) is even, L̃1

∼= A(0, 0) ⊥ N for some
lattice N on Ṽ . By comparing determinants, we see that N is defined over
OF .

Suppose that the rank of L1 is 4. If L1 is improper, then L1
∼= A(0, 0) ⊥

A(2, 2ρF ) or A(0, 0) ⊥ A(0, 0). So, we may assume that L1 is proper. In
this case, L1 has a rank 3 orthogonal summand J and L̃1

∼= J̃ ⊥ 〈α〉 where
α ∈ O×F . As in the last paragraph, J̃ ∼= A(0, 0) ⊥ N ′ for some N ′ defined
over OF . Therefore, L̃1

∼= A(0, 0) ⊥ N ′ ⊥ 〈α〉 and N := N ′ ⊥ 〈α〉 is defined
over OF .

Lemma 6.2. Let σ ∈ O(L) and x ∈ L. If σx ± x is anisotropic, then
Sσx±xσ(x) = ∓x.

Proof. Direct verification.

Let S(L) be the subgroup of O(L) generated by the symmetries which
fix L. Put X(L) to be the subgroup of O(L) generated by S(L) and the
Eichler transformations in O(L). If s(L) ⊆ OF , we define another group
Xh(L) as follows (see [OP]). If rank L ≤ 2, Xh(L) is just S(L). If rank
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L > 2, Xh(L) is defined to be the subgroup of X(L) generated by S(L)
and Eichler transformation Ey

w ∈ X(L) for which there exists a splitting
L = A(0, 0) ⊥M with y ∈ A(0, 0) and w ∈M .

Theorem 6.1. O(L̃) = X(L̃).

Proof. We proceed by induction on the rank of L. By scaling, we may assume
that L = L1 ⊥ M with L1 unimodular and s(M) ⊆ 2OF . The theorem is
clear if L is of rank 1.

Suppose that the rank of L1 is at least 3. By Lemma 6.1, L̃ = A(0, 0) ⊥ N
where N is defined over OF . So we may assume N = J̃ for some lattice J
on a quadratic space over F . By [OP, 2.5], O(L̃) = Xh(L̃)O(J̃) and we are
done by induction.

If L1 is binary, then we can assume that L1 is A(0, 0), A(2, 2ρF ), A(1, 2δ)
or A(1, 4λ) with δ ∈ O×F and λ = 0 or ρF . The case A(0, 0) can be done
by using [OP, 2.5] again. Suppose L1 = A(2, 2ρF ). If Q(M) ∩ 2O×F 6= ∅,
then there exists a z ∈M such that Q(z) = 2η ∈ 2O×F . By [OM, 93:29], we
can see that A(2, 2ρF ) ⊥ 〈2η〉 ∼= A(0, 0) ⊥ 〈2η(1 − 4ρF )〉 and so [OP, 2.5]
applies. Therefore, we assume that Q(M) ∩ 2O×F = ∅. Then n(M) ⊆ 4OF
and hence n(M̃) ⊆ 4OK . In other words, Q(M̃) ∩ 2O×K is empty also. We
apply [OP, 2.1] to conclude that O(L̃) = S(L̃)O(M̃). The assertion follows
by induction.

Suppose that L1 = A(1, 2δ). Let {x, y} be a basis of L1 adapted to
A(1, 2δ). Take σ ∈ O(L̃) and write σx = Ax + Cy + w with w ∈ M̃ . Then
1 = Q(σx) = A2 + 2AC + 2C2δ + Q(w). Therefore, 1 − A2 ∈ 2OK and
hence A ∈ O×K . If 1− A− C ∈ O×K , then one can check that Sσx−x ∈ O(L̃).
Otherwise, A/δ + (1 − A + C) ∈ O×K and SSyσx−x ∈ O(L̃). Let φ be Sσx−x
or SSyσx−xSy. Then φ ∈ X(L̃) and φσx = x. Now OKx splits L̃ and
φσ ∈ O(OKx⊥). Therefore induction applies and we can conclude that
σ ∈ X(L̃). Similar argument applies when L1 = A(1, 4λ). One shows that
φσx = x where φ = Sσx−x or SSzσx−xSz with z = πe/2x+ y.

If L1 is of rank 1, then we may assume that L = OFx ⊥M with s(M) ⊆
2OF and Q(x) = 1. Let σx = Ax + w with w ∈ M̃ . Direct computations
show that A must be a unit. We suffice to produce φ ∈ X(L̃) so that
φσx = x. If 1−A 6∈ 2P∼, then ordK(Q(σx− x)) = e+ ordK(1−A) ≤ 2e and
so Sσx−x ∈ O(L̃). Otherwise, Sσx+x ∈ O(L̃).

Since 2 is totally ramified in K, there is a β ∈ O×K such that 2 = πeβ. In
below, the quadratic defect function on K is denoted by DK .

Lemma 6.3. Let δ be a unit in O×F . Then DK(δ) ⊆ P∼2e−1.
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Proof. The lemma is certainly true when e = 2. For n > 1, let E be the
unique subfield of K with [E : F ] = 2n−1. Let P∼E be the prime ideal of OE.
Apply induction and we have DE(δ) ⊆ P∼2n−1

E . As P∼EOK = P∼2, we have
DK(δ) ⊆ P∼2n+1−2. Therefore, DK(δ) ⊆ P∼2n+1−1 = P∼2e−1.

Lemma 6.4. DK(β) ⊆ P∼e−1.

Proof. Let M be the unique quadratic extension of F inside K. Inside M ,
2 = π2

M t where t ∈ O×M and ordM(πM) = 1. Therefore, πeDK(β) = πeDK(t)
and thus DK(β) = DK(t). Apply Lemma 6.3 to the extension K/M and we
have DK(t) ⊆ P∼e−1.

