PACIFIC JOURNAL OF MATHEMATICS
Vol. 185, No. 2, 1998

ON Y-HILBERTIAN FIELDS

MicHAEL D. FRIED AND MOSHE JARDEN

For each nonegative integer g, we construct a PAC field K
which is g-Hilbertian but not Hilbertian.

Introduction.

A field K is O-Hilbertian if K # [J!, ¢;(K) for any collection of rational
functions ¢, of degree at least 2, i = 1,... ,m. Corvaja and Zannier [CoZ]
give an elementary construction for a O-Hilbertian field that isn’t Hilber-
tian. There is an obvious generalization of the notion of 0-Hilbertian to
g-Hilbertian.

Guralnick-Thompson and Liebeck-Saxl have given a partial classification
of monodromy groups of genus g covers of the projective line over C. We
use this to construct, for each nonnegative integer g, a PAC field K of
characteristic 0 which is g-Hilbertian but not Hilbertian.

1. X-groups.

Let ¥ be a set of finite simple groups. A finite group G is said to be a
Y-group, if each composition factor of G belongs to 3. An inverse limit of
Y-groups is a pro-Y-group. Consider a short exact sequence of profinite
groups:

(1) 1—-C—B3A—1.

Then B is a pro-X-group if and only if both A and C are pro-3-groups. If
G = B; X4 By is a fiber product of ¥-groups [FrJ, p. 288], then Ker(G —
B;) = Ker(B; — A) is a X-group. Hence, G is a X-group.

For each cardinal number m there exists a unique (up to an isomorphism)
free pro-X-group Fm(Z) of rank m. This group has a subset X of cardinality
m which converges to 1 such that each continuous map ¢y of X into a pro-X
group G uniquely extends to a homomorphism ¢: Fm(Z) — (. By Melnikov

[Mel, Lemma 2.2], F,,(¥) has the embedding property [FrJ, p. 353]. In
particular,

(2) if m is infinite, then each finite embedding problem for F),, (%)

where the kernel is a ¥-group is solvable.
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If ¥ is the set of all finite simple groups, then Fm(Z) is the free profinite
group F;, of rank m. In this case F;, is projective. This is also true in other
cases:

Lemma 1. Suppose each finite simple group in X is generated by myg
elements. If m > my, then F,,(X) is projective if and only if the following
holds:

(3) If a prime p divides the order of one of the groups in X,
then Z/pZ € X.

Proof. Write F' for F,,(3). Suppose first that ¥ satisfies (3). In order to
prove that Fis projective, it suffices (and is necessary) to prove that for each
prime p, each finite embedding problem for F with an abelian p-elementary
kernel has a weak solution [FrJ, Lemma 20.8] or [Rib, p. 211].

Indeed, assume that in the short exact sequence (1), C' = (Z/pZ)" for some
positive integer n. Let ¢: F — A be an epimorphism. Choose by, ... b, € B
such that (a(by),...,a(by)) = A and kK < m if m is finite. Let By =
(b1, ... ,bx) and let ag be the restriction of @ to By. Then Cy = Ker(ag) =
CNBy is also an abelian p-elementary group. If p does not divide the order of
A, then aq has a section [Hup, p. 122], [Satz, 17.5]. If p divides the order of
A, then Z/pZ € ¥ (by (3)). Therefore, both A and Cj are ¥-groups. Hence,
so is By. Since By is generated by k elements and k < m, it is a quotient of
Fm(E). It follows that in each case there exists an epimorphism ~y: F— By
such that ay oy = ¢. This is a weak solution to the embedding problem.
Conclude that F is projective.

Conversely, suppose that Fis projective. Let S be a simple group in
>} and let p be a prime divisor of the order of S. We have to prove that
Z|pZ € X.

Indeed, since S is finite, cd,(S) = oo [Rib, p. 209, Cor. 205]' . In
particular, by [Rib, p. 211], there exists a nonsplit short exact sequence
1 —-C —G3% S — 1. where C is a finite elementary p-abelian group.
Replace G by a subgroup of G if necessary, to assume that « is a Frattini
cover [FrJ, p. 299].

Since m > my, this gives an epimorphism : F—S. AsFis projective,
there is a homomorphism ~: F' — G such that aoy = . Since « is Frattini,
«y is surjective. Thus Z/pZ is a composition factor of a ¥-group. Conclude
that Z/pZ is in 2. u

Remark 2. (a) If m is the minimal integer such that all groups in ¥ have
rank mg, then Lemma 1 is false with m < mgy. For example, it is false for

!This has a typo. Instead of “p does not divide #G” it should say “p divides #G”.
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m = 1. Indeed, suppose that 3 consists of the group As only. Then 13'1(2)
is the trivial group, hence projective. But, Z/2Z in not in ¥, although 2
divides the order of As.