We first compute θL̃ when L̃ is binary. The results are basically extracted
from [H] and [Xu].

Lemma 6.5. Suppose that L is binary unimodular.
(1) If L is improper, then θL̃ = O×KK×2.
(2) If L is proper, then θL̃ = (1 + P∼ e

2 )K×2.

Proof. (1) is just [H, Lemma 1]. For (2), we may assume that L represents 1.
If L̃ ∼= A(1, 0) or A(1, 4ρK), then [H, Prop C] applies. Note that e ≡ 0 mod
4. So, we are left with the case where L̃ = A(1,−α), disc(L̃) = −(1+α) and
DK(1 + α) = αOK 6= 0 or 4OK . However, disc(L̃) ∈ disc(L)K×2 and hence
DK(1 + α) ⊆ P∼2e−1 by Lemma 6.3. This shows that DK(1 + α) = αOK =
P∼2e−1. We now apply [H, Prop. D].

Lemma 6.6. Suppose L = 〈1〉 ⊥ 〈2rε〉 where r ≥ 1 and ε ∈ O×F . Then
(1) θL̃ = K×2 ∪ εK×2 if r > 4.
(2) θL̃ = (1 + P∼2e)K×2 ∪ ε(1 + P∼2e)K×2 if r = 4.

(3) θL̃ = (1 + P∼ 3e
2 )K×2 ∪ β(1 + P∼ 3e

2 )K×2 if r = 3.
(4) θL̃ = (1 + P∼e)K×2 if r = 2.
(5) θL̃ ⊆ O×KK×2 if r = 1. Furthermore, if DK(2) ⊆ P∼3e−1, then θL̃ =

(1 + P∼ 3e
4 )K×2.

Proof. (1) is just [Xu, Prop. 2.1]. The lattice L̃ is isometric to 〈1〉 ⊥
〈πreβrε〉. The quadratic defect of βrε and −βrε are contained in P∼e−1.
Since e− 1 > 2e− re/2 for r = 3 or 4, so (2) and (3) can be deduced from
[Xu, Prop. 2.2(iii)]. Note that ε ∈ (1 + P∼ 3e

2 )K×2 by Lemma 6.3. If r = 2,
then (3e − re/2)/2 = e and DK(−β2ε) = DK(−ε) ⊆ P∼2e−1. We can now
apply [Xu, Prop. 2.3(iii)]. Note that e− [e/2− e/2] = e.
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If r = 1, then (3e−re/2)/2 = 3e/4. On the other hand, DK(−βε) ⊆ P∼e−1

and 5e/4 > e − 1 > e − e/2. Therefore, [Xu, Prop. 2.3(ii)] applies and so
θL̃ ⊆ O×KK×2. If DK(2) ⊆ P∼3e−1, then DK(β) ⊆ P∼2e−1 and so DK(−βε) ⊆
P∼2e−1. In this case, apply [Xu, Prop. 2.3(iii)] and the result follows.

Corollary 6.1. Suppose that L is a binary lattice. Then Q(v) ∈ O×KK×2

for all v ∈ P (L̃). Consequently, θ(O(L̃)) ⊆ O×KK×2.

Proof. Let u ∈ L so that Q(u) is a norm generator. Then Q(u) is a norm
generator of L̃ as well. Let v ∈ P (L̃). ThenQ(v) ∈ Q(u)θ(O(L̃)). By Lemma
6.5 and 6.6, we see that θL̃ ⊆ O×KK×2. However, Q(u) ∈ F× ⊆ O×KK×2.
Therefore, Q(v) ∈ O×KK×2. The last assertion is a consequence of Theorem
6.1.

Theorem 6.2. For any lattice L on V , θ(O(L̃)) ⊆ O×KK×2.

Proof. We prove the theorem by induction on the rank of L. We already
established the theorem when the rank of L is 2 and it is trivial when the
rank is 1. So, we assume in below that the rank of L is at least 3. Since
F× ⊆ O×KK×2, we can scale L by any scalar in F . This allows us to assume
that L = L1 ⊥ M where L1 is the unimodular component of a Jordan
splitting of L.

Suppose that L̃ is split by H = A(0, 0). This is the case when (i) the
rank of L1 is ≥ 3 (see Lemma 6.1) , (ii) L1 = A(0, 0) or (iii) L1 = A(2, 2ρF )
and Q(M) ∩ 2O×F 6= ∅. Let σ ∈ O(L̃). Clearly L̃ = σL̃ = σH ⊥ σÑ .
Let {x, y} be a hyperbolic pair for H. Then {σx, σy} is a hyperbolic pair
for σH. By [OP, 2.3], there exists an Eichler transformation E ∈ O(L̃)
such that E(σx) = εx for some ε ∈ O×K . Therefore, E(σH) = OKx + OKz
where {x, z} is a hyperbolic pair and E(σy) = ε−1z. By [OP, 2.4], we can
find another Eichler transformation E′ ∈ O(L̃) such that E′(z) = y and
E′(x) = x. Let τ = E′E and φ = Sx−ySεx−yτ . Since φ(σx) = x and
φ(σy) = y. Hence φσ ∈ O(Ñ). By induction, θ(φ)θ(σ) ⊆ O×KK×2. Now,
Q(x − y) = −2 ∈ O×KK×2 and Q(εx − y) = −2ε ∈ O×KK×2. Therefore
θ(φ) ⊆ O×KK×2 and so is θ(σ).

Suppose that L1 is binary. If L1 is proper, then we can assume that L1

represents 1. Let x ∈ L1 be a vector such that Q(x) = 1. In the proof of
Theorem 6.1, we show that for any σ ∈ O(L̃), we can find φ ∈ X(L̃) so
that φσ ∈ O(OKx⊥). Direct calculation shows that θ(φ) ∈ O×KK×2. By
induction, θ(σ) ∈ O×KK×2.

If L1 = A(2, 2ρF ), we only need to look at the case when Q(M)∩2O×F = ∅.
Let {x, y} be a basis of L1 adapted to A(2, 2ρF ). Let σ ∈ O(L̃) and write
σx = Ax+Cy+w with w ∈ M̃ . Note that Q(w) ∈ 4OK . Suppose C ∈ O×K .
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Then Q(σx − x) = 4 − 2B(σx, x) = 4 − 4A − 2C which is in 2O×K . Then
Sσx−xσ ∈ O(OKx⊥) and so θ(σ) ⊆ O×KK×2. Suppose that C is in P∼. Since
2 = Q(σx) = 2A2 + 2AC+ 2ρFC2 +Q(w), therefore, A must be a unit. As a
result, the coefficient of y in Syσx = Ax+ (−Aρ−1

F −C)y+w is in O×K . This
implies that SSyσx−xσ ∈ O(OKx⊥) and Q(Syσx− x) = 4− 4A− 2(−Aρ−1

F −
C) ∈ O×KK×2 and hence θ(σ) ∈ O×KK×2.

Finally, let us assume that L1 has rank 1. By scaling, we may further
assume that there is a vector x in L1 with Q(x) = 1. Take σ ∈ O(L̃)
and write σx = Ax + w with w ∈ M̃ . From the proof of Theorem 6.1,
we can see that if 1 − A ∈ 2P∼, then 1 + A ∈ 2O×K , Sσx+x ∈ O(L̃) and
Q(σx + x) = 2(1 + A) ∈ 4O×K . Moreover, Sσx+xσ ∈ O(M̃). By induction,
we have θ(σ) ∈ Q(σx + x)O×KK×2 = O×KK×2. If 1 − A is not in 2P∼, then
Sσx−x ∈ O(L̃). Therefore, ordK(1 − A) ≤ e. Note that if we can show that
ordK(1 − A) is even, then we are done. For, Q(σx − x) = 2(1 − A) and so
ordK(Q(σx − x)) is also even. By a similar argument as before, we have
θ(σ) ∈ Q(σx − x)O×KK×2 = O×KK×2. If s(M) ⊆ 4OF , then ordK(Q(w)) ≥
2e. However, Q(σx−x) = (A−1)2+Q(w). This means that ordK(1−A) = e
which is even. So, we may assume s(M) = 2OF and ordK(1−A) < e.

Let L = 〈1〉 ⊥ L2 ⊥ N where L2 is 2-modular and s(N) ⊆ 4OF . Write
σx = Ax + y + z where y ∈ L̃2 and z ∈ Ñ . Since Q(z) ∈ 4OK , we have
2e > e + ordK(1 − A) = ordK(Q(σx − x)) = ordK((A − 1)2 + Q(y)). Let
v = (A−1)x+y. We can see that Sv ∈ O(〈1〉 ⊥ L̃2) since 2B(v, x) = 2(A−1)
and 2B(v, L̃2) = 2B(y, L̃2) ⊆ 4OK . If the rank of L2 is 1, then 〈1〉 ⊥ L2

is binary and hence Q(v) ∈ O×KK×2 by Corollary 6.1. This shows that
ordK(1−A) is even and we are done. Suppose that the rank of L2 is at least
2. Let T = 〈1〉 ⊥ L̃2 and T# be the dual of T . Then T#2 = L̃#2

2 ⊥ 〈2〉. Now
T#2 is an integral lattice defined over OF and the unimodular component
has rank ≥ 2. Therefore Sv ∈ O(T#2) has spinor norm 2Q(v) which is
inside O×KK×2. In other words, ordK(Q(σx − x)) is even and we are done
again.

Corollary 6.2. If a Jordan splitting of L has a component of rank ≥ 3 or
of the form 2rA(0, 0) or 2rA(2, 2ρF ), then θL̃ = O×KK×2.

From now on, we assume that 2 is a square in K. Therefore, 2 = πeβ
with DK(β) = 0. It also implies that F× ⊆ (1 + P∼2e−1)K×2.

Lemma 6.7. If θL̃ ⊆ (1 + P∼λ)K×2 with λ ≤ 2e − 1, then Q(P (L̃)) ⊆
(1 + P∼λ)K×2.

Proof. Let v ∈ P (L̃). Fix u ∈ P (L̃) such that Q(u) ∈ OF is a norm generator.
Then SvSu ∈ O+(L̃) and therefore Q(u)Q(v) ∈ (1 + P∼λ)K×2. The lemma
follows since Q(u) ∈ OF \ 0 ⊆ (1 + P∼λ)K×2.



SPINOR GENERA UNDER Zp-EXTENSIONS 259

Lemma 6.8. Let 0 < λ ≤ e and α1, . . . , αn, β be integers in OK such that
αi ∈ (1 + P∼λ)K×2 and β ∈ P∼λ. If 1 + α1 + · · ·+ αn + β is a unit, then it is
inside (1 + P∼λ)K×2.

Proof. For each i, write αi = η2
i + πλti where ηi, ti ∈ OK . Then 1 + α1 +

· · ·+αn + β ≡ (1 +
∑
ηi)2 mod πλ. Since 1 +α1 + · · ·+αn + β is a unit and

λ > 0, (1 +
∑
ηi)2 is also a unit and the lemma is proved.

Lemma 6.9. Suppose L ∼= 〈1〉 ⊥ M with s(M) ⊆ 4OF . If θM̃ ⊆ (1 +
P∼λ)K×2 where 0 < λ ≤ e, then θL̃ ⊆ (1 + P∼λ)K×2.