(b) The classification of finite simple groups implies that any simple group
S is generated by two elements [AsG, Thm. B|. That is, we may take my = 2
in Lemma 1. We do not use the “if” part of Lemma 1 in the construction
of a g-Hilbertian field which is not Hilbertian. In particular, the latter
construction does not use the classification theorem for simple groups.

2. Y-Hilbertian fields.

Let X be a set of finite simple groups and let ¢ be a transcendental over K. We
say K is X-Hilbertian if the following holds for each finite Galois extension
F/K(t) with G(F/K(t)) a X-group. There are infinitely many a € K such
that each decomposition subgroup of G(F'/K (t)) over the specialization ¢ —
a coincides with the whole group.

In particular, if 3 is the set of all finite simple groups, then K is 3-
Hilbertian if and only if it is separably Hilbertian [FrJ, p. 147]. (Separable
Hilbertian in characteristic 0 is the same as Hilbertian.) In many other cases
this conclusion is false:

Lemma 3. Let X be a set of finite simple groups such that FW(Z) 18
projective. Let Ky be a countable separably Hilbertian field. Suppose there
exists a finite nonabelian simple group which does not belong to . Then Ky
has a separable algebraic extension K which is PAC, X-Hilbertian, but not
separably Hilbertian. Moreover, G(K) = F,(X).

Proof. Since FW(E) has countable rank, K, has a separable algebraic exten-

A~

sion K which is PAC such that G(K) = F,(X¥) [FrJ, Thm. 20.22].
Claim A. K is ¥-Hilbertian.

Indeed, let F//K(t) be a finite Galois extension such that G(F/K(t)) is a
Y-group. Let L be the algebraic closure of K in F'. By (2), the embedding
problem res: G(F/K(t)) — G(L/K) is solvable over K. Now continue with
the proof of Claim A exactly as in the proof of [FrJ, Prop. 23.2] (for E =
K(t) and H = G(F/E)) and obtain infinitely many a € K such that each
decomposition group over the specialization t — a coincides with G(F/K (t)).

Claim B. K is not separably Hilbertian.

Let S be a finite simple nonabelian group which is not in 3. Since K
is PAC, K(t) has a Galois extension F’ with Galois group S [FrV, Thm.
2, for characteristic 0], and [Pop, Thm. 1] or [HaJ, Thm. A in general].
If K were separably Hilbertian, we could specialize ¢ to an element of K
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and realize S over K. Then S would be a quotient of FW(Z) and therefore
would be a Y-group. This would contradict the assumption we have made

on S. 0

Remark 4. The assumption that Fw(Z) is projective is redundant. Sup-
pose that F, () is not projective. Let ¢: (%) — F,(X) be its universal
Frattini cover. Then F,(X) is projective [FrJ, Prop. 20.33]. Since FW(Z)
has the embedding property, so does FW(E) [FrJ, Prop. 23.9]. Moreover,
Ker(yp) is contained in the Frattini subgroup of F, (%), which is nilpotent
[FrJ, Lemma 20.2]. It follows that Ker(y) itself is nilpotent. Suppose S is
not a quotient of FW(E) and S is a simple nonabelian group. Then S is not
a quotient of F,,(X). The proof of Lemma 3 remains therefore valid if we
replace F,(X) throughout by F,(2).

Indeed, in this case we may prove Claim B in another way: Ker(yp) is
a nontrivial closed normal subgroup of G(K) and it is pro-nilpotent. By
[FrJ, Thm. 15.10], K is not separably Hilbertian. |

3. g-Hilbertian fields.

Let K be a field and let g be a nonnegative integer. Call a separable rational
map of absolutely irreducible curves, ¢: I' — A!, over K admissible if it
has degree at least 2. We say that K is g-Hilbertian if K is not the
union of finitely many sets of the form ¢(I'(K)) with ¢ admissible and I" of
genus at most g. Each a € K belongs to a set of the form ¢(I'(K)) with
¢ admissible and I" of genus at most g with a point a’ € ¢(I'(K)). Then
¢ = ¢+ a—d is also admissible and o' € ¢'(I'(K)). [FrJ, Lemma 12.1]
or [Ser, Cor. 3.2.4 for char(K) = 0] shows that K is separably Hilbertian if
and only if K is g-Hilbertian for each g > 0.

Observe that K is 0-Hilbertian if and only if K has the following property:

(4) K # U @;(K) for each collection
=1
{p € K(t)|deg(¢) > 2 and ¢, separable, i =1,...,t}.