Proof. In view of Theorem 6.1, we suffice to show that Q(v) ∈ (1 +P∼λ)K×2

for any v ∈ P (L̃). Write v = Ax + z where Q(x) = 1, A ∈ OK and z ∈ M̃ .
Then Q(v) = A2 +Q(z). In below, | · | denote the P∼-adic norm on K.

Suppose that |A2| < |Q(z)|. In this case, |Q(v)| = |Q(z)|. Therefore,
z ∈ P (M̃) and hence Q(z) ∈ (1 + P∼λ)K×2 by Lemma 6.7 and hypothesis.
Now apply Lemma 6.8 to the unit 1+A2/Q(z), we see that Q(v) = Q(z)(1+
A2/Q(z)) ∈ (1 + P∼λ)K×2.

If |A2| = |Q(z)|, then |A2| and |Q(z)| are both greater than or equal
to |Q(v)|. Therefore z ∈ P (M̃) and so Q(z) ∈ (1 + P∼λ)K×2 by Lemma
6.7. Since v ∈ P (L̃), we must have |Q(v)| ≥ |2B(x, v)| = |2A|. Therefore,
|A2| ≥ |2A| and so |A| ≥ |2|. However, |4| ≥ |Q(z)| since s(M) ⊆ 4OF .
Therefore |4| = |A2| = |Q(z)| = |Q(v)|. Now Q(v) = A2(1 + Q(z)/A2) and
this implies (1 + Q(z)/A2) ∈ O×K . Apply Lemma 6.7 again and we obtain
the assertion.

Finally, let us assume that |A2| > |Q(z)|. If |Q(z)| ≤ |4πλ|, then 1 +
Q(z)/A2 ∈ 1 + P∼λ because |A2| ≥ |4| (see the last paragraph) and hence
Q(v) ∈ (1 + P∼λ)K×2. If we have |Q(z)| > |4πλ| ≥ |8|, then |Q(z)| >
|2B(z, w)| for any w ∈ M̃ . In other words, z ∈ P (M̃) and so Q(z) ∈
(1 +P∼λ)K×2. Apply Lemma 6.8 again to the unit 1 +Q(z)/A2, we see that
Q(v) = A2(1 +Q(z)/A2) ∈ (1 + P∼λ)K×2.

Proposition 6.1. Suppose all the components of a Jordan splitting L are
of rank 1. Then θL̃ ⊆ (1 + P∼ 3e

4 )K×2. In particular, if L is split by 2r(〈1〉 ⊥
〈2ε〉) with ε ∈ O×F , then θL̃ = (1 + P∼ 3e

4 )K×2.

Proof. We will proceed by induction on the rank of L. The proposition is
true when L is of rank 1 or rank 2 (see Lemma 6.6). In view of Lemma 6.9,
we may assume that L ∼= 〈1〉 ⊥ 〈2δ〉 ⊥ N where s(N) ⊆ 4OF and N 6= 0.
Let {x, y} be a pair of vectors adapted to the summand 〈1〉 ⊥ 〈2δ〉. For any
v ∈ P (L̃), write v = Ax+ Cy + z with z ∈ Ñ and A,C ∈ OK .
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Suppose that |A2 + 2δC2| > |Q(z)|. In this case, Max(|A2|, |2δC2|) ≥
|Q(v)| = |A2 + 2δC2| ≥ |2A|. The last inequality holds because |Q(v)| ≥
|2B(x, v)|.

If |2δC2| ≤ |A2|, then |2| ≤ |A| and so |Q(v)| ≥ |4|. Moreover, A2+2δC2 ∈
(1 + P∼ 3e

4 )K×2 because Ax + Cy ∈ P ( ˜〈1〉 ⊥ ˜〈2δ〉). If |Q(z)| ≤ |4π 3e
4 |, then

|Q(z)(A2 + 2δC2)−1| ≤ |π 3e
4 | and so Q(v) = (A2 + 2δC2)(1 + Q(z)(A2 +

2δC2)−1) ∈ (1 + P∼ 3e
4 )K×2. So we assume |Q(z)| > |4π 3e

4 | > |8|. Then
z ∈ P (Ñ) and induction hypothesis implies that Q(z) ∈ (1 + P∼ 3e

4 )K×2.
Apply Lemma 6.8 to the unit 1 +Q(z)(A2 + 2δC2)−1 and we are done.

However, if |A2| < |2δC2|, then |Q(v)| = |2δC2|. Also |2δC2| = |2δC2 +
A2| > |Q(z)|. Therefore, |2δC2 + Q(z)| = |2δC2| = |Q(v)|. So, Cy + z ∈
P ( ˜〈2δ〉 ⊥ Ñ) and induction hypothesis implies that 2δC2 + Q(z) ∈ (1 +
P∼ 3e

4 )K×2. Therefore, Q(v) = (2δC2 + Q(z))(1 + A2(2δC2 + Q(z))−1) ∈
(1 + P∼ 3e

4 )K×2. Note that 1 + A2(2δC2 + Q(z))−1 is a unit since |Q(v)| =
|2δC2 +Q(z)|.

Suppose that |A2 + 2δC2| = |Q(z)|. Here, both A2 + 2δC2 and Q(z) are
in (1 + P∼ 3e

4 )K×2 since Ax + Cy ∈ P ( ˜〈1〉 ⊥ ˜〈2δ〉) and z ∈ P (M̃). If |A2| ≥
|2δC2 + Q(z)|, then |A2| ≥ |Q(v)| ≥ |2A|. So, |A| ≥ |2| and |Q(v)| ≥ |4|.
However, |4| ≥ |Q(z)| ≥ |Q(v)|. Hence |4| = |Q(v)| = |Q(z)| = |A2 + 2δC2|.
Therefore, 1 +Q(z)(A2 + 2δC2)−1 is a unit and Lemma 6.8 shows that it is
in (1 + P∼ 3e

4 )K×2 and hence so is Q(v).
If |A2| < |2δC2 + Q(z)|, then |2δC2 + Q(z)| = |Q(v)| and induction hy-

pothesis implies that 2δC2 +Q(z) ∈ (1+P∼ 3e
4 )K×2 as Cy+z ∈ P ( ˜〈2δ〉 ⊥ Ñ).

Consequently, Q(v) = (2δC2+Q(z))(1+A2(2δC2+Q(z))−1) ∈ (1+P∼ 3e
4 )K×2.

At last, suppose that |A2 + 2δC2| < |Q(z)|. This implies that |Q(z)| =
|Q(v)|. If |A2| > |Q(z)|, then |A2| > |Q(v)| ≥ |2A|. So, |A| > |2| and
|4| ≥ |Q(z)| = |Q(v)| > |4| which is impossible. So, we must have |Q(z)| ≥
|A2|. Since (A2 + 2δC2)Q(z)−1 is an integer, A2Q(z)−1 and 2δC2Q(z)−1 are
both inside OK . Induction hypothesis shows that Q(z) ∈ (1 + P∼ 3e

4 )K×2.
We then have A2Q(z)−1 and 2δC2Q(z)−1 are inside (1 + P∼ 3e

4 )K×2. Since
|Q(v)| = |Q(z)|, 1 + A2Q(z)−1 + 2δC2Q(z)−1 is a unit. Lemma 6.8 shows
that this unit must be inside (1 + P∼ 3e

4 )K×2 and hence so is Q(v).

Proposition 6.2. Suppose L ∼= 〈2r1ε1〉 ⊥ · · · ⊥ 〈2rnεn〉 where εi’s ∈ O×F
and r1 < r2 < · · · < rn. If min{ri − ri−1} = 2, then θL̃ = (1 + P∼e)K×2.

Proof. Clearly, (1+P∼e)K×2 ⊆ θL̃ by Lemma 6.6. The reverse inclusion can be
proved by using Lemma 6.9, together with an induction argument. Note that
θM̃ ⊆ (1 + P∼e)K×2 for all non-modular binary lattice M ∼= 2tε(〈1〉 ⊥ 〈2rδ〉)
with r ≥ 2.
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Proposition 6.3. Suppose L ∼= 〈2r1ε1〉 ⊥ · · · ⊥ 〈2rnεn〉 where all the εi ∈
O×F and ri − ri−1 ≥ 3 for all i. Then

θL̃ = {all even products of Q(v)K×2 : v ∈ P ( ˜〈2riεi〉 ⊥ ˜〈2ri+1εi+1〉)}.

In particular, if min{ri − ri−1} = 3, then θL̃ = (1 + P∼ 3e
2 )K×2.

Proof. Suppose that {x1, . . . , xn} is the basis which gives the Jordan splitting
stated in the proposition. For simplicity, we let Li = OFxi ⊥ OFxi+1 for
i = 1, · · · , n − 1. Let v =

∑
Aixi ∈ P (L̃). Then Q(v) =

∑
A2
i 2
riεi. Let k

be the largest index for which |Ak2rk | is maximal. Then |A2
k2
rk | ≥ |Q(v)| ≥

|2B(v, xj)| = |2Aj2rj | for all j. If ∃j < k such that |A2
j2
rj | = |A2

k2
rk |, then

|Aj| ≥ |2| as |A2
j2
rj | ≥ |2Aj2rj |. However, |A2

k2
rk | ≥ |Aj2rj+1|. Therefore

|A2
k2
rk−rj−1| ≥ |Aj| ≥ |2| which is impossible since rk − rj ≥ 3. Therefore

k is the unique index for which |A2
k2
rk | is maximal and |Q(v)| = |A2

k2
rk |.

Therefore, for any j ≥ k + 2,∣∣∣∣∣A2
j2
rj

A2
k2rk

∣∣∣∣∣ ≤ |2rj−rk−2| < |8|

and for any j ≤ k − 2, ∣∣∣∣∣A2
j2
rj

A2
k2rk

∣∣∣∣∣ ≤ |A2
k2
rk−rj−2| < |8|.

By local square theorem [OM, 63:1], we then have

Q(v) ∈ (A2
k−12rk−1εk−1 +A2

k2
rkεk +A2

k+12rk+1εk+1

)
K×2.

If |A2
k| > |2|, then |A2

k| ≥ |πe−2| and∣∣∣∣∣A2
k+12rk+1

A2
k2rk

∣∣∣∣∣ = |A2
k+1|

∣∣∣∣2rk+1−rk

A2
k

∣∣∣∣ < |4π|.
Therefore, Q(v) ∈ Q(P (L̃k−1))K×2. If |A2

k| ≤ |πe+2|, then∣∣∣∣∣A2
k−12rk−1

A2
k2rk

∣∣∣∣∣ ≤ |A2
k2
rk−rk−1−2|

≤ |2rk−rk−1−1π2| < |4π|

and so Q(v) ∈ Q(P (L̃k))K×2.
We are left with the case where |A2

k| = |πe|. If min{ri − ri−1} ≥ 4, then
the last set of inequalities still holds and we are done with this case also.
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Therefore we assume right now that min{ri − ri−1} = 3. We may further
assume that |Ak+1| = 1 and rk+1 − rk = 3 for otherwise |A2

k+12rk+1 | <
|4||A2

k2
rk | and then Q(v) ∈ Q(P (L̃k−1)) ⊆ (1 + P∼ 3e

2 )K×2. Since |A2
k2
rk | ≥

|2rk−1+1Ak−1|, we have |2rk−rk−1 | ≥ |Ak−1|. If strict inequality holds, then∣∣∣∣∣A2
k−12rk−1

A2
k2rk

∣∣∣∣∣ ≤ |A2
k−12rk−1−rk−1|

< |2rk−rk−1π2| < |4π|.