Indeed, suppose that K satisfies Condition (4). Assume that K =
UL, ¢i(Ti(K)), with ¢;: I; — A' admissible and the genus of T'; is 0,
i =1,...,n. Renumber ¢i,...,,, if necessary, to assume that I';(K) is
infinite for i = 1,... ,m and I';(K) is finite for i = m + 1,... ,n. In partic-
ular, for each ¢ between 1 and m, I';(K) contains a simple K-rational point.
Hence, T'; is birationally equivalent to A* over K, [Art, p. 304, Thm. 7] and
¢; can be considered as an element of K (t). Moreover, K \ -, p:(K) is
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a finite set, say {ai,...,a,}. For each j between 1 and r let ¥; = t* + a;.
Then K = U2, ¢i(K) UUj-, ¥;(K). This contradicts Condition (4).

Corvaja and Zannier [CoZ, Thm. 1] give an example of an algebraic ex-
tension K of Q which is 0-Hilbertian but not Hilbertian.

The example of Theorem 6 generalizes that of Corvaja-Zannier and proves
that for each g there are g-Hilbertian fields which are not Hilbertian.?

Let C be an algebraically closed field of characteristic p (which may be
0). Let G be a finite group. We say that G has genus ¢ (in characteristic p)
if there exists a finite separable extension F/C(t), with F' of genus g, such
that G = G(F'/C(t)). Here F is the Galois closure of F/C(t). In particular,
each cyclic group is a group of genus 0 in each characteristic.

Remark 5. Omission of Chevalley groups. A combination of works of
Aschbacher, Frohardt, Guralnick, Liebeck, Magaard, Neubauer, Saxl, and
Thompson, proves that for each g there are finite simple groups that are not
composition factors of groups of genus g in characteristic 0. Indeed, there
are only finitely many — depending on g — Chevalley groups defined over
a field with more than 113 elements that occur as composition factors of
groups of genus ¢ in characteristic 0 [GuN, Thm. A].

We don’t know, for p > 0 and a given g, if there is any finite simple group
which does not occur as a composition factor of a group of genus at most g
in characteristic p. This restricts the proof of Theorem 6 to characteristic 0.
Thus, it is not clear if there exists a non-Hilbertian field K of characteristic
p which is g-Hilbertian.

Theorem 6. Let g be a nonnegative integer and let Ky be a countable
Hilbertian field of characteristic 0. Then, Ky has an algebraic extension K
which is PAC, g-Hilbertian, but not Hilbertian.

Proof. Denote the set of all finite simple groups that occur as composition
factors of groups of genus at most ¢ in characteristic 0 by ¥. Then ¥ contains
all groups Z/1Z, with [ prime, but not all finite simple groups. For example,
if p > 113 is a large prime, then ¥ does not contain PSL(2,F,) (Remark 5).

By Lemma 1, FW(Z) is projective. Lemma 3 therefore gives an algebraic
extension K of Ky which is PAC, X-Hilbertian but not Hilbertian. Moreover,
G(K) = F, (D).

Claim. K is g-Hilbertian.

Fori=1,... ,mlet I'; be an absolutely irreducible curve over K of genus
at most g. Let ;: I'; — A! be a rational function of degree at least 2. Use

>The [CoZ] example is a quotient field of a unique factorization domain R with infinitely
many prime ideals. Our example does not have this property.
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primitive elements if necessary to assume that I'; is a plane curve defined by
the equation h;(T, X) = 0, where h;, € K[T, X]| is an absolutely irreducible
polynomial of degree at least 2 in X. Moreover, assume that ¢; is the
projection on the first coordinate.

—~—

Now choose z; € K(t) such that h;(t,z;) = 0. Let E; be the Ga-
lois closure of K(t,x;)/K(t), and let L, be the algebraic closure of K in
F;. Since K(t,z;) is linearly disjoint from L;(t) over K(t), x; has the
same conjugates over L;(t) as over K(t). Hence, F} is the Galois closure
of L(t,x;)/L;(t) and therefore F;K is the Galois closure of K (t,z;)/K(t).
Moreover, G(F,/L;(t)) = G(F;K /K(t)) and the genus of K(t, ;) is at most
g. Hence, G(F;/L;(t)) is a group of genus at most g and therefore also a
S-group. In addition, G(L;/K) as a quotient of F,(X) is also a X-group.
Conclude from the short exact sequence

1— G(F/Li(t)) — G(Ey/K(t)) — G(Li/K) — 1

that G(F,/K(t)) is a S-group.

Let F' = Fy---F,. Take successive fiber products of G(Fy/K(t)),...,
G(F,,/K(t)) to obtain G(F/K(t)). By §1, G(F/K(t)) is a $-group. Since,
K is Y-Hilbertian, it is possible to specialize ¢ in infinitely many ways to
an element a € K such that G(F/K(t)) is preserved. For infinitely many of
these a, each of the polynomials h;(a, X) is irreducible of degree at least 2. In
particular, h;(a,b) # 0 for all b € K. So, a ¢ ;- ¢:(K) for infinitely many
a € K. This concludes the proof of the Claim and of the theorem. |
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