Therefore, Q(v) ∈ Q(P (L̃k))K×2. So, we may finally assume that rk+1 −
rk = 3, |Ak−1| = |8|, |A2

k| = |πe| and |Ak+1| = 1. Let u = Ak−1xk−1 +
Akxk. Then u ∈ P (L̃k−1) and so Q(u) ∈ (1 + P∼ 3e

2 )K×2. On the other
hand (1 +A2

k+12rk+1εk+1Q(u)−1) ∈ 1 + P∼2e ⊂ 1 + P∼ 3e
2 and therefore Q(v) ∈

(1 + P∼ 3e
2 )K×2.

Corollary 6.3. Suppose L ∼= 〈2r1ε1〉 ⊥ · · · ⊥ 〈2rnεn〉 where all the εi ∈ O×F
and ri − ri−1 ≥ 4 for all i. Then θL̃ ⊆ (1 + P∼2e−1)K×2.

Proof. By Lemma 6.6 and the fact that DK(ε) ⊆ (1 + P∼2e−1)K×2 for all ε ∈
O×F , we see that Q(v) ∈ (1 + P∼2e−1)K×2 for all v ∈ P ( ˜〈2riεi〉 ⊥ ˜〈2ri+1εi+1〉),
1 ≤ i ≤ n− 1.

Up to now, we have completed the proof of Case (I), (II.1) and (III)
of Theorem 4.2. Henceforth, we concentrate on Case (II.2) in which the
components of a Jordan splitting of L are of rank 1 or 2 but at least one
of them is of rank 2. Also, the binary components are all proper and hence
isometric to 2rε(〈1〉 ⊥ 〈δ〉) for some units ε, δ ∈ O×F .

Lemma 6.10. Suppose A and C are in OK and δ ∈ O×F such that ordK(A2

+δC2) = h < 2e − 1 + 2 ordK(C). Then h is even and A2 + δC2 ∈ (1 +
P∼e−h/2+ordK(C))K×2 ⊆ O×KK×2.

Proof. Since DK(−δ) ⊆ P∼2e−1, we can write −δ = (1 + π2e−1u)t2 where
u ∈ OK and t ∈ O×K . Then A2 + δC2 = A2 −E2 − π2e−1uE2 where E = tC.

Let A − E = πbβ and A + E = πb
′
β′ where β, β′ ∈ O×K . Without loss

of generality, we may assume that b′ ≥ b. If b′ > b, then b = e + ordK(E)
because A+ E = A− E + 2E. Therefore ordK(A2 − E2) > 2e+ 2 ordK(E)
and so ordK(A2 + δC2) ≥ 2e− 1 + 2 ordK(E) which is a contradiction.

Therefore, we have b′ = b. Then h = 2b < 2e − 1 + 2 ordK(E) and
b ≤ e + ordK(E) − 1. Now, A2 − E2 = π2bβ2(1 + 2π−bβ−1E) and so A2 +
δC2 = π2bβ2(1 + 2π−bβ−1E − π2e−1−2bβ−2uE2). Since e − b + ordK(E) ≥ 1
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and 2e − 1 − 2b + 2 ordK(E) ≥ e − b + ordK(E), therefore A2 + δC2 ∈
(1 + P∼e−h/2+ordK(C))K×2 ⊆ O×KK×2.

Lemma 6.11. Let α ∈ (1 + P∼e/2)K×2 with |4| ≤ |α| ≤ |2|. Suppose D
and E are integers in K and γ ∈ O×F such that 1 + (2D2 + 2E2γ)α−1 ∈ O×K.
Then 1 + (2D2 + 2E2γ)α−1 ∈ (1 + P∼ e

2 )K×2.

Proof. Let h = ordK(D2+E2γ). If h ≥ ordK(α)−e/2, then 2(D2+E2γ)α−1 ∈
P∼ e

2 and we are done. Hence we assume that h < ordK(α) − e/2 ≤ 2e −
e/2 < 2e− 1 + 2 ordK(E). So Lemma 6.10 applies and hence h is even and
D2 + E2γ ∈ (1 + P∼e−h/2+ordK(E))K×2.

If h ≤ e, then e − h/2 + ordK(E) ≥ e/2 and hence 2(D2 + E2γ) ∈ (1 +
P∼e/2)K×2. We are finished again with the help of Lemma 6.8. So, we assume
h > e. In this case, (e+h−ordK(α))+(e−h/2+ordK(E)) ≥ h/2+ordK(E) >
e/2. In addition, e+ h− ordK(α) > 0 is even. Therefore, (2D2 + 2E2γ)α−1

can be written as β2 + π
e
2 t with β ∈ P∼ and hence 1 + (2D2 + 2F 2γ)α−1 =

(1 + β)2 − 2β + π
e
2 t ∈ (1 + P∼ e

2 )K×2.

Lemma 6.12. Let ε and δ be in O×F . Then ˜〈ε〉 ⊥ ˜〈εδ〉 ∼= ˜〈1〉 ⊥ ˜〈δ〉.
Proof. Let L be the lattice 〈1〉 ⊥ 〈δ〉. Let Hasse(L̃) be the Hasse symbol of the
quadratic space spanned by L̃ and (, )K be the Hilbert symbol on K. Then
for any ε ∈ O×F , Hasse(L̃ε) = (ε, ε)K(εδ, δ)K . By Bender’s lifting formula
for Hilbert symbols of local fields [Be], we have (a, b)K = (NK/F (a), b)F for
any a ∈ K and b ∈ F . Thus, Hasse(L̃ε) = 1. Moreover, d(L̃) = d(L̃ε).
Therefore L̃ ⊗ K ∼= L̃ε ⊗ K. By [OM, 93:16], we suffice to show that the
norm groups of L̃ε and L̃ are equal. Clearly, the weights of both lattices are
2OK = P∼e. Since ε ∈ O×F , DK(ε) ⊆ P∼2e−1 and so ε ≡ η2 mod P∼e for some
unit η. Therefore, 1 is a norm generator for both lattices. Hence, their norm
groups are equal.

Proposition 6.4. Suppose L ∼= 〈1〉 ⊥ M where M is binary proper 2-
modular. Then θL̃ = (1 + P∼ e

2 )K×2.

Proof. By Lemma 6.12, we may assume L ∼= 〈1〉 ⊥ 2(〈1〉 ⊥ 〈δ〉) in basis
{x, y, z}. Let v ∈ P (L̃). Write v = Ax + Dy + Ez where A,D,E ∈ OF .
Then Q(v) = A2 + 2D2 + 2δE2.

Suppose that |A2| > |2D2 + 2δE2|. If |A2| ≥ |2|, then both 2D2A−2 and
2δE2A−2 are integers in (1 + P∼ e

2 )K×2. Since |Q(v)| = |A2|, the integer
1 + 2D2A−2 + 2δE2A−2 is a unit. Therefore, 1 + 2D2A−2 + 2δE2A−2 ∈
(1 + P∼e/2)K×2 by Lemma 6.8. So we may assume |A2| < |2|. As |A2| =
|Q(v)| ≥ |2B(v, x)| = |2A|, we actually have |4| ≤ |A2| < |2| and Lemma
6.11 applies.
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If |A2| < |2D2 + 2δE2|, then |Q(v)| = |2D2 + 2δE2| and this implies
Dy + Ez ∈ P (M̃). Therefore, 2D2 + 2δE2 ∈ (1 + P∼ e

2 )K×2 by Lemma 6.6
and 6.7. Since 1 +A2(2D2 + 2δE2)−1 is a unit, therefore Lemma 6.8 implies
that 1 +A2(2D2 + 2δE2)−1 ∈ (1 + P∼ e

2 )K×2 and so is Q(v).
Finally, suppose |A2| = |2D2 + 2δE2|. Here, we also have 2D2 + 2δE2 ∈

(1 + P∼ e
2 )K×2. If |Q(v)| = |A2|, then 1 + (2D2 + 2δE2)A−2 is a unit and

Lemma 6.8 applies. So, Q(v) ∈ (1 + P∼ e
2 )K×2. Therefore, we may assume

that |Q(v)| < |A2| = |2D2 + 2δE2| ≤ |2|. Since |2A| ≤ |Q(v)|, we have
|2A| < |A2|. Then |2| < |A| and |4| < |Q(v)|. As a result, |D2 + δE2| > |2|.
Let h = ordK(A2) = ordK(2D2 + 2δE2). Then ordK(D2 + δE2) = h −
e < e < 2e − 1 + 2 ordK(E). Therefore Lemma 6.10 applies and we have
D2 + δE2 ∈ (1 + P∼e+e/2−h/2+ordK(E))K×2. It shows that 2(D2 + δE2)A−2 ∈
(1+P∼e+e/2−h/2+ordK(E))K×2. However, e+e/2−h/2+ordK(E) > e+e/2−e =
e/2. Therefore Lemma 6.8 applies and Q(v) ∈ (1 + P∼ e

2 )K×2.

Proposition 6.5. Suppose L ∼= 〈1〉 ⊥ 〈δ〉 ⊥ M where M is binary proper
2-modular. Then θL̃ = (1 + P∼ e

2 )K×2.

Proof. By Lemma 6.12, we may assume that L ∼= 〈1〉 ⊥ 〈δ〉 ⊥ 〈2〉 ⊥ 〈2γ〉 in
basis {x, y, z, w} where γ and δ are units in O×F . Let v ∈ P (L̃) and write
v = Ax + Cy + Dz + Ew. Then Q(v) = A2 + C2δ + 2D2 + 2E2γ. Similar
to Proposition 6.4, we divide our discussion into three cases according to
|A2 + δC2| is (i) bigger than, (ii) less than, (iii) equal to |2D2 + 2γE2|. The
proof of cases (i) and (ii) are similar to their counterparts in the proof of
Proposition 6.4. Therefore, we just treat case (iii) in below. It is clear that
v can be assumed to be primitive in L̃.

Suppose that |A2 + δC2| = |2D2 + 2γE2|. In this case, both A2 + δC2 and
2D2 + 2γE2 are in (1 + P∼ e

2 )K×2. If |Q(v)| = |A2 + δC2|, then 1 + (A2 +
δC2)(2D2 +2γE2)−1 is a unit and Lemma 6.8 applies. Therefore, we assume
that |Q(v)| < |A2 +δC2| = |2D2 +2γE2| ≤ |2|. As |Q(v)| ≥ |2A| and |2C|, A
and C cannot be units and hence D or E is a unit. Moreover, |Q(v)| ≥ |4D|
and |4E|. Consequently,

|4| ≤ |Q(v)| < |A2 + δC2| = |2D2 + 2γE2| ≤ |2|.
Let h = ordK(A2 + δC2). Then h is even and so e ≤ h ≤ 2e− 2 < 2e− 1 +
2 ordK(C). Apply Lemma 6.10 and we get

A2 + δC2 ∈ πh(1 + P∼e−h/2+ordK(C))O×2
K .

Similarly, if k = ordK(D2 + γE2), then

D2 + γE2 ∈ πk(1 + P∼e−k/2+ordK(E))O×2
K .
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Let η = (2D2 + 2γE2)(A2 + δC2)−1. Then

η ∈ (1 + P∼e−h/2+ordK(C))(1 + P∼e−k/2+ordK(E))O×2
K .

Therefore, we can write η = (1+πe−k/2+ord(E)t)(1+πe−h/2+ordK(C)s)β2 where
t, s ∈ OK and β ∈ O×K . Furthermore, 1+η = (1+β)2−2β+πe−k/2+ordK(E)t+
πe−h/2+ordK(C)s+ π2e−(h+k)/2+ordK(E)+ordK(C)st.

Now |1 + η||A2 + δC2| ≥ |2C| and |2A|. This shows that ordK(1 + η) ≤
e+ ordK(C)−h and e+ ordK(A)−h. Without loss of generality, we assume
ordK(C) ≥ ordK(A). Since |A2 + δC2| ≤ Max(|A2|, |C2|), we have h/2 ≥
ordK(A).

Let ordK(1 + η) = d. Then d must be even since θL̃ ⊆ O×KK×2. Also,
(a) e− d ≥ e− e− ordK(A) + h ≥ h/2 ≥ e/2;
(b) e−h/2+ordK(C)−d ≥ e−h/2−ordK(C)−e+ordK(C)+h = h/2 ≥ e/2
and
(c) e−k/2+ordK(E)−d ≥ e−k/2+ordK(E)−e−ordK(A)+h ≥ (h−k)/2 ≥
e/2 since h = k + e and h− ord(A) ≥ h/2.

By (a), (b), (c) above and the fact that d is even, we see that (1+η)π−d =
((1 + β)π−d/2)2 + πe/2r for some r ∈ OK . Therefore 1 + η ∈ (1 + P∼e/2)K×2.
We are now finished since Q(v) = (A2 + δC2)(1 + η).

Lemma 6.13. Suppose L ∼= 〈1〉 ⊥ 〈δ〉 ⊥ N where s(N) ⊆ 4OF . If θÑ ⊆
(1 + P∼ e

2 )K×2, then θL̃ = (1 + P∼e/2)K×2.

Proof. Clearly, θL̃ ⊇ (1 +P∼ e
2 )K×2. For the other inclusion, we let v ∈ P (L̃).

ThenQ(v) = A2+C2δ+Q(z) where z ∈ Ñ . The cases |A2+C2δ| ≤ |Q(z)| can
be proved similarly as before. Suppose that |A2+C2δ| > |Q(z)|. In this case,
A2 +C2δ ∈ (1+P∼ e

2 )K×2. Without loss of generality, we assume |A2| ≥ |C2|.
Then |A2| ≥ |A2 + C2δ| ≥ |2A| and so |A| ≥ |2|. As a result, |A2 + C2δ| =
|Q(v)| ≥ |4|. Now, Q(v) = (A2 + δC2)(1+Q(z)(A2 + δC2)−1). The following
lemma will show that either Q(z) ∈ (1+P∼ e

2 )K×2 or Q(z)(A2 +δC2)−1 ∈ P∼ e
2 .

We are finished in either case.

Lemma 6.14. Let M be a lattice defined over OF with s(M) = 2rOF . Let
x ∈ Q(M̃). Then either ordK(x) ≥ re+ e/2 or x ∈ (1 + P∼ e

2 )K×2.

Proof. Scaling by 2−r allows us to assume r = 0. If n(M) ⊆ 2OF , then we are
done. Hence we can assume that n(M) = OF . Let a be a norm generator
of M . Take x ∈ Q(L̃). There exist α, β ∈ OK such that x = aα2 + 2β.
We may assume that ordK(aα2) = ordK(α) < ordK(2β) since otherwise
ordK(x) ≥ e > e/2. Under this assumption, ordK(x) = ordK(α2) and
x(aα2)−1 = 1 + 2β(aα2) is a unit.
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If ordK(x) < e/2, then ordK(aα2) < e/2 and so 1 + 2β(aα2)−1 ∈ 1 + P∼ e
2 .

As a ∈ OF , a ∈ (1 + P∼ e
2 )K×2. Therefore, x ∈ (1 + P∼ e

2 )K×2.

The next proposition is Case (II.2) of Theorem 4.2.

Proposition 6.6. Suppose L is split by 2rε(〈1〉 ⊥ 〈δ〉). Then θL̃ = (1 +
P∼ e

2 )K×2.

Proof. We proceed by induction on the rank of L. The proposition is true
if the rank is 2 or 3 or L ∼= 〈1〉 ⊥ 〈δ〉 ⊥ 2ε(〈1〉 ⊥ 〈δ〉) (after scaling L
suitably). In view of Lemma 6.9 and 6.13, we may assume that the second
Jordan component has scale 2OF . We have two situations here, namely (A)
L ∼= 〈1〉 ⊥ L2 ⊥ N and (B) L ∼= 〈1〉 ⊥ 〈δ〉 ⊥ L2 ⊥ N where L2 is 2-modular
and s(N) ⊆ 4OF . The proof of the proposition will be similar to the proofs
for Proposition 6.4 and 6.5 and Lemma 6.13. Therefore, we simply lay out
the idea below instead of giving the full version of the proof.

In (A), let x be the vector which gives the summand 〈1〉. Take v ∈ P (L̃)
and write it as v = Ax + y + z where y ∈ L̃2 and z ∈ Ñ . As usual, we
subdivide the discussion into three subcases by comparing |A2 + Q(y)| and
|Q(z)|. In (B), let {x, y} be the pair of vectors which gives the summand
〈1〉 ⊥ 〈δ〉. Let v ∈ P (L̃). This time, v can be written as Ax + Cy + z + w
where z ∈ L̃2 and w ∈ Ñ . We then compare the norms |A2 + C2δ + Q(z)|
and |Q(w)|.
